WO2023087564A1 - 电机的控制方法、控制装置、控制系统和可读存储介质 - Google Patents

电机的控制方法、控制装置、控制系统和可读存储介质 Download PDF

Info

Publication number
WO2023087564A1
WO2023087564A1 PCT/CN2022/077757 CN2022077757W WO2023087564A1 WO 2023087564 A1 WO2023087564 A1 WO 2023087564A1 CN 2022077757 W CN2022077757 W CN 2022077757W WO 2023087564 A1 WO2023087564 A1 WO 2023087564A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable structure
motor
control
target position
control system
Prior art date
Application number
PCT/CN2022/077757
Other languages
English (en)
French (fr)
Inventor
陈辉
付俊永
秦向南
Original Assignee
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的威灵电机技术(上海)有限公司 filed Critical 美的威灵电机技术(上海)有限公司
Publication of WO2023087564A1 publication Critical patent/WO2023087564A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference

Definitions

  • the present application relates to the field of motor technology, and in particular, relates to a motor control method, a motor control device, a movable structure control system, and a readable storage medium.
  • This application aims to solve at least one of the technical problems existing in the prior art or related art.
  • one aspect of the present application is to propose a motor control method.
  • Another aspect of the present application is to provide a control device for a motor.
  • Another aspect of the present application is to provide a control system for a movable structure.
  • Another aspect of the present application is to provide a readable storage medium.
  • a motor control method is proposed, the motor is used to drive the movable structure to move towards the target position, the control method includes: during the movement of the movable structure, acquiring The distance between the position and the target position; based on the distance being less than or equal to the preset threshold, adjust the control parameters of the motor control system; according to the adjusted control parameters, control the operation of the motor to reduce the movement speed of the movable structure.
  • the movable structure when the movable structure is about to reach the target position (that is, the stop position of the movable structure), by changing the control parameters of the motor control system, the movable structure can reach the target position at a low speed in the final stop stage.
  • a control signal is received, and in response to the control signal, the movable structure is controlled to move toward the target position, and the current position of the movable structure is detected during the movement of the movable structure toward the target position, and the current position of the movable structure is determined.
  • the real-time distance between the location and the target location and then compare the detected real-time distance with the preset threshold. When the real-time distance is less than or equal to the preset threshold, it indicates that the movable structure is about to reach the target position.
  • the control parameters of the control loop of the motor are adjusted to reduce the speed of the motor, so that the movable structure driven by the motor The deceleration speed of active structures has been reduced.
  • the embodiment of the present application adjusts the control parameters of the control loop of the motor. Basically, the rotational speed is further reduced, so that the moving speed of the movable structure is lower, so as to stop at the target position smoothly.
  • the movable structure can be a mechanical arm, a gate body, an elevator door body, an induction telescopic door body, etc., and the motor can drive the movable structure to move to realize functions such as switching and rotating.
  • the embodiments of the present application can ensure that the movable structure stops smoothly at the target position, reduce the influence of the system damping change on the control performance due to long-term use, and prevent the movable structure from oscillating back and forth at the target position.
  • control method further includes: acquiring specification parameters of the movable structure; and determining a preset threshold according to the specification parameters of the movable structure.
  • the motor can adjust control parameters for movable structures of different specifications, so that the movable structures can be opened and closed quickly and stably.
  • different preset thresholds are correspondingly set, so that movable structures with different specifications start to adjust control parameters at different positions.
  • the applicability of the control of the movable structure is high, and the switching effect of the movable structure of different specifications can be guaranteed, and the problem of inconsistent shutdown performance caused by the mechanical difference of the movable structure can be effectively improved, and the adjustment method is simple.
  • the complexity of matching motor control parameters to meet the diversity of movable structure specifications is reduced.
  • the specification parameters include at least one of the following: length, height, volume, and weight.
  • the specification parameters of the movable structure include but not limited to one or more of length, height, volume, and weight.
  • different preset thresholds can be set according to the above specification parameters, so that the movable structures with different specifications start to decelerate at corresponding positions by adjusting the control parameters of the motor.
  • the movable structures of different specifications can all achieve a more stable shutdown effect, preventing the movable structure from oscillating back and forth at the target position.
  • the larger the specification parameter of the movable structure the larger the preset threshold.
  • the method of setting the preset threshold according to the specification parameters of the movable structure is as follows: for a movable structure with a large size, the selected preset threshold is larger; for a movable structure with a small size, the preset threshold selected is smaller . That is to say, the large-scale movable structure starts to decelerate when it is relatively far away from the target position, while the small-scale movable structure starts to decelerate when it is relatively close to the target position.
  • control parameters include the output limit of the speed loop current command; adjusting the control parameters of the motor control system includes: reducing the output limit of the speed loop current command.
  • the motor control system includes position command generation, position loop, speed loop and current loop.
  • position command generation is to plan a reasonable position trajectory; the position loop obtains the speed command according to the error between the generated position command and the actual position; the speed loop obtains the current command according to the speed command and speed feedback; the current loop obtains the current command according to the current command and current Feedback realizes the current following of the motor.
  • a method for reducing the moving speed of the movable structure is defined, specifically, when the distance between the current position of the movable structure and the target position is less than or equal to a preset threshold, the speed of the motor is reduced.
  • the output limit of the speed loop current command of the control system is defined, specifically, when the distance between the current position of the movable structure and the target position is less than or equal to a preset threshold, the speed of the motor is reduced.
  • the output limit of the speed loop current command is larger, the allowed acceleration and deceleration are faster. Therefore, in the embodiment of the present application, when the distance between the current position of the movable structure and the target position is less than or equal to the preset threshold, the output limit of the speed loop current command is reduced, so that the deceleration of the motor becomes slower , to ensure the stable shutdown of the movable structure and avoid shutdown overshoot.
  • control parameters also include a position loop proportional coefficient; adjusting the control parameters of the motor control system further includes: reducing the position loop proportional coefficient.
  • an auxiliary method for reducing the moving speed of the movable structure is defined, specifically, when the distance between the current position of the movable structure and the target position is less than or equal to a preset threshold, reduce the motor speed.
  • the position loop proportional coefficient of the control system is defined, specifically, when the distance between the current position of the movable structure and the target position is less than or equal to a preset threshold, reduce the motor speed.
  • the position loop ratio can also be reduced Coefficient, so as to make a constraint on the output limit of the speed loop current command, to avoid deceleration too slow.
  • control parameters also include the bandwidth of the speed loop; adjusting the control parameters of the control system of the motor also includes: increasing the bandwidth of the speed loop.
  • an auxiliary method for reducing the moving speed of the movable structure is defined, specifically, when the distance between the current position of the movable structure and the target position is less than or equal to a preset threshold, increase The speed loop bandwidth of the motor control system.
  • the speed loop bandwidth is larger, the effect of tracking the speed command will be better. Therefore, in the embodiment of the present application, when the distance between the current position of the movable structure and the target position is less than or equal to the preset threshold, the speed loop bandwidth can be increased while reducing the output limit of the speed loop current command , so as to improve the effect of tracking the speed command and realize faster tracking of the speed command.
  • adjusting the control parameters of the motor control system includes: adjusting the control parameters in real time according to the distance, or adjusting the control parameters according to a preset time interval.
  • control parameters when adjusting the control parameters, the control parameters may be adjusted gradually in real time, or in steps at preset time intervals.
  • the output limit of the speed loop current command can be gradually reduced along with the distance between the movable structure and the target position , the output limit of the speed loop current command can also be reduced stepwise.
  • the position loop proportional coefficient can be gradually reduced, or can be reduced stepwise. Small position loop scale factor.
  • the speed loop bandwidth can be gradually increased, or the speed loop can be increased stepwise. bandwidth.
  • the adjustment of the control parameters can be realized, so as to ensure that the movable structure stops smoothly at the target position, reduce the influence of the change of system damping on the control performance due to the long-term use, and prevent the movable structure from going back and forth at the target position oscillation.
  • a motor control device is proposed, and the motor is used to drive the movable structure to move.
  • the control device includes: a memory storing programs or instructions; The steps of the motor control method according to any one of the above-mentioned technical solutions are realized.
  • the motor control device provided by the present application, when the program or instruction is executed by the processor, implements the steps of the motor control method of any of the above technical solutions, so the motor control device includes the motor control method of any of the above technical solutions. All beneficial effects.
  • control device further includes: a detection device connected to the processor for detecting the position of the movable structure.
  • the detection device can detect the current position of the movable structure, so as to obtain the distance between the current position of the movable structure and the target position, and then realize the adjustment of the control parameters of the motor control system according to the distance, so as to Ensure that the movable structure stops smoothly at the target position.
  • a control system for a movable structure including: a movable structure; a motor connected to the movable structure for driving the movable structure to move;
  • the control device is connected with the motor and used for controlling the motor.
  • the control system of the movable structure includes the movable structure, the motor and the control device of the motor.
  • the motor is respectively connected with the movable structure and the control device of the motor. and other functions.
  • the control device of the motor can detect the real-time distance between the movable structure and the target position when the movable structure is moving towards the target position, and compare the detected real-time distance with a preset threshold. When the real-time distance is less than or equal to the preset threshold, the control parameters of the control loop of the motor are adjusted, so that the rotation speed of the motor is reduced, thereby reducing the deceleration speed of the movable structure driven by the motor.
