WO2023087547A1 - 一种聚酰胺树脂、组合物及其在工程塑料中的用途 - Google Patents

一种聚酰胺树脂、组合物及其在工程塑料中的用途 Download PDF

Info

Publication number
WO2023087547A1
WO2023087547A1 PCT/CN2022/074280 CN2022074280W WO2023087547A1 WO 2023087547 A1 WO2023087547 A1 WO 2023087547A1 CN 2022074280 W CN2022074280 W CN 2022074280W WO 2023087547 A1 WO2023087547 A1 WO 2023087547A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
polyamide
water
hypophosphite
temperature
Prior art date
Application number
PCT/CN2022/074280
Other languages
English (en)
French (fr)
Inventor
秦兵兵
赵元博
高源艳
刘修才
Original Assignee
上海凯赛生物技术股份有限公司
Cibt美国公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术股份有限公司, Cibt美国公司 filed Critical 上海凯赛生物技术股份有限公司
Publication of WO2023087547A1 publication Critical patent/WO2023087547A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/46Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the invention belongs to the field of polymer materials, and in particular relates to a polyamide resin, a preparation method, a composition and a fiber product thereof.
  • Polyamides have been widely used as clothing materials, industrial materials, fibers, or general-purpose engineering plastics due to their excellent characteristics and ease of melt molding, and thus have attracted much attention.
  • Polyamide 5X is a linear long-chain macromolecule synthesized from bio-based pentamethylenediamine and a series of dibasic acids. The amide bond is easy to form a hydrogen bond. Therefore, the polyamide 5X fiber has high strength and good hygroscopicity.
  • the polymer macromolecular chain will be broken into two segments when the intrachain amylase exchange reaction occurs, or the linear low molecular weight will be dehydrated directly, resulting in low molecular weight polymerization. things.
  • water extractables are low-molecular polymers ranging from monomers to decamers, such as dimers and trimers, including linear and cyclic. The presence of these water extractables may affect the performance and application of the resin.
  • one of the objectives of the present invention is to provide a polyamide resin.
  • the structural units of the polyamide include diamine structural units and dibasic acid structural units, the content of water extractables in the polyamide resin is less than 0.7wt%, and the polyamide resin contains hypophosphite, equivalent to The content in terms of P is 10-500ppm.
  • the content of the water extractables is less than 0.6 wt%, further less than 0.5 wt%.
  • the water extractables are mainly oligomers produced in the polymerization stage of monomer raw materials, such as linear or cyclic monomers to decamers.
  • the anti-yellowing performance of the obtained polyamide resin and the resin composition described later when the content of the water extractables is within the range defined above, the anti-yellowing performance of the obtained polyamide resin and the resin composition described later will be improved.
  • the content of the water extractables is within the range defined above, the mechanical properties of the obtained polyamide resin and the resin composition described below are improved.
  • the obtained polyamide resin and the resin composition described later when the content of the water extractables is within the above-defined range, the obtained polyamide resin and the resin composition described later have good appearance quality and no obvious precipitation.
  • the content of the water extractables is within the range defined above, the acid corrosion resistance of the obtained polyamide resin and the resin composition described later will be improved.
  • the content of water extractables in the polyamide resin is more than 0.05wt%, further more than 0.1wt%, further more than 0.2wt%, further more than 0.25wt%.
  • the content of water extractables is lower than the above-mentioned limited range, the performance of the polyamide resin and the composition described later will be reduced.
  • the content of water extractables in the polyamide resin is extracted by heating in deionized water (for example, using water at 97°C to 100°C to extract the polyamide resin for 24 hours), and the components that can be extracted into water after the extraction process account for The mass percent of the polyamide resin before treatment.
  • the water extractable content (%) [(mass m 1 of polyamide resin before water extraction - mass m 2 of polyamide resin after water extraction)/mass m 1 of polyamide resin before water extraction] * 100% .
  • the extraction condition is, for example, to extract the polyamide resin with water at 97°C-100°C for 24 hours, and the mass ratio of the polyamide resin to water is 1:48-51, for example, 1:50.
  • test method for the content of water extractables is as follows: dry the polyamide sample in a forced air oven at 130°C for 7 hours, put it in an aluminum-plastic bag and seal it, cool it in a desiccator, and then weigh it accurately
  • the polyamide sample is about 2g, and the actual mass (m 1 ) of the polyamide sample is recorded.
  • the melt is introduced into an airtight container, and after cooling, samples are taken for testing according to the above method.
  • the number average molecular weight of the water extractables measured by GPC method is 200-2000 g/mol.
  • the water extractables include one or both of the following structures:
  • n1 and n2 are respectively selected from the integers of 1 to 8, preferably, n1 and n2 are respectively selected from the integers of 1 to 6, more preferably, n1 and n2 are respectively selected from the integers of 1 to 5, further preferably, n1 is 2, 3 or 4; n2 is 2, 3, 4 or 5; m1 is 4 and m2 is 4.
  • the content of the hypophosphite is 10-300ppm, further 10-200ppm in terms of P.
  • the hypophosphite includes alkali metal hypophosphite and alkaline earth metal hypophosphite, and further includes any one of sodium hypophosphite, potassium hypophosphite, calcium hypophosphite and magnesium hypophosphite or a combination of two or more.
  • the pentamethylenediamine structural unit in the polyamide resin may be derived from pentamethylenediamine derived from chemical sources or biomass, and further from 1,5-pentanediamine derived from biomass.
  • more than 90 mol% of the dibasic acid structural units are derived from adipic acid, and more than 90 mol% of the diamine structural units are derived from 1,5-pentanediamine.
  • more than 95 mol%, preferably more than 97 mol%, of the diamine structural units in the polyamide resin are derived from 1,5-pentanediamine.
  • diamine structural units in the polyamide resin may also include structural units derived from one or more of butanediamine, hexamethylenediamine, decanediamine and dodecanediamine.
  • more than 95 mol%, preferably more than 97 mol%, of the dibasic acid structural units in the polyamide resin are derived from adipic acid.
  • the dibasic acid structural unit in the polyamide resin may also include succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Monodecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecandioic acid, heptadecandioic acid and octadecanedioic acid, terephthalic diacid
  • the content of polyamide (main polymer) composed of diamine structural unit and dibasic acid structural unit in the polyamide resin is more than 90wt%, further more than 95wt%, further It is 97 wt% or more, further 99 wt% or more.
  • the diamine structural unit and the dibasic acid structural unit meet the above definitions.
