WO2023087543A1 - N极性GaN/AlGaN异质结外延结构及其制备方法 - Google Patents

N极性GaN/AlGaN异质结外延结构及其制备方法 Download PDF

Info

Publication number
WO2023087543A1
WO2023087543A1 PCT/CN2022/073901 CN2022073901W WO2023087543A1 WO 2023087543 A1 WO2023087543 A1 WO 2023087543A1 CN 2022073901 W CN2022073901 W CN 2022073901W WO 2023087543 A1 WO2023087543 A1 WO 2023087543A1
Authority
WO
WIPO (PCT)
Prior art keywords
polar
doped
algan
layer
gan
Prior art date
Application number
PCT/CN2022/073901
Other languages
English (en)
French (fr)
Inventor
王文樑
江弘胜
李国强
李林浩
黄星悦
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023087543A1 publication Critical patent/WO2023087543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Group III nitride materials represented by GaN have become hot materials for third-generation semiconductors due to their wide bandgap, excellent electrical and thermal conductivity, high critical breakdown electric field, and high limit operating temperature.
  • the AlGaN/GaN heterojunction can generate a high-density, high-mobility two-dimensional electron gas at the interface by virtue of its own spontaneous and piezoelectric polarization effects, and is widely used in HEMTs, rectifiers and other devices.
  • the growth of GaN materials relies on heteroepitaxy techniques. The advantages of large size and low cost of Si substrate make it the first choice for GaN heteroepitaxy.
  • the present invention provides an N-polar GaN/AlGaN heterojunction epitaxial structure and a preparation method thereof, and the N-polar GaN/AlGaN heterojunction epitaxial structure can realize high-efficiency power electronic devices.
  • the silicon substrate is a Si(111) substrate.
  • the FWHM value of the X-ray rocking curve of the film on the GaN (0002) plane is 0.099°, indicating that the crystal quality of the film is good;
  • the atomic force microscope characterizes the surface root mean square of the film The roughness is 0.4nm, and the surface morphology of the film is smooth.
  • the Al composition of the non-doped N-polar AlGaN layer is 0.20, and the thickness is 400nm;
  • test results of the N-polarity GaN/AlGaN heterojunction epitaxial structure prepared in this embodiment are similar to those in Embodiment 1, and will not be repeated here.
  • the present invention provides an N-polar GaN/AlGaN heterojunction epitaxial structure, including a low-temperature N-polar AlN buffer layer, a non-doped N-polar AlGaN buffer layer, Non-doped N-polar AlGaN layer and non-doped N-polar GaN layer, and also provides the preparation method of the above-mentioned N-polar GaN/AlGaN heterojunction epitaxial structure, realizing high-quality N-polar GaN/AlGaN heterostructure
  • the epitaxial structure of the junction which is expected to realize devices such as high-performance GaN-based HEMTs and rectifiers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种N极性GaN/AlGaN异质结外延结构及其制备方法,所述N极性GaN/AlGaN异质结外延结构包括在硅衬底上依次生长的低温N极性AlN缓冲层、非掺杂N极性AlGaN缓冲层、非掺杂N极性AlGaN层和非掺杂N极性GaN层。本发明提供的N极性GaN/AlGaN异质结外延结构,是一种高质量N极性GaN/AlGaN异质结的外延结构,能够实现高效率的功率电子器件。