  • the embodiments of the present application can ensure that the movable structure stops smoothly at the target position, reduce the influence of the system damping change on the control performance due to long-term use, and prevent the movable structure from oscillating back and forth at the target position.
  • control system further includes: a transmission device connected to the movable structure and the motor respectively, and the transmission device is used to drive the movable structure to move.
  • a transmission device is connected between the movable structure and the motor, which may be a gear transmission mechanism, and the rotation of the motor drives the gear to drive the movement of the gate body to realize functions such as switching or rotating.
  • control system of the movable structure is a gate; the movable structure is a gate body of the gate.
  • control system of the movable structure is the gate
  • the movable structure is the gate body
  • the transmission device is connected between the gate body and the motor
  • the motor rotates to drive the transmission device to drive the gate body to move. Realize functions such as switch or rotation.
  • a readable storage medium on which programs or instructions are stored, and when the programs or instructions are executed by a processor, the steps of the motor control method according to any of the above technical solutions are implemented.
  • the readable storage medium provided by this application implements the steps of the motor control method of any of the above technical solutions when the program or instructions are executed by the processor, so the readable storage medium includes the steps of the motor control method of any of the above technical solutions All beneficial effects.
  • FIG. 1 shows one of the schematic flow charts of the motor control method of the embodiment of the present application
  • FIG. 2 shows the second schematic flow diagram of the motor control method according to the embodiment of the present application
  • Fig. 3 shows the third schematic flow diagram of the motor control method according to the embodiment of the present application.
  • FIG. 4 shows the fourth schematic flow diagram of the motor control method according to the embodiment of the present application.
  • FIG. 5 shows the fifth schematic flow diagram of the motor control method according to the embodiment of the present application.
  • FIG. 6 shows the sixth schematic flow diagram of the motor control method according to the embodiment of the present application.
  • Fig. 7 shows the schematic diagram of the control system of the motor of the embodiment of the present application.
  • Fig. 8 shows a control logic schematic diagram of the motor deceleration and shutdown of the small-sized gate body of the gate body according to the embodiment of the present application
  • Fig. 9 shows a schematic diagram of the control logic of the deceleration and shutdown of the motor of the large-scale gate body of the embodiment of the present application.
  • Fig. 10 shows a schematic block diagram of a control device for a motor according to an embodiment of the present application
  • Fig. 11 shows a schematic block diagram of a control system of a movable structure according to an embodiment of the present application.
  • connection and “fixation” should be understood broadly, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixing can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the embodiment of the present application proposes a motor control method, the motor can drive the movable structure to move towards the target position, and FIG. 1 shows one of the schematic flowcharts of the motor control method in the embodiment of the present application.
  • the control method includes:
  • Step 102 during the movement of the movable structure, obtain the distance between the position of the movable structure and the target position;
  • Step 104 judging whether the distance is less than or equal to a preset threshold, if the distance is less than or equal to the preset threshold, proceed to step 106, and if the distance is greater than the preset threshold, return to step 102;
  • Step 106 adjusting the control parameters of the control system of the motor
  • Step 108 control the operation of the motor to reduce the moving speed of the movable structure.
  • the movable structure when the movable structure is about to reach the target position (that is, the stop position of the movable structure), by changing the control parameters of the motor control system, the movable structure can reach the target position at a low speed in the final stop stage.
  • a control signal is received, and in response to the control signal, the movable structure is controlled to move toward the target position, and the current position of the movable structure is detected during the movement of the movable structure toward the target position, and the current position of the movable structure is determined.
  • the real-time distance between the location and the target location and then compare the detected real-time distance with the preset threshold. When the real-time distance does not exceed the preset threshold, it indicates that the movable structure is about to reach the target position.
  • the control parameters of the control loop of the motor are adjusted to reduce the speed of the motor, so that the movable structure driven by the motor Structure slowdown speed reduced.
  • the embodiment of the present application adjusts the control parameters of the control loop of the motor. Basically, the rotational speed is further reduced, so that the moving speed of the movable structure is lower, so as to stop at the target position smoothly.
  • the movable structure can be a mechanical arm, a gate body, an elevator door body, an induction telescopic door body, etc., and the motor can drive the movable structure to move to realize functions such as switching and rotating.
  • the embodiments of the present application can ensure that the movable structure stops smoothly at the target position, reduce the influence of the system damping change on the control performance due to long-term use, and prevent the movable structure from oscillating back and forth at the target position.
  • the embodiment of the present application proposes a motor control method, the motor can drive the movable structure to move towards the target position.
  • FIG. 2 shows one of the flow charts of the motor control method in the embodiment of the present application.
  • the control method includes:
  • Step 202 obtaining a specification parameter of the movable structure, and obtaining a preset threshold corresponding to the specification parameter;
  • Step 204 controlling the motor to drive the movable structure to move towards the target position
  • Step 206 during the movement, detect the distance between the current position of the movable structure and the target position
  • Step 208 judging whether the distance is less than or equal to a preset threshold, if the distance is less than or equal to the preset threshold, enter step 210, and if the distance is greater than the preset threshold, return to step 206;
  • Step 210 adjusting the control parameters of the motor control system
  • Step 212 controlling the motor to run according to the adjusted control parameters, thereby reducing the deceleration speed of the movable structure during the movement.
  • the motor can adjust control parameters for movable structures of different specifications, so that the movable structures can be opened and closed quickly and stably.
  • different preset thresholds are correspondingly set, so that movable structures with different specifications start to adjust control parameters at different positions.
  • the applicability of the control of the movable structure is high, and the switching effect of the movable structure of different specifications can be guaranteed, and the problem of inconsistent shutdown performance caused by the mechanical difference of the movable structure can be effectively improved, and the adjustment method is simple.
  • the complexity of matching motor control parameters to meet the diversity of movable structure specifications is reduced.
  • the specification parameters include at least one of the following: length, height, volume, and weight.
  • the specification parameters of the movable structure include but not limited to one or more of length, height, volume, and weight.
  • different preset thresholds can be set according to the above specification parameters, so that the movable structures with different specifications start to decelerate at corresponding positions by adjusting the control parameters of the motor.
  • the movable structures of different specifications can all achieve a more stable shutdown effect, preventing the movable structure from oscillating back and forth at the target position.
  • the larger the specification parameter of the movable structure the larger the preset threshold.
  • the way of setting the preset threshold according to the specification parameter of the movable structure is: the specification parameter of the movable structure is directly proportional to the preset threshold.
  • the preset threshold for selection is relatively large; for a movable structure with a small size, the preset threshold for selection is small.
  • the large-scale movable structure starts to decelerate when it is relatively far away from the target position, while the small-scale movable structure starts to decelerate when it is relatively close to the target position.
  • FIG. 3 shows the third schematic flow chart of the motor control method in the embodiment of the present application.
  • the control method includes:
  • Step 302 controlling the motor to drive the movable structure to move towards the target position
  • Step 304 during the movement, detect the distance between the current position of the movable structure and the target position;
  • Step 306 judging whether the distance is less than or equal to a preset threshold, if the distance is less than or equal to the preset threshold, proceed to step 308, and if the distance is greater than the preset threshold, return to step 304;
  • Step 308 reducing the output limit of the speed loop current command of the motor control system
  • Step 310 combining the reduced output limit of the speed loop current command, controlling the operation of the motor, so as to reduce the deceleration speed of the movable structure during motion.
  • the control system of the motor includes a position command generation link, a position loop, a speed loop and a current loop.
  • the role of position command generation is to plan a reasonable position trajectory; the position loop obtains the speed command according to the error between the generated position command and the actual position; the speed loop obtains the current command according to the speed command and speed feedback; the current loop obtains the current command according to the current command and current Feedback realizes the current following of the motor.
  • a method for reducing the deceleration speed of the movable structure during movement is defined, specifically, when the distance between the current position of the movable structure and the target position does not exceed a preset threshold Next, reduce the output limit of the speed loop current command of the motor control system.
  • the output limit of the speed loop current command is larger, the allowed acceleration and deceleration are faster. Therefore, in the embodiment of the present application, when the distance between the current position of the movable structure and the target position does not exceed the preset threshold, the output limit of the speed loop current command is reduced, so that the deceleration of the motor becomes smaller. Slow, to ensure the stable shutdown of the movable structure and avoid shutdown overshoot.
  • the embodiment of the present application proposes a motor control method, the motor can drive the movable structure to move towards the target position.
  • Figure 4 shows the fourth schematic flow chart of the motor control method in the embodiment of the present application. Among them, the control method includes:
  • Step 402 controlling the motor to drive the movable structure to move towards the target position
  • Step 404 during the movement, detect the distance between the current position of the movable structure and the target position;
  • Step 406 judging whether the distance is less than or equal to a preset threshold, if the distance is less than or equal to the preset threshold, proceed to step 408, and if the distance is greater than the preset threshold, return to step 404;
  • Step 408 reducing the output limit of the speed loop current command of the motor control system, and reducing the position loop proportional coefficient of the motor control system;
  • Step 410 combining the reduced output limit of the speed loop current command and the reduced position loop proportional coefficient to control the operation of the motor, so as to reduce the deceleration speed of the movable structure during movement.