  • the polyamide resin contains additives other than hypophosphite.
  • the additives include, but are not limited to, any one or a combination of blocking agents, nucleating agents, antioxidants, defoamers and flow modifiers.
  • the capping agents include lauric acid, stearic acid, benzoic acid and acetic acid.
  • the content of additives in the polyamide resin is less than or equal to 10wt%, preferably less than or equal to 5wt%, more preferably less than or equal to 3wt%, more preferably less than or equal to 1wt%.
  • the polyamide resin is polyamide 56 resin.
  • the polyamide 56 content in the polyamide 56 resin is above 90wt%, further above 95wt%, further above 97wt%, further above 99wt%.
  • the relative viscosity of the polyamide resin is 1.8-4.0, preferably 2.2-3.5, more preferably 2.4-3.3.
  • the yellowness index of the polyamide resin is less than 7, further less than 5, further less than 4.2.
  • Another object of the present invention is to provide a method for preparing polyamide resin.
  • the method includes the following steps:
  • the pressure in the present invention refers to gauge pressure.
  • nylon salt and polyamide salt are used interchangeably.
  • step S1 the molar ratio of 1,5-pentanediamine and dibasic acid used in preparing the nylon salt solution is (1-1.1):1.
  • step S2 the temperature of the reaction system is 232-260° C. after the pressure holding process is completed.
  • step S2 the temperature of the reaction system after the depressurization process is 240-295°C, further 243-288°C.
  • step S2 the temperature of the reaction system after vacuuming is 250-290°C, further 252-285°C.
  • step S2 the time for maintaining the vacuum degree after vacuuming is 11-75 minutes.
  • step S3 the granulation is carried out in water, and the water temperature is 15-50°C. After strand cutting described in step S3, polyamide slices or polyamide pellets are obtained.
  • the method also includes the following steps:
  • the reactor is a reactor capable of forming a closed environment.
  • the reactor in step S4 can be, for example, a continuous extraction tower or a batch reactor.
  • the method for replacing the air in the reactor includes vacuumizing with a vacuum pump and then filling with nitrogen or an inert gas.
  • the operation of replacing the air in the reactor described above may be repeated two or more times.
  • the water is deionized water, and further deionized water after oxygen removal treatment, wherein the oxygen removal treatment can be thermal oxygen removal, ultrasonic oxygen removal, vacuum oxygen removal, chemical oxygen removal, One or more combinations of analytical oxygen removal or other arbitrary oxygen removal methods; in some preferred embodiments, the content of dissolved oxygen in the deionized water after the oxygen removal treatment is less than or equal to 0.5mg/L, Further less than or equal to 0.1mg/L.
  • the mass of the water is more than 1 times the mass of the polyamide chip, further more than 2 times, such as 1 to 12 times, 1 to 10 times, 2 to 10 times, 2 to 6 times, 1.5 times, 2.3 times times, 2.5 times, 3 times, 5 times or 8 times.
  • the inert gas includes one or two of argon, helium, etc., more preferably high-purity argon and high-purity helium.
  • step S4 vacuumize to a vacuum degree of -0.1Mpa to -0.001Mpa (gauge pressure), maintain it for 5 to 20 minutes, and then fill it with nitrogen or an inert gas, and further Preferably, the air replacement operation is repeated 5 to 15 times, further 8 to 10 times.
  • the heating time in step S5 is 4-50 hours, further 8-45 hours.
  • the heating temperature in step S5 is 80-140°C, further 85-120°C.
  • the rinsing described in step S5 is rinsing with hot water at a temperature of 50°C to 100°C.
  • the drying described in step S5 is selected from one or more of vacuum drying, freeze drying, airflow drying, microwave drying, infrared drying and high frequency drying.
  • the third object of the present invention is to provide a resin composition, which comprises the following components in parts by weight: 100 parts of polyamide resin and 10-70 parts of glass fiber.
  • the aspect ratio of the glass fiber is (2-800):1, and further is (200-650):1.
  • the length of the glass fiber is 3-12 mm, further 3-8 mm.
  • the mechanical properties of the obtained resin composition are improved.
  • composition may contain any one of antioxidants, nucleating agents, lubricants, flame retardants, coupling agents, heat stabilizers, light stabilizers, antistatic agents, ultraviolet absorbers and colorants a combination of two or more.
  • the antioxidant content is 0.02 to 2 parts by weight, and the antioxidant preferably includes hindered phenolic antioxidants, hindered amine antioxidants and phosphite antioxidants, such as antioxidant 168, antioxidant Antioxidant 1098, any one of antioxidant 1010 and antioxidant S9228 or a combination of two or more.
  • hindered phenolic antioxidants such as antioxidant 168, antioxidant Antioxidant 1098, any one of antioxidant 1010 and antioxidant S9228 or a combination of two or more.
  • the resin composition has no obvious mold deposit or only a small amount of mold deposit after injection molding.
  • the polyamide resin has the above-mentioned limitations.
  • the preparation method of described polyamide resin composition, described method comprises the steps:
  • each component into a twin-screw extruder for kneading, then extrude through the twin-screw extruder, cool, and pelletize to obtain the polyamide composition.
  • the glass fiber is fed from the side feeding port of the twin-screw extruder.
  • the temperature for the twin-screw extruder to melt and knead the premix is 210-290°C.
  • the twin-screw extruder is in a seven-zone heating mode, and the temperature in the first zone is 210-250°C, and/or, the temperature in the second zone is 210-250°C, and/or, The temperature in the third zone is 240-260°C, the temperature in the fourth zone is 260-280°C, and/or, the temperature in the fifth zone is 270-290°C, and/or, the temperature in the sixth zone is 270-290°C, and/or, the seventh zone The temperature is 255-285°C; the direction from the first zone to the seventh zone is the direction from the feeding port to the die opening.
  • the die temperature of the twin-screw extruder is 260-275°C.
  • the screw speed of the twin-screw extruder is 350-500r/min.
  • the aspect ratio of the twin-screw extruder is 1:(30-50), preferably 1:40.
  • the fourth object of the present invention is to provide an application of the above-mentioned polyamide resin or composition in engineering plastics.
  • the implementation of the present invention has at least the following advantages:
  • the preparation method of polyamide resin of the present invention is simple, and process parameter is easy to control, does not need the assistance of large instrument, is convenient to carry out quantitative production.
  • the polyamide resin composition has the advantages of short molding cycle, fast crystallization speed, less mold scale for injection molding, and good appearance quality. It can be applied to parts in the field of electronic appliances.
  • the polyamide resin composition has the advantage of acid corrosion resistance, and can be used in acidic environments, such as outer packaging and containers of acidic food.