Description

N极性GaN/AlGaN异质结外延结构及其制备方法 技术领域
本发明涉及光电器件探测器技术领域,特别涉及一种N极性GaN/AlGaN异质结外延结构及其制备方法。
背景技术
以GaN为代表的III族氮化物材料由于其较宽的禁带宽度、优异的导电导热特性、高临界击穿电场、高极限工作温度等优良材料特性成为第三代半导体的热点材料。而AlGaN/GaN异质结能够借助自身的自发和压电极化效应,在界面处产生高密度、高迁移率的二维电子气,被广泛应用于HEMT、整流器等器件。但是,由于单晶GaN衬底难获取,GaN材料的生长依赖于异质外延技术。Si衬底具有的大尺寸、低成本优势使其成为GaN异质外延的首选。另一方面,与传统的金属极性材料相比,N极性III族氮化物具有相反的极化方向,因而可在GaN/AlGaN异质结中展现出更好的二维电子气限域性。此外,位于上方的GaN层能形成质量更高的欧姆接触。然而,目前III族氮化物材料的研究集中于金属极性材料,有关N极性材料的研究还较少。
发明内容
有鉴于此,本发明提供了一种N极性GaN/AlGaN异质结外延结构及其制备方法,该N极性GaN/AlGaN异质结外延结构能够实现高效率的功率电子器件。
本发明的第一个目的在于提供一种N极性GaN/AlGaN异质结外延结构。
本发明的第二个目的在于提供一种N极性GaN/AlGaN异质结外延结构的制备方法。
本发明的第一个目的可以通过采取如下技术方案达到:
一种N极性GaN/AlGaN异质结外延结构,包括在硅衬底上依次生长的低温N极性AlN缓冲层、非掺杂N极性AlGaN缓冲层、非掺杂N极性AlGaN层和非掺杂N极性GaN层。
进一步的,所述非掺杂N极性AlGaN缓冲层是步进式缓冲层,所述非掺杂N极性AlGaN缓冲层从下到上依次包括非掺杂N极性Al xGa 1-xN层和非掺杂N极性Al yGa 1-yN层,其中,x=0.5~0.6,y=0.3~0.35。
进一步的,所述非掺杂N极性Al xGa 1-xN层厚度为200~300nm,所述非掺杂N极性Al yGa 1-yN层厚度为300~400nm。
进一步的,所述非掺杂N极性AlGaN层Al组分为0.15~0.20、厚度为350~400nm。
进一步的,所述低温N极性AlN缓冲层厚度为200~250nm。
进一步的,所述非掺杂N极性GaN层厚度为30~50nm。
进一步的,所述硅衬底为Si(111)衬底。
本发明的第二个目的可以通过采取如下技术方案达到:
一种N极性GaN/AlGaN异质结外延结构的制备方法,所述方法包括:
对硅衬底进行预处理;
采用脉冲激光沉积技术,在所述硅衬底上生长N极性AlN缓冲层;
将所述硅衬底上生长有N极性AlN缓冲层的外延片转移至金属有机物化学气相沉积设备中,并向腔室内通入NH 3、N 2、H 2和三甲基铝,在所述N极性AlN缓冲层上生长非掺杂N极性AlGaN缓冲层;
完成所述非掺杂N极性AlGaN缓冲层生长后,调整三甲基铝的流量,在所述非掺杂N极性AlGaN缓冲层上生长非掺杂N极性AlGaN层;
完成所述非掺杂N极性AlGaN层生长后,停止通入三甲基铝和H 2,在所述非掺杂N极性AlGaN层上生长非掺杂N极性GaN层,从而制得所述N极性GaN/AlGaN异质结外延结构。
进一步的,所述在所述N极性AlN缓冲层上生长非掺杂N极性AlGaN缓冲层,具体包括:
在所述N极性AlN缓冲层上生长非掺杂N极性Al xGa 1-xN层;
在所述非掺杂N极性Al xGa 1-xN层上生长非掺杂N极性Al yGa 1-yN层;
其中,x=0.5~0.6,y=0.3~0.35。
进一步的,所述硅衬底为Si(111)衬底。
本发明相对于现有技术具有如下的有益效果:
1、本发明采用N极性GaN/AlGaN异质结作为器件功能层,与传统的金属极性AlGaN/GaN异质结相比具有以下优点:N极性AlGaN层作为天然的背势垒,可以增强二维电子气限域性;该结构应用于器件制备时,金属直接和顶层的GaN沟道层相连,能够形成良好的欧姆接触。
2、本发明采用低温PLD结合高温MOCVD的两步生长法生长III族氮化物外延层,一方面,PLD工艺中的低温可以抑制III族氮化物/衬底间的界面反应,阻止相应缺陷的产生;另一方面,高温MOCVD技术可以促使III族氮化物横向过生长,促进位错的 湮灭。通过二者相结合,能够获得高质量III族氮化物外延材料。
3、本发明对N极性GaN/AlGaN异质结外延结构进行了整体性设计:由下至上以Si、AlN、组分变化的多层AlGaN、GaN的顺序逐渐释放晶格失配带来的应力,减少位错,能够通过简单的工艺获得适用于制备HEMT、整流器等器件的高质量GaN/AlGaN异质结。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例的N极性GaN/AlGaN异质外延结构示意图。
图2为本发明实施例的N极性GaN/AlGaN外延薄膜的GaN(0002)X射线摇摆曲线测试图。
图3为本发明实施例的N极性GaN/AlGaN外延薄膜的表面原子力显微镜图。
图1中:
1-硅衬底、2-低温N极性AlN缓冲层、3-非掺杂N极性Al xGa 1-xN层、4-非掺杂N极性Al yGa 1-yN层、5-非掺杂N极性AlGaN层、6-非掺杂N极性GaN层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。应当理解,描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例1:
本实施例提供了一种N极性GaN/AlGaN异质结外延结构的制备方法,具体包括:
(1)衬底预处理:采用Si(111)作为外延生长的衬底,先在H 2SO 4、H 2O 2和H 2O的混合溶液中处理,混合溶液比例为H 2SO 4:H 2O 2:H 2O=2:1:3,接着依次放入丙酮和无水乙醇中,分别超声清洗5min,取出衬底后用高纯氮气吹干;
(2)低温N极性AlN缓冲层外延生长:采用脉冲激光沉积(PLD)技术,将预处理后的衬底放入腔体中,抽真空至气压小于1.0×10 -6torr,衬底首先在富氮气氛下800℃ 退火30min,接着升温至550℃进行N极性AlN缓冲层的生长。上述生长过程中,激光能量密度为2.8Jcm -2,激光频率为25Hz;
(3)非掺杂N极性AlGaN缓冲层外延生长:将步骤(2)所得外延片转移至金属有机物化学气相沉积(MOCVD)设备中进行后续生长。抽真空至气压小于1.0×10 -6torr,在950℃下生长非掺杂N极性AlGaN缓冲层,同时通入三甲基铝、三甲基镓NH 3、H 2、N 2。上述生长过程中,反应室气压为100torr,NH 3流量为40slm;在两层缓冲层的生长中,三甲基铝流量依次为350sccm和180sccm,三甲基镓流量依次为300~350sccm和500~750sccm;
(4)非掺杂N极性AlGaN层外延生长:延续步骤(3)的工艺,调整三甲基铝的流量至100sccm;
(5)非掺杂N极性GaN层外延生长:完成步骤(4)后停止通入三甲基铝与H 2,在770~800℃下生长非掺杂N极性GaN层。上述生长过程中,反应室气压为100torr,三甲基镓流量为600sccm,NH 3流量为40slm。
如图1所示,本实施例制备的N极性GaN/AlGaN异质结外延结构,包括在硅衬底1上依次生长的低温N极性AlN缓冲层2、非掺杂N极性AlGaN缓冲层、非掺杂N极性AlGaN层5和非掺杂N极性GaN层6,其中:
硅衬底为Si(111)衬底;