  • an auxiliary method for reducing the deceleration speed of the movable structure during movement is defined, specifically, if the distance between the current position of the movable structure and the target position does not exceed a preset threshold In this case, reduce the position loop proportional coefficient of the motor control system.
  • the proportional coefficient is smaller, the speed of deceleration will be faster. Therefore, in the embodiment of the present application, when the distance between the current position of the movable structure and the target position does not exceed the preset threshold, while reducing the output limit of the speed loop current command, the position loop can also be reduced. Proportional coefficient, so as to make a constraint on the output limit of the speed loop current command, to avoid deceleration too slow.
  • FIG. 5 shows the fifth schematic flow chart of the motor control method in the embodiment of the present application.
  • the control method includes:
  • Step 502 controlling the motor to drive the movable structure to move towards the target position
  • Step 504 during the movement, detect the distance between the current position of the movable structure and the target position;
  • Step 506 judging whether the distance is less than or equal to a preset threshold, if the distance is less than or equal to the preset threshold, enter step 508, and if the distance is greater than the preset threshold, return to step 504;
  • Step 508 reducing the output limit of the speed loop current command of the motor control system, and increasing the speed loop bandwidth of the motor control system;
  • Step 510 combining the reduced output limit of the speed loop current command and the increased speed loop bandwidth to control the operation of the motor, thereby reducing the deceleration speed of the movable structure during movement.
  • an auxiliary method for reducing the deceleration speed of the movable structure during movement is defined, specifically, if the distance between the current position of the movable structure and the target position does not exceed a preset threshold In this case, increase the speed loop bandwidth of the motor control system.
  • the speed loop bandwidth is larger, the effect of tracking the speed command will be better. Therefore, in the embodiment of the present application, when the distance between the current position of the movable structure and the target position does not exceed the preset threshold, while reducing the output limit of the speed loop current command, the speed loop can also be increased. Bandwidth, so as to improve the effect of tracking the speed command, and realize faster tracking of the speed command.
  • the step of adjusting the control parameters of the motor control system specifically includes: adjusting the control parameters in real time as the distance between the current position of the movable structure and the target position decreases, or The reduction of the distance between the current position of the active structure and the target position, the control parameter is adjusted once at a preset time interval.
  • control parameters when adjusting the control parameters, the control parameters may be adjusted gradually in real time, or in steps at preset time intervals.
  • the distance between the current position of the movable structure and the target position does not exceed the preset threshold, as the distance between the current position of the movable structure and the target position decreases, the distance between the current position of the movable structure and the target position can be gradually reduced.
  • the output limit of the small speed loop current command can also reduce the output limit of the speed loop current command stepwise.
  • the position ring can be gradually reduced Proportional coefficient, the position loop proportional coefficient can also be reduced stepwise.
  • the speed loop bandwidth can be gradually increased , the speed loop bandwidth can also be increased stepwise.
  • the adjustment of the control parameters can be realized, so as to ensure that the movable structure stops smoothly at the target position, reduce the influence of the change of system damping on the control performance due to the long-term use, and prevent the movable structure from going back and forth at the target position oscillation.
  • the embodiment of the present application proposes a motor control method applied to a gate.
  • the gate includes a gate body (that is, a movable structure) and a motor.
  • the motor can drive the gate body to move towards the target position, as shown in FIG. 6
  • FIG. 6 It shows the sixth schematic flow diagram of the motor control method according to the embodiment of the present application.
  • the control method includes:
  • Step 602 obtaining the specification parameters of the gate body, and obtaining the preset threshold corresponding to the specification parameters of the gate body;
  • Step 604 controlling the motor to drive the gate body to move towards the target position
  • Step 606 during the movement, detect the distance between the current position of the gate body and the target position
  • Step 608 judging whether the distance is less than or equal to a preset threshold, if the distance is less than or equal to the preset threshold, proceed to step 610, and if the distance is greater than the preset threshold, return to step 606;
  • Step 610 reducing the output limit of the speed loop current command of the motor control system, reducing the position loop proportional coefficient of the motor control system, and increasing the speed loop bandwidth of the motor control system;
  • Step 612 combine the reduced output limit of the speed loop current command, the reduced position loop proportional coefficient and the increased speed loop bandwidth to control the operation of the motor, thereby reducing the speed of the gate body during the movement process. slow down speed.
  • the preset threshold of the distance from the target position is selected according to the specification of the gate body of the gate. Specifically, as shown in Figure 8, for a small-sized gate body, the preset threshold for selecting a distance from the target position is relatively small; as shown in Figure 9, for a large-scale gate body, the preset threshold for selecting a distance from the target position is relatively large .
  • the position loop proportional coefficient is reduced, and as the distance between the gate body and the target position decreases, the position loop proportional coefficient can be gradually reduced, or it can be stepped Decrease the position loop proportional coefficient of .
  • the distance between the gate body and the target position is less than the selected preset threshold, increase the speed loop bandwidth, and as the distance between the gate body and the target position decreases, the speed loop bandwidth can be gradually increased, or the speed loop can be increased stepwise. bandwidth.
  • the output limit of the speed loop current command is reduced, and as the distance between the gate body and the target position decreases, the speed loop current command can be gradually reduced.
  • the output limit can also reduce the output limit of the speed loop current command step by step.
  • the motor deceleration control method proposed in the embodiment of this application according to the specifications of different gate bodies, at different positions from the target position, by reducing the proportional coefficient of the position loop, increasing the bandwidth of the speed loop and reducing the current command of the speed loop
  • the output limiter can make the gate bodies of different specifications have the same shutdown effect, and can also effectively improve the shutdown performance caused by the difference in the mechanical system of the gate, and there are fewer parameters to be adjusted, and the control is simpler.
  • FIG. 10 shows a schematic block diagram of the motor control device 1000 according to the embodiment of the present application.
  • the motor control device 1000 includes a memory 1002 and a processor 1004 .
  • the memory 1002 stores programs or instructions
  • the processor 1004 implements the steps of the motor control method according to any of the above technical solutions when executing the programs or instructions.
  • the memory 1002 and the processor 1004 may be connected via a bus or other means.
  • the processor 1004 may include one or more processing units, and the processor 1004 may be a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC ), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) and other chips.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the motor control device 1000 when the program or instructions are executed by the processor 1004, the steps of the motor control method of any of the above-mentioned technical solutions are implemented, so the motor control device 1000 includes the motor of any of the above-mentioned technical solutions.
  • the overall beneficial effect of the control method when the program or instructions are executed by the processor 1004, the steps of the motor control method of any of the above-mentioned technical solutions are implemented, so the motor control device 1000 includes the motor of any of the above-mentioned technical solutions.
  • the motor control device 1000 also includes: a detection device (such as an encoder), which is connected to the processor, and which can detect the current position of the movable structure.
  • a detection device such as an encoder
  • the detection device can detect the current position of the movable structure, so as to obtain the distance between the current position of the movable structure and the target position, and then adjust the control parameters of the motor control system according to the distance , to ensure that the movable structure stops smoothly at the target position.
  • FIG. 11 shows a schematic block diagram of a movable structure control system 1100 according to the embodiment of the present application.
  • the movable structure control system 1100 includes: a movable structure 1102, a motor 1104, and a motor control device 1000 as in the above-mentioned embodiment.
  • a movable structure control system 1100 includes a movable structure 1102 , a motor 1104 and a motor control device 1000 .
  • the motor 1104 is respectively connected with the movable structure 1102 and the control device 1000 of the motor, and the motor 1104 can drive the movable structure 1102 to move to realize functions such as switching and rotating.
  • the motor control device 1000 can detect the real-time distance between the movable structure 1102 and the target position when the movable structure 1102 is moving towards the target position, and compare the detected real-time distance with a preset threshold.
  • the target position may be a door opening stop position, or a door closing stop position.
  • the control parameters of the control loop of the motor 1104 are adjusted, so that the rotation speed of the motor is reduced, thereby reducing the deceleration speed of the movable structure driven by the motor.
  • the embodiments of the present application can ensure that the movable structure stops smoothly at the target position, reduce the influence of the system damping change on the control performance due to long-term use, and prevent the movable structure from oscillating back and forth at the target position.
  • control system 1100 of the movable structure further includes: a transmission device, which is connected to the movable structure 1102 and the motor 1104 respectively, and the transmission device can drive the movable structure 1102 to move.
  • a transmission device is connected between the movable structure 1102 and the motor 1104, which can be a gear transmission mechanism, and the rotation of the motor drives the gear to drive the movement of the gate body to realize functions such as switching or rotating.
  • the movable structure control system 1100 may be a gate.
  • the movable structure 1102 may be a gate body of a gate.
  • control system 1100 of the movable structure is the gate
  • the movable structure 1102 is the gate body
  • the transmission device is connected between the gate body and the motor 1104, and the motor 1104 rotates and drives the transmission device to drive the gate
  • the door body moves to realize functions such as switch or rotation.
  • the embodiment of the present application provides a readable storage medium on which programs or instructions are stored.
  • programs or instructions are executed by a processor, the steps of the motor control method according to any of the above technical solutions are implemented.
  • the readable storage medium includes a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • the readable storage medium provided by this application implements the steps of the motor control method of any of the above technical solutions when the program or instructions are executed by the processor, so the readable storage medium includes the steps of the motor control method of any of the above technical solutions All beneficial effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本申请提出了一种电机的控制方法、控制装置、控制系统和可读存储介质。其中,电机用于驱动可活动结构朝向目标位置运动,该控制方法包括:在可活动结构的运动过程中,获取可活动结构的位置与目标位置之间的距离;基于距离小于或等于预设阈值,调节电机的控制系统的控制参数;根据调节后的控制参数,控制电机运行,以降低可活动结构的运动速度。本申请实施例,能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。