  • Ubbelohde viscometer concentrated sulfuric acid method Accurately weigh 0.5 ⁇ 0.0002g of the dried polyamide sample, add 50mL concentrated sulfuric acid (98%) to dissolve, measure and record the flow time t of concentrated sulfuric acid in a constant temperature water bath at 25°C and the flow time t of the polyamide solution.
  • Relative viscosity calculation formula: relative viscosity ⁇ r t/t 0 .
  • the test method for the content of water extractables in polyamide resin is as follows: dry the polyamide sample in a blast oven at 130°C for 7 hours, put it in an aluminum-plastic bag and seal it, then put it in a desiccator to cool, and then weigh it accurately Measure about 2 g of the polyamide sample, and record the actual mass (m 1 ) of the polyamide sample.
  • the melt When testing the content of water extractables in the polyamide resin melt, the melt is introduced into a closed container, and after cooling, samples are taken for testing according to the above method.
  • DSC differential scanning calorimeter
  • the tensile speed during the test is 50mm/min.
  • test condition is 2mm/min.
  • Acid resistance test soak the polyamide sample in 10wt% acetic acid solution at 40°C for 180 days, observe the precipitates on the surface of the sample and rate it as 1-5 grades, 1 grade is the worst, and a large amount of For precipitates, grade 5 is the best, and no obvious precipitates were observed.
  • Nylon salt solution of 1200g, 500ppm sodium hypophosphite are added in the polymerization reactor and heated, and the pressure in the reaction system rises to 2.3Mpa, and in 1 hour and 30 minutes, the exhaust pressure is maintained, and the temperature of the reaction system when the pressure is completed is 245°C, the pressure was maintained for 3 hours, and then the pressure in the reaction system was reduced to 0.003MPa (gauge pressure). After the pressure reduction, the temperature of the reaction system was 273°C, and the pressure was reduced for 1 hour. The vacuum was maintained at -0.06Mpa, the vacuum time was 32min, the temperature of the reaction system was 272°C after vacuum, and a polyamide 56 melt was obtained.
  • step (3) Discharge the melt obtained in step (2), water-cool the strands and cut into pellets to obtain slices of polyamide 56; the pelletization is carried out in water, and the water temperature is 20°C.
  • step (3) The melt obtained in the step (2) is discharged, and the 20° C. water-cooled strands are cut into pellets to obtain polyamide 56 slices.
  • step (4) Introduce nitrogen protection into the reaction kettle in step (4), heat at 96°C for 46h, then filter, separate the slices from water, rinse the slices with 95°C water, and vacuum dry at 105°C for 15h to obtain poly Amide 56 resin.
  • Nylon salt solution of 1200g, 1200ppm sodium hypophosphite are added in the polymerization reactor and heated, and the pressure in the reaction system rises to 2.0Mpa, and in 1 hour and 30 minutes, exhaust pressure is maintained, and the temperature of the reaction system when the pressure is completed is 243°C, the pressure was maintained for 3 hours, and then the pressure in the reaction system was reduced to 0.005MPa (gauge pressure). After the pressure reduction, the temperature of the reaction system was 290°C, and the pressure was reduced for 1 hour. The vacuum was maintained at -0.08Mpa, the vacuum time was 30min, the temperature of the reaction system after vacuum was 290°C, and a polyamide 56 melt was obtained.
  • step (3) The melt obtained in step (2) is discharged, and the strands are water-cooled at 20°C and pelletized.
  • Nylon salt solution of 1200g, 2400ppm sodium hypophosphite are added in the polymerization reactor and heated, and the pressure in the reaction system rises to 2.0Mpa, takes 1 hour and 30 minutes, exhausts and maintains pressure, and the temperature of reaction system when maintaining pressure finishes is 243°C, the pressure was maintained for 3 hours, and then the pressure in the reaction system was reduced to 0.005MPa (gauge pressure). After the pressure reduction, the temperature of the reaction system was 290°C, and the pressure was reduced for 1 hour. The vacuum was maintained at -0.08Mpa, the vacuum time was 30min, the temperature of the reaction system after vacuum was 290°C, and a polyamide 56 melt was obtained.
  • step (3) The melt obtained in step (2) is discharged, and the water-cooled strands are cut into pellets, and the water temperature is 20°C.
  • Nylon salt solution of 1200g, 85ppm sodium hypophosphite are added in the polymerization reactor and heated, and the pressure in the reaction system rises to 2.0Mpa, and in 1 hour and 30 minutes, exhaust pressure is maintained, and the temperature of the reaction system when the pressure is completed is 243°C, the pressure was maintained for 3 hours, and then the pressure in the reaction system was reduced to 0.005MPa (gauge pressure). After the pressure reduction, the temperature of the reaction system was 290°C, and the pressure was reduced for 1 hour. The vacuum was maintained at -0.08Mpa, the vacuum time was 30min, the temperature of the reaction system after vacuum was 290°C, and a polyamide 56 melt was obtained.
  • step (3) The melt obtained in step (2) is discharged, and the water-cooled strands are cut into pellets, and the water temperature is 20°C.
  • the polyamide resins of Examples 1-6 were tested for relative viscosity, water extractable content, hypophosphite content (converted to P), crystallization temperature, half crystallization time, acid resistance and yellowness index. Table 1 of test results.
  • Polyamide compositions were prepared using the polyamide resins, glass fibers, and antioxidants of Examples 1-6 as raw materials.
  • the formulation of the composition is shown in Table 2.
  • composition The preparation method of composition is as follows:
  • twin-screw extruder Using polyamide resin, glass fiber and antioxidant as raw materials, use a twin-screw extruder for mixing, then extrude the strands through the twin-screw extruder, and use water as the cooling medium to cool the strands to the polyamide temperature. below the melting point and cut to obtain a polyamide resin composition.
  • the twin-screw extruder adopts a seven-zone heating mode, and the temperatures from the first zone to the seventh zone are 250°C, 260°C, 260°C, 280°C, 270°C, 270°C, and 270°C.
  • the die temperature is 260°C; the screw speed is 480r/min; the aspect ratio of the twin-screw extruder is 1:40.
  • the obtained polyamide resin composition was dried at 110° C. for 5 hours and then injection molded.
  • the injection molding conditions were: using an injection molding machine at a barrel temperature of 280° C. and a mold surface temperature of 110° C., and the thickness of the sample was 3 mm. Continuously inject 50 molds, observe the mold fouling on the high-gloss surface of the mold, and rate the film fouling, using a 5-level evaluation method, the amount of mold fouling from level 1 to level 5 decreases in order, and level 1 is the worst, with a large amount of mold fouling , grade 5 is the best, no obvious mold deposits were observed.
  • the test results of injection molded samples are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明提供一种聚酰胺树脂、组合物及在工程塑料中的用途。所述聚酰胺的结构单元包括二元胺结构单元和二元酸结构单元,所述水可萃取物在聚酰胺树脂中的含量为0.7wt%以下,且所述聚酰胺树脂中含有次磷酸盐,折合成以P计含量为10~500ppm。本发明的聚酰胺树脂的制备方法简单,工艺参数易于控制,无需大型仪器协助,便于进行量化生产。聚酰胺树脂组合物具有成型周期短、结晶速度快、外观质量好等优点。同时具有耐酸性腐蚀的优点,可以应用于酸性环境,例如酸性食品的外包装、容器等。