非掺杂N极性AlN缓冲层厚度为200nm;
非掺杂N极性AlGaN缓冲层厚度包括非掺杂N极性Al xGa 1-xN层3和非掺杂N极性Al yGa 1-yN层4,其中:非掺杂N极性Al xGa 1-xN层厚度为200nm,非掺杂N极性Al yGa 1-yN层厚度为300nm,x=0.5,y=0.3;
非掺杂N极性AlGaN层Al组分为0.15,厚度为400nm;
非掺杂N极性GaN层厚度为30nm。
如图2所示,该薄膜在GaN(0002)面的X射线摇摆曲线半高宽值为0.099°,表明该薄膜晶体质量良好;如图3所示,原子力显微镜表征该薄膜的表面均方根粗糙度为0.4nm,薄膜表面形貌平整。
实施例2:
本实施例提供一种N极性GaN/AlGaN异质结外延结构的制备方法,具体包括:
(1)衬底预处理:采用Si(111)作为外延生长的衬底,先在H 2SO 4、H 2O 2和H 2O的混合溶液中处理,混合溶液比例为H 2SO 4:H 2O 2:H 2O=2:1:3,接着依次放入丙酮和无水乙醇中,分别超声清洗10min,取出衬底后用高纯氮气吹干;
(2)低温N极性AlN缓冲层外延生长:采用PLD技术,将预处理后的衬底放入腔体中,抽真空至气压小于1.0×10 -6torr,衬底首先在富氮气氛下800℃退火30min,接着升温至630℃进行N极性AlN缓冲层的生长。上述生长过程中,激光能量密度为 3.2Jcm -2,激光频率为35Hz;
(3)非掺杂N极性AlGaN缓冲层外延生长:将步骤(2)所得外延片转移至MOCVD设备中进行后续生长。抽真空至气压小于1.0×10 -6torr,在1000℃下生长非掺杂N极性AlGaN缓冲层,同时通入三甲基铝、三甲基镓NH 3、H 2、N 2。上述生长过程中,反应室气压为120torr,NH 3流量为60slm;在两层缓冲层的生长中,三甲基铝流量依次为400sccm和220sccm,三甲基镓流量依次为350sccm和750sccm;
(4)非掺杂N极性AlGaN层外延生长:延续步骤(3)的工艺,调整三甲基铝的流量至150sccm;
(5)非掺杂N极性GaN层外延生长:完成步骤(4)后停止通入三甲基铝与H 2,在800℃下生长非掺杂N极性GaN层。上述生长过程中,反应室气压为120torr,三甲基镓流量为800sccm,NH 3流量为60slm。
如图1所示,本实施例制备的硅衬底上N极性GaN/AlGaN异质结外延结构,包括在硅衬底1上依次生长的低温N极性AlN缓冲层2、非掺杂N极性AlGaN缓冲层、非掺杂N极性AlGaN层5和非掺杂N极性GaN层6,其中:
硅衬底为Si(111)衬底;
非掺杂N极性AlN缓冲层厚度为250nm;
非掺杂N极性AlGaN缓冲层厚度包括非掺杂N极性Al xGa 1-xN层3和非掺杂N极性Al yGa 1-yN层4,其中:非掺杂N极性Al xGa 1-xN层厚度为300nm,非掺杂N极性Al yGa 1-yN层厚度为400nm,x=0.6,y=0.35;
非掺杂N极性AlGaN层Al组分为0.20,厚度为400nm;
非掺杂N极性GaN层厚度为50nm。
本实施例制备的N极性GaN/AlGaN异质结外延结构测试结果与实施例1类似,在此不再赘述。
综上所述,本发明提供了一种N极性GaN/AlGaN异质结外延结构,包括在硅衬底上依次生长的低温N极性AlN缓冲层、非掺杂N极性AlGaN缓冲层、非掺杂N极性AlGaN层和非掺杂N极性GaN层,同时还提供了上述N极性GaN/AlGaN异质结外延结构的制备方法,实现了高质量N极性GaN/AlGaN异质结的外延结构,该结构有望实现高性能GaN基HEMT和整流器等器件。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

