WO2023087678A1 - 一种可自适应光照强度的智能窗箔,制备及应用 - Google Patents

一种可自适应光照强度的智能窗箔,制备及应用 Download PDF

Info

Publication number
WO2023087678A1
WO2023087678A1 PCT/CN2022/097753 CN2022097753W WO2023087678A1 WO 2023087678 A1 WO2023087678 A1 WO 2023087678A1 CN 2022097753 W CN2022097753 W CN 2022097753W WO 2023087678 A1 WO2023087678 A1 WO 2023087678A1
Authority
WO
WIPO (PCT)
Prior art keywords
window foil
smart window
tungsten trioxide
light intensity
adapting
Prior art date
Application number
PCT/CN2022/097753
Other languages
English (en)
French (fr)
Inventor
王京霞
孟维豪
高颖韬
江雷
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2023087678A1 publication Critical patent/WO2023087678A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten

Definitions

  • the invention relates to the technical field of smart materials. More specifically, it relates to a smart window foil that can adapt to light intensity, its preparation and application.
  • electrochromic smart windows require complex circuit devices and require additional energy consumption, or the preparation method of photochromic smart windows requires a high-temperature sintering process, which limits its use on rigid substrates.
  • Tungsten trioxide as a wide bandgap indirect semiconductor material, is the most common photochromic inorganic nanomaterial. Due to its excellent stability and low cost, tungsten trioxide has been widely studied in the field of photochromic smart windows.
  • the crystal structure of tungsten trioxide is composed of a series of [WO6] octahedrons with a similar perovskite structure. The structure can be regarded as that each central tungsten atom is surrounded by equidistant oxygen atoms, forming an infinite [WO6] octahedral corner-sharing structure in space, and the chemical bond is an ionic bond between W 6+ and O 2- , but there are Obvious covalent composition.
  • Single crystal tungsten trioxide is essentially an intrinsic semiconductor and one of d 0- transition metal oxides, with excellent chemical, electrical, optical and structural properties. Due to its various color rendering properties, it is widely used in electrochromic and photochromic aspects, and it is one of the most widely studied photochromic materials.
  • the first object of the present invention is to provide a smart window foil that can adapt to light intensity.
  • the smart window foil When using the smart window foil, there is no need to replace the original window, and it can be directly attached to the surface of the ordinary window for use.
  • the operation is more convenient, there is no additional energy consumption, and it is flexible, self-supporting, low cost, and non-scattering.
  • the second object of the present invention is to provide a method for preparing the above smart window foil that can adapt to the light intensity.
  • the preparation method has a simple process, saves the high-temperature sintering or high-vacuum magnetron sputtering and other methods used in the traditional preparation process, broadens the application range, and reduces the manufacturing cost.
  • the third object of the present invention is to provide an application of the above smart window foil that can adapt to the light intensity in adjusting the sunlight transmittance.
  • the invention discloses an intelligent window foil capable of adapting to light intensity, which comprises polymethyl methacrylate and tungsten trioxide.
  • the addition of tungsten trioxide can achieve the purpose of adaptive light intensity adjustment, and the transparency will change with the light intensity.
  • the transparency decreases, and the light transmission decreases.
  • the transparency gradually Recovery, while polymethyl methacrylate, as the main component of smart window foil, plays the role of dispersing photochromic materials, avoiding the local light scattering phenomenon caused by aggregation due to uneven dispersion, so in the common Under the action, the smart window foil achieves a better effect of adaptive light intensity.
  • the tungsten trioxide provided by the present invention includes two different states of oxidation state and reduction state. Under different light intensity, tungsten trioxide can present oxidation state and reduction state. When tungsten trioxide is in an oxidized state, due to its wide-bandgap semiconductor material properties, its absorption of light is in the ultraviolet band and has no absorption in the visible band, making the smart window foil transparent. When oxidized tungsten trioxide absorbs ultraviolet light, a pair of electrons and holes are generated. The electrons are re-injected into tungsten trioxide and captured by oxygen vacancies to generate reduced W 5+ .
  • H + is embedded in the tungsten trioxide lattice to form HWO 3 , that is, reduced tungsten trioxide.
  • the reduced tungsten trioxide forms F color centers due to oxygen vacancies capturing electrons, and a large number of free electrons Scattering will have a strong absorption of visible light and infrared light, making the smart window foil in a colored state.
  • the oxygen in the air will slowly oxidize the reduced tungsten trioxide, making it return from W 5+ to W 6+ , and the corresponding H + from the tungsten trioxide lattice
  • the WO 3 and water are generated, that is, the reverse reaction of the photochromic reaction occurs, and the smart window foil returns from the colored state to the transparent state.
  • the tungsten trioxide is nano-tungsten trioxide with a particle size of 15-25 nm.
  • the weight ratio of tungsten trioxide to polymethyl methacrylate is 2wt%-6wt%.
  • the weight ratio of lithium iodide to tungsten trioxide is 5wt%-30wt%.
  • the inventor screened out lithium iodide that is compatible with tungsten trioxide through a large number of experiments.
  • the addition of lithium iodide mainly affects the recovery rate of tungsten trioxide, and then affects The sensitivity of smart window foil to the adaptiveness of light can be improved, and the recovery rate after discoloration can be shortened.
  • lithium iodide is not added, the slow oxidation of oxygen in the air is required to realize the fading of the smart window foil, but when lithium iodide is introduced, it can promote the fading process and accelerate the recovery rate of tungsten trioxide.
  • lithium iodide When lithium iodide exists in the system, lithium iodide will replace the water and oxygen in the air, and during the photochromic reaction process, the generated holes are captured by I- in lithium iodide to generate Li + intercalates into the tungsten trioxide lattice to generate LiWO 3 , while during the fading process, Li + is released from the tungsten trioxide lattice, Oxidizes W 5+ back to W 6+ .
  • the weight ratio of lithium iodide to tungsten trioxide is 5wt%-30wt%. Further preferably, the weight ratio of lithium iodide to tungsten trioxide includes but not limited to 10wt%, 15wt%, 20wt%, 25wt% and so on.
  • the doping amount of tungsten trioxide will affect the initial transparency and discoloration effect of the smart window foil.
  • the weight ratio of tungsten trioxide to polymethyl methacrylate exceeds 6wt%, obvious aggregation will occur in the molded smart window foil, resulting in reduced transparency and uniformity of the entire film.
  • the weight ratio of tungsten trioxide to polymethylmethacrylate is less than 2wt%, the ultraviolet light has almost no photochromic effect.
  • the weight ratio of tungsten trioxide to polymethyl methacrylate is 2wt%-6wt%.
  • the weight ratio of tungsten trioxide to polymethylmethacrylate includes but not limited to 2.5wt%, 3wt%, 3.5wt%, 4wt%, 4.5wt%, 5wt%, 5.5wt%, etc.
  • the absorption band of the nanoparticles of tungsten trioxide is 250-400 nm.
  • the thickness of the smart window foil is only related to the size of the mold and the amount of PMMA used. In order to ensure good practicability and production cost of the smart window foil, the thickness of the smart window foil is set at 20 ⁇ m to 40 ⁇ m.
  • the invention discloses a method for preparing the above-mentioned intelligent window foil capable of adapting to the light intensity, which comprises the following steps:
  • nano-tungsten trioxide directly affects the performance of the smart window foil that can adapt to the light intensity.
  • Traditional nanoparticle preparation processes such as hydrothermal method and ball milling method are not suitable for the preparation of smart window foil in the present invention.
  • These processes consume high energy, are complicated to operate, and have certain risks.
  • the prepared nano-tungsten trioxide particles have a large particle size, the discoloration effect is not obvious, and the compatibility with the polymer matrix is poor.
  • the present invention is not only for the preparation of nano-tungsten trioxide, but also requires a method for forming nano-tungsten trioxide under the intelligent window foil preparation system, so as to overcome the inability to prepare tungsten trioxide that meets the requirements.
  • the problem of smart window foil is that it is impossible to obtain a transparent and flexible smart window foil by directly mixing nano-tungsten trioxide and polymethyl methacrylate, and it is impossible to realize that the smart window foil is automatically changed from colorless to transparent only under the change of light intensity. to the problem of coloring changing to blue.
  • tungsten chloride can be converted into nano-tungsten trioxide in the intelligent window foil preparation system, and well dispersed in polymethyl methacrylate to form a solid sol, realizing the transition from organic sol to polymer
  • the transformation of solid sol not only reduces the preparation process and cost, but also avoids the scattering of light caused by the excessive size or aggregation of nanoparticles, and the most important thing is that it has a good photochromic effect.
  • the solution supersaturation method refers to a method of preparing a sol by utilizing the disparity of solubility of the same substance in different solvents.
  • Tungsten chloride the precursor of tungsten trioxide in the present invention, can be well dissolved in N,N-dimethylformamide, but poorly soluble in polymethyl methacrylate, after drying the solvent, that is Uniformly dispersed tungsten trioxide-polymethyl methacrylate solid solution can be obtained.
  • tungsten chloride is selected as the precursor of tungsten trioxide; preferably, the concentration of tungsten chloride in the sol is 0.1-0.3 g/mL; preferably, the polymethylmethacrylate The concentration of polymethyl methacrylate in the ester solution is 0.02-0.04 g/mL.
  • stirring time is 1-3 hours.
  • the drying temperature is 30-50° C.; the drying temperature is 1-4 hours.
  • the volatilization rate of the solvent is mainly considered, because in the process of preparing the solid sol smart window foil by the solution supersaturation method, the rapid volatilization of the solvent is the key to the transparency of the smart window foil, and the solvent evaporation time is too long.
  • the drying temperature is controlled at 30-50°C to ensure that the drying process is completed within 1-4 hours.
  • the set drying temperature is 40°C
  • the drying time is 1h.
  • the present invention discloses an application of the above-mentioned smart window foil that can adapt to the light intensity in adjusting the sunlight transmittance.
  • the transparency of the intelligent window foil decreases and light transmission decreases.
  • the transparent and colorless smart window foil turned blue, and the color deepened as the irradiation time increased.
  • the solar simulator is turned off, under dark conditions, the blue color of the smart window foil will gradually disappear, and the smart window foil will return to a colorless state.
  • the invention discloses an intelligent window foil capable of adapting to light intensity, its preparation and application.
  • the smart window foil includes polymethyl methacrylate and tungsten trioxide, wherein the tungsten trioxide includes two states: a transparent oxidation state and a colored reduction state. After tungsten trioxide absorbs sunlight, it realizes the transition from a colorless oxidized state to a blue reduced state, making the smart window foil adaptive to the intensity of sunlight to present a light or dark color. After doping lithium iodide, it will affect the recovery rate of tungsten trioxide, and then affect the sensitivity of smart window foil to the light adaptability.
  • This smart window foil is transparent in its own oxidized state and blue reduced state, and can be pasted on existing window glass without replacing the existing window, easy to use, flexible, self-supporting, and low in cost , non-scattering, more energy-saving and environmental protection, etc., and has a wide range of application prospects.
  • Fig. 1 shows a schematic diagram of the process of preparing smart window foil.
  • Fig. 2 shows photos of changes in macroscopic transparency of the smart window foil in Example 1 before and after sunlight irradiation.
  • Fig. 3 shows the change of the transmittance of the smart window foil in Example 1 before and after being irradiated with light.
  • Fig. 4 shows the photo of the transmittance of the smart window foil in Example 1 changing with time under the solar simulator and the photo of the fading recovery process.
  • Fig. 5 shows the change of transmittance of the smart window foil in Example 1 under a 365nm ultraviolet light of 10mW ⁇ cm -2 with illumination time.
  • FIG. 6 shows the change of transmittance with time during the fading recovery process of the smart window foil in Example 1.
  • FIG. 7 shows a transmission electron microscope image of the smart window foil in Example 1.
  • Fig. 8 shows the actual picture of the smart window foils formed under different doping amounts of lithium iodide in Example 2.
  • Fig. 9 shows photos of the transmittance of the smart window foil prepared in Example 2 when the doping amount of lithium iodide is 20mg under a solar simulator as a function of time and the photo of the fading recovery process.
  • Fig. 10 shows the transmittance of the smart window foil prepared in Example 2 when the doping amount of lithium iodide is 20mg under a 365nm ultraviolet lamp of 10mW ⁇ cm -2 as a function of illumination time.
  • Fig. 11 shows the change of transmittance with time during the fading recovery process of the smart window foil prepared when the doping amount of lithium iodide in Example 2 is 20 mg.
  • Fig. 12 shows the actual picture of the smart window foil prepared at different drying temperatures in Example 3.
  • Fig. 13 shows the optical micrographs of the smart window foils prepared at different drying temperatures in Example 3.
  • PMMA polymethyl methacrylate
  • the smart window foil was placed under sunlight for 10 minutes, and the transparency changes are shown in Figure 2. It can be found that the smart window foil is completely transparent before lighting, which is recorded as a transparent state. After lighting, the color of the film becomes darker, and the light transmittance decreases significantly, which is recorded as a colored state. On the same smart window foil, the illuminated area and the non-illuminated area There is obvious color difference, showing two states of transparent state and colored state. As shown in Figure 3, the transmission spectrum and reflection spectrum of the smart window foil show that the transparent smart window foil only absorbs ultraviolet light, and the colored smart window foil has strong absorption of ultraviolet light, visible light and infrared light. Absorption.
  • the smart window foil was placed under a solar simulator and irradiated with a power of 100mW cm -2 for 5 minutes.
  • the coloring process and the transparency changes during the fading recovery process are shown in Figure 4. It can be found that the transparency decreases slowly with the illumination time. After no light, the transparency gradually recovers with time, and the recovery time is about 3 hours.
  • the pass rate drops from about 90% to about 40%, and the transmittance of infrared light band drops from about 90% to 0%.
  • Figure 6 shows the change of transmittance with time during the fading recovery process.
  • the fading recovery process takes about 3 hours, and the transmittance in the visible band can be restored to about 80%, and the transmittance in the infrared band can be restored to about 50%.
  • the smart window foil was sliced and observed under a transmission electron microscope, as shown in Figure 7, the distribution of tungsten trioxide nanoparticles in the smart window foil can be seen, and the size of the particles is about 20nm.
  • PMMA polymethyl methacrylate
  • the sol was added to the dichloromethane solution of PMMA, stirred at room temperature for 2h, then poured into the mold, and the solvent was slowly evaporated in a 40°C drying oven for 1h.
  • the smart window foil that adapts to the light the thickness of the smart window foil is 20 ⁇ m. As shown in FIG. 8 , with the increase of the concentration of lithium iodide, the color of the obtained smart window foil gradually turns yellow.
  • the smart window foil prepared when the doping amount of lithium iodide was 20 mg was selected for testing.
  • the smart window foil was placed under a solar simulator and irradiated with a power of 100 mW cm -2 for 5 minutes.
  • the transparency changes in the coloring process and fading recovery process As shown in Figure 9, it can be found that the transparency decreases slowly with the light time, and the transparency gradually recovers with time after no light, and the recovery time is about 1 hour.
  • the smart window foil was placed under 365nm ultraviolet light and irradiated with a power of 10mW ⁇ cm -2 for 20s.
  • the pass rate drops from about 90% to about 70%, and the transmittance of infrared light band drops from about 90% to 40%.
  • Figure 11 shows the change of transmittance over time during the fading recovery process.
  • the fading recovery process takes about 1 hour, and the transmittance in the visible band can be restored to about 90%, and the transmittance in the infrared band can be restored to about 90%.
  • PMMA polymethyl methacrylate
  • the sol was added to the dichloromethane solution of PMMA, stirred at room temperature for 2 hours, then poured into the mold, and the solvent was slowly evaporated at different temperatures. After drying the solvent, smart window foils with different transparency were obtained. The thickness of the smart window foil was 20 ⁇ m.
  • Figure 12 is an optical microscope photo of smart window foils prepared at different drying temperatures. It can also be observed in the optical microscope that when the temperature is low, the aggregation of nanoparticles can be observed. When the temperature is high, the surface of the smart window foil is relatively uniform and invisible to the aggregation of nanoparticles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种可自适应光照强度的智能窗箔,制备及应用。该智能窗箔包含包括聚甲基丙烯酸甲酯和三氧化钨,其中三氧化钨包括透明的氧化态和着色的还原态两种状态。三氧化钨吸收太阳光后,实现从无色的氧化态到蓝色的还原态之间的转换,使该智能窗箔自适应太阳光强度呈现浅色或深色。掺杂碘化锂后,会影响三氧化钨的恢复速率,进而影响智能窗箔对光照的自适应性的敏感程度。这种智能窗箔在本身的氧化态和蓝色的还原态都是透明的,可以贴在已有的窗玻璃上,无需更换现有的窗户,使用方便,具有柔性,自支撑,成本较低,无散射,更节能环保等优点,具有广泛的应用前景。

Description

一种可自适应光照强度的智能窗箔,制备及应用 技术领域
本发明涉及智能材料技术领域。更具体地,涉及一种可自适应光照强度的智能窗箔,制备及应用。
背景技术
随着环保和节能日益受到重视,能源合理利用的呼声越来越大,同时节能产品的研制和开发取得较大进展。在这种背景下,80年代前期C.M.Lampert和C.G.Granqvist等人首先提出将电致变色材料应用于建筑物、汽车、飞机等的节能采光系统中,形成能动态调节太阳辐射能透过率的"智能窗"(Smart window)。近年来,智能窗的研究及应用一直是研究的热点。但是传统的智能窗材料存在诸多问题,例如:电致变色智能窗需要复杂的电路装置,且需要额外的能源消耗,或者是光致变色智能窗的制备方法需要高温烧结工艺限制其在刚性基材使用,或者是需要昂贵的高真空磁控溅射设备在柔性基材上,增加制造成本,或是智能窗的使用需要更换原来已有的普通窗户,操作复杂且成本较高等,严重阻碍智能窗材料的发展。
三氧化钨作为一种宽带隙间接半导体材料,是最常见的光致变色无机纳米材料。由于其优异的稳定性和较低的成本,三氧化钨在光致变色智能窗领域被广泛研究。三氧化钨晶体结构是有一系列类似钙钛矿结构的[WO6]八面体共角堆积而成。该结构可视为每个中心钨原子被等距离的氧原子包围,在空间中形成无限的[WO6]八面体共角结构,化学键是W 6+和O 2-之间的离子键,但是有明显的共价成分。
单晶三氧化钨本质是是一种本征半导体也是d 0-过渡金属氧化物之一,具有优异的化学、电学、光学和结构等特性。由于其多样的显色性使其在电致变色和光致变色方面的应用十分广泛,是被研究最为广泛的光致变色材料之一。
因此,开发一种含三氧化钨的可自适应光照强度的智能窗箔,以克服上述问题,便显得十分重要。
发明内容
本发明的第一个目的在于提供一种可自适应光照强度的智能窗箔。在使用该智能窗箔时,无需更换原有窗户,直接贴附于普通窗户表面使用即可,操作更加简便,无外加能量消耗,且具有柔性、可自支撑,成本低,无散射等特点。
本发明的第二个目的在于提供一种制备如上可自适应光照强度的智能窗箔的方法。该制备方法工艺简单,省去了传统制备工艺中采用高温烧结或高真空磁控溅射等方式,拓宽了使用范围,降低了制造成本。
本发明的第三个目的在于提供一种利用如上可自适应光照强度的智能窗箔在调节太阳光透过率方面的应用。
为达到上述第一个目的,本发明采用下述技术方案:
本发明公开一种可自适应光照强度的智能窗箔,包括聚甲基丙烯酸甲酯和三氧化钨。
在本发明中,三氧化钨的添加可以实现自适应光照强度调节的目的,透明度会随光照强度而变化,当光照较强时,透明度降低,光线透过减少,待光强降低后,透明度逐渐恢复,而聚甲基丙烯酸甲酯作为智能窗箔的主成分,起到分散光致变色材料的效果,避免了因分散不均而聚集引发的局部对光的散射现象,因此在二者的共同作用下,智能窗箔实现了较好的自适应光照强度的效果。
本发明提供的三氧化钨包括氧化态和还原态两种不同的状态,在不同光照强度下,三氧化钨可呈现氧化态和还原态。当三氧化钨呈氧化态时,由于其宽带隙半导体材料特性,其对于光的吸收在紫外光波段,在可见光波段无吸收,使智能窗箔呈透明状态。当氧化态的三氧化钨吸收紫外光后,生成一对电子和空穴,电子重新注入三氧化钨内部,被氧空位捕获,生成还原态的W 5+,空穴被空气中的水捕获生成O 2和H +,H +嵌入到三氧化钨晶格中,形成HWO 3,即还原态的三氧化钨,还原态的三氧化钨由于氧空位捕获电子形成F色心,及大量自由电子的散射,会对可见光和红外光具有强烈的吸收,使智能窗箔呈着色状态。当还原态的三氧化钨停止被紫外光照射时,空气中的氧气会缓慢氧化还原态的三氧化钨,使其从W 5+回到W 6+,对应的H +从三氧化钨晶格中脱出,生成WO 3和水,即发生光致变色反应的逆反应,智能窗箔从着色态恢复到透明态。
在本发明中,所述三氧化钨为的纳米三氧化钨,其粒径为15~25nm。
进一步,所述三氧化钨与聚甲基丙烯酸甲酯的重量比为2wt%~6wt%。
进一步,所述碘化锂与三氧化钨的重量比为5wt%~30wt%。
为了更好地实现智能窗箔的适应光照强度的效果,发明人通过大量实验筛选出与三氧化钨相配合的碘化锂,碘化锂的添加主要是影响三氧化钨的恢复速率,进而影响智能窗箔对光照的自适应性的敏感程度,提高光照的自适应性的敏感度,缩短变色后的恢复速率。当未添加碘化锂时,需要空气中的氧气缓慢氧化实现智能窗箔的褪色,而当碘化锂引入后,可以促进促进褪色过程的进行,加速三氧化钨的恢复速率。但是本领域技术人员可以理解的是,智能窗箔的变色过程与褪色过程是呈竞争关系的,加入碘化锂后虽然可以缩短变色后的恢复速率,但会使变色效果有所下降,即着色情况下可见光透过率升高,当然,本领域技术人员可以根据需要,选择碘化锂的添加与否。
当体系中存在碘化锂时,碘化锂会替代空气中的水和氧气的作用,在光致变色反应过程中,所生成的空穴被碘化锂中的I -捕获生成
Figure PCTCN2022097753-appb-000001
Li +嵌入三氧化钨晶格中,生成LiWO 3,而在褪色过程中,Li +从三氧化钨晶格中脱出,
Figure PCTCN2022097753-appb-000002
将W 5+氧化使其回到W 6+
具体的说,当三氧化钨吸收紫外光后,W 6+被还原成W 5+,I -被氧化成
Figure PCTCN2022097753-appb-000003
而在光强变弱后,
Figure PCTCN2022097753-appb-000004
倾向于将W 5+氧化回到W 6+状态,使智能窗箔可以快速从着色的还原态重新恢复透明的氧化态。在一些优选的实施例中,所述碘化锂与三氧化钨的重量比为5wt%~30wt%。进一步优选地,所述碘化锂与三氧化钨的重量比包括但不限于10wt%,15wt%,20wt%,25wt%等。
并且,三氧化钨的掺杂量会影响智能窗箔的初始透明度及变色效果。当三氧化钨与聚甲基丙烯酸甲酯的重量比超过6wt%时,会在成型的智能窗箔中发生明显的聚集,导致整个膜的透明度与均匀度降低。当三氧化钨与聚甲基丙烯酸甲酯的重量比小于2wt%时,紫外光照几乎无光致变色效果。在一些优选的实施例中,所述三氧化钨与聚甲基丙烯酸甲酯 的重量比为2wt%~6wt%。进一步优选地,所述三氧化钨与聚甲基丙烯酸甲酯的重量比包括但不限于2.5wt%,3wt%,3.5wt%,4wt%,4.5wt%,5wt%,5.5wt%等。
进一步,所述三氧化钨的纳米粒子的吸收波段为250~400nm。
智能窗箔的厚度只与制备模具的大小和PMMA的用量有关,为了保证智能窗箔良好的实用性和制作成本,设定该智能窗箔的厚度为20μm~40μm。
为达到上述第二个目的,本发明采用下述技术方案:
本发明公开一种制备如上可自适应光照强度的智能窗箔制备方法,包括如下步骤:
将三氧化钨的前驱体溶于N,N-二甲基甲酰胺中,搅拌形成溶胶,再将溶胶加入到含聚甲基丙烯酸甲酯的溶液中,搅拌,烘干得可自适应光照强度的智能窗箔。
纳米三氧化钨的形成直接影响到可自适应光照强度的智能窗箔的性能,传统的纳米粒子的制备工艺例如水热法、球磨法,在本发明制备智能窗箔中并不适用,一方面这些工艺耗能高,操作复杂,具有一定危险性,另一方面,所制备的纳米三氧化钨颗粒粒径大,变色效果不明显,且与聚合物基质的相容性差,在聚合物中容易发生聚集,更重要的是,本发明不仅仅是为了制备纳米三氧化钨,更是需要一种在智能窗箔制备体系下可形成纳米三氧化钨的方法,以此克服无法制备出符合要求的智能窗箔的问题,即仅将纳米三氧化钨和聚甲基丙烯酸甲酯直接混合无法得到透明且柔性的智能窗箔,以及无法仅在光强改变下实现智能窗箔自动地由无色透明到着色变蓝的变化的问题。采用溶液过饱和的方法可以使氯化钨在智能窗箔制备体系中转化为纳米三氧化钨,并很好的分散在聚甲基丙烯酸甲酯中形成固溶胶,实现从有机溶胶过渡成聚合物固溶胶的转变,这样不仅减少制备过程,降低了成本,且避免了纳米粒子过大或聚集引起对光的散射现象,最重要的是具有很好的光致变色效果。
所述的溶液过饱和法是指利用同一种物质在不同溶剂中的溶解度相差悬殊制备溶胶的方法。本发明中的三氧化钨的前驱体氯化钨可以很好地溶解在N,N-二甲基甲酰胺中,而在聚甲基丙烯酸甲酯中溶解度较差,在烘干溶剂后,即可获得均匀分散的三氧化钨-聚甲基丙烯酸甲酯固溶胶。
在一个具体的实施方式中,选用氯化钨作为三氧化钨的前驱体;优选地,所述溶胶中氯化钨的浓度为0.1~0.3g/mL;优选地,所述聚甲基丙烯酸甲酯溶液中聚甲基丙烯酸甲酯的浓度为0.02~0.04g/mL。
进一步,所述搅拌的时间为1~3h。
进一步,所述烘干温度为30~50℃;所述烘干温度为1~4h。在烘干温度的选择上,主要考虑溶剂的挥发速率,因为在利用溶液过饱和法制备固溶胶智能窗箔的过程中,溶剂的快速挥发是影响智能窗箔透明度的关键,溶剂蒸发的时间过长,会导致成膜过程中纳米粒子有更大的概率碰撞,聚集,最终导致智能窗箔对光的散射;但是如果挥发速率过快,会在脱除溶剂时智能窗箔上形成挥发的气孔,这也会导致智能窗箔对光的散射,影响智能窗箔的透过率,因此控制烘干温度在30~50℃,以保证烘干过程在1~4h内完成,在具体实施方式中,设定的烘干温度为40℃,烘干时间为1h。
为达到上述第三个目的,本发明公开一种利用如上可自适应光照强度的智能窗箔在调节太阳光透过率方面的应用。
当有强太阳光或太阳光模拟器的光照射本发明提供的可自适应光照强度的智能窗箔 时,智能窗箔的透明度降低,光线透过减少。具体来说,当三氧化钨被太阳光模拟器(100mW/cm 2)照射5min后,透明的无色的智能窗箔变成蓝色,并随着照射时间的增加颜色加深。待关闭太阳光模拟器,在黑暗条件下,智能窗箔的蓝色会慢慢消失,智能窗箔恢复到无色状态。下文将通过举例的方式对本发明进行进一步的说明,但是本发明的保护范围不限于这些实施例。
本发明的有益效果如下:
本发明公开一种可自适应光照强度的智能窗箔,制备及应用。该智能窗箔包含包括聚甲基丙烯酸甲酯和三氧化钨,其中三氧化钨包括透明的氧化态和着色的还原态两种状态。三氧化钨吸收太阳光后,实现从无色的氧化态到蓝色的还原态之间的转换,使该智能窗箔自适应太阳光强度呈现浅色或深色。掺杂碘化锂后,会影响三氧化钨的恢复速率,进而影响智能窗箔对光照的自适应性的敏感程度。这种智能窗箔在本身的氧化态和蓝色的还原态都是透明的,可以贴在已有的窗玻璃上,无需更换现有的窗户,使用方便,具有柔性,自支撑,成本较低,无散射,更节能环保等优点,具有广泛的应用前景。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出制备智能窗箔过程的示意图。
图2示出实施例1中智能窗箔在太阳光照射前后宏观透明度变化的照片。
图3示出实施例1中智能窗箔在光照射下前后透射率的变化。
图4示出实施例1中智能窗箔在太阳光模拟器下透过率随时间变化的照片以及褪色恢复过程的照片。
图5示出实施例1中的智能窗箔在10mW·cm -2的365nm的紫外光灯下透过率随光照时间的变化。
图6示出实施例1中的智能窗箔褪色恢复过程中透射率随时间的变化。
图7示出实施例1中的智能窗箔的透射电子显微镜图。
图8示出了实施例2不同碘化锂掺杂量下形成的智能窗箔的实物图。
图9示出实施例2中碘化锂掺杂量为20mg时制备的智能窗箔在太阳光模拟器下透过率随时间变化的照片以及褪色恢复过程的照片。
图10示出实施例2中碘化锂掺杂量为20mg时制备的智能窗箔在10mW·cm -2的365nm的紫外光灯下透过率随光照时间的变化。
图11示出实施例2中碘化锂掺杂量为20mg时制备的智能窗箔褪色恢复过程中透射率随时间的变化。
图12示出实施例3中不同烘干温度制备的智能窗箔的实物图。
图13示出实施例3中不同烘干温度制备的智能窗箔的光学显微镜照片。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和图片对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围,本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。
实施例1
如图1所示:
将0.2g氯化钨溶解于N,N-二甲基甲酰胺(DMF)中,氯化钨的浓度为0.2g·ml -1,在室温下搅拌2h形成溶胶,待用;
将0.3g聚甲基丙烯酸甲酯(PMMA)溶解于二氯甲烷中,PMMA的浓度为0.04g·ml -1,在室温下搅拌2h,待用;
将溶胶加入到PMMA的二氯甲烷溶液中,在室温下搅拌2h,然后倒入模具中,在40℃干燥箱中缓慢蒸发溶剂1h,烘干溶剂后得到可自适应光照的智能窗箔,智能窗箔的厚度为20μm。
将该智能窗箔放置在太阳光下照射10分钟,透明度变化如图2所示。可以发现光照前该智能窗箔完全透明,记为透明态,光照后膜颜色变深,对光的透过率明显下降,记为着色态,在同一个智能窗箔上光照区域和非光照区域有明显色差,呈现透明态和着色态两种状态。如图3所示,对该智能窗箔的透过光谱和反射光谱表征显示透明态的智能窗箔只对紫外光有吸收,着色态的智能窗箔对紫外光、可见光和红外光都有强烈的吸收。将该智能窗箔放置在太阳光模拟器下,以100mW·cm -2的功率照射5min,其着色过程以及褪色恢复过程透明度变化如图4所示,可以发现,透明度随光照时间缓慢下降,在无光照后透明度又随时间逐渐恢复,恢复时间大约3h。将该智能窗箔放置在365nm紫外光下,以10mW·cm -2的功率照射20s,所得的透过率随光照时间的变化见图5,透过率随照射时间缓慢下降,其中可见光波段透过率从90%左右下降至40%左右,红外光波段透过率从90%左右下降至0%。图6为褪色恢复过程中透射率随时间的变化,褪色恢复过程大约需要3h,可以将可见波段透过率恢复到80%左右,红外波段透过率恢复到50%左右。
将该智能窗箔切片后在透射电子显微镜下观察,如图7所示,可以看到三氧化钨纳米颗粒在智能窗箔中的分布,以及颗粒的大小在20nm左右。
实施例2
本实施例制备了6种不同碘化锂掺杂量下的智能窗箔:
将0.2g氯化钨和不同质量的碘化锂(10mg,20mg,30mg,40mg,50mg,60mg)溶解于N,N-二甲基甲酰胺中,氯化钨的浓度为0.2g·mL -1,在室温下搅拌2h形成溶胶,待用;
将0.3g聚甲基丙烯酸甲酯(PMMA)溶解于二氯甲烷中,PMMA的浓度为0.04g·ml -1,在室温下搅拌2h,待用;
将溶胶加入到PMMA的二氯甲烷溶液中,在室温下搅拌2h,然后倒入模具中,在40℃干燥箱中缓慢蒸发溶剂1h,烘干溶剂后得到不同碘化锂掺杂量的可自适应光照的智能窗箔,智能窗箔的厚度均为20μm。由图8显示,随着碘化锂浓度的增加,所得的智能窗箔颜色逐渐变黄。
选取碘化锂掺杂量为20mg时制备的智能窗箔进行测试,将智能窗箔放置在太阳光模拟器下,以100mW·cm -2的功率照射5min,其着色过程以及褪色恢复过程透明度变化如图9所示,可以发现,透明度随光照时间缓慢下降,在无光照后透明度又随时间逐渐恢复,恢复时间大约1h。将该智能窗箔放置在365nm紫外光下,以10mW·cm -2的功率 照射20s,所得的透过率随光照时间的变化见图10,透过率随照射时间缓慢下降,其中可见光波段透过率从90%左右下降至70%左右,红外光波段透过率从90%左右下降至40%。图11为褪色恢复过程中透射率随时间的变化,褪色恢复过程大约需要1h,可以将可见波段透过率恢复到90%左右,红外波段透过率恢复到90%左右。
实施例3
本实施例为考察烘干温度对智能窗箔透明度的影响,制备步骤如下:
将0.2g氯化钨溶解于N,N-二甲基甲酰胺(DMF)中,氯化钨的浓度为0.2g·ml -1,在室温下搅拌2h形成溶胶,待用;
将0.3g聚甲基丙烯酸甲酯(PMMA)溶解于二氯甲烷中,PMMA的浓度为0.04g·ml -1,在室温下搅拌2h,待用;
将溶胶加入到PMMA的二氯甲烷溶液中,在室温下搅拌2h,然后倒入模具中,在不同温度下缓慢蒸发溶剂,烘干溶剂后得到不同透明度的智能窗箔,智能窗箔的厚度为20μm。
结果参见图12,在温度较低时,例如16℃,溶剂挥发速度较慢,所得的智能窗箔完全不透明,随着温度的升高,智能窗箔出现中心透明,边缘处不透明的变化,随着温度的进一步升高整个智能窗箔都变透明。图13为不同烘干温度制备的智能窗箔的光学显微镜照片,在光学显微镜也可以观察到当温度较低时,纳米颗粒的聚集,当温度较高时,智能窗箔表面比较均匀,看不到纳米颗粒的聚集。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