Description

一种聚酰胺树脂、组合物及其在工程塑料中的用途 技术领域
本发明属于高分子材料领域,具体涉及一种聚酰胺树脂及其制备方法、组合物和纤维制品。
背景技术
聚酰胺由于其优异的特性和熔融成型的容易程度,已被广泛用作衣料、产业材料、纤维、或通用的工程塑料中,因而受到广泛关注。聚酰胺5X是由生物基戊二胺和系列二元酸合成的线型长链大分子,酰胺键容易形成氢键,因此,聚酰胺5X纤维的强度高,吸湿性好。而在聚酰胺5X聚合的过程中,由于发生环化反应,链内酰胺基交换反应发生时聚合物大分子链会断成两段,或者线状低分子物直接脱水反应,而产生低分子聚合物。一般来说,水可萃取物是一聚体到十聚体的低分子聚合物,例如二聚体、三聚体,包括线状和环状。这些水可萃取物的存在可能影响树脂的性能及应用。
例如,对于继电器和电容器这种超薄制件(厚度为0.3-0.4mm),由于制件很薄,需要在高温高速下注塑,材料自身受热和剪切明显高于其他注塑条件,模垢出现尤其明显,这将导致在连续加工过程中,需要定时清理模具表面,造成生产效率低下,而状态严重时甚至制件表面出现白斑等问题,严重影响产品外观。
发明内容
为解决现有技术和产品的不足,本发明目的之一在于提供一种聚酰胺树脂。
所述聚酰胺的结构单元包括二元胺结构单元和二元酸结构单元,所述聚酰胺树脂中水可萃取物含量为0.7wt%以下,且所述聚酰胺树脂中含有次磷酸盐,折合成以 P计含量为10~500ppm。
根据本发明的一些实施方式,所述水可萃取物的含量为0.6wt%以下,进一步为0.5wt%以下。所述水可萃取物主要为单体原料在聚合阶段产生的低聚物,例如线性或环状的一聚体到十聚体。
在本发明一些优选实施方式中,所述水可萃取物的含量在上述限定的范围时,所得聚酰胺树脂及后述的树脂组合物的抗黄变性能性能提高。
在本发明一些优选实施方式中,所述水可萃取物的含量在上述限定的范围时,所得聚酰胺树脂及后述的树脂组合物的力学性能提高。
在本发明一些优选实施方式中,所述水可萃取物的含量在上述限定的范围时,所得聚酰胺树脂及后述的树脂组合物的外观质量好、无明显析出。
在本发明一些优选实施方式中,所述水可萃取物的含量在上述限定的范围时,所得聚酰胺树脂及后述的树脂组合物的耐酸性腐蚀的性能提高。
在本发明一些优选实施方式中,所述聚酰胺树脂中水可萃取物的含量为0.05wt%以上,进一步为0.1wt%以上,进一步为0.2wt%以上,进一步为0.25%wt以上。当水可萃取物的含量低于上述限定范围时,所述聚酰胺树脂及后述的组合物的性能有所降低。
所述聚酰胺树脂中水可萃取物含量为在去离子水中加热进行萃取处理(例如使用97℃~100℃的水萃取聚酰胺树脂24h),萃取处理后能够被萃取到水中的组分占萃取处理前的聚酰胺树脂的质量百分比。
所述水可萃取物含量(%)=[(水萃取前聚酰胺树脂的质量m 1-水萃取后聚酰胺树脂的质量m 2)/水萃取前聚酰胺树脂的质量m 1]*100%。
萃取条件例如为使用97℃~100℃的水萃取聚酰胺树脂24h,聚酰胺树脂与水的质量比为1:48~51,例如1:50。
进一步的,所述水可萃取物含量的测试方法如下:将聚酰胺样品在鼓风烘箱中于130℃干燥7小时,放入铝塑袋密封后,放入干燥器中冷却,然后准确称量聚酰 胺样品约2g,记录聚酰胺样品实际质量(m 1)。将聚酰胺样品置于250mL圆底烧瓶中,加入100mL去离子水,在97℃~100℃加热回流24小时,取水萃取后的聚酰胺样品,用去离子水清洗三遍,然后将聚酰胺样品在130℃鼓风烘箱中干燥7小时,然后转移至事先称重的铝塑袋中,封口后放入干燥器中冷却,称量铝塑袋与聚酰胺样品总重与铝塑袋重量,两者相减,得到水萃取后聚酰胺样品的重量(m 2)。通过对比聚酰胺样品水萃取前、后重量差计算出水可萃取物含量。水可萃取物含量(%)=[(m 1-m 2)/m 1]*100%。
进一步地,当进行聚酰胺树脂熔体中水可萃取物含量检测时将熔体导入密闭容器中,冷却后取样按上述方法进行检测。
根据本发明的一些实施方式,通过GPC方法测定的所述水可萃取物的数均分子量为200~2000g/mol。
根据本发明的一些实施方式,所述水可萃取物包括以下结构中的一种或两种:
Figure PCTCN2022074280-appb-000001
其中,n1和n2分别选自1~8的整数,优选地,n1和n2分别选自1~6的整数,更优选地,n1和n2分别选自1~5的整数,进一步优选地,n1为2、3或4;n2为2、3、4或5;m1为4,m2为4。
作为本发明的一个优选实施方式,所述的次磷酸盐,折合成以P计含量为10~300ppm,进一步为10~200ppm。
作为本发明的一个优选实施方式,所述次磷酸盐包括碱金属的次磷酸盐和碱土金属的次磷酸盐,进一步包括次磷酸钠、次磷酸钾、次磷酸钙和次磷酸镁中任意一种或两种以上的组合。
根据本发明的一些实施方式,所述聚酰胺树脂中的戊二胺结构单元可以来自化学来源或者生物物质来源的戊二胺,进一步来自生物物质来源的1,5-戊二胺。
作为本发明的一个优选实施方式,所述二元酸结构单元中90mol%以上来自于己二酸,所述二元胺结构单元中90mol%以上来自于1,5-戊二胺。
作为本发明的一个优选实施方式,所述聚酰胺树脂中的二元胺结构单元中95mol%以上,优选97mol%以上来自于1,5-戊二胺。
进一步地,所述聚酰胺树脂中的二元胺结构单元还可以包括来自于丁二胺、己二胺、癸二胺、十二碳二元胺中的一种或多种的结构单元。
作为本发明的一个优选实施方式,所述聚酰胺树脂中的二元酸结构单元中95mol%以上,优选97mol%以上来自于己二酸。
根据本发明的一些实施方式,所述聚酰胺树脂中的二元酸结构单元还可以包括来自于丁二酸、戊二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸、十四烷二酸、十五烷二酸、十六烷二酸、十七烷二酸和十八烷二酸、对苯二甲酸、间苯二甲酸和邻苯二甲酸中的一种或多种的结构单元。
作为本发明的一个优选实施方式,所述聚酰胺树脂中由二元胺结构单元和二元酸结构单元构成的聚酰胺(主聚合物)的含量在90wt%以上,进一步为95wt%以上,进一步为97wt%以上,进一步为99wt%以上。所述二元胺结构单元和二元酸结构单元符合上文的限定。
根据本发明的一些实施方式,所述聚酰胺树脂中含有除次磷酸盐以外的添加剂。
所述添加剂包括但不限于封端剂、成核剂、抗氧剂、消泡剂和流动改性剂中任意一种或几种的组合。所述封端剂包括月桂酸、硬脂酸、苯甲酸和乙酸。
在本发明一些优选实施方式中,所述聚酰胺树脂中添加剂的含量为小于或等于10wt%,优选小于或等于5wt%,更优选小于或等于3wt%,更优选小于或等于1wt%。
根据本发明的一些实施方式,所述聚酰胺树脂为聚酰胺56树脂。所述聚酰胺56树脂中聚酰胺56的含量在90wt%以上,进一步为95wt%以上,进一步为97wt%以上,进一步为99wt%以上。