  1. 一种N极性GaN/AlGaN异质结外延结构,其特征在于,包括在硅衬底上依次生长的低温N极性AlN缓冲层、非掺杂N极性AlGaN缓冲层、非掺杂N极性AlGaN层和非掺杂N极性GaN层。
  2. 根据权利要求1所述的N极性GaN/AlGaN异质结外延结构,其特征在于,所述非掺杂N极性AlGaN缓冲层是步进式缓冲层,所述非掺杂N极性AlGaN缓冲层从下到上依次包括非掺杂N极性Al xGa 1-xN层和非掺杂N极性Al yGa 1-yN层,其中,x=0.5~0.6,y=0.3~0.35。
  3. 根据权利要求2所述的N极性GaN/AlGaN异质结外延结构,其特征在于,所述非掺杂N极性Al xGa 1-xN层厚度为200~300nm,所述非掺杂N极性Al yGa 1-yN层厚度为300~400nm。
  4. 根据权利要求1所述的N极性GaN/AlGaN异质结外延结构,其特征在于,所述非掺杂N极性AlGaN层Al组分为0.15~0.20、厚度为350~400nm。
  5. 根据权利要求1所述的N极性GaN/AlGaN异质结外延结构,其特征在于,所述低温N极性AlN缓冲层厚度为200~250nm。
  6. 根据权利要求1所述的N极性GaN/AlGaN异质结外延结构,其特征在于,所述非掺杂N极性GaN层厚度为30~50nm。
  7. 根据权利要求1~6任一项所述的N极性GaN/AlGaN异质结外延结构,其特征在于,所述硅衬底为Si(111)衬底。
  8. 一种如权利要求1~7任一项所述N极性GaN/AlGaN异质结外延结构的制备方法,其特征在于,所述方法包括:
    对硅衬底进行预处理;
    采用脉冲激光沉积技术,在所述硅衬底上生长N极性AlN缓冲层;
    将所述硅衬底上生长有N极性AlN缓冲层的外延片转移至金属有机物化学气相沉积设备中,并向腔室内通入NH 3、N 2、H 2和三甲基铝,在所述N极性AlN缓冲层上生长非掺杂N极性AlGaN缓冲层;
    完成所述非掺杂N极性AlGaN缓冲层生长后,调整三甲基铝的流量,在所述非掺杂N极性AlGaN缓冲层上生长非掺杂N极性AlGaN层;
    完成所述非掺杂N极性AlGaN层生长后,停止通入三甲基铝和H 2,在所述非掺杂N极性AlGaN层上生长非掺杂N极性GaN层,从而制得所述N极性GaN/AlGaN 异质结外延结构。
  9. 根据权利要求8所述的制备方法,其特征在于,所述在所述N极性AlN缓冲层上生长非掺杂N极性AlGaN缓冲层,具体包括:
    在所述N极性AlN缓冲层上生长非掺杂N极性Al xGa 1-xN层;
    在所述非掺杂N极性Al xGa 1-xN层上生长非掺杂N极性Al yGa 1-yN层;
    其中,x=0.5~0.6,y=0.3~0.35。
  10. 根据权利要求8所述的制备方法,其特征在于,所述硅衬底为Si(111)衬底。
PCT/CN2022/073901 2021-11-19 2022-01-26 N极性GaN/AlGaN异质结外延结构及其制备方法 WO2023087543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111407956.X 2021-11-19
CN202111407956.XA CN114242815A (zh) 2021-11-19 2021-11-19 N极性GaN/AlGaN异质结外延结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2023087543A1 true WO2023087543A1 (zh) 2023-05-25