Description

电机的控制方法、控制装置、控制系统和可读存储介质
本申请要求于2021年11月19日提交到中国国家知识产权局的申请号为202111399175.0、发明名称为“电机的控制方法、控制装置、控制系统和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体而言,涉及一种电机的控制方法、电机的控制装置、可活动结构的控制系统和可读存储介质。
背景技术
闸机作为交通、货运等出入口常用的自动通行关卡,其快速性、稳定性和安全性对通行效率和人身财产安全都有较大的影响。相关技术中,闸机使用时间过长后,其系统阻尼的变化会影响闸机控制性能的一致性,导致闸机门板在目标停机位置往返振荡。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的一个方面在于提出了一种电机的控制方法。
本申请的另一个方面在于提出了一种电机的控制装置。
本申请的再一个方面在于提出了一种可活动结构的控制系统。
本申请的又一个方面在于提出了一种可读存储介质。
有鉴于此,根据本申请的一个方面,提出了一种电机的控制方法,电机用于驱动可活动结构朝向目标位置运动,该控制方法包括:在可活动结构的运动过程中,获取可活动结构的位置与目标位置之间的距离;基于距离小于或等于预设阈值,调节电机的控制系统的控制参数;根据调节后的控制参数,控制电机运行,以降低可活动结构的运动速度。
在该技术方案中,在可活动结构快要到达目标位置(也即可活动结构 的停机位置)时,通过改变电机的控制系统的控制参数,使可活动结构在最后的停机阶段低速到达目标位置。
具体地,接收控制信号,响应于该控制信号,控制可活动结构朝向目标位置运动,以及在可活动结构朝向目标位置运动的过程中,检测可活动结构的当前位置,并确定可活动结构的当前位置与目标位置之间的实时距离,再将检测到的实时距离与预设阈值进行比较。在该实时距离小于或等于预设阈值的情况下,表明可活动结构快要到达目标位置,此时对电机的控制环路的控制参数进行调整,使得电机的转速降低,从而使得电机所驱动的可活动结构的减速速度降低。
值得注意的是,在一些实施例中,在可活动结构快要到达目标位置时原本就是一个减速过程,但是,本申请实施例通过对电机的控制环路的控制参数的调整,在当前电机减速的基础上,使其转速更加降低,从而使可活动结构的运动速度更低,以平稳地停止在目标位置。
需要说明的是,该可活动结构可以为机械手臂、闸机门体、电梯门体、感应伸缩门体等,电机能够带动可活动结构运动,实现开关、旋转等功能。
本申请实施例,能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。
根据本申请的上述电机的控制方法,还可以具有以下附加技术特征:
在上述技术方案中,该控制方法还包括:获取可活动结构的规格参数;根据可活动结构的规格参数,确定预设阈值。
在该技术方案中,电机能够针对不同规格的可活动结构调整控制参数,使可活动结构能够又快又稳地打开和关闭。
具体地,根据可活动结构的规格参数,对应设置不同的预设阈值,从而使得不同规格的可活动结构开始进行控制参数调节的位置不同。
通过上述方式,对可活动结构的控制适用性较高,能够保证不同规格的可活动结构的开关到位效果,有效改善由于可活动结构机械差异造成的停机性能不一致的问题,并且,调节方式简单,降低了为满足可活动结构规格的多样性导致电机控制参数匹配的复杂性。
在上述任一技术方案中,规格参数包括以下至少一项:长度、高度、体积、重量。
在该技术方案中,可活动结构的规格参数包括但不限于长度、高度、体积、重量中的一个或多个。本申请实施例中,能够根据上述规格参数的不同,设置不同的预设阈值,从而通过对电机的控制参数的调节,使得不同规格的可活动结构在对应的位置处开始减速运动。
通过上述方式,使得不同规格的可活动结构均能够达到较稳定的停机效果,防止可活动结构在目标位置往返振荡。
在上述任一技术方案中,可活动结构的规格参数越大,预设阈值越大。
在该技术方案中,根据可活动结构的规格参数设置预设阈值的方式为:大规格的可活动结构,选择的预设阈值较大;小规格的可活动结构,选择的预设阈值较小。也就是说,大规格的可活动结构,在与目标位置相对较远的距离时就开始减速,而小规格的可活动结构,在与目标位置相对较近的距离时开始减速。
通过上述方式,无论是大规格的可活动结构还是小规格的可活动结构,均能保证其具有足够的缓冲距离,从而达到比较平稳的停机效果。
在上述任一技术方案中,控制参数包括速度环电流指令的输出限幅;调节电机的控制系统的控制参数,包括:减小速度环电流指令的输出限幅。
电机的控制系统中包含了位置指令生成、位置环、速度环和电流环。其中,位置指令生成的作用是规划合理的位置运行轨迹;位置环根据生成的位置指令和实际位置的误差得到速度指令;速度环根据速度指令和速度反馈得到电流指令;电流环根据电流指令和电流反馈实现电机的电流跟随。
在该技术方案中,限定了一种降低可活动结构的运动速度的方法,具体为,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值的情况下,降低电机的控制系统的速度环电流指令的输出限幅。
由于速度环电流指令的输出限幅越大,能够允许的加速、减速越快。因此,本申请实施例中,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值的情况下,将速度环电流指令的输出限幅减小,使得电机的减速变慢,保证可活动结构停机稳定,避免停机过冲。
在上述任一技术方案中,控制参数还包括位置环比例系数;调节电机的控制系统的控制参数,还包括:减小位置环比例系数。
在该技术方案中,限定了一种降低可活动结构的运动速度的辅助方法,具体为,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值的情况下,降低电机的控制系统的位置环比例系数。
由于比例系数越小,减速的速度会快一些。因此,本申请实施例中,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值的情况下,降低速度环电流指令的输出限幅的同时,还可以降低位置环比例系数,从而对速度环电流指令的输出限幅进行一个约束,避免减速过慢。
通过上述方式,在保证可活动结构停机稳定的同时,尽量保证停机速度。
在上述任一技术方案中,控制参数还包括速度环带宽;调节电机的控制系统的控制参数,还包括:增大速度环带宽。
在该技术方案中,限定了一种降低可活动结构的运动速度的辅助方法,具体为,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值的情况下,增大电机的控制系统的速度环带宽。
由于速度环带宽越大,跟踪速度指令的效果会更好。因此,本申请实施例中,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值的情况下,降低速度环电流指令的输出限幅的同时,还可以提高速度环带宽,从而提高跟踪速度指令的效果,实现速度指令的更快跟踪。
通过上述方式,在保证可活动结构停机稳定的同时,尽量保证停机速度。
在上述任一技术方案中,调节电机的控制系统的控制参数,包括:根据距离实时调节控制参数,或者按照预设时间间隔调节控制参数。
在该技术方案中,在调节控制参数时,可以是实时地、逐渐对控制参数进行调节,也可以为按照预设时间间隔、阶梯性地进行调节。
具体地,在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值时,随着可活动结构与目标位置之间的距离,可以逐渐减小速度环电流指令的输出限幅,也可以阶梯性地减小速度环电流指令的输出限幅。
在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值时,随着可活动结构与目标位置之间的距离,可以逐渐减小位置环比例系数,也可以阶梯性地减小位置环比例系数。
在可活动结构的当前位置与目标位置之间的距离小于或等于预设阈值时,随着可活动结构与目标位置之间的距离,可以逐渐提高速度环带宽,也可以阶梯性地提高速度环带宽。