作为本发明的一个优选实施方式,所述聚酰胺树脂的相对粘度为1.8~4.0,优选2.2~3.5,进一步优选为2.4~3.3。
作为本发明的一个优选实施方式,所述聚酰胺树脂的黄色指数为小于7,进一步 为小于5,进一步为小于4.2。
本发明的目的之二在于提供一种制备聚酰胺树脂的方法。
根据本发明的一些实施方式,所述方法包括以下步骤:
S1:惰性气体氛围下,制备尼龙盐溶液;
S2:将所述尼龙盐溶液加热,使所述尼龙盐溶液反应体系的压力升至0.5~2.5MPa,排气保压0.5~4h,然后降压,使所述反应体系内的压力降至0~0.7MPa(表压),之后抽真空使所述反应体系内的真空度为-0.01~-0.08MPa,得到聚酰胺熔体;
S3:将所得熔体出料,拉条切粒,得聚酰胺切片。
除非另有说明或者明显矛盾,本发明中的压力均指表压。在本发明中,尼龙盐和聚酰胺盐可互换使用。
其中,步骤S1中,制备尼龙盐溶液所用1,5-戊二胺和二元酸的摩尔比为(1~1.1):1。
步骤S2中,保压过程结束后反应体系的温度为232~260℃。
步骤S2中,降压过程结束后反应体系的温度为240~295℃,进一步为243~288℃。
步骤S2中,抽真空后反应体系的温度为250~290℃,进一步为252~285℃。
步骤S2中,抽真空后维持所述真空度的时间为11~75min。
步骤S3中,所述切粒在水中进行,水温为15~50℃。经过步骤S3所述的拉条切粒,得到聚酰胺切片或聚酰胺切粒。
根据本发明的一些实施方式,所述方法还包括以下步骤:
S4:将聚酰胺切片与水混合置于反应器中,利用惰性气体置换反应器内的空气;
S5:惰性气体氛围下,加热、过滤、冲洗和/或干燥,即得到所述聚酰胺树脂。
步骤S4中,所述反应器为可以形成密闭环境的反应器。步骤S4所述反应器例如可以为连续萃取塔或间歇反应釜。
优选地,步骤S4中,所述置换反应器内的空气的方法包括用真空泵抽真空后再充入氮气或惰性气体。上述的置换反应器内的空气的操作可以重复二次以上。
步骤S4中,所述水为去离子水,进一步为经过除氧处理后的去离子水,其中, 所述的除氧处理可以为热力除氧、超声除氧、真空除氧、化学除氧、解析除氧或其他任意的除氧方式中的一种或几种的组合;在一些优选实施方式中,所述除氧处理后的去离子水中溶解氧的含量为小于或等于0.5mg/L,进一步为小于或等于0.1mg/L。
步骤S4中,所述水的质量为聚酰胺切片的质量1倍以上,进一步为2倍以上,例如1~12倍、1~10倍、2~10倍、2~6倍、1.5倍、2.3倍、2.5倍、3倍、5倍或8倍。
步骤S1、S4和步骤S5中,所述惰性气体包括氩气、氦气等中的一种或两种,进一步优选高纯度氩气、高纯度氦气。
根据本发明的一些实施方式,步骤S4中所述置换空气操作过程中抽真空至真空度-0.1Mpa~-0.001Mpa(表压),维持5~20min后,然后充入氮气或惰性气体,进一步优选,重复置换空气操作5~15次,进一步为8~10次。
根据本发明的一些实施方式,步骤S5中所述加热的时间为4~50h,进一步为8~45h。
根据本发明的一些实施方式,步骤S5中所述加热的温度为80~140℃,进一步为85~120℃。
根据本发明的一些实施方式,步骤S5中所述的冲洗为用温度50℃~100℃的热水进行冲洗。
根据本发明的一些实施方式,步骤S5中所述的干燥选自真空干燥、冷冻干燥、气流干燥、微波干燥、红外线干燥和高频率干燥中的一种或几种。
本发明的目的之三在于提供一种树脂组合物,所述组合物包括下述重量份的组分:聚酰胺树脂100份和玻璃纤维10~70份。
作为本发明一优选实施方式,所述玻璃纤维的长径比为(2~800):1,进一步为(200~650):1。
作为本发明一优选实施方式,所述玻璃纤维的长度为3~12mm,进一步为3~8mm。
在本发明一些优选实施方式中,所述玻璃纤维的参数在上述限定的范围时,所得树脂组合物的力学性能提高。
进一步地,所述组合物中可以含有抗氧剂、成核剂、润滑剂、阻燃剂、偶联剂、 热稳定剂、光稳定剂、抗静电剂、紫外吸收剂和着色剂中任意一种或两种以上的组合物。
进一步地,抗氧剂含量为0.02~2重量份,抗氧剂优选包括受阻酚类抗氧剂、受阻胺类抗氧剂和亚磷酸酯类抗氧剂,例如包括抗氧剂168,抗氧剂1098,抗氧剂1010和抗氧剂S9228中的任意一种或两种以上的组合物。
作为本发明的一个优选实施方式,所述树脂组合物的在耐酸性测试中,表面没有或者只有少量析出物(浮纤)。
作为本发明的一个优选实施方式,所述树脂组合物在注塑成型后,没有明显模垢或者只有少量模垢。
作为本发明一优选实施方式,所述的聚酰胺树脂具有如上文所述的限定。
所述聚酰胺树脂组合物的制备方法,所述方法包括下述步骤:
将各组分加入双螺杆挤出机中进行混炼,然后通过所述双螺杆挤出机挤出,冷却,切粒,得到所述聚酰胺组合物。
进一步地,在混炼时,玻璃纤维从双螺杆挤出机的侧喂料口喂入。
进一步地,双螺杆挤出机对预混物进行熔融混炼的温度为210~290℃。
作为本发明的一实施方式,混炼过程中,双螺杆挤出机为七区加热模式,一区温度为210~250℃,和/或,二区温度为210~250℃,和/或,三区温度为240~260℃,四区温度为260~280℃,和/或,五区温度为270~290℃,和/或,六区温度为270~290℃,和/或,七区温度为255~285℃;其中,一区至七区的方向为喂料口至模口的方向。
所述双螺杆挤出机的模口温度为260-275℃。
所述双螺杆挤出机的螺杆转速为350-500r/min。
所述双螺杆挤出机的长径比为1:(30-50),优选为1:40。
本发明的目的之四在于提供一种以上所述的聚酰胺树脂或组合物在工程塑料中的用途。
与现有技术相比,本发明的实施,至少具有以下优势:
1、本发明的聚酰胺树脂的制备方法简单,工艺参数易于控制,无需大型仪器协 助,便于进行量化生产。
2、聚酰胺树脂组合物具有成型周期短、结晶速度快、注塑模垢少、外观质量好的优点。可以应用于电子电器领域制件。
2、聚酰胺树脂组合物具有耐酸性腐蚀的优点,可以应用于酸性环境,例如酸性食品的外包装、容器等。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
1、相对粘度ηr的检测方法
乌氏粘度计浓硫酸法:准确称量干燥后的聚酰胺样品0.5±0.0002g,加入50mL浓硫酸(98%)溶解,在25℃恒温水浴槽中测量并记录浓硫酸的流经时间t 0和聚酰胺溶液的流经时间t。相对粘度计算公式:相对粘度ηr=t/t 0