  1. 一种可自适应光照强度的智能窗箔,其特征在于,包括聚甲基丙烯酸甲酯和三氧化钨。
  2. 根据权利要求1所述的可自适应光照强度的智能窗箔,其特征在于,所述可自适应光照强度的智能窗箔还包括碘化锂。
  3. 根据权利要求2所述的可自适应光照强度的智能窗箔,其特征在于,所述三氧化钨与聚甲基丙烯酸甲酯的重量比为2wt%~6wt%;
    优选地,所述碘化锂与三氧化钨的重量比为5wt%~30wt%。
  4. 根据权利要求1所述的可自适应光照强度的智能窗箔,其特征在于,所述三氧化钨的吸收波段为250~400nm。
  5. 根据权利要求1所述的可自适应光照强度的智能窗箔,其特征在于,所述可自适应光照强度的智能窗箔的厚度为20μm~40μm。
  6. 一种如权利要求1~5任一所述的可自适应光照强度的智能窗箔的制备方法,其特征在于,包括如下步骤:
    将三氧化钨的前驱体溶于N,N-二甲基甲酰胺中,搅拌形成溶胶,再将溶胶加入到含聚甲基丙烯酸甲酯的溶液中,搅拌,烘干得可自适应光照强度的智能窗箔。
  7. 根据权利要求6所述的制备方法,其特征在于,所述三氧化钨的前驱体为氯化钨;优选地,所述溶胶中氯化钨的浓度为0.1~0.3g/mL;优选地,所述含聚甲基丙烯酸甲酯的溶液中聚甲基丙烯酸甲酯的浓度为0.02~0.04g/mL。
  8. 根据权利要求6所述的制备方法,其特征在于,所述搅拌时间为1~3h。
  9. 根据权利要求6所述的制备方法,其特征在于,所述烘干温度为30~50℃;所述烘干温度为1~4h。
  10. 一种如权利要求1~5任一所述的可自适应光照强度的智能窗箔在调节太阳光透过率方面的应用。
PCT/CN2022/097753 2021-11-22 2022-06-09 一种可自适应光照强度的智能窗箔,制备及应用 WO2023087678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111389706.8 2021-11-22
CN202111389706.8A CN116144129B (zh) 2021-11-22 2021-11-22 一种可自适应光照强度的智能窗箔,制备及应用

Publications (1)

Publication Number Publication Date
WO2023087678A1 true WO2023087678A1 (zh) 2023-05-25

Family

ID=86351173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097753 WO2023087678A1 (zh) 2021-11-22 2022-06-09 一种可自适应光照强度的智能窗箔,制备及应用

Country Status (2)

Country Link
CN (1) CN116144129B (zh)
WO (1) WO2023087678A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353701B (zh) * 2022-07-05 2023-09-29 北京仿生界面科学未来技术研究院 一种可自适应光照强度的智能窗箔的制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168430A (ja) * 2009-01-20 2010-08-05 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物微粒子分散体の製造方法、および当該分散体を用いた成形体の製造方法、並びに成形体
JP2014070083A (ja) * 2012-09-27 2014-04-21 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物微粒子分散液および成形体
CN104250329A (zh) * 2013-06-27 2014-12-31 中国科学院化学研究所 一种聚合物纳米复合光学材料及其制备方法
JP2017122176A (ja) * 2016-01-07 2017-07-13 三菱ケミカル株式会社 (メタ)アクリル樹脂組成物及び(メタ)アクリル樹脂成形体
CN108454200A (zh) * 2017-12-08 2018-08-28 常州市交通设施有限公司 一种智能节能复合膜
CN108929497A (zh) * 2018-06-25 2018-12-04 合肥卓创新材料有限公司 一种光致变色的建筑玻璃及其制备方法
JP2021095427A (ja) * 2019-12-13 2021-06-24 三菱ケミカル株式会社 (メタ)アクリル系樹脂組成物、樹脂成形体、熱線遮蔽板、屋根材及び窓材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109021268B (zh) * 2018-09-04 2021-04-23 山东大学 一种快速响应光致变色凝胶膜材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168430A (ja) * 2009-01-20 2010-08-05 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物微粒子分散体の製造方法、および当該分散体を用いた成形体の製造方法、並びに成形体
JP2014070083A (ja) * 2012-09-27 2014-04-21 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物微粒子分散液および成形体
CN104250329A (zh) * 2013-06-27 2014-12-31 中国科学院化学研究所 一种聚合物纳米复合光学材料及其制备方法
JP2017122176A (ja) * 2016-01-07 2017-07-13 三菱ケミカル株式会社 (メタ)アクリル樹脂組成物及び(メタ)アクリル樹脂成形体
CN108454200A (zh) * 2017-12-08 2018-08-28 常州市交通设施有限公司 一种智能节能复合膜
CN108929497A (zh) * 2018-06-25 2018-12-04 合肥卓创新材料有限公司 一种光致变色的建筑玻璃及其制备方法
JP2021095427A (ja) * 2019-12-13 2021-06-24 三菱ケミカル株式会社 (メタ)アクリル系樹脂組成物、樹脂成形体、熱線遮蔽板、屋根材及び窓材

Also Published As

Publication number Publication date
CN116144129B (zh) 2024-04-12
CN116144129A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN106784328A (zh) 高性能钙钛矿薄膜及其制备方法和太阳能电池
CN107098596B (zh) 一种丝网印刷钼掺杂氧化钨纳米结构电致变色薄膜的制备方法
WO2023087678A1 (zh) 一种可自适应光照强度的智能窗箔,制备及应用
CN108957825B (zh) 一种可调节近红外光透过率的反式电控调光膜及其制备方法
CN103227240A (zh) 一种基于龟裂模板法制备多孔金属薄膜透明导电电极的方法
Meng et al. Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows
CN112255855A (zh) 一种安全环保高性能的电致变色薄膜及其制备方法
CN113548809B (zh) 一种NiOx电致变色多孔材料及其制备方法
CN109752893B (zh) 一种对可见光和近红外光透过率分段调控的温控调光膜及其制备方法
Liu et al. Synthesis of high-performance electrochromic thin films by a low-cost method
Miyazaki et al. TiO2 nano-particles based photochromic composite films
CN111752013A (zh) 一种多孔聚合物光学薄膜器件及其制备方法
CN107015394B (zh) 具有屏蔽近红外光功能的反式电控调光膜及其制备方法
CN110128767A (zh) 低析出高紫外阻隔的透明聚偏氟乙烯薄膜及其制造方法
CN115353701B (zh) 一种可自适应光照强度的智能窗箔的制备方法和应用
CN108658127B (zh) 一种氧化钼纳米粉体及其制备方法和应用
CN114578626A (zh) 一种电致变色器件及其制备方法和应用
Miyazaki et al. Fabrication of photochromic molybdenum oxide-based composite films using peroxoisopolymolybdic acid
JP7133183B2 (ja) サーモクロミック特性を有するvo2担持中空粒子とその製造方法
CN108439821B (zh) 一种高性能双频独立调制电致变色薄膜及其制备方法
CN108585539A (zh) 长寿命可选择性调控光与热的电致变色薄膜及制备方法
CN114994997B (zh) 一种介孔结构的电致变色器件及其制备方法
CN109574062A (zh) Na5Yb9F32:Ho3+上转换材料及其制备方法,光阳极膜及其制备方法及应用
CN115838357A (zh) 光阀、碘吡嗪及其制备方法和应用
CN112126129B (zh) 光诱导热致变色的碳点/羟丙基甲基纤维素制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894221

Country of ref document: EP

Kind code of ref document: A1