通过上述方式,实现对控制参数的调节,从而能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。
根据本申请的另一个方面,提出了一种电机的控制装置,电机用于驱动可活动结构运动,该控制装置包括:存储器,存储有程序或指令;处理器,处理器执行该程序或指令时实现如上述任一技术方案的电机的控制方法的步骤。
本申请提供的电机的控制装置,程序或指令被处理器执行时实现如上述任一技术方案的电机的控制方法的步骤,因此该电机的控制装置包括上述任一技术方案的电机的控制方法的全部有益效果。
根据本申请的上述电机的控制装置,还可以具有以下附加技术特征:
在上述技术方案中,该控制装置还包括:检测装置,与处理器连接,用于检测可活动结构的位置。
在该技术方案中,检测装置能够检测可活动结构的当前位置,从而获取可活动结构的当前位置和目标位置之间存在的距离,再根据该距离实现对电机控制系统的控制参数的调节,以保证可活动结构平稳地停止在目标位置。
根据本申请的再一个方面,提出了一种可活动结构的控制系统,包括:可活动结构;电机,与可活动结构连接,用于驱动可活动结构运动;如上述任一技术方案的电机的控制装置,与电机连接,用于控制电机。
在该技术方案中,可活动结构的控制系统包括可活动结构、电机和电机的控制装置,电机分别与可活动结构和电机的控制装置相连接,电机能够带动可活动结构运动,实现开关、旋转等功能。电机的控制装置能够在 可活动结构朝向目标位置运动的过程中,检测可活动结构与目标位置之间的实时距离,并将检测到的实时距离与预设阈值进行比较。在该实时距离小于或等于预设阈值的情况下,对电机的控制环路的控制参数进行调整,从而使得电机的转速降低,从而使得电机所驱动的可活动结构的减速速度降低。
本申请实施例,能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。
根据本申请的上述可活动结构的控制系统,还可以具有以下附加技术特征:
在上述技术方案中,该控制系统还包括:传动装置,分别与可活动结构和电机连接,传动装置用于带动可活动结构运动。
在该技术方案中,在可活动结构与电机之间连接有传动装置,可以为齿轮传动机构,电机旋转驱动齿轮带动闸机门体运动,实现开关或旋转等功能。
在上述技术方案中,可活动结构的控制系统为闸机;可活动结构为闸机门体。
在该技术方案中,可活动结构的控制系统为闸机,可活动结构为闸机门体,传动装置连接在闸机门体与电机之间,电机旋转驱动传动装置带动闸机门体运动,实现开关或旋转等功能。
根据本申请的又一个方面,提出了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述任一技术方案的电机的控制方法的步骤。
本申请提供的可读存储介质,程序或指令被处理器执行时实现如上述任一技术方案的电机的控制方法的步骤,因此该可读存储介质包括上述任一技术方案的电机的控制方法的全部有益效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请实施例的电机的控制方法的流程示意图之一;
图2示出了本申请实施例的电机的控制方法的流程示意图之二;
图3示出了本申请实施例的电机的控制方法的流程示意图之三;
图4示出了本申请实施例的电机的控制方法的流程示意图之四;
图5示出了本申请实施例的电机的控制方法的流程示意图之五;
图6示出了本申请实施例的电机的控制方法的流程示意图之六;
图7示出了本申请实施例的电机的控制系统的示意图;
图8示出了本申请实施例的小规格闸机门体的电机减速停机的控制逻辑示意图;
图9示出了本申请实施例的大规格闸机门体的电机减速停机的控制逻辑示意图;
图10示出了本申请实施例的电机的控制装置的示意框图;
图11示出了本申请实施例的可活动结构的控制系统的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的 数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电机的控制方法、电机的控制装置、可活动结构的控制系统和可读存储介质进行详细地说明。
实施例一
本申请实施例提出了一种电机的控制方法,该电机能够带动可活动结构朝向目标位置运动,图1示出了本申请实施例的电机的控制方法的流程示意图之一。其中,该控制方法包括:
步骤102,在可活动结构的运动过程中,获取可活动结构的位置与目标位置之间的距离;
步骤104,判断该距离是否小于或等于预设阈值,在该距离小于或等于预设阈值的情况下,进入步骤106,在该距离大于预设阈值的情况下,返回步骤102;
步骤106,调节电机的控制系统的控制参数;
步骤108,根据调节后的控制参数,控制电机运行,以降低可活动结构的运动速度。
在该技术方案中,在可活动结构快要到达目标位置(也即可活动结构 的停机位置)时,通过改变电机的控制系统的控制参数,使可活动结构在最后的停机阶段低速到达目标位置。
具体地,接收控制信号,响应于该控制信号,控制可活动结构朝向目标位置运动,以及在可活动结构朝向目标位置运动的过程中,检测可活动结构的当前位置,并确定可活动结构的当前位置与目标位置之间的实时距离,再将检测到的实时距离与预设阈值进行比较。在该实时距离未超过预设阈值的情况下,表明可活动结构快要到达目标位置,此时对电机的控制环路的控制参数进行调整,使得电机的转速降低,从而使得电机所驱动的可活动结构的减速速度降低。
值得注意的是,在一些实施例中,在可活动结构快要到达目标位置时原本就是一个减速过程,但是,本申请实施例通过对电机的控制环路的控制参数的调整,在当前电机减速的基础上,使其转速更加降低,从而使可活动结构的运动速度更低,以平稳地停止在目标位置。
需要说明的是,该可活动结构可以为机械手臂、闸机门体、电梯门体、感应伸缩门体等,电机能够带动可活动结构运动,实现开关、旋转等功能。
本申请实施例,能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。
实施例二
本申请实施例提出了一种电机的控制方法,该电机能够带动可活动结构朝向目标位置运动,图2示出了本申请实施例的电机的控制方法的流程示意图之一。其中,该控制方法包括:
步骤202,获取可活动结构的规格参数,并获取与该规格参数对应的预设阈值;
步骤204,控制电机驱动可活动结构朝向目标位置运动;
步骤206,在运动过程中,检测可活动结构的当前所在位置和目标位置之间存在的距离;
步骤208,判断该距离是否小于或等于预设阈值,在该距离小于或等于预设阈值的情况下,进入步骤210,在该距离大于预设阈值的情况下, 返回步骤206;
步骤210,对电机的控制系统的控制参数进行调节;
步骤212,控制电机按照调节后的控制参数进行运行,从而减小可活动结构在运动过程中的减速速度。
在该技术方案中,电机能够针对不同规格的可活动结构调整控制参数,使可活动结构能够又快又稳地打开和关闭。
具体地,根据可活动结构的规格参数,对应设置不同的预设阈值,从而使得不同规格的可活动结构开始进行控制参数调节的位置不同。
通过上述方式,对可活动结构的控制适用性较高,能够保证不同规格的可活动结构的开关到位效果,有效改善由于可活动结构机械差异造成的停机性能不一致的问题,并且,调节方式简单,降低了为满足可活动结构规格的多样性导致电机控制参数匹配的复杂性。
在该实施例中,规格参数包括以下至少一项:长度、高度、体积、重量。
在该技术方案中,可活动结构的规格参数包括但不限于长度、高度、体积、重量中的一个或多个。本申请实施例中,能够根据上述规格参数的不同,设置不同的预设阈值,从而通过对电机的控制参数的调节,使得不同规格的可活动结构在对应的位置处开始减速运动。
通过上述方式,使得不同规格的可活动结构均能够达到较稳定的停机效果,防止可活动结构在目标位置往返振荡。
在该实施例中,可活动结构的规格参数越大,预设阈值越大。
在该技术方案中,根据可活动结构的规格参数设置预设阈值的方式为:可活动结构的规格参数与预设阈值呈正比。
具体地,大规格的可活动结构,选择的预设阈值较大;小规格的可活动结构,选择的预设阈值较小。
也就是说,大规格的可活动结构,在与目标位置相对较远的距离时就开始减速,而小规格的可活动结构,在与目标位置相对较近的距离时开始减速。
通过上述方式,无论是大规格的可活动结构还是小规格的可活动结构, 均能保证其具有足够的缓冲距离,从而达到比较平稳的停机效果。
实施例三
本申请实施例提出了一种电机的控制方法,该电机能够带动可活动结构朝向目标位置运动,图3示出了本申请实施例的电机的控制方法的流程示意图之三。其中,该控制方法包括:
步骤302,控制电机驱动可活动结构朝向目标位置运动;
步骤304,在运动过程中,检测可活动结构的当前所在位置和目标位置之间存在的距离;
步骤306,判断该距离是否小于或等于预设阈值,在该距离小于或等于预设阈值的情况下,进入步骤308,在该距离大于预设阈值的情况下,返回步骤304;
步骤308,减小电机的控制系统的速度环电流指令的输出限幅;
步骤310,结合减小后的速度环电流指令的输出限幅,控制电机运行,从而减小可活动结构在运动过程中的减速速度。
如图7所示,电机的控制系统中包含了位置指令生成环节、位置环、速度环和电流环。其中,位置指令生成的作用是规划合理的位置运行轨迹;位置环根据生成的位置指令和实际位置的误差得到速度指令;速度环根据速度指令和速度反馈得到电流指令;电流环根据电流指令和电流反馈实现电机的电流跟随。
在该技术方案中,限定了一种降低可活动结构在运动过程中的减速速度的方法,具体为,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值的情况下,降低电机的控制系统的速度环电流指令的输出限幅。
由于速度环电流指令的输出限幅越大,能够允许的加速、减速越快。因此,本申请实施例中,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值的情况下,将速度环电流指令的输出限幅减小,使得电机的减速变慢,保证可活动结构停机稳定,避免停机过冲。
实施例四
本申请实施例提出了一种电机的控制方法,该电机能够带动可活动结 构朝向目标位置运动,图4示出了本申请实施例的电机的控制方法的流程示意图之四。其中,该控制方法包括:
步骤402,控制电机驱动可活动结构朝向目标位置运动;
步骤404,在运动过程中,检测可活动结构的当前所在位置和目标位置之间存在的距离;
步骤406,判断该距离是否小于或等于预设阈值,在该距离小于或等于预设阈值的情况下,进入步骤408,在该距离大于预设阈值的情况下,返回步骤404;
步骤408,减小电机的控制系统的速度环电流指令的输出限幅,以及减小电机的控制系统的位置环比例系数;
步骤410,结合减小后的速度环电流指令的输出限幅以及减小后的位置环比例系数,控制电机运行,从而减小可活动结构在运动过程中的减速速度。
在该技术方案中,限定了一种降低可活动结构在运动过程中的减速速度的辅助方法,具体为,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值的情况下,降低电机的控制系统的位置环比例系数。
由于比例系数越小,减速的速度会快一些。因此,本申请实施例中,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值的情况下,降低速度环电流指令的输出限幅的同时,还可以降低位置环比例系数,从而对速度环电流指令的输出限幅进行一个约束,避免减速过慢。
通过上述方式,在保证可活动结构停机稳定的同时,尽量保证停机速度。
实施例五
本申请实施例提出了一种电机的控制方法,该电机能够带动可活动结构朝向目标位置运动,图5示出了本申请实施例的电机的控制方法的流程示意图之五。其中,该控制方法包括:
步骤502,控制电机驱动可活动结构朝向目标位置运动;
步骤504,在运动过程中,检测可活动结构的当前所在位置和目标位 置之间存在的距离;
步骤506,判断该距离是否小于或等于预设阈值,在该距离小于或等于预设阈值的情况下,进入步骤508,在该距离大于预设阈值的情况下,返回步骤504;
步骤508,减小电机的控制系统的速度环电流指令的输出限幅,以及增大电机的控制系统的速度环带宽;
步骤510,结合减小后的速度环电流指令的输出限幅以及增大后的速度环带宽,控制电机运行,从而减小可活动结构在运动过程中的减速速度。
在该技术方案中,限定了一种降低可活动结构在运动过程中的减速速度的辅助方法,具体为,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值的情况下,增大电机的控制系统的速度环带宽。
由于速度环带宽越大,跟踪速度指令的效果会更好。因此,本申请实施例中,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值的情况下,降低速度环电流指令的输出限幅的同时,还可以提高速度环带宽,从而提高跟踪速度指令的效果,实现速度指令的更快跟踪。
通过上述方式,在保证可活动结构停机稳定的同时,尽量保证停机速度。
实施例六
在该实施例中,调节电机的控制系统的控制参数的步骤,具体包括:随着可活动结构的当前所在位置和目标位置之间存在的距离的减小,实时调节控制参数,或者随着可活动结构的当前所在位置和目标位置之间存在的距离的减小,每隔预设时间间隔,调节一次控制参数。
在该技术方案中,在调节控制参数时,可以是实时地、逐渐对控制参数进行调节,也可以为按照预设时间间隔、阶梯性地进行调节。
具体地,在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值时,随着可活动结构的当前所在位置和目标位置之间存在的距离的减小,可以逐渐减小速度环电流指令的输出限幅,也可以阶梯性地减小速度环电流指令的输出限幅。
在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设 阈值时,随着可活动结构的当前所在位置和目标位置之间存在的距离的减小,可以逐渐减小位置环比例系数,也可以阶梯性地减小位置环比例系数。
在可活动结构的当前所在位置和目标位置之间存在的距离未超过预设阈值时,随着可活动结构的当前所在位置和目标位置之间存在的距离的减小,可以逐渐提高速度环带宽,也可以阶梯性地提高速度环带宽。
通过上述方式,实现对控制参数的调节,从而能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。
实施例七
本申请实施例提出了一种应用于闸机的电机的控制方法,闸机包括闸机门体(也即可活动结构)和电机,该电机能够驱动闸机门体朝向目标位置运动,图6示出了本申请实施例的电机的控制方法的流程示意图之六。其中,该控制方法包括:
步骤602,获取闸机门体的规格参数,并获取与闸机门体的规格参数对应的预设阈值;
步骤604,控制电机驱动闸机门体朝向目标位置运动;
步骤606,在运动过程中,检测闸机门体的当前所在位置和目标位置之间存在的距离;
步骤608,判断该距离是否小于或等于预设阈值,在该距离小于或等于预设阈值的情况下,进入步骤610,在该距离大于预设阈值的情况下,返回步骤606;
步骤610,减小电机的控制系统的速度环电流指令的输出限幅,减小电机的控制系统的位置环比例系数,以及增大电机的控制系统的速度环带宽;
步骤612,结合减小后的速度环电流指令的输出限幅、减小后的位置环比例系数以及增大后的速度环带宽,控制电机运行,从而减小闸机门体在运动过程中的减速速度。
在该实施例中,根据闸机门体的规格选择距离目标位置的预设阈值。具体地,如图8所示,小规格闸机门体,选择距离目标位置的预设阈值较 小;如图9所示,大规格闸机门体,选择距离目标位置的预设阈值较大。
闸机门体距离目标位置小于所选预设阈值时,减小位置环比例系数,并且随着闸机门体与目标位置的距离减小,可以逐渐减小位置环比例系数,也可以阶梯性的减小位置环比例系数。闸机门体距离目标位置小于所选预设阈值时,提高速度环带宽,并且随着闸机门体与目标位置的距离减小,可以逐渐提高速度环带宽,也可以阶梯性的提高速度环带宽。闸机门体距离目标位置小于所选预设阈值时,减小速度环电流指令的输出限幅,并且随着闸机门体与目标位置的距离减小,可以逐渐减小速度环电流指令的输出限幅,也可以阶梯性的减小速度环电流指令的输出限幅。
本申请实施例提出的电机减速的控制方法,根据不同闸机门体的规格,在距离目标位置的不同位置处,通过减小位置环比例系数、提高速度环带宽以及减小速度环电流指令的输出限幅,能够使不同规格的闸机门体具有相同的停机效果,也能有效改善由于闸机机械系统差异造成的停机性能,并且需要调节的参数较少,控制更为简单。
实施例八
本申请实施例提出了一种电机的控制装置,该电机能够带动可活动结构朝向目标位置运动,图10示出了本申请实施例的电机的控制装置1000的示意框图。其中,该电机的控制装置1000包括存储器1002和处理器1004。
其中,存储器1002中存储了程序或指令,处理器1004执行该程序或指令时实现如上述任一技术方案的电机的控制方法的步骤。
存储器1002和处理器1004可以通过总线或者其它方式连接。处理器1004可包括一个或多个处理单元,处理器1004可以为中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)等芯片。
本申请提供的电机的控制装置1000,程序或指令被处理器1004执行时实现如上述任一技术方案的电机的控制方法的步骤,因此该电机的控制装置1000包括上述任一技术方案的电机的控制方法的全部有益效果。
在上述技术方案中,该电机的控制装置1000还包括:检测装置(例如 编码器),该检测装置连接于处理器,该检测装置能够检测可活动结构的当前所在位置。
在该技术方案中,检测装置能够检测可活动结构的当前所在位置,从而获取可活动结构的当前所在位置和目标位置之间存在的距离,再根据该距离实现对电机控制系统的控制参数的调节,以保证可活动结构平稳地停止在目标位置。
实施例九
本申请实施例提出了一种可活动结构的控制系统,图11示出了本申请实施例的可活动结构的控制系统1100的示意框图。其中,该可活动结构的控制系统1100包括:可活动结构1102、电机1104以及如上述实施例的电机的控制装置1000。
在该技术方案中,可活动结构的控制系统1100包括可活动结构1102、电机1104和电机的控制装置1000。
其中,电机1104分别与可活动结构1102和电机的控制装置1000相连接,电机1104能够带动可活动结构1102运动,实现开关、旋转等功能。
电机的控制装置1000能够在可活动结构1102朝向目标位置运动的过程中,检测可活动结构1102与目标位置之间的实时距离,并将检测到的实时距离与预设阈值进行比较。其中,目标位置可以为开门停止位置,也可以为关门停止位置。
在该实时距离小于或等于预设阈值的情况下,对电机1104的控制环路的控制参数进行调整,从而使得电机的转速降低,从而使得电机所驱动的可活动结构的减速速度降低。
本申请实施例,能够保证可活动结构平稳地停止在目标位置,减小由于使用时间过长后系统阻尼的变化对控制性能的影响,防止可活动结构在目标位置往返振荡。
在该实施例中,该可活动结构的控制系统1100还包括:传动装置,传动装置分别连接于可活动结构1102、电机1104,传动装置能够带动可活动结构1102运动。
在该技术方案中,在可活动结构1102与电机1104之间连接有传动装 置,可以为齿轮传动机构,电机旋转驱动齿轮带动闸机门体运动,实现开关或旋转等功能。
在上述技术方案中,可活动结构的控制系统1100可以为闸机。
在上述技术方案中,可活动结构1102可以为闸机门体。
在该技术方案中,可活动结构的控制系统1100为闸机,可活动结构1102为闸机门体,传动装置连接在闸机门体与电机1104之间,电机1104旋转驱动传动装置带动闸机门体运动,实现开关或旋转等功能。
实施例十
本申请实施例提出了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时实现如上述任一技术方案的电机的控制方法的步骤。
其中,可读存储介质包括只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请提供的可读存储介质,程序或指令被处理器执行时实现如上述任一技术方案的电机的控制方法的步骤,因此该可读存储介质包括上述任一技术方案的电机的控制方法的全部有益效果。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种电机的控制方法,其中,所述电机用于驱动可活动结构朝向目标位置运动,所述控制方法包括:
    在所述可活动结构的运动过程中,获取所述可活动结构的位置与所述目标位置之间的距离;
    基于所述距离小于或等于预设阈值,调节所述电机的控制系统的控制参数;
    根据调节后的所述控制参数,控制所述电机运行,以降低所述可活动结构的运动速度。
  2. 根据权利要求1所述的控制方法,其中,还包括:
    获取所述可活动结构的规格参数;
    根据所述可活动结构的规格参数,确定所述预设阈值。
  3. 根据权利要求2所述的控制方法,其中,
    所述规格参数包括以下至少一项:长度、高度、体积、重量。
  4. 根据权利要求2所述的控制方法,其中,
    所述可活动结构的规格参数越大,所述预设阈值越大。
  5. 根据权利要求1至4中任一项所述的控制方法,其中,所述控制参数包括速度环电流指令的输出限幅;所述调节所述电机的控制系统的控制参数,包括:
    减小所述速度环电流指令的输出限幅。
  6. 根据权利要求5所述的控制方法,其中,所述控制参数还包括位置环比例系数;所述调节所述电机的控制系统的控制参数,还包括:
    减小所述位置环比例系数。
  7. 根据权利要求5所述的控制方法,其中,所述控制参数还包括速度环带宽;所述调节所述电机的控制系统的控制参数,还包括:
    增大所述速度环带宽。
  8. 根据权利要求1至4中任一项所述的控制方法,其中,所述调节所述电机的控制系统的控制参数,包括:
    根据所述距离实时调节所述控制参数,或者按照预设时间间隔调节所述控制参数。
  9. 一种电机的控制装置,其中,所述电机用于驱动可活动结构朝向目标位置运动,所述控制装置包括:
    存储器,存储有程序或指令;
    处理器,所述处理器执行所述程序或指令时实现如权利要求1至8中任一项所述的电机的控制方法的步骤。
  10. 根据权利要求9所述的控制装置,其中,还包括:
    检测装置,与所述处理器连接,用于检测所述可活动结构的位置。
  11. 一种可活动结构的控制系统,其中,包括:
    可活动结构;
    电机,与所述可活动结构连接,用于驱动所述可活动结构运动;
    如权利要求9或10所述的电机的控制装置,与所述电机连接,用于控制所述电机。
  12. 根据权利要求11所述的控制系统,其中,还包括:
    传动装置,分别与所述可活动结构和所述电机连接,所述传动装置用于带动所述可活动结构运动。
  13. 根据权利要求11或12所述的控制系统,其中,
    所述可活动结构的控制系统为闸机;
    所述可活动结构为闸机门体。
  14. 一种可读存储介质,其上存储有程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至8中任一项所述的电机的控制方法的步骤。
PCT/CN2022/077757 2021-11-19 2022-02-24 电机的控制方法、控制装置、控制系统和可读存储介质 WO2023087564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111399175.0A CN114123914B (zh) 2021-11-19 2021-11-19 电机的控制方法、控制装置、控制系统和可读存储介质
CN202111399175.0 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087564A1 true WO2023087564A1 (zh) 2023-05-25

Family

ID=80440409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077757 WO2023087564A1 (zh) 2021-11-19 2022-02-24 电机的控制方法、控制装置、控制系统和可读存储介质

Country Status (2)

Country Link
CN (1) CN114123914B (zh)
WO (1) WO2023087564A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211918A (ja) * 1995-02-03 1996-08-20 Fanuc Ltd Cncの位置制御方式
CN104393807A (zh) * 2014-11-07 2015-03-04 美的集团股份有限公司 电机的控制方法及其控制系统
US20200266736A1 (en) * 2019-02-14 2020-08-20 Nabtesco Corporation Motor control device, motor control method, motor control program, and actuator
CN111719987A (zh) * 2019-03-21 2020-09-29 合肥华凌股份有限公司 驱动机构的控制方法、系统、制冷设备和可读存储介质
CN113652249A (zh) * 2021-07-23 2021-11-16 华院计算技术(上海)股份有限公司 熄焦车的定位方法及装置、系统、存储介质、终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2671339C (en) * 2006-12-06 2014-02-18 National Oilwell Varco, L.P. Method and apparatus for active heave compensation
CN101373947B (zh) * 2007-08-22 2012-05-23 比亚迪股份有限公司 一种步进电机速度的控制方法、装置及系统
CN104796059B (zh) * 2015-04-20 2017-08-25 广东美的制冷设备有限公司 永磁同步电机的电流限幅、直接转矩控制方法、控制系统
CN109428455B (zh) * 2017-09-01 2020-09-18 丁金龙 开关磁阻电机及其控制方法
CN111697901B (zh) * 2020-06-24 2021-08-27 浙江大华技术股份有限公司 一种伺服电机的控制方法、控制设备及控制系统
CN112436768B (zh) * 2020-11-12 2022-09-09 漳州科华技术有限责任公司 一种车载变换器的控制方法、系统、装置及车载变换器
CN113606737B (zh) * 2021-08-17 2022-10-25 宁波奥克斯电气股份有限公司 一种风机转速控制方法、装置及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211918A (ja) * 1995-02-03 1996-08-20 Fanuc Ltd Cncの位置制御方式
CN104393807A (zh) * 2014-11-07 2015-03-04 美的集团股份有限公司 电机的控制方法及其控制系统
US20200266736A1 (en) * 2019-02-14 2020-08-20 Nabtesco Corporation Motor control device, motor control method, motor control program, and actuator
CN111719987A (zh) * 2019-03-21 2020-09-29 合肥华凌股份有限公司 驱动机构的控制方法、系统、制冷设备和可读存储介质
CN113652249A (zh) * 2021-07-23 2021-11-16 华院计算技术(上海)股份有限公司 熄焦车的定位方法及装置、系统、存储介质、终端

Also Published As

Publication number Publication date
CN114123914B (zh) 2023-11-14
CN114123914A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US9065381B2 (en) Electrically adjustable antenna control system and method
JPH0513290B2 (zh)
JPH0357305B2 (zh)
JPH1017250A (ja) エレベータドア制御装置
WO2023087564A1 (zh) 电机的控制方法、控制装置、控制系统和可读存储介质
JPH03242713A (ja) 駆動制御装置
CN112751510A (zh) 一种应用于闸机的到位检测装置、控制系统及方法
CN112093672A (zh) 基于速度控制的行程限位控制系统、方法及塔式起重机
CN104061649B (zh) 空调器升降门控制方法、微处理器以及空调器升降门装置
JP2003523712A (ja) ステップモータによるポジショニングシステムの位置調整移動における加速方法
JP2002264776A (ja) ワイパ装置の制御方法
JP3921117B2 (ja) 自動ドアの開閉制御方法
JPS60218290A (ja) クレ−ン自動運転方式
CN111319654A (zh) 轨道切换方法、装置、存储介质及系统
JP2021067054A (ja) 車両開閉体の開閉制御装置
CN108843658A (zh) 一种旋转机构的数字液压控制系统、旋转系统及机械设备
WO2019119205A1 (zh) 舱门检测方法、系统、移动平台及植保机
CN219041785U (zh) 信号发射装置、信号接收装置和闸机系统
CN115163905A (zh) 一种阀门软着陆的控制方法
JPH07165383A (ja) エレベータのドア制御装置
JPH0753177A (ja) ジャイロスコープによる吊荷の方位角制御方法
WO2020135237A1 (zh) 定量分析步进电机启动能力的方法
JPH0432487A (ja) エレベータドアの制御装置
CN207850669U (zh) 建筑窗用内平开下悬五金系统综合性能测试仪
CN117328762A (zh) 电动提升窗及其倾斜状态调节方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894111

Country of ref document: EP

Kind code of ref document: A1