2、聚酰胺树脂中水可萃取物含量的测试方法如下:将聚酰胺样品在鼓风烘箱中于130℃干燥7小时,放入铝塑袋密封后,放入干燥器中冷却,然后准确称量聚酰胺样品约2g,记录聚酰胺样品实际质量(m 1)。将聚酰胺样品置于250mL圆底烧瓶中,加入100mL去离子水,在97℃~100℃加热回流24小时,取水萃取后的聚酰胺样品,用去离子水清洗三遍,然后将聚酰胺样品在130℃鼓风烘箱中干燥7小时,然后转移至事先称重的铝塑袋中,封口后放入干燥器中冷却,称量铝塑袋与聚酰胺样品总重与铝塑袋重量,两者相减,得到水萃取后聚酰胺样品的重量(m 2)。通过对比聚酰胺样品水萃取前、后重量差计算出水可萃取物含量。水可萃取物含量(%) =[(m 1-m 2)/m 1]*100%。
当进行聚酰胺树脂熔体中水可萃取物含量检测时将熔体导入密闭容器中,冷却后取样按上述方法进行检测。
3、黄色指数(YI)
按照HG/T 3862测试。
4、结晶性测试
使用差示扫描量热仪(DSC)对聚酰胺样品进行结晶性分析:将各实施例及对比例所得聚酰胺的样品按50℃/min的升温速度从室温加热至280℃,维持3min后,以10℃/min的速率降温,将样品冷却至室温。测试得到结晶温度、半结晶时间。
5、拉伸强度
按照ISO 527-2方法测定,测试时的拉伸速度为50mm/min。
6、弯曲强度
按照ISO 178方法测定,测试条件为2mm/min。
7、耐酸性测试:将聚酰胺样品在40℃、质量百分数为10wt%的醋酸溶液中浸泡180天,观察样品表面析出物的情况并评级为1~5级,1级为最差,出现大量析出物,5级为最好,未观察到明显析出物。
预备例1
(1)氮气条件下,将1,5-戊二胺、己二酸和水混合均匀,其中,1,5-戊二胺、己二酸的摩尔比例为1.08:1,制得60wt.%的尼龙盐溶液,所述百分比为占尼龙盐溶液的质量百分比;将尼龙盐溶液取样并稀释至浓度为10wt.%时,pH值为7.85。
(2)将1200g的尼龙盐溶液、500ppm次磷酸钠加入聚合反应釜中加热,反应体系内压力升至2.3Mpa,用时1小时30分钟,排气保压,保压结束时反应体系的温 度为245℃,保压用时3小时,然后降压使反应体系内压力降至0.003MPa(表压),降压结束后反应体系的温度为273℃,降压用时1小时。抽真空维持在-0.06Mpa,抽真空时间32min,真空后反应体系的温度为272℃,得到聚酰胺56熔体。
(3)将步骤(2)所得熔体出料,水冷拉条切粒,得聚酰胺56切片;所述切粒在水中进行,水温为20℃。
实施例1
(a)在反应釜中加入预备例1所制得的聚酰胺56切片,加入无氧处理后的去离子水,所述切片与无氧处理后的去离子水的质量比是1:6;利用氮气进行置换空气,具体操作方法:真空泵抽真空,真空度-0.09Mpa(表压),维持10min后充入氮气,重复置换9次。
(b)在氮气氛围下,在90℃加热32h,然后过滤,将切片与水分离,然后用95℃水冲洗切片,105℃真空干燥15h,即得到聚酰胺56树脂。
实施例2
(1)氮气条件下,将1,5-戊二胺、己二酸和水混合均匀,其中,1,5-戊二胺、己二酸的摩尔比例为1:1,制得70wt.%的尼龙盐溶液,所述百分比为占尼龙盐溶液的质量百分比;将尼龙盐溶液取样并稀释至浓度为10wt.%时,的pH值为7.96。
(2)将1200g的尼龙盐溶液、300ppm次磷酸钠加入聚合反应釜中加热,反应体系内压力升至2.0Mpa,用时1小时30分钟,排气,在2.40Mpa保压,保压结束时反应体系的温度为243℃,保压用时3小时,然后降压使反应体系内压力降至0.005MPa(表压),降压结束后反应体系的温度为290℃,降压用时1小时。抽真空维持在-0.08Mpa,抽真空时间30min,真空后反应体系的温度为290℃,得到聚酰胺 56熔体。
(3)将步骤(2)所得熔体出料,20℃水冷拉条切粒得到聚酰胺56切片。
(4)在反应釜中加入聚酰胺56切片,加入无氧处理后的去离子水,所述切片与无氧处理后的去离子水的质量比是1:6;利用氮气进行置换空气,具体操作方法:真空泵抽真空,真空度-0.07Mpa(表压),维持10min后充入氮气,重复置换10次。
(5)将步骤(4)中的反应釜中通入氮气保护,在96℃加热46h,然后过滤,将切片与水分离,然后用95℃水冲洗切片,105℃真空干燥15h,即得到聚酰胺56树脂。
实施例3
(a)在反应釜中加入预备例1所制得的聚酰胺56切片,加入无氧处理后的去离子水,所述切片与无氧处理后的去离子水的质量比为1:12;利用氮气进行置换空气,具体操作方法:真空泵抽真空,真空度-0.09Mpa(表压),维持10min后充入氮气,重复置换10次。
(b)将步骤(a)中的反应釜通入氮气保护,在95℃加热水煮55h,然后过滤,将切片与水分离,然后用95℃热水冲洗切片,105℃真空干燥15h,即得到聚酰胺56树脂。
实施例4
(1)氮气条件下,将1,5-戊二胺、己二酸和水混合均匀,其中,1,5-戊二胺、己二酸的摩尔比例为1.05:1,制得60wt.%的尼龙盐溶液,所述百分比为占尼龙盐溶液的质量百分比;将尼龙盐溶液取样并稀释至浓度为10wt.%时,pH值为7.98。
(2)将1200g的尼龙盐溶液、1200ppm次磷酸钠加入聚合反应釜中加热,反应体系内压力升至2.0Mpa,用时1小时30分钟,排气保压,保压结束时反应体系的温 度为243℃,保压用时3小时,然后降压使反应体系内压力降至0.005MPa(表压),降压结束后反应体系的温度为290℃,降压用时1小时。抽真空维持在-0.08Mpa,抽真空时间30min,真空后反应体系的温度为290℃,得到聚酰胺56熔体。
(3)将步骤(2)所得熔体出料,20℃水冷拉条切粒。
(4)105℃真空干燥15h,即得到聚酰胺56树脂。
实施例5
(1)氮气条件下,将1,5-戊二胺、己二酸和水混合均匀,其中,1,5-戊二胺、己二酸的摩尔比例为1.05:1,制得60wt.%的尼龙盐溶液,所述百分比为占尼龙盐溶液的质量百分比;将尼龙盐溶液取样并稀释至浓度为10wt.%时,pH值为7.98。
(2)将1200g的尼龙盐溶液、2400ppm次磷酸钠加入聚合反应釜中加热,反应体系内压力升至2.0Mpa,用时1小时30分钟,排气保压,保压结束时反应体系的温度为243℃,保压用时3小时,然后降压使反应体系内压力降至0.005MPa(表压),降压结束后反应体系的温度为290℃,降压用时1小时。抽真空维持在-0.08Mpa,抽真空时间30min,真空后反应体系的温度为290℃,得到聚酰胺56熔体。
(3)将步骤(2)所得熔体出料,水冷拉条切粒,水温为20℃。
(4)105℃真空干燥15h,即得到聚酰胺56树脂。
实施例6
(1)氮气条件下,将1,5-戊二胺、己二酸和水混合均匀,其中,1,5-戊二胺、己二酸的摩尔比例为1.05:1,制得60wt.%的尼龙盐溶液,所述百分比为占尼龙盐溶液的质量百分比;将尼龙盐溶液取样并稀释至浓度为10wt.%时,pH值为7.98。
(2)将1200g的尼龙盐溶液、85ppm次磷酸钠加入聚合反应釜中加热,反应体系 内压力升至2.0Mpa,用时1小时30分钟,排气保压,保压结束时反应体系的温度为243℃,保压用时3小时,然后降压使反应体系内压力降至0.005MPa(表压),降压结束后反应体系的温度为290℃,降压用时1小时。抽真空维持在-0.08Mpa,抽真空时间30min,真空后反应体系的温度为290℃,得到聚酰胺56熔体。
(3)将步骤(2)所得熔体出料,水冷拉条切粒,水温为20℃。
(4)105℃真空干燥15h,即得到聚酰胺56树脂。
将实施例1~6的聚酰胺树脂进行相对粘度、水可萃取物含量、次磷酸盐含量(折合为以P计)、结晶温度、半结晶时间、耐酸性和黄色指数测试。测试结果表1。
表1
Figure PCTCN2022074280-appb-000002
分别以实施例1~6的聚酰胺树脂、玻璃纤维、抗氧剂为原料制备聚酰胺组合物。组合物的配方如表2所示。
组合物的制备方法如下:
以聚酰胺树脂、玻璃纤维、抗氧剂为原料,利用双螺杆挤出机进行混炼,然后通过双螺杆挤出机挤出线料,以水作为冷却介质将该线料冷却到聚酰胺的熔点以下并切割,得到聚酰胺树脂组合物。其中,双螺杆挤出机为七区加热模式,一区至七区的温度依次为250℃、260℃、260℃、280℃、270℃、270℃、270℃。模口温度为260℃;螺杆转速为480r/min;双螺杆挤出机的长径比为1:40。
将得到的聚酰胺树脂组合物在110℃下干燥5小时后注塑成型,注塑条件为:使用注塑成型机在料筒温度280℃、模具表面温度110℃条件下注塑成型,样品厚度为3mm。连续注塑50模,观察模具高光面模垢情况,并对膜垢的情况进行评级,采用5级评价方式,1级到5级模垢的量依次递减,1级为最差,出现大量模垢,5 级为最好,未观察到明显模垢。注塑样品测试结果见表2。
表2
Figure PCTCN2022074280-appb-000003
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种聚酰胺树脂,其特征在于,所述聚酰胺的结构单元包括二元胺结构单元和二元酸结构单元,所述聚酰胺树脂中水可萃取物含量为0.7wt%以下,且所述聚酰胺树脂中含有次磷酸盐,折合成以P计含量为10~500ppm。
  2. 如权利要求1所述的聚酰胺树脂,其特征在于,
    所述二元酸结构单元中90mol%以上来自于己二酸,所述二元胺结构单元中90mol%以上来自于1,5-戊二胺;和/或,
    所述次磷酸盐包括碱金属的次磷酸盐和碱土金属的次磷酸盐,进一步包括次磷酸钠、次磷酸钾、次磷酸钙和次磷酸镁中任意一种或两种以上的组合;和/或,
    所述水可萃取物的含量为0.05wt%以上,进一步为0.1wt%以上,进一步为0.2wt%以上,进一步为0.25wt%以上;和/或,
    所述的次磷酸盐,折合成以P计含量为10~300ppm,进一步为10~200ppm;和/或,
    所述聚酰胺树脂的相对粘度为1.8~4.0,进一步为2.2~3.5,进一步为2.4~3.3;和/或,
    所述聚酰胺树脂的黄色指数为小于7,进一步为小于5。
  3. 一种含有权利要求1或2所述的聚酰胺树脂的组合物,其特征在于,包括下述重量份的组分:
    聚酰胺树脂100份和玻璃纤维10~70份。
  4. 根据权利要求3所述的组合物,其特征在于,所述玻璃纤维的长径比为(2~800):1,进一步为(200~650):1;和/或,
    所述玻璃纤维的长度为3~12mm,进一步为3~8mm;和/或,
    所述组合物中含有抗氧剂、成核剂、润滑剂、阻燃剂、偶联剂、热稳定剂、光稳定剂、抗静电剂、紫外吸收剂和着色剂中任意一种或两种以上的组合物。
  5. 一种聚酰胺树脂的制备方法,其特征在于,所述方法包括以下步骤:
    S1:惰性气体氛围下,制备尼龙盐溶液;
    S2:将所述尼龙盐溶液加热,使所述尼龙盐溶液反应体系的压力升至0.5~2.5MPa,排气保压0.5~4h,然后降压,使所述反应体系内的压力降至0~0.7MPa,然后抽真空,使所述反应体系内的真空度为-0.01~-0.08MPa,得到聚酰胺熔体;
    S3:将所得熔体出料,拉条切粒,得聚酰胺切片。
  6. 如权利要求5所述的方法,其特征在于,
    步骤S1中,制备尼龙盐溶液所用1,5-戊二胺和二元酸的摩尔比为(1~1.1):1;和/或,
    步骤S2中,保压过程结束后反应体系的温度为232~260℃;和/或,
    步骤S2中,降压过程结束后反应体系的温度为240~295℃;和/或,
    步骤S2中,抽真空后反应体系的温度为250~290℃;和/或,
    步骤S2中,抽真空后维持所述真空度的时间为11~75min;和/或,
    步骤S3中,所述切粒在水中进行,水温为15~50℃。
  7. 如权利要求5所述的方法,其特征在于,还包括以下步骤:
    S4:将聚酰胺切片与水混合置于反应器中,利用惰性气体置换反应器内的空气;
    S5:惰性气体氛围下,加热、过滤、冲洗和/或干燥,即得到所述聚酰胺树脂。
  8. 如权利要求7所述的方法,其特征在于,
    步骤S4中,所述反应器选自连续萃取塔和间歇反应釜;和/或,
    步骤S4中,所述置换反应器内的空气的操作方法包括用真空泵将反应器抽真空后,然后充入氮气或惰性气体;和/或,
    步骤S4中,置换反应器内的空气的操作为重复二次以上;和/或,
    步骤S4中,所述水为去离子水,进一步为经过除氧处理后的去离子水;和/或,
    步骤S4中,所述水的质量为聚酰胺切片的质量1倍以上,进一步为2倍以上,例如1~12倍,2~10倍,2~6倍;和/或,
    步骤S4和步骤S5中,所述惰性气体包括氩气和氦气中的一种或两种。
  9. 如权利要求7所述的方法,其特征在于,
    步骤S5中,所述加热的时间为4~50h,进一步为8~45h;和/或,
    步骤S5中,所述加热的温度为80~140℃,进一步为85~120℃;和/或,
    步骤S5中,所述的冲洗为用温度50℃~100℃的热水进行冲洗;和/或,
    步骤S5中,所述的干燥选自真空干燥、冷冻干燥、气流干燥、微波干燥、红外线干燥和高频率干燥中的一种或几种。
  10. 如权利要求1或2所述的聚酰胺树脂或权利要求3或4所述的组合物在工程塑料中的用途。
PCT/CN2022/074280 2021-11-19 2022-01-27 一种聚酰胺树脂、组合物及其在工程塑料中的用途 WO2023087547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111384712.4 2021-11-19
CN202111384712.4A CN116144019A (zh) 2021-11-19 2021-11-19 一种聚酰胺树脂、组合物及其在工程塑料中的应用