Family

ID=80750953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073901 WO2023087543A1 (zh) 2021-11-19 2022-01-26 N极性GaN/AlGaN异质结外延结构及其制备方法

Country Status (2)

Country Link
CN (1) CN114242815A (zh)
WO (1) WO2023087543A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759505A (zh) * 2023-08-23 2023-09-15 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led
CN116885067A (zh) * 2023-09-06 2023-10-13 江西兆驰半导体有限公司 发光二极管外延片及其制备方法
CN117410179A (zh) * 2023-09-26 2024-01-16 华南理工大学 一种N极性AlGaN-GaN异质结外延结构及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633213A (zh) * 2012-08-22 2014-03-12 财团法人工业技术研究院 氮化物半导体结构
US20150200286A1 (en) * 2014-01-15 2015-07-16 The Regents Of The University Of California Metalorganic chemical vapor deposition of oxide dielectrics on n-polar iii-nitride semiconductors with high interface quality and tunable fixed interface charge
CN107689406A (zh) * 2016-08-03 2018-02-13 南通同方半导体有限公司 一种采用复合电子阻挡层的深紫外led外延结构
CN108010956A (zh) * 2017-12-19 2018-05-08 华南理工大学 一种硅衬底上N极性面高频GaN整流器外延结构及其制备方法
CN111599901A (zh) * 2020-06-22 2020-08-28 宜兴曲荣光电科技有限公司 一种生长在Si衬底上的紫外LED外延片及其制备方法
CN112397618A (zh) * 2020-11-27 2021-02-23 安徽中医药大学 一种发光二极管的外延结构及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653839A (zh) * 2016-09-27 2017-05-10 华南理工大学 具有调制碳掺杂氮化镓高阻层的hemt结构及其制备方法
CN108172573B (zh) * 2017-12-15 2020-04-28 华南理工大学 适用于35GHz交流频率下工作的GaN整流器及其制备方法
CN112687738A (zh) * 2020-12-24 2021-04-20 晶能光电(江西)有限公司 N极性AlGaN/GaN HEMT器件及其生长方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633213A (zh) * 2012-08-22 2014-03-12 财团法人工业技术研究院 氮化物半导体结构
US20150200286A1 (en) * 2014-01-15 2015-07-16 The Regents Of The University Of California Metalorganic chemical vapor deposition of oxide dielectrics on n-polar iii-nitride semiconductors with high interface quality and tunable fixed interface charge
CN107689406A (zh) * 2016-08-03 2018-02-13 南通同方半导体有限公司 一种采用复合电子阻挡层的深紫外led外延结构
CN108010956A (zh) * 2017-12-19 2018-05-08 华南理工大学 一种硅衬底上N极性面高频GaN整流器外延结构及其制备方法
CN111599901A (zh) * 2020-06-22 2020-08-28 宜兴曲荣光电科技有限公司 一种生长在Si衬底上的紫外LED外延片及其制备方法
CN112397618A (zh) * 2020-11-27 2021-02-23 安徽中医药大学 一种发光二极管的外延结构及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759505A (zh) * 2023-08-23 2023-09-15 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led
CN116759505B (zh) * 2023-08-23 2023-11-17 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led
CN116885067A (zh) * 2023-09-06 2023-10-13 江西兆驰半导体有限公司 发光二极管外延片及其制备方法
CN117410179A (zh) * 2023-09-26 2024-01-16 华南理工大学 一种N极性AlGaN-GaN异质结外延结构及其制备方法和应用

Also Published As

Publication number Publication date
CN114242815A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110504343B (zh) 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
WO2023087543A1 (zh) N极性GaN/AlGaN异质结外延结构及其制备方法
US7687888B2 (en) Method of controlling stress in gallium nitride films deposited on substrates
US9437688B2 (en) High-quality GaN high-voltage HFETs on silicon
JP2016207748A (ja) 半導体装置の製造方法および半導体装置
JP2019110344A (ja) 窒化物半導体装置および窒化物半導体基板
WO2023231566A1 (zh) 半导体外延结构及其制备方法、半导体器件
JP7069584B2 (ja) 基板生産物の製造方法
CN110034174A (zh) 高电子迁移率晶体管外延片及其制备方法
TWI547585B (zh) 氮化鋁銦薄膜的成長方法
US20230307249A1 (en) Heteroepitaxial structure with a diamond heat sink
JP3671215B2 (ja) サファイア基板上への窒化インジウム積層方法
CN101901758A (zh) 基于m面SiC衬底的非极性m面GaN薄膜的MOCVD生长方法
EP4393015A2 (en) Semiconductor heterostructures with scandium iii-nitride layer
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
CN111312585A (zh) 一种低位错密度氮化物的外延层生长方法
CN110957354A (zh) 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
CN114242814B (zh) N极性面AlGaN基紫外光电探测器外延结构及其制备方法
JP3762992B2 (ja) 単結晶窒化インジウム膜の取得方法
CN110670138A (zh) 用于氮化铝单晶生长的复合籽晶及其制备方法
JP7556401B2 (ja) トランジスタの製造方法
CN207925473U (zh) 一种硅衬底上N极性面高频GaN整流器外延结构
JP2005045153A (ja) 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス
CN106601787B (zh) 一种InxAlyGa1-x-yN/GaN异质结构及其外延方法
Zang et al. Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE