WO2023087519A1 - 混合气体分离装置和分离混合气体的方法 - Google Patents

混合气体分离装置和分离混合气体的方法 Download PDF

Info

Publication number
WO2023087519A1
WO2023087519A1 PCT/CN2022/070916 CN2022070916W WO2023087519A1 WO 2023087519 A1 WO2023087519 A1 WO 2023087519A1 CN 2022070916 W CN2022070916 W CN 2022070916W WO 2023087519 A1 WO2023087519 A1 WO 2023087519A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
membrane separator
mixed gas
compressor
inlet
Prior art date
Application number
PCT/CN2022/070916
Other languages
English (en)
French (fr)
Inventor
孙晓辉
崔启利
肖武
程安迪
陈先树
陈宏宇
王云博
盖竹兴
Original Assignee
烟台杰瑞石油装备技术有限公司
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司, 大连理工大学 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023087519A1 publication Critical patent/WO2023087519A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0695Start-up or control of the process; Details of the apparatus used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler

Definitions

  • Embodiments of the present disclosure relate to a mixed gas separation device and a method for separating mixed gas.
  • the conventional treatment method for the mixed gas of these hydrocarbon combustible gases and air is to use fans and pipelines for suction, and then separate and collect them for treatment.
  • the technology of condensation liquefaction or membrane separation is generally used to separate hydrocarbon combustible gases.
  • Embodiments of the present disclosure provide a mixed gas separation device and a method for separating mixed gas.
  • the mixed gas separation device includes: a buffer tank, including a first buffer tank inlet, a second buffer tank inlet, a third buffer tank inlet and a buffer tank outlet; a compressor, including a compressor inlet and a compressor outlet, and the compressor is configured to Compress the mixed gas; a pressure reducing valve, including a first pressure reducing valve interface and a second pressure reducing valve interface; a refrigerator, including a refrigerator inlet, a first refrigerator outlet, and a second refrigerator outlet, and the refrigerator is configured as Cool down the mixed gas.
  • the inlet of the compressor is connected to the outlet of the buffer tank, the inlet of the refrigerator is connected to the outlet of the compressor, the interface of the first pressure reducing valve is connected to the inlet of the second buffer tank, and the interface of the second pressure reducing valve is connected between the outlet of the compressor and the inlet of the refrigerator.
  • the mixed gas separation device provided by the embodiments of the present disclosure, by setting the pressure reducing valve between the outlet of the compressor and the inlet of the buffer tank, it can be ensured that the gas pressure in the various components and pipelines at the rear end of the compressor does not exceed the threshold pressure, thereby preventing damage to the device and increasing the operating safety of the device.
  • An embodiment of the present disclosure provides a mixed gas separation device, including: a buffer tank, including a first buffer tank inlet, a second buffer tank inlet, a third buffer tank inlet, and a buffer tank outlet; a compressor, including a compressor inlet and a compressor machine outlet, the compressor is configured to compress the mixed gas; pressure reducing valve, including a first pressure reducing valve interface and a second pressure reducing valve interface; refrigerator, including a refrigerator inlet, a first refrigerator outlet and a second Two refrigerator outlets, the refrigerator is configured to lower the temperature of the mixed gas.
  • the inlet of the compressor is connected to the outlet of the buffer tank, the inlet of the refrigerator is connected to the outlet of the compressor, the interface of the first pressure reducing valve is connected to the inlet of the second buffer tank, and the second pressure reducing valve is connected to the inlet of the second buffer tank.
  • a valve interface is connected between the compressor outlet and the refrigerator inlet.
  • the pressure relief valve includes a threshold pressure
  • the pressure relief valve is configured such that when the pressure at the outlet of the compressor is greater than the threshold pressure, the pressure relief valve opens to compress the The outlet of the compressor is connected with the inlet of the second buffer tank; when the pressure at the outlet of the compressor is less than or equal to the threshold pressure, the pressure reducing valve is closed, so that the outlet of the compressor and the inlet of the second buffer tank disconnect.
  • the mixed gas separation device further includes a membrane separator, the membrane separator includes a membrane separator inlet, a first membrane separator outlet, and a second membrane separator outlet, and the membrane separator is configured to Filtering at least one gas component in the mixed gas, the inlet of the membrane separator is connected to the outlet of the first refrigerator, the outlet of the first membrane separator is connected to the inlet of the third buffer tank, the second The membrane separator outlet is divided into a first path and a second path, the first path is connected to the third buffer tank inlet, and the second path is configured to be connected to an external device.
  • the membrane separator includes a filter membrane configured to filter and enrich at least one gas component of the mixed gas, the first membrane separator outlet and the second membrane
  • the outlets of the separators are respectively located on both sides of the filter membrane, and the concentration of the at least one gas component on the side where the outlet of the first membrane separator is located is different from that on the side where the outlet of the second membrane separator is located. The concentration of the at least one gas component.
  • the concentration of the at least one gas component on the side where the outlet of the first membrane separator is located is greater than the concentration of the at least one gas component on the side where the outlet of the second membrane separator is located concentration.
  • the mixed gas flows in one direction from the first pressure reducing valve interface to the second pressure reducing valve interface.
  • the mixed gas separation device further includes a one-way valve, which is arranged on the side where the first or second pressure-reducing valve interface of the pressure-reducing valve is located, and the one-way valve The directional valve is configured to allow the mixed gas to flow in one direction from the first pressure reducing valve port to the second pressure reducing valve port.
  • the mixed gas separation device further includes a pressure gauge connected to the outlet of the compressor and configured to detect the pressure at the outlet of the compressor.
  • the mixed gas separation device further includes a storage device connected to the outlet of the second refrigerator and configured to store fluid flowing out of the outlet of the second refrigerator.
  • the mixed gas separation device further includes a concentration analyzer connected to the outlet of the second membrane separator and branched at the outlet of the second membrane separator into the first path and Before the second path, it is configured to detect the concentration of at least one gas component in the gas at the outlet of the second membrane separator.
  • An embodiment of the present disclosure provides a method for separating mixed gas using the mixed gas separation device described in any of the above examples, the pressure reducing valve includes a threshold pressure, and the method for separating mixed gas includes: detecting the outlet of the compressor When the pressure at the outlet of the compressor is greater than the threshold pressure, the pressure relief valve is opened to connect the outlet of the compressor with the inlet of the second buffer tank, thereby reducing the pressure at the inlet of the refrigerator. pressure; when the pressure at the outlet of the compressor is less than or equal to the threshold pressure, close the pressure reducing valve.
  • the mixed gas separation device further includes a membrane separator, the membrane separator includes a membrane separator inlet, a first membrane separator outlet, and a second membrane separator outlet, and the membrane separator is configured to filtering at least one gas component in the mixed gas, the inlet of the membrane separator is connected to the outlet of the first refrigerator, the outlet of the first membrane separator is connected to the inlet of the third buffer tank, and the separation and mixing
  • the gas method also includes: condensing the first part of the gas in the mixed gas into a liquid through the refrigerator, and the liquid formed by condensation flows out from the outlet of the second refrigerator; the second part of the gas in the mixed gas enters the Membrane separator, after passing through the membrane separator, part of the gas in the second part of the gas enters the buffer tank through the outlet of the first membrane separator, and another part of the gas in the second part of the gas enters the The outlet of the second membrane separator.
  • the second membrane separator outlet is divided into a first path and a second path, the first path is connected to the third buffer tank inlet, and the second path is configured to be connected to an external device
  • the method for separating the mixed gas further includes: detecting the concentration of at least one gas component in the gas at the outlet of the second membrane separator, and in a state where the concentration of the at least one gas component is less than a threshold concentration, Close the first path of the outlet of the second membrane separator, open the second path of the outlet of the second membrane separator, so that the outlet of the second membrane separator is connected to an external device; in the at least one gas group In the state where the concentration of the fraction is greater than or equal to the threshold concentration, close the second path of the outlet of the second membrane separator, open the first path of the outlet of the second membrane separator, and connect the outlet of the second membrane separator to to the third buffer tank inlet.
  • the method for separating the mixed gas further includes: when the pressure at the outlet of the compressor is greater than the threshold pressure, sending out an alarm message to notify an operator to shut down for maintenance.
  • Fig. 1 is the structural representation of a kind of gas treatment device
  • FIG. 2 is a schematic structural diagram of a mixed gas separation device according to an embodiment of the present disclosure
  • Fig. 3 is another structural schematic diagram of a mixed gas separation device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for separating mixed gases according to an embodiment of the present disclosure.
  • the atmospheric pressure condensation technology due to the high boiling point of some combustible gases, after these gases pass through the refrigeration system, most of the gases are liquefied and then reach the storage device to realize the separation of combustible gases and air, and a small part of combustible gases are not liquefied The remaining, unliquefied gas is vented to the air or otherwise disposed of.
  • the gas range applicable to atmospheric pressure condensation technology is limited. For example, for gases with low boiling points, the cost of liquefying them is high, and atmospheric pressure condensation technology is not suitable.
  • membrane separation can enrich and separate the concentration of combustible gas, but limited by the membrane separation material, the flow rate, slow speed and low efficiency of gas separation cannot meet the requirements of fast and large flow gas. Separation requirements.
  • Figure 1 is a schematic structural diagram of a gas processing device, which uses compression + low temperature liquefaction + membrane separation technology, which can be used to separate combustible hydrocarbon gases.
  • the process of separating combustible hydrocarbon gases is as follows: the mixture of combustible hydrocarbon gases and air enters compressor 1, and after being compressed by the compressor, it enters condenser 2 for condensation, so that part of combustible hydrocarbon gases are liquefied And it is discharged from one outlet of the condenser 2 to the liquid storage tank 4.
  • the unliquefied mixed gas still contains a certain amount of hydrocarbon combustible gas, and it is discharged from the other outlet of the condenser 2 and enters the membrane separator 3.
  • the membrane separator 3 The hydrocarbon combustible gases in the unliquefied mixed gas can be further separated and purified. After the gas is compressed, its boiling point can be increased, so that the subsequent condensation and liquefaction separation process can be carried out. Therefore, the gas with a lower boiling point can also be separated by this method.
  • the types of separated gases can be expanded by first compressing and then condensing, and by first condensing a part of hydrocarbon combustible gases, and then performing membrane separation, both the separation speed and the Purity of separation.
  • this gas treatment device has a disadvantage of low safety. For example, when the pressure of the gas discharged from the compressor 1 to the condenser 2 is too high, the condenser, the membrane separator and the entire gas treatment device may be damaged, and the gas treatment device is easily damaged during operation and there is a risk of leakage or explosion.
  • Embodiments of the present disclosure provide a mixed gas separation device and a method for separating mixed gas.
  • the mixed gas separation device includes: a buffer tank, including a first buffer tank inlet, a second buffer tank inlet, a third buffer tank inlet and a buffer tank outlet; a compressor, including a compressor inlet and a compressor outlet, and the compressor is configured to Compress the mixed gas; a pressure reducing valve, including a first pressure reducing valve interface and a second pressure reducing valve interface; a refrigerator, including a refrigerator inlet, a first refrigerator outlet, and a second refrigerator outlet, and the refrigerator is configured as Cool down the mixed gas.
  • the inlet of the compressor is connected to the outlet of the buffer tank, the inlet of the refrigerator is connected to the outlet of the compressor, the interface of the first pressure reducing valve is connected to the inlet of the second buffer tank, and the interface of the second pressure reducing valve is connected between the outlet of the compressor and the inlet of the refrigerator.
  • the mixed gas separation device provided by the embodiments of the present disclosure, by setting the pressure reducing valve between the outlet of the compressor and the inlet of the buffer tank, it can be ensured that the pressure of the gas discharged from the compressor does not exceed the safety pressure, thereby preventing damage to the device , and improve the working safety of the device.
  • FIG. 2 is a schematic structural diagram of the mixed gas separation device.
  • the mixed gas separation device includes: a buffer tank 10 , a compressor 20 , a pressure reducing valve 30 and a refrigerator 40 , and the buffer tank 10 , the compressor 20 , the pressure reducing valve 30 and the refrigerator 40 are connected through pipelines.
  • the buffer tank 10 includes a first buffer tank inlet 101, a second buffer tank inlet 102, a third buffer tank inlet 103 and a buffer tank outlet 104;
  • the compressor 20 includes a compressor inlet 201 and a compressor outlet 202, and the compressor 20 is configured as Compress the mixed gas;
  • the pressure reducing valve 30 includes a first pressure reducing valve interface 301 and a second pressure reducing valve interface 302;
  • the refrigerator 40 includes a refrigerator inlet 401, a first refrigerator outlet 401 and a second refrigerator outlet 402, The refrigerator 40 is configured to lower the temperature of the mixed gas.
  • the buffer tank 10 is configured to buffer pressure fluctuations, keep the gas volume stable, reduce the air flow impact on the compressor, and make the compressor 20 suck gas more smoothly.
  • the first buffer tank inlet 101 of the buffer tank 10 is configured to receive the mixed gas.
  • the compressor inlet 201 is connected to the buffer tank outlet 104
  • the refrigerator inlet 401 is connected to the compressor outlet 202
  • the first pressure reducing valve interface 301 is connected to the second buffer tank inlet 102
  • the second pressure reducing valve interface 302 is connected between the compressor outlet 202 and the refrigerator inlet 401.
  • connection between the second pressure reducing valve port 302 and the compressor outlet 202 and the refrigerator inlet 401 here refers to the pipe connected between the second pressure reducing valve port 302 and the compressor outlet 202 and the refrigerator inlet 401.
  • the roads are connected.
  • the decompression valve 30 can be set with a threshold pressure, and the decompression valve 30 is configured such that: when the pressure at the compressor outlet 202 is greater than the threshold pressure, the decompression valve 30 is opened to make the compressor outlet 202 and the second buffer tank inlet 102 is connected, and the gas at the compressor outlet 202 is released into the buffer tank 10; when the pressure at the compressor outlet 202 is less than or equal to the threshold pressure, the pressure reducing valve 30 is closed, so that the compressor outlet 202 and the second buffer tank inlet 102 are disconnected. open. In this way, the pressure reducing valve can ensure that the gas pressure entering the refrigerator from the compressor does not exceed the threshold pressure.
  • the pressure reducing valve can play the role of overpressure protection.
  • the pressure reducing valve can automatically decompress and reintroduce the gas into the buffer tank to protect the compressor, pipeline and site safety.
  • the specific value of the threshold pressure can be set according to actual conditions.
  • the second pressure reducing valve of the pressure reducing valve by setting a pressure reducing valve, and connecting the first pressure reducing valve interface of the pressure reducing valve to the second buffer tank inlet of the buffer tank, the second pressure reducing valve of the pressure reducing valve
  • the pressure valve interface is connected between the outlet of the compressor and the inlet of the refrigerator, which can ensure that the gas pressure in the components at the rear end of the compressor and the pipeline does not exceed the threshold pressure, thereby preventing damage to the device and improving the working safety of the device.
  • the pressure reducing valve is connected between the outlet of the compressor and the inlet of the refrigerator. Compared with the situation where the pressure reducing valve is arranged between the outlet of the refrigerator and the buffer tank, the pressure reducing valve can ensure the The gas pressure in each component and pipeline does not exceed the threshold pressure, thereby preventing damage to the device, improving the working safety of the device, and simplifying the overall equipment.
  • the compressor 20 may be a piston compressor, a rotary vane compressor, a screw compressor, etc., which may be driven by a motor or hydraulically.
  • the refrigerator 40 can cool at least part of the gas in the mixed gas to the boiling point so as to transform it into a liquid, which can be driven by a motor or hydraulic pressure.
  • the mixed gas may be a mixed gas of hydrocarbon combustible gas and air, at least part of the hydrocarbon combustible gas is condensed into liquid through a refrigerator, so as to realize the separation of air and hydrocarbon combustible gas.
  • hydrocarbon combustible gases may include propane, propylene, butane, butene, neopentane, and the like.
  • the boiling point refers to the temperature at which a pure substance boils at 1 standard atmospheric pressure.
  • the boiling point of butane is -0.5°C
  • the boiling point of butene is -6.9°C
  • the boiling point of propane is -42.1°C
  • the boiling point of propylene is -47.7°C
  • the boiling point of neopentane is 9.5°C °C.
  • the boiling point is related to pressure, the higher the pressure, the higher the boiling point. Therefore, compressing the mixed gas through the compressor can increase the boiling point of the hydrocarbon combustible gas, thereby facilitating the use of a refrigerator to reduce the temperature of the mixed gas to the boiling point and below, so as to remove at least part of the hydrocarbon combustible gas in the mixed gas. Liquefaction collection.
  • the mixed gas flows in one direction from the port of the first pressure reducing valve to the port of the second pressure reducing valve.
  • the mixed gas separation device further includes a one-way valve 90, which is arranged on the side where the first pressure reducing valve interface 301 or the second pressure reducing valve interface 302 of the pressure reducing valve 30 is located.
  • the directional valve 90 is configured to allow the mixed gas to flow in one direction from the first pressure reducing valve interface to the second pressure reducing valve interface.
  • the mixed gas separation device further includes a membrane separator 50 .
  • the membrane separator 50 includes a membrane separator inlet 501 , a first membrane separator outlet 502 and a second membrane separator outlet 502 , and the membrane separator 50 is configured to filter at least one gas component in the mixed gas.
  • Membrane separators can also be motor driven or hydraulically driven.
  • the membrane separator inlet 501 is connected to the first refrigerator outlet 402
  • the first membrane separator outlet 502 is connected to the third buffer tank inlet 103
  • the second membrane separator outlet 503 is divided into The first path 503A and the second path 503B
  • the first path 503A is connected to the third buffer tank inlet 103
  • the second path 503B is configured to be connected to an external device.
  • the first path 503A and the second path 503B can be switched on.
  • the external device can be, for example, an activated carbon adsorption device, which can further adsorb combustible gases in the gas; it can also be a discharge port, which can discharge the gas into the air.
  • an activated carbon adsorption device which can further adsorb combustible gases in the gas
  • it can also be a discharge port, which can discharge the gas into the air.
  • Embodiments of the present disclosure do not limit the types of external devices connected to the second path 503B.
  • the membrane separator 50 includes a filter membrane 504 configured to filter and enrich at least one gas component of a gas mixture.
  • the first membrane separator outlet 502 and the second membrane separator outlet 503 are located on both sides of the filter membrane 504 respectively, and the concentration of at least one gas component on the side where the first membrane separator outlet 502 is located is different from that of the second membrane separator. The concentration of at least one gas component on the side where the device outlet 503 is located.
  • the concentration of at least one gas component on the side where the outlet 502 of the first membrane separator is greater than the concentration of at least one gas component on the side where the outlet 503 of the second membrane separator is located.
  • the filter membrane 504 may be made of organic polymer materials, or may be compositely made of inorganic materials and organic polymer materials.
  • the filter membrane can selectively filter different components in the mixed gas.
  • the permeability of the filter membrane to combustible hydrocarbon gases is significantly greater than the permeability to air, so, as shown in Figure 2, after the mixed gas passes through the filter membrane 504, most of the combustible hydrocarbon gases pass through the filter membrane 504 and gather to the side where the outlet 502 of the first membrane separator is located, while components such as nitrogen and oxygen in the air are blocked by the filter membrane 504 and gathered to the side where the outlet 503 of the second membrane separator is located, so that the first membrane separates
  • the concentration of combustible hydrocarbon gas on the side where the outlet 502 of the second membrane separator is located is greater than the concentration of combustible hydrocarbon gas on the side where the outlet 503 of the second membrane separator is located.
  • FIG. 3 is another structural schematic diagram of the mixed gas separation device, showing another installation position of the filter membrane 504 in the membrane separator 50 .
  • the filter membrane 504 blocks and gathers to the side where the first membrane separator outlet 502 is located, so that the concentration of the hydrocarbon combustible gas on the side where the first membrane separator outlet 502 is located is greater than that of the side where the second membrane separator outlet 503 is located.
  • concentration of hydrocarbon combustible gas on the side is greater than that of the side where the second membrane separator outlet 503 is located.
  • the filter membrane 504 can also be a size-selective membrane, which can selectively filter and enrich different gases in the mixed gas according to the diameter of gas molecules, so as to realize the function of separating combustible hydrocarbon gases.
  • the mixed gas separation device processes and separates the combustible gas in the mixed gas.
  • Refrigerator 40 the refrigerator 40 lowers the temperature of at least a part of the gas in the mixed gas to below the boiling point so that it condenses into a liquid state, and flows out from the second refrigerator outlet 403, for example, flows out to a storage device or other processing procedures; in the mixed gas
  • Another part of the unliquefied gas is discharged from the first refrigerator outlet 402 of the refrigerator 40, and then enters the membrane separator 50, and the gas separated by the membrane is discharged from the first membrane separator outlet 502 and the second membrane separator outlet respectively. 503 outflow.
  • the concentration of hydrocarbon combustible gases in the gas flowing out from the first membrane separator outlet 502 is increased, and then flows back to the buffer tank 10 through the third buffer tank inlet 103, thus forming a cycle of compression, condensation and membrane separation processes.
  • the medium combustible gas is condensed and collected, and the concentration of hydrocarbon combustible gas contained in the mixed gas is continuously reduced.
  • the concentration of hydrocarbon combustible gases in the gas flowing out from the second membrane separator outlet 503 decreases, and after detection, it can be returned to the buffer tank 10 through the third buffer tank inlet 103, or can enter other processing devices, or can be directly discharged to in the air.
  • the combustible gas concentration is greater than the predetermined standard, it flows back to the buffer tank 10, and when the combustible gas concentration is less than or equal to the predetermined standard, it enters other processing devices or is discharged into the air.
  • the mixed gas separation device further includes a pressure gauge 60 connected to the compressor outlet 202 and configured to detect the pressure of the compressor outlet 202 .
  • the pressure gauge can monitor the pressure at the outlet 202 of the compressor in real time. If the pressure deviates beyond the specified range, an alarm will be given in the control system to remind the staff to shut down for maintenance or perform other safety operations.
  • the mixed gas separation device further includes a storage device 70 connected to the outlet 403 of the second refrigerator and configured to store the fluid flowing out of the outlet 403 of the second refrigerator.
  • the refrigerator 40 condenses the combustible hydrocarbon gas in the mixed gas into liquid, it flows into the storage device 70 through the outlet 403 of the second refrigerator for collection and storage.
  • the mixed gas separation device further includes a concentration analyzer 80 connected to the outlet 503 of the second membrane separator and configured to detect The concentration of at least one gas component of .
  • the concentration analyzer 80 can detect the concentration of various hydrocarbon combustible gases in the gas in real time.
  • the concentration analyzer By setting the concentration analyzer to detect the concentration of combustible hydrocarbon gas in real time, when the concentration of combustible gas in the gas at the outlet 503 of the second membrane separator exceeds the specified range, open the first path 503A to make the gas return to the buffer tank 10 for re-condensation Separation: When the concentration of combustible gas in the gas at the outlet 503 of the second membrane separator does not exceed the specified range, the second path 503B is opened to allow the gas to enter an external processing device or be discharged into the air. In this way, the effect of separating the combustible gas from the air can be further improved.
  • first path 503A and the second path 503B can be switched on.
  • a valve can be set on the first path 503A to control the opening or closing of the path, and a valve can also be set on the second path 503B to control the opening or closing of the path.
  • FIG. 4 is the schematic flow sheet of the method for separating mixed gas, as shown in Fig. 4, the method for separating mixed gas comprises the steps:
  • the pressure relief valve is controlled to open or close according to the pressure at the outlet of the compressor, which can ensure that the pressure of the gas discharged from the compressor does not exceed the threshold pressure, thereby preventing device damage, And improve the working safety of the device.
  • the method for separating mixed gases provided by the embodiments of the present disclosure further includes:
  • the first part of the gas in the mixed gas is condensed into a liquid through the refrigerator 40, and the liquid formed by condensation flows out from the outlet 403 of the second refrigerator; the second part of the gas in the mixed gas enters the membrane separator 50 and passes through the membrane separator 50 A part of the second part of the gas enters the buffer tank through the outlet 502 of the first membrane separator, and another part of the second part of the gas enters the outlet 503 of the second membrane separator.
  • the concentration of hydrocarbon combustible gases in the gas flowing out from the first membrane separator outlet 502 is increased, and then flows back to the buffer tank 10 through the third buffer tank inlet 103, thus forming a cycle of compression, condensation and membrane separation processes.
  • the medium combustible gas is continuously condensed and collected, and the concentration of hydrocarbon combustible gas contained in the mixed gas is continuously reduced.
  • the method for separating the mixed gas further includes:
  • the threshold concentration is a concentration determined according to actual needs, and embodiments of the present disclosure do not limit its specific value range.
  • the effect of separating the combustible gas from the air can be further improved.
  • the method for separating the mixed gas further includes: when the pressure at the outlet of the compressor 202 is greater than a threshold pressure, sending out an alarm message to notify the operator to shut down for maintenance.
  • a threshold pressure By monitoring the pressure value of the outlet 202 of the compressor, the working safety of the whole device can also be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种混合气体分离装置及分离混合气体的方法,该混合气体分离装置包括:包括第一缓冲罐入口(101)、第二缓冲罐入口(102)、第三缓冲罐入口(103)和缓冲罐出口(104)的缓冲罐(10);包括压缩机入口(201)和压缩机出口(202)的压缩机(20),所述压缩机(20)被配置为对混合气体进行压缩;包括第一减压阀接口(301)和第二减压阀接口(302)的减压阀(30);包括制冷器入口(401)、第一制冷器出口(402)和第二制冷器出口(403)的制冷器(40),所述制冷器(40)被配置为对混合气体进行降温。该混合气体分离装置通过将减压阀(30)设置在压缩机出口(202)和第二缓冲罐入口(102)之间,可以保证压缩机(20)后端的各部件及管路中的气体压力均不超过阈值压力,从而防止装置损坏,并提高装置的工作安全性。

Description

混合气体分离装置和分离混合气体的方法
出于所有目的,本申请要求于2021年11月17日递交的中国专利申请第202111374764.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种混合气体分离装置和分离混合气体的方法。
背景技术
烃类可燃气体与空气混合形成混合气体的体积分数达到爆炸极限状态时,遇到静电或明火就会发生爆炸。这些混合气体如果不经合理处置,会在泄漏位置附近流动和扩散,对周围环境造成极大的安全隐患。目前对这些烃类可燃气体与空气的混合气体的常规处理方法是利用风机和管道进行抽吸,然后进行分离收集处理。目前一般采用冷凝液化或膜分离的技术对烃类可燃气体进行分离。
发明内容
本公开的实施例提供一种混合气体分离装置及分离混合气体的方法。该混合气体分离装置包括:缓冲罐,包括第一缓冲罐入口、第二缓冲罐入口、第三缓冲罐入口和缓冲罐出口;压缩机,包括压缩机入口和压缩机出口,压缩机被配置为对混合气体进行压缩;减压阀,包括第一减压阀接口和第二减压阀接口;制冷器,包括制冷器入口、第一制冷器出口和第二制冷器出口,制冷器被配置为对混合气体进行降温。压缩机入口连接到缓冲罐出口,制冷器入口连接到压缩机出口,第一减压阀接口连接到第二缓冲罐入口,第二减压阀接口连接到压缩机出口和制冷器入口之间。
在本公开的实施例提供的混合气体分离装置中,通过将减压阀设置在压缩机出口和缓冲罐入口之间,可以保证压缩机后端的各部件及管路中的气体压力均不超过阈值压力,从而防止装置损坏,并提高装置的工作安全性。
本公开一实施例提供一种混合气体分离装置,包括:缓冲罐,包括第一缓冲罐入口、第二缓冲罐入口、第三缓冲罐入口和缓冲罐出口;压缩机,包括压缩机入口和压缩机出口,所述压缩机被配置为对混合气体进行压缩;减压阀,包括第一减压阀接口和第二减压阀接口;制冷器,包括制冷器入口、第一制冷器出口和第二制冷器出口,所述制冷器被配置为对混合气体进行降温。所述压缩机入口连接到所述缓冲罐出口,所述制冷器入口连接到所述压缩机出口,所述第一减压阀接口连接到所述第二缓冲罐入口,所述第二减压阀接口连接到所述压缩机出口和所述制冷器入口之间。
在一些示例中,所述减压阀包括阈值压力,所述减压阀被配置为:在所述压缩机出口的压力大于所述阈值压力的状态,所述减压阀打开,使所述压缩机出口和所述第二缓冲罐入口连通;在所述压缩机出口的压力小于等于所述阈值压力的状态,所述减压阀关闭,使所述压缩机出口和所述第二缓冲罐入口断开。
在一些示例中,所述混合气体分离装置还包括膜分离器,所述膜分离器包括膜分离器入口、第一膜分离器出口和第二膜分离器出口,所述膜分离器被配置为过滤混合气体中的至少一种气体组分,所述膜分离器入口连接到所述第一制冷器出口,所述第一膜分离器出口连接到所述第三缓冲罐入口,所述第二膜分离器出口分为第一路和第二路,所述第一路连接到所述第三缓冲罐入口,所述第二路被配置为连接到外部装置。
在一些示例中,所述膜分离器包括过滤膜,所述过滤膜被配置为过滤和富集混合气体中的至少一种气体组分,所述第一膜分离器出口和所述第二膜分离器出口分别位于所述过滤膜的两侧,所述第一膜分离器出口所在的一侧的所述至少一种气体组分的浓度不同于所述第二膜分离器出口所在的一侧的所述至少一种气体组分的浓度。
在一些示例中,所述第一膜分离器出口所在的一侧的所述至少一种气体组分的浓度大于所述第二膜分离器出口所在的一侧的所述至少一种气体组分的浓度。
在一些示例中,混合气体从所述第一减压阀接口向所述第二减压阀接口单向流动。
在一些示例中,所述混合气体分离装置还包括单向阀,设置在所述减压 阀的所述第一减压阀接口或所述第二减压阀接口所在的一侧,所述单向阀被配置为使混合气体从所述第一减压阀接口向所述第二减压阀接口单向流动。
在一些示例中,所述混合气体分离装置还包括压力表,所述压力表连接到所述压缩机出口,被配置为检测所述压缩机出口的压力。
在一些示例中,所述混合气体分离装置还包括储存装置,所述储存装置连接到所述第二制冷器出口,被配置为储存从所述第二制冷器出口流出的流体。
在一些示例中,所述混合气体分离装置还包括浓度分析仪,所述浓度分析仪连接到所述第二膜分离器出口且在所述第二膜分离器出口分支为所述第一路和所述第二路之前,被配置为检测所述第二膜分离器出口的气体中的至少一种气体组分的浓度。
本公开一实施例提供一种采用上述任一示例所述的混合气体分离装置分离混合气体的方法,所述减压阀包括阈值压力,所述分离混合气体的方法包括:检测所述压缩机出口的压力,在所述压缩机出口的压力大于所述阈值压力的状态,打开所述减压阀,使所述压缩机出口和所述第二缓冲罐入口连通,从而降低所述制冷器入口的压力;在所述压缩机出口的压力小于等于所述阈值压力的状态,关闭所述减压阀。
在一些示例中,所述混合气体分离装置还包括膜分离器,所述膜分离器包括膜分离器入口、第一膜分离器出口和第二膜分离器出口,所述膜分离器被配置为过滤混合气体中的至少一种气体组分,所述膜分离器入口连接到所述第一制冷器出口,所述第一膜分离器出口连接到所述第三缓冲罐入口,所述分离混合气体的方法还包括:通过所述制冷器将混合气体中的第一部分气体冷凝为液体,冷凝形成的所述液体从所述第二制冷器出口流出;混合气体中的第二部分气体进入所述膜分离器,经过所述膜分离器后所述第二部分气体中的一部分气体通过所述第一膜分离器出口进入所述缓冲罐,所述第二部分气体中的另一部分气体进入所述第二膜分离器出口。
在一些示例中,所述第二膜分离器出口分为第一路和第二路,所述第一路连接到所述第三缓冲罐入口,所述第二路被配置为连接到外部装置,所述分离混合气体的方法还包括:检测所述第二膜分离器出口的气体中的至少一种气体组分的浓度,在所述至少一种气体组分的浓度小于阈值浓度的状态, 关闭所述第二膜分离器出口的第一路,打开所述第二膜分离器出口的第二路,使所述第二膜分离器出口连接到外部装置;在所述至少一种气体组分的浓度大于等于所述阈值浓度的状态,关闭所述第二膜分离器出口的第二路,打开所述第二膜分离器出口的第一路,使所述第二膜分离器出口连接到所述第三缓冲罐入口。
在一些示例中,所述分离混合气体的方法还包括:在所述压缩机出口的压力大于所述阈值压力的状态,发出报警信息,通知操作人员停机检修。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种气体处理装置的结构示意图;
图2为根据本公开一实施例的混合气体分离装置的结构示意图;
图3为根据本公开一实施例的混合气体分离装置的又一结构示意图;以及
图4根据本公开一实施例的分离混合气体的方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物 理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在可燃气体分离领域,目前常用的分离烃类可燃气体的技术包括常压冷凝技术、低压膜分离技术、以及压缩+低温液化+膜分离技术等。
采用常压冷凝技术时,因某些可燃气体沸点较高,这些气体经过制冷系统后,其中的大部分气体被液化后到达储存装置,实现可燃气体与空气的分离,少部分可燃气体未被液化而残留,未被液化的气体排放到空气中或进行其他处理。然而,常压冷凝技术适用的气体范围有限,例如对于沸点较低的气体,将其液化的成本很高,不适用常压冷凝技术。
采用低压膜分离技术时,膜分离可以对可燃气体浓度进行富集、分离,但是受到膜分离材料的制约,其进行气体分离的流量小、速度慢、效率低,无法满足快速、大流量的气体分离要求。
图1为一种气体处理装置的结构示意图,气体处理装置采用压缩+低温液化+膜分离技术,可以用于分离烃类可燃气体。如图1所示,分离烃类可燃气体的过程为:烃类可燃气体与空气的混合气体进入压缩机1,经过压缩机压缩后,进入冷凝器2进行冷凝,从而使部分烃类可燃气体液化并从冷凝器2的一个出口排出到储液罐4,未被液化的混合气体仍然含有一定量的烃类可燃气体,从冷凝器2另一出口排出并进入膜分离器3,膜分离器3可以进一步分离提纯未液化的混合气体中的烃类可燃气体。对气体进行压缩后可以提高其沸点,从而可以进行后续的冷凝液化分离工艺,因此,沸点较低的气体也可采用该方法进行分离。
在图1所示的气体处理装置中,通过先压缩再冷凝的方法可以扩大分离气体的种类,而且通过先冷凝一部分烃类可燃气体后,再进行膜分离,既提高了分离速度,又提高了分离纯度。然而,该气体处理装置存在安全性低的缺点。例如当从压缩机1排出到冷凝器2的气体压力过高时,可能会损坏冷凝器、膜分离器及至整个气体处理装置,工作时气体处理装置容易损坏以及存在引发泄漏或爆炸的风险。
本公开的实施例提供一种混合气体分离装置及分离混合气体的方法。该混合气体分离装置包括:缓冲罐,包括第一缓冲罐入口、第二缓冲罐入口、第三缓冲罐入口和缓冲罐出口;压缩机,包括压缩机入口和压缩机出口,压缩机被配置为对混合气体进行压缩;减压阀,包括第一减压阀接口和第二减 压阀接口;制冷器,包括制冷器入口、第一制冷器出口和第二制冷器出口,制冷器被配置为对混合气体进行降温。压缩机入口连接到缓冲罐出口,制冷器入口连接到压缩机出口,第一减压阀接口连接到第二缓冲罐入口,第二减压阀接口连接到压缩机出口和制冷器入口之间。
在本公开的实施例提供的混合气体分离装置中,通过将减压阀设置在压缩机出口和缓冲罐入口之间,可以保证从压缩机排出的气体的压力不超过安全压力,从而防止装置损坏,并提高装置的工作安全性。
下面结合附图对本公开的实施例提供的混合气体分离装置及分离混合气体的方法进行详细描述。
本公开一实施例提供一种混合气体分离装置,图2为该混合气体分离装置的结构示意图。
如图2所示,混合气体分离装置包括:缓冲罐10、压缩机20、减压阀30和制冷器40,缓冲罐10、压缩机20、减压阀30和制冷器40通过管路连接。缓冲罐10包括第一缓冲罐入口101、第二缓冲罐入口102、第三缓冲罐入口103和缓冲罐出口104;压缩机20包括压缩机入口201和压缩机出口202,压缩机20被配置为对混合气体进行压缩;减压阀30包括第一减压阀接口301和第二减压阀接口302;制冷器40包括制冷器入口401、第一制冷器出口401和第二制冷器出口402,制冷器40被配置为对混合气体进行降温。
缓冲罐10被配置为缓冲压力波动,保持气量平稳,减少对压缩机的气流冲击,使压缩机20吸入气体更加平稳。缓冲罐10的第一缓冲罐入口101被配置为接入混合气体。如图2所示,压缩机入口201连接到缓冲罐出口104,制冷器入口401连接到压缩机出口202,第一减压阀接口301连接到第二缓冲罐入口102,第二减压阀接口302连接到压缩机出口202和制冷器入口401之间。需要说明的是,这里第二减压阀接口302连接到压缩机出口202和制冷器入口401之间是指第二减压阀接口302与压缩机出口202和制冷器入口401之间连接的管路相连通。
例如,减压阀30可以设置有阈值压力,减压阀30被配置为:在压缩机出口202的压力大于阈值压力的状态,减压阀30打开,使压缩机出口202和第二缓冲罐入口102连通,将压缩机出口202的气体释放到缓冲罐10中;在压缩机出口202的压力小于等于阈值压力的状态,减压阀30关闭,使压缩 机出口202和第二缓冲罐入口102断开。如此,减压阀可以保证从压缩机进入制冷器的气体压力不超过该阈值压力。减压阀可以起到超压保护作用,当压缩机和制冷器之间的管路,或者制冷器和膜分离器之间的管路发生阻塞等异常情况时,管路压力将会异常升高,该减压阀可以自动减压,将气体重新导入缓冲罐,保护压缩机、保护管路、保护现场安全的作用。阈值压力的具体值可以根据实际情况设置。
在本公开的实施例提供的混合气体分离装置中,通过设置减压阀,并且使减压阀的第一减压阀接口连接到缓冲罐的第二缓冲罐入口,减压阀的第二减压阀接口连接到压缩机出口和制冷器入口之间,可以保证压缩机后端的各部件及管路中的气体压力均不超过阈值压力,从而防止装置损坏,并提高装置的工作安全性。
本公开实施例中将减压阀连接到压缩机出口和制冷器入口之间,相比于将减压阀设置在制冷器出口和缓冲罐之间的情况,减压阀可以保证制冷器后端的各部件及管路中的气体压力均不超过阈值压力,从而防止装置损坏,并提高装置的工作安全性,并简化了整体设备。
例如,压缩机20可以为活塞式压缩机、旋转叶片式压缩机和螺杆式压缩机等,其可以采用电机驱动或液压驱动的方式。制冷器40可以将混合气体中的至少部分气体冷却至沸点从而使其转化为液体,其可以采用电机驱动或液压驱动的方式。
例如,混合气体可以为烃类可燃气体与空气的混合气体,通过制冷器将至少部分烃类可燃气体冷凝为液体,从而实现空气与烃类可燃气体分离。例如,烃类可燃气体可以包括丙烷、丙烯、丁烷、丁烯、新戊烷等。沸点是指纯净物在1个标准大气压下沸腾的温度。例如,在1个标准大气压下,丁烷的沸点为-0.5℃,丁烯的沸点为-6.9℃,丙烷的沸点为-42.1℃,丙烯的沸点为-47.7℃,新戊烷的沸点为9.5℃。沸点与压力有关,压力越大,沸点越高。因此,通过压缩机对混合气体进行压缩,可以提高烃类可燃气体的沸点,从而有利于采用制冷器将混合气体的温度降低到沸点及以下,以将混合气体中的至少部分烃类可燃气体进行液化收集。
例如,混合气体从第一减压阀接口向第二减压阀接口单向流动。
在一些示例中,如图2所示,混合气体分离装置还包括单向阀90,设置 在减压阀30的第一减压阀接口301或第二减压阀接口302所在的一侧,单向阀90被配置为使混合气体从第一减压阀接口向第二减压阀接口单向流动。
在一些示例中,如图2所示,混合气体分离装置还包括膜分离器50。膜分离器50包括膜分离器入口501、第一膜分离器出口502和第二膜分离器出口502,膜分离器50被配置为过滤混合气体中的至少一种气体组分。膜分离器也可以采用电机驱动或液压驱动。
在一些示例中,如图2所示,膜分离器入口501连接到第一制冷器出口402,第一膜分离器出口502连接到第三缓冲罐入口103,第二膜分离器出口503分为第一路503A和第二路503B,第一路503A连接到第三缓冲罐入口103,第二路503B被配置为连接到外部装置。例如,第一路503A和第二路503B可切换导通。
例如,外部装置例如可以为活性炭吸附装置,可以进一步吸附气体中的可燃气体;也可以为排放口,将气体排放到空气中。本公开的实施例不限定第二路503B连接的外部装置的类型。
在一些示例中,如图2所示,膜分离器50包括过滤膜504,过滤膜504被配置为过滤和富集混合气体中的至少一种气体组分。第一膜分离器出口502和第二膜分离器出口503分别位于过滤膜504的两侧,第一膜分离器出口502所在的一侧的至少一种气体组分的浓度不同于第二膜分离器出口503所在的一侧的至少一种气体组分的浓度。
例如,第一膜分离器出口502所在的一侧的至少一种气体组分的浓度大于第二膜分离器出口503所在的一侧的至少一种气体组分的浓度。
例如,过滤膜504可以由有机高分子材料制作形成,也可以由无机材料和有机高分子材料复合制作而成。过滤膜对混合气体中的不同组分有选择性过滤作用。
例如,过滤膜对烃类可燃气体的透过性要明显大于对空气的透过性,如此,如图2所示,混合气体经过过滤膜504后,大部分烃类可燃气体穿过过滤膜504并汇集到第一膜分离器出口502所在的一侧,而空气中的氮气、氧气等成分被过滤膜504阻拦并汇集到第二膜分离器出口503所在的一侧,如此,第一膜分离器出口502所在的一侧的烃类可燃气体的浓度大于第二膜分离器出口503所在的一侧的烃类可燃气体的浓度。
又例如,过滤膜504对烃类可燃气体的透过性要明显小于对空气的透过性,此时,过滤膜504在膜分离器50中的设置位置不同于图2。图3为该混合气体分离装置的又一结构示意图,示出了过滤膜504在膜分离器50中的又一设置位置。如图3所示,混合气体经过过滤膜504后,空气中的氮气、氧气等成分穿过过滤膜504并汇集到第二膜分离器出口503所在的一侧,而大部分烃类可燃气体被过滤膜504阻拦并汇集到第一膜分离器出口502所在的一侧,如此,第一膜分离器出口502所在的一侧的烃类可燃气体的浓度大于第二膜分离器出口503所在的一侧的烃类可燃气体的浓度。
又例如,过滤膜504也可以为具有尺寸选择性的膜,其可以根据气体分子的直径选择性过滤和富集混合气体中的不同气体,从而实现分离烃类可燃气体的作用。
本公开的实施例提供的混合气体分离装置处理并分离混合气体中的可燃气体的过程如下:如图2所示,混合气体从缓冲罐10进入压缩机20后被压缩,被压缩的混合气体进入制冷器40,制冷器40将混合气体中的至少一部分气体降温到低于沸点从而使其冷凝为液态,并从第二制冷器出口403流出,例如流出到储存装置或其他处理工序;混合气体中的另一部分未被液化的气体从制冷器40的第一制冷器出口402排出,然后进入膜分离器50,经过膜分离后的气体分别从第一膜分离器出口502和第二膜分离器出口503流出。从第一膜分离器出口502流出的气体中烃类可燃气体的浓度获得提高,然后经过第三缓冲罐入口103回流到缓冲罐10,如此形成循环的压缩、冷凝和膜分离过程,在循环过程中可燃气体被冷凝收集,混合气体中含有的烃类可燃气体的浓度不断减小。从第二膜分离器出口503流出的气体中烃类可燃气体的浓度下降,经过检测后可以经过第三缓冲罐入口103回流到缓冲罐10,或者可以进入其他的处理装置,或者可以直接排放到空气中。例如,可燃气体浓度大于预定标准时,回流到缓冲罐10,可燃气体浓度小于或等于预定标准时,进入其他的处理装置或者排放到空气中。
在一些示例中,如图2所示,混合气体分离装置还包括压力表60,压力表60连接到压缩机出口202,被配置为检测压缩机出口202的压力。压力表可以实时监测压缩机出口202的压力,若压力出现超过规定范围的偏差,将会在控制系统进行报警提示,提醒工作人员停机检修或进行其他安全操作。
在一些示例中,如图2所示,混合气体分离装置还包括储存装置70,储存装置70连接到第二制冷器出口403,被配置为储存从第二制冷器出口403流出的流体。制冷器40将混合气体中的烃类可燃气体冷凝为液体后,通过第二制冷器出口403流入储存装置70进行收集储存。
在一些示例中,如图2所示,混合气体分离装置还包括浓度分析仪80,浓度分析仪80连接到第二膜分离器出口503,被配置为检测第二膜分离器出口503的气体中的至少一种气体组分的浓度。例如,浓度分析仪80可以实时检测气体中的多种烃类可燃气体的浓度。通过设置浓度分析仪实时检测烃类可燃气体的浓度,当第二膜分离器出口503的气体中可燃气体的浓度超过规定范围时,打开第一路503A,使气体回流到缓冲罐10以重新冷凝分离;当第二膜分离器出口503的气体中可燃气体的浓度不超过规定范围时,打开第二路503B,使气体进入外部处理装置或排放到空气中。如此,可以进一步提高将可燃气体与空气相分离的效果。
例如,第一路503A和第二路503B可切换导通。例如,第一路503A上可以设置阀门以控制该路打开或关闭,第二路503B上也可以设置阀门以控制该路打开或关闭。
本公开一实施例提供一种采用上述混合气体分离装置分离混合气体的方法。图4为分离混合气体的方法的流程示意图,如图4所示,分离混合气体的方法包括如下步骤:
S10、检测压缩机出口202的压力,在压缩机出口202的压力大于阈值压力的状态,打开减压阀30,使压缩机出口202和第二缓冲罐入口102连通,从而降低从压缩机出口202到制冷器入口401的气体的压力;在压缩机出口202的压力小于等于阈值压力的状态,关闭减压阀30。
在本公开的实施例提供的分离混合气体的方法中,根据压缩机出口的压力来控制减压阀打开或关闭,可以保证从压缩机排出的气体的压力不超过阈值压力,从而防止装置损坏,并提高装置的工作安全性。
在一些示例中,如图4所示,本公开实施例提供的分离混合气体的方法还包括:
S20、通过制冷器40将混合气体中的第一部分气体冷凝为液体,冷凝形成的液体从第二制冷器出口403流出;混合气体中的第二部分气体进入膜分 离器50,经过膜分离器50后第二部分气体中的一部分气体通过第一膜分离器出口502进入缓冲罐,第二部分气体中的另一部分气体进入第二膜分离器出口503。
从第一膜分离器出口502流出的气体中烃类可燃气体的浓度获得提高,然后经过第三缓冲罐入口103回流到缓冲罐10,如此形成循环的压缩、冷凝和膜分离过程,在循环过程中可燃气体被不断地冷凝收集,混合气体中含有的烃类可燃气体的浓度不断减小。
在一些示例中,如图4所示,分离混合气体的方法还包括:
S30、检测第二膜分离器出口503的气体中的至少一种气体组分的浓度,在至少一种气体组分的浓度小于阈值浓度的状态,关闭第二膜分离器出口503的第一路503A,打开第二膜分离器出口503的第二路503B,使第二膜分离器出口503连接到外部装置;在至少一种气体组分的浓度大于等于阈值浓度的状态,关闭第二膜分离器出口503的第二路503B,打开第二膜分离器出口503的第一路503A,使第二膜分离器出口503连接到第三缓冲罐入口103。
需要说明的是,阈值浓度为根据实际需要确定的浓度,本公开的实施例不限定其具体取值范围。
通过根据第二膜分离器出口503的烃类可燃气体浓度来打开第一路或第二路,可以进一步提高将可燃气体与空气相分离的效果。
在一些示例中,分离混合气体的方法还包括:在压缩机出口202的压力大于阈值压力的状态,发出报警信息,通知操作人员停机检修。通过监测压缩机出口202的压力值,还可以提高整个装置的工作安全性。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应 以权利要求的保护范围为准。

Claims (14)

  1. 一种混合气体分离装置,包括:
    缓冲罐,包括第一缓冲罐入口、第二缓冲罐入口、第三缓冲罐入口和缓冲罐出口;
    压缩机,包括压缩机入口和压缩机出口,所述压缩机被配置为对混合气体进行压缩;
    减压阀,包括第一减压阀接口和第二减压阀接口;
    制冷器,包括制冷器入口、第一制冷器出口和第二制冷器出口,所述制冷器被配置为对混合气体进行降温,
    其中,所述压缩机入口连接到所述缓冲罐出口,所述制冷器入口连接到所述压缩机出口,所述第一减压阀接口连接到所述第二缓冲罐入口,所述第二减压阀接口连接到所述压缩机出口和所述制冷器入口之间。
  2. 根据权利要求1所述的混合气体分离装置,其中,所述减压阀包括阈值压力,所述减压阀被配置为:在所述压缩机出口的压力大于所述阈值压力的状态,所述减压阀打开,使所述压缩机出口和所述第二缓冲罐入口连通;在所述压缩机出口的压力小于等于所述阈值压力的状态,所述减压阀关闭,使所述压缩机出口和所述第二缓冲罐入口断开。
  3. 根据权利要求2所述的混合气体分离装置,还包括膜分离器,
    其中,所述膜分离器包括膜分离器入口、第一膜分离器出口和第二膜分离器出口,所述膜分离器被配置为过滤混合气体中的至少一种气体组分,
    所述膜分离器入口连接到所述第一制冷器出口,所述第一膜分离器出口连接到所述第三缓冲罐入口,所述第二膜分离器出口分为第一路和第二路,所述第一路连接到所述第三缓冲罐入口,所述第二路被配置为连接到外部装置。
  4. 根据权利要求3所述的混合气体分离装置,其中,所述膜分离器包括过滤膜,所述过滤膜被配置为过滤和富集混合气体中的至少一种气体组分,所述第一膜分离器出口和所述第二膜分离器出口分别位于所述过滤膜的两侧,所述第一膜分离器出口所在的一侧的所述至少一种气体组分的浓度不同于所述第二膜分离器出口所在的一侧的所述至少一种气体组分的浓度。
  5. 根据权利要求4所述的混合气体分离装置,其中,所述第一膜分离器出口所在的一侧的所述至少一种气体组分的浓度大于所述第二膜分离器出口所在的一侧的所述至少一种气体组分的浓度。
  6. 根据权利要求1-5任一项所述的混合气体分离装置,其中,混合气体从所述第一减压阀接口向所述第二减压阀接口单向流动。
  7. 根据权利要求6所述的混合气体分离装置,还包括单向阀,设置在所述减压阀的所述第一减压阀接口或所述第二减压阀接口所在的一侧,所述单向阀被配置为使混合气体从所述第一减压阀接口向所述第二减压阀接口单向流动。
  8. 根据权利要求1-7中的任一项所述的混合气体分离装置,还包括压力表,所述压力表连接到所述压缩机出口,被配置为检测所述压缩机出口的压力。
  9. 根据权利要求1-8中的任一项所述的混合气体分离装置,还包括储存装置,所述储存装置连接到所述第二制冷器出口,被配置为储存从所述第二制冷器出口流出的流体。
  10. 根据权利要求3所述的混合气体分离装置,还包括浓度分析仪,所述浓度分析仪连接到所述第二膜分离器出口且在所述第二膜分离器出口分支为所述第一路和所述第二路之前,被配置为检测所述第二膜分离器出口的气体中的至少一种气体组分的浓度。
  11. 一种采用根据权利要求1所述的混合气体分离装置分离混合气体的方法,其中,所述减压阀包括阈值压力,
    所述分离混合气体的方法包括:
    检测所述压缩机出口的压力,在所述压缩机出口的压力大于所述阈值压力的状态,打开所述减压阀,使所述压缩机出口和所述第二缓冲罐入口连通,从而降低所述制冷器入口的压力;在所述压缩机出口的压力小于等于所述阈值压力的状态,关闭所述减压阀。
  12. 根据权利要求11所述的分离混合气体的方法,其中,所述混合气体分离装置还包括膜分离器,所述膜分离器包括膜分离器入口、第一膜分离器出口和第二膜分离器出口,所述膜分离器被配置为过滤混合气体中的至少一种气体组分,所述膜分离器入口连接到所述第一制冷器出口,所述第一膜分 离器出口连接到所述第三缓冲罐入口,
    所述分离混合气体的方法还包括:
    通过所述制冷器将混合气体中的第一部分气体冷凝为液体,冷凝形成的所述液体从所述第二制冷器出口流出;
    混合气体中的第二部分气体进入所述膜分离器,经过所述膜分离器后所述第二部分气体中的一部分气体通过所述第一膜分离器出口进入所述缓冲罐,所述第二部分气体中的另一部分气体进入所述第二膜分离器出口。
  13. 根据权利要求12所述的分离混合气体的方法,其中,所述第二膜分离器出口分为第一路和第二路,所述第一路连接到所述第三缓冲罐入口,所述第二路被配置为连接到外部装置,
    所述分离混合气体的方法还包括:
    检测所述第二膜分离器出口的气体中的至少一种气体组分的浓度,在所述至少一种气体组分的浓度小于阈值浓度的状态,关闭所述第二膜分离器出口的第一路,打开所述第二膜分离器出口的第二路,使所述第二膜分离器出口连接到外部装置;在所述至少一种气体组分的浓度大于等于所述阈值浓度的状态,关闭所述第二膜分离器出口的第二路,打开所述第二膜分离器出口的第一路,使所述第二膜分离器出口连接到所述第三缓冲罐入口。
  14. 根据权利要求11-13任一项所述的分离混合气体的方法,还包括:
    在所述压缩机出口的压力大于所述阈值压力的状态,发出报警信息,通知操作人员停机检修。
PCT/CN2022/070916 2021-11-17 2022-01-10 混合气体分离装置和分离混合气体的方法 WO2023087519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111374764.3 2021-11-17
CN202111374764.3A CN114046630A (zh) 2021-11-17 2021-11-17 混合气体分离装置和分离混合气体的方法

Publications (1)

Publication Number Publication Date
WO2023087519A1 true WO2023087519A1 (zh) 2023-05-25

Family

ID=80210139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070916 WO2023087519A1 (zh) 2021-11-17 2022-01-10 混合气体分离装置和分离混合气体的方法

Country Status (2)

Country Link
CN (1) CN114046630A (zh)
WO (1) WO2023087519A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413383A (zh) * 2015-11-13 2016-03-23 四川天采科技有限责任公司 一种从石化厂尾气中回收轻烃的方法
CN207722561U (zh) * 2017-12-18 2018-08-14 柯世苑 移动式废气处理装置
WO2019186647A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 冷凍装置
CN212327887U (zh) * 2020-04-17 2021-01-12 江苏爱尔沃特环保科技有限公司 一种焦炉烟气脱硫脱硝系统
CN112870907A (zh) * 2021-03-12 2021-06-01 连云港市拓普科技发展有限公司 一种高压浅冷组合式VOCs气体回收装置及方法
CN214499377U (zh) * 2020-12-25 2021-10-26 大连环球矿产股份有限公司 一种空压机报警器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769927A (en) * 1997-01-24 1998-06-23 Membrane Technology And Research, Inc. Monomer recovery process
JP4157328B2 (ja) * 2002-05-30 2008-10-01 大陽日酸株式会社 膜分離装置
CN108837663A (zh) * 2018-08-31 2018-11-20 江苏新久扬环保设备科技有限公司 一种轻组分油气回收系统
CN214504234U (zh) * 2021-02-22 2021-10-26 浙江尖峰药业有限公司 一种防止废水指标超标排放自动控制设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413383A (zh) * 2015-11-13 2016-03-23 四川天采科技有限责任公司 一种从石化厂尾气中回收轻烃的方法
CN207722561U (zh) * 2017-12-18 2018-08-14 柯世苑 移动式废气处理装置
WO2019186647A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 冷凍装置
CN212327887U (zh) * 2020-04-17 2021-01-12 江苏爱尔沃特环保科技有限公司 一种焦炉烟气脱硫脱硝系统
CN214499377U (zh) * 2020-12-25 2021-10-26 大连环球矿产股份有限公司 一种空压机报警器
CN112870907A (zh) * 2021-03-12 2021-06-01 连云港市拓普科技发展有限公司 一种高压浅冷组合式VOCs气体回收装置及方法

Also Published As

Publication number Publication date
CN114046630A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN101285555B (zh) 收集密封泄漏气体以及增加其压力的系统和方法
CN105482863B (zh) 天然气冷冻脱水脱烃系统及天然气冷冻脱水脱烃的方法
WO2023087519A1 (zh) 混合气体分离装置和分离混合气体的方法
CN102226551B (zh) 使用碳氢化合物制冷剂的空调系统
US9359152B2 (en) Method and apparatus for providing over-pressure protection for an underground storage cavern
CN209230061U (zh) 一种具有压力保护系统的二氧化碳空调
CN110345672A (zh) 不凝气体净化装置、制冷系统及方法
CN107587993A (zh) 一种可切换压缩级数的油田增压机气路系统
WO2022199072A1 (zh) 液态二氧化碳生产设备及系统
CN206247718U (zh) 一种四通阀换向保护系统、压缩机系统和空调系统
WO2023087506A1 (zh) 可燃气体循环处理设备和可燃气体循环处理方法
WO2023087507A1 (zh) 气体处理装置及其处理气体的方法
CN205825584U (zh) 一种智能化的轻质汽油转换装置
CN207145181U (zh) 一种油气分离器
CN208238390U (zh) 氦气压缩净化机组系统
US10378762B2 (en) Equipment safety management device, equipment safety management method, and natural gas liquefaction device
CN218106788U (zh) 具有二次冷却机构的三次油气回收装置以及油气回收体系
RU2527922C1 (ru) Установка подготовки углеводородного газа
JP2000074557A (ja) 六弗化硫黄ガス回収装置
JP2826693B2 (ja) 一口バルブ回収容器への冷媒ガス回収装置
CN111706544A (zh) 一种提高离心压缩机组可靠性的系统及控制方法
CN105909497B (zh) 工艺气的密封系统与密封工艺气的处理方法
CN213421535U (zh) 一种带有两个串联气液分离器的多联机系统
CN203432132U (zh) 带油压稳定装置的真空冷冻干燥机制冷系统
CN211585889U (zh) 一种大型油气回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894068

Country of ref document: EP

Kind code of ref document: A1