Publications (1)

Publication Number Publication Date
WO2023087547A1 true WO2023087547A1 (zh) 2023-05-25

Family

ID=86354886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074280 WO2023087547A1 (zh) 2021-11-19 2022-01-27 一种聚酰胺树脂、组合物及其在工程塑料中的用途

Country Status (2)

Country Link
CN (1) CN116144019A (zh)
WO (1) WO2023087547A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149095A (en) * 1960-08-24 1964-09-15 Bemberg Spa Process for the purification of polyamides
CN103483580A (zh) * 2013-08-07 2014-01-01 江苏海阳化纤有限公司 一种单体全回用的锦纶6切片装置及流程
CN108503826A (zh) * 2017-02-24 2018-09-07 上海凯赛生物技术研发中心有限公司 一种水溶性低聚物含量低的聚酰胺5x及其制备方法
CN108503824A (zh) * 2017-02-24 2018-09-07 上海凯赛生物技术研发中心有限公司 一种聚酰胺5x熔体、树脂及其制备方法
CN111378121A (zh) * 2020-03-31 2020-07-07 上海凯赛生物技术股份有限公司 一种高粘聚酰胺56树脂、高强聚酰胺56工业丝及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149095A (en) * 1960-08-24 1964-09-15 Bemberg Spa Process for the purification of polyamides
CN103483580A (zh) * 2013-08-07 2014-01-01 江苏海阳化纤有限公司 一种单体全回用的锦纶6切片装置及流程
CN108503826A (zh) * 2017-02-24 2018-09-07 上海凯赛生物技术研发中心有限公司 一种水溶性低聚物含量低的聚酰胺5x及其制备方法
CN108503824A (zh) * 2017-02-24 2018-09-07 上海凯赛生物技术研发中心有限公司 一种聚酰胺5x熔体、树脂及其制备方法
CN111378121A (zh) * 2020-03-31 2020-07-07 上海凯赛生物技术股份有限公司 一种高粘聚酰胺56树脂、高强聚酰胺56工业丝及其制备方法与应用

Also Published As

Publication number Publication date
CN116144019A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
EP2459639B1 (en) Heat resistant polyamide compositions having high amine ends
EP2726537B1 (en) Branched polyamide with different blocks
CN113527668A (zh) 长链聚酰胺及其制备方法和应用
CN114196011B (zh) 一种长效抗菌生物基尼龙树脂及其制备方法
CN111690130A (zh) 一种耐高温尼龙树脂及其制备方法
US20130131305A1 (en) Simplified Production of Nylon-6
WO2023087547A1 (zh) 一种聚酰胺树脂、组合物及其在工程塑料中的用途
CN112280031B (zh) 耐高温半芳香聚合物及其制备方法
CN112759760B (zh) 一种耐高低温老化增韧聚酰胺5x树脂及其制备方法
CN113845657B (zh) 一种半芳香族聚酰胺树脂及其制备方法
JP5857391B2 (ja) Pa−410を製造するための方法およびこの方法により得られるpa−410
WO2023284285A1 (zh) 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品
TWI711652B (zh) 非晶性聚醯胺樹脂之製造方法
KR20140051778A (ko) 폴리아미드의 제조방법
KR102204083B1 (ko) 폴리아미드 수지의 제조방법
CN115725070A (zh) 耐高温半芳香聚酰胺、其制备方法、组合物和成型品
CN115449070B (zh) 一种聚酰胺树脂及其制备方法、组合物、纤维制品
CN108503823B (zh) 一种聚酰胺树脂及其制备方法
CN113166402A (zh) 半芳香族聚酰胺树脂及其制造方法
CN117229499A (zh) 一种聚酰胺、聚酰胺制品及其制备方法和应用
CN112204075A (zh) 半芳香族聚酰胺树脂及其制造方法
CN115044034B (zh) 一种高粘度的聚酰胺的制备方法
KR102158813B1 (ko) 중축합에 의해 폴리아미드를 제조하는 방법
KR101557543B1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
CN108795035B (zh) 一种聚酰胺5x组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894095

Country of ref document: EP

Kind code of ref document: A1