WO2023087339A1 - 车间含氧监控方法及装置 - Google Patents

车间含氧监控方法及装置 Download PDF

Info

Publication number
WO2023087339A1
WO2023087339A1 PCT/CN2021/132659 CN2021132659W WO2023087339A1 WO 2023087339 A1 WO2023087339 A1 WO 2023087339A1 CN 2021132659 W CN2021132659 W CN 2021132659W WO 2023087339 A1 WO2023087339 A1 WO 2023087339A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
workshop
carbon
content
ratio
Prior art date
Application number
PCT/CN2021/132659
Other languages
English (en)
French (fr)
Inventor
李大海
Original Assignee
惠州凯美特气体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州凯美特气体有限公司 filed Critical 惠州凯美特气体有限公司
Publication of WO2023087339A1 publication Critical patent/WO2023087339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold

Definitions

  • the invention relates to a method and device for monitoring oxygen content in a workshop.
  • a method for monitoring oxygen content in a workshop comprising:
  • the oxygen-containing alarm signal sent to the workshop oxygen alarm system is adjusted according to the oxygen-carbon ratio difference, so as to adjust the alarm state of the workshop oxygen alarm system.
  • An oxygen monitoring device in a workshop comprising: an oxygen-carbon collector and an oxygen-containing monitoring main board; the oxygen-carbon collector is used to be placed in a dry ice production workshop, and the oxygen-carbon collector is also used to obtain the oxygen-carbon ratio of the workshop
  • the input end of the oxygen-containing monitoring main board is connected to the output end of the oxygen-carbon collector, and the oxygen-containing monitoring main board is used to perform ratio difference processing on the oxygen-carbon ratio and the preset ratio to obtain oxygen Carbon ratio difference; adjust the oxygen-containing alarm signal sent to the workshop oxygen alarm system according to the oxygen-carbon ratio difference, so as to control the alarm state of the workshop oxygen alarm system.
  • Fig. 1 is a flowchart of a method for monitoring oxygen content in a workshop in an embodiment.
  • FIG. 1 is a flowchart of a method for monitoring oxygen content in a workshop according to an embodiment of the present invention.
  • the method for monitoring oxygen content in a workshop includes some or all of the following steps.
  • the workshop is a production workshop for producing dry ice, that is, carbon dioxide is used as a raw material to make dry ice through a dry ice machine, so that in addition to the carbon dioxide remaining in the production process in the workshop, there are also production personnel in the workshop that consume oxygen. carbon dioxide produced. Since the air in the workshop is circulated by the axial flow fan, the balance of oxygen and carbon dioxide in the workshop can be maintained to reduce the suffocation environment in the workshop. In order to further avoid the formation of a suffocating environment in the workshop, it is necessary to monitor the oxygen and carbon dioxide content in the workshop in real time.
  • the ratio of the content that is, the relative value of the amount of oxygen in the workshop to the amount of carbon dioxide, is used to determine whether the oxygen content in the workshop is sufficient, so as to provide early warning of suffocation in the workshop according to the oxygen-to-carbon ratio.
  • S200 Perform ratio difference processing on the oxygen-carbon ratio and a preset ratio to obtain an oxygen-carbon ratio difference.
  • the oxygen-carbon ratio is the ratio of the oxygen content to the carbon dioxide content in the workshop
  • the preset ratio is the standard ratio of the oxygen content to the carbon dioxide content in the workshop, that is, the normal aerobic Under environmental conditions, the ratio of the amount of oxygen to the amount of carbon dioxide in the unit space volume of the workshop, that is, when the oxygen in the workshop continues to drop to the suffocating environment, the critical ratio of the oxygen content to the carbon dioxide content in the unit space volume of the workshop is when the oxygen decreases And/or when carbon dioxide increases, the oxygen content and carbon dioxide content in the workshop change to the content ratio in the asphyxiating environment.
  • Performing ratio difference processing on the oxygen-carbon ratio and the preset ratio is a comparison between the current content ratio between oxygen and carbon dioxide in the workshop and the standard content ratio, which is convenient for the follow-up according to the oxygen-carbon ratio difference.
  • the value determines whether an asphyxiation condition has occurred on the plant floor.
  • S300 Adjust the oxygen-containing alarm signal sent to the workshop oxygen alarm system according to the oxygen-carbon ratio difference, so as to control the alarm state of the workshop oxygen alarm system.
  • the oxygen-carbon ratio difference is the difference between the ratio of oxygen content to carbon dioxide content in the workshop and the standard ratio, which is used to represent the real-time changes in the ratio of oxygen content to carbon dioxide content in the workshop, which can be displayed in real time
  • the changes in the ratio of oxygen and carbon dioxide in the workshop are convenient for determining whether there is a suffocating environment in the workshop. For example, when the oxygen-carbon ratio difference is lower than the predetermined difference, the oxygen content in the workshop is low at this time, and suffocation is likely to occur, and an alarm signal is sent to the oxygen alarm system of the workshop, so as to send out alarm information in time.
  • the workshop oxygen alarm system includes a GDS system (Gas Detection System, gas detection alarm system) controlled by a remote signal.
  • the content of oxygen and carbon dioxide in the workshop is compared to obtain the ratio of oxygen to carbon to determine the ratio of the ratio of oxygen to carbon dioxide in the workshop, and then according to the ratio of oxygen to carbon and the preset ratio In this way, under the numerical value of the oxygen-carbon ratio difference, it is convenient to control the alarm state of the oxygen alarm system in the workshop, so that it is convenient to issue an alarm in time when there is a suffocation environment Signal.
  • the obtaining the oxygen-carbon ratio of the workshop includes: obtaining the oxygen content and the carbon dioxide content of the workshop; performing quantitative processing on the oxygen content and the carbon dioxide content to obtain the oxygen-carbon ratio .
  • the oxygen content is the percentage of the volume of oxygen in the workshop, that is, the oxygen content is the volume ratio of oxygen in the entire workshop
  • the carbon dioxide content is the volume of carbon dioxide in the workshop.
  • the percentage, that is, the carbon dioxide content is the proportion of carbon dioxide in the space volume of the entire workshop.
  • the volume ratio processing of the oxygen content and the carbon dioxide content is to compare the volume ratio between oxygen and carbon dioxide in the same workshop, for example, the oxygen-carbon ratio is the ratio of the oxygen content to the
  • the ratio of carbon dioxide content is convenient to determine the volume ratio between oxygen and carbon dioxide in each workshop, so that it is convenient to determine the content of oxygen in the workshop relative to carbon dioxide, and then to determine whether the oxygen content in the workshop is sufficient.
  • the obtaining the oxygen content and carbon dioxide content of the workshop includes: obtaining the sampled oxygen content in multiple sampling space areas in the workshop; performing periodic oxygen treatment on the multiple sampled oxygen content to obtain the oxygen content.
  • the oxygen content is obtained through the oxygen content collected at multiple sampling points, that is, multiple oxygen content testers are installed in the workshop, and the oxygen content at multiple positions in the car is measured.
  • the collection is convenient to display the distribution of oxygen content in the workshop, so as to obtain the actual oxygen content of each position in the workshop, that is, the sampled oxygen content.
  • the oxygen contents of each position in the workshop are fused to obtain the best expression of the workshop Oxygen content, that is, the oxygen content, so as to ensure that the entire workshop can work in a sufficient oxygen environment.
  • the oxygen content is the minimum value among the sampled oxygen contents. In this way, it is convenient to determine whether the position with the least oxygen content in the workshop is sufficient, and it is also convenient to ensure that the oxygen content in each position of the entire workshop is sufficient.
  • the performing periodical oxygen processing on the plurality of sampled oxygen contents includes: obtaining expected oxygen contents of the plurality of sampled oxygen contents.
  • the sampled oxygen content is the oxygen-containing sample of the workshop, which is to display the oxygen content of each position space in the workshop, and perform periodic oxygen treatment on multiple sampled oxygen content, so as to facilitate the analysis of multiple
  • the sampled oxygen content is calculated according to the sample expectation, so as to facilitate the determination of the average value of the oxygen content in the multiple sampled oxygen contents, and ensure that there are enough locations with sufficient oxygen in the workshop, so that suffocation occurs in the workshop chances are reduced.
  • the obtaining the oxygen content and carbon dioxide content of the workshop includes: obtaining the sampled carbon content in multiple sampling space areas in the workshop; performing carbon treatment on multiple sampled carbon content, Obtain the carbon dioxide content.
  • the carbon dioxide content is obtained through the carbon content collected at multiple sampling points, that is, multiple carbon dioxide content testers are installed in the workshop, and the carbon content at multiple positions in the car is measured. Collection is convenient for displaying the distribution of carbon dioxide content in the workshop, so as to obtain the actual carbon dioxide content of each position in the workshop, that is, the carbon content of the sample.
  • the carbon dioxide contents in various positions in the workshop are fused to obtain the best expression of the workshop.
  • Carbon dioxide content that is, the carbon dioxide content, so as to ensure that the entire workshop can work in a sufficient oxygen environment.
  • the carbon dioxide content is the minimum value among the sampled carbon contents. In this way, it is convenient to determine whether the oxygen content in the position with the least carbon dioxide content in the workshop is sufficient, and it is also convenient to ensure that the oxygen content in each position of the entire workshop is sufficient.
  • the performing carbon processing on the plurality of sampled carbon contents includes: calculating the expected carbon dioxide content of the plurality of sampled carbon contents.
  • the sampled carbon content is the carbon dioxide-containing sample of the workshop, which is to display the carbon dioxide content of each location space in the workshop, and carry out periodic oxygen treatment on multiple sampled carbon content, so that multiple The sampling carbon content is expected to be obtained for the sample, so as to facilitate the determination of the average value of the carbon dioxide content in a plurality of the sampling carbon content, and ensure that there is no area with excessive concentration of carbon dioxide in the workshop, that is, ensure that there is There are enough places with enough oxygen to reduce the chance of suffocation in the workshop.
  • the adjusting the oxygen-containing alarm signal sent to the workshop oxygen alarm system according to the oxygen-carbon ratio difference includes: detecting whether the oxygen-carbon ratio difference matches a preset ratio difference; When the oxygen-carbon ratio difference matches the preset ratio difference, a hypoxic alarm signal is sent to the workshop oxygen alarm system.
  • the oxygen-carbon ratio difference is used to display the real-time changes of oxygen and carbon dioxide in the workshop, that is, the oxygen-carbon ratio difference is used as the real-time ratio change of the current oxygen and carbon dioxide in the workshop, that is, the The oxygen-carbon ratio difference is used to reflect the relative change of the proportion of oxygen in the workshop and the proportion of carbon dioxide, so as to facilitate the display of the current oxygen content and the change of carbon dioxide content in the workshop.
  • the preset ratio difference is the difference between the standard ratios of oxygen and carbon dioxide in the workshop, and the preset ratio difference corresponds to the standard deviation of the ratio of oxygen content and carbon dioxide content in the workshop, that is, the The preset ratio difference corresponds to the content ratio difference between oxygen and carbon dioxide when the workshop is under suffocation.
  • the oxygen-carbon ratio difference matches the preset ratio difference, indicating that the content ratio between oxygen and carbon dioxide in the workshop corresponds to the preset ratio difference, that is, indicating that the ratio between oxygen and carbon dioxide in the workshop
  • the content ratio is the content ratio between oxygen and carbon dioxide in the case of suffocation, which means that the workshop is in a low oxygen content situation.
  • the situation that the oxygen content is low has occurred in the workshop at this moment, promptly the situation that the carbon dioxide concentration is too large has occurred in the workshop, that is, the suffocation situation is about to occur in the workshop.
  • Monitoring personnel provide early warning of suffocation in the workshop.
  • the rotation speed and the number of openings of the axial fans are controlled in chain to increase the air circulation rate in the workshop, thereby increasing the oxygen content in the workshop , to further reduce the chance of suffocation in the workshop.
  • the detecting whether the oxygen-carbon ratio difference matches the preset ratio difference further includes: when the oxygen-carbon ratio difference does not match the preset ratio difference, reporting to the workshop
  • the oxygen alarm system sends a normoxic signal.
  • the oxygen-carbon ratio difference is used to display the real-time changes of oxygen and carbon dioxide in the workshop, that is, the oxygen-carbon ratio difference is used as the real-time ratio change of the current oxygen and carbon dioxide in the workshop, that is, the The oxygen-carbon ratio difference is used to reflect the relative change of the proportion of oxygen in the workshop and the proportion of carbon dioxide, so as to facilitate the display of the current oxygen content and the change of carbon dioxide content in the workshop.
  • the preset ratio difference is the difference between the standard ratios of oxygen and carbon dioxide in the workshop, and the preset ratio difference corresponds to the standard deviation of the ratio of oxygen content and carbon dioxide content in the workshop, that is, the The preset ratio difference corresponds to the content ratio difference between oxygen and carbon dioxide when the workshop is under suffocation.
  • the oxygen-carbon ratio difference does not match the preset ratio difference, indicating that the content ratio between oxygen and carbon dioxide in the workshop does not correspond to the preset ratio difference, that is, the difference between oxygen and carbon dioxide in the workshop
  • the content ratio between oxygen and carbon dioxide is the content ratio between oxygen and carbon dioxide under non-suffocating conditions, which means that the workshop is in a situation with high oxygen content.
  • the preset ratio difference is 0.19 to 0.29, for example, the preset ratio difference is 0.24.
  • the interior space of the workshop is large, and the oxygen content detector needs to sample the oxygen content at various positions in the workshop, otherwise it is easy to collect one or some areas in the workshop, that is, the sampling positions of the oxygen content are too concentrated , for example, only sample the oxygen content at the location of the axial flow fan, so that the accuracy of the early warning of suffocation prevention in the workshop is reduced, and it is even impossible to make an accurate early warning judgment in time.
  • the acquisition of the oxygen-carbon ratio of the workshop also includes the following steps:
  • step S100 is executed.
  • the cloth picking image is the distribution image of each oxygen content detector in the workshop, that is, the cloth picking image is the position image of the sampling point where each oxygen content detector in the workshop is located, for example, the sampling The cloth image is collected by the camera device installed on the top of the workshop.
  • the cloth image is the plane distribution image of each oxygen content detector, which is convenient to obtain the position distribution of each oxygen content detector in the workshop.
  • the position of each oxygen content detector corresponds to a sampling point, and the distance between two adjacent sampling points, for example, the distance between the sampling points is the distance between two adjacent sampling points.
  • the distance between the samples that is, the distance between the sample points is the distance between two adjacent oxygen content detectors.
  • the preset distance is the distance corresponding to the standard distribution of each oxygen content detector in the workshop, and this distance can effectively detect the oxygen content of each position in the workshop, that is, the preset distance is used as the distance between each oxygen content detector. standard spacing between. In this way, all sample point spacings match the preset spacing, indicating that the distribution spacing of each oxygen content detector in the workshop corresponds to the standard spacing, that is, indicating that the distribution of each sampling point in the workshop is consistent with the standard sampling distribution. Similarly, each oxygen content detector can fully detect the oxygen content in the workshop, so that the distribution of oxygen content in the workshop can be correctly collected, and the accuracy of monitoring and early warning of oxygen content in the workshop can be improved.
  • the preset interval is a fixed value, that is, the preset interval corresponds to the oxygen content detectors distributed at equal intervals.
  • said obtaining the sample point spacing of each sampling point according to the cloth sampling image includes:
  • the detection of whether all sample point spacing matches the preset spacing includes:
  • the step S100 is performed when all sample point spacings match the preset spacing, including:
  • step S100 is executed.
  • the first sampling point spacing is the spacing of each sampling point distributed along the first direction
  • the second sampling point spacing is the spacing of each sampling point distributed along the second direction
  • the first The direction and the second direction are perpendicular to each other, for example, the first direction and the second direction respectively correspond to two adjacent and vertical walls of the workshop, so that each oxygen content detector surrounds the dry ice production equipment in the workshop distributed.
  • the first preset distance is not equal to the second preset distance, so that each oxygen content detector detects the oxygen content in different positions of the workshop, and fully collects the oxygen content in the workshop.
  • the utilization of sampling points has further improved the accuracy of oxygen monitoring and early warning in the workshop.
  • the cloth picking image is an image collected by an image acquisition device on the side wall of the workshop, at this time, the sample point spacing in the collected image also includes the distribution spacing of sampling points in the vertical direction, For example, the sample point spacing in a third direction perpendicular to both the first direction and the second direction.
  • the detection of whether all sample point spacing matches the preset spacing also includes the following steps:
  • Neighboring processing is performed on the distance between each sample point to obtain a plurality of adjacent distance differences between samples
  • the sampling point spacing is the spacing between two adjacent sampling points, that is, the sampling point spacing is used to show the distribution of each sampling point in the workshop.
  • Carrying out adjacent processing on the distance between each sample point is to perform secondary distance processing on the distance between each sampling point, that is, to perform a distance difference process on each of the sample point distances, for example, to obtain the distance between two adjacent said points
  • the difference between sample points that is, the sample-neighbor distance difference.
  • Each of the sample-to-neighbor distance differences is the difference between the distances between two adjacent sample points, that is, the difference between the distances between the sampling points is calculated again, that is, the variation of the distance between the sample points is displayed.
  • the distances between each of the samples are equal, indicating that the distance between two adjacent sample points is different, that is, the distance between two adjacent sample points is gradually increasing or decreasing, that is to say, multiple sampling points
  • the distribution of points gradually increases or decreases, which makes the distribution of sampling points in the workshop more abundant, and facilitates the distribution of different sampling points for different workshops, so that it is convenient to monitor the oxygen content in the workshop. sampling.
  • the present application also provides a workshop oxygen monitoring device, which adopts the workshop oxygen monitoring method described in any one of the above embodiments.
  • the workshop oxygen monitoring device has functional modules corresponding to each step of the workshop oxygen monitoring method.
  • the oxygen-containing monitoring device in the workshop includes an oxygen-carbon collector and an oxygen-containing monitoring main board; the oxygen-carbon collector is used to be placed in the dry ice production workshop, and the oxygen-carbon collector is also used to obtain the oxygen-carbon ratio of the workshop; The input end of the oxygen-containing monitoring main board is connected to the output end of the oxygen-carbon collector, and the oxygen-containing monitoring main board is used to perform ratio difference processing on the oxygen-carbon ratio and the preset ratio to obtain the oxygen-carbon ratio difference; adjust the oxygen-containing alarm signal sent to the workshop oxygen alarm system according to the oxygen-carbon ratio difference, so as to control the alarm state of the workshop oxygen alarm system.
  • the oxygen-containing monitoring main board compares the oxygen and carbon dioxide in the workshop collected by the oxygen-carbon collector to obtain the oxygen-carbon ratio, so as to determine the ratio of oxygen and carbon dioxide in the workshop.
  • the monitoring board determines whether the oxygen-carbon ratio in the workshop reaches the alarm ratio according to the comparison between the oxygen-carbon ratio and the preset ratio. Alarm status, so that it is convenient to send an alarm signal in time when a suffocation environment occurs.

Landscapes

  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种车间含氧监控方法及装置,车间含氧监控方法包括获取车间的氧碳比量;对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值;根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,以调整所述车间氧气报警系统的报警状态。对车间内的氧气与二氧化碳进行含量比较,得到氧碳比量,以确定氧气与二氧化碳在车间内的占比的比值,之后再根据氧碳比量与预设比量的比较情况,确定车间内的氧碳比是否达到报警的比值,这样,在氧碳比差值的数值大小下,便于控制车间氧气报警系统的报警状态,从而便于在出现窒息环境时及时发出报警信号。

Description

车间含氧监控方法及装置 技术领域
本发明涉及一种车间含氧监控方法及装置。
背景技术
随着干冰的需求量越来越大,干冰生产厂商着力于对干冰生产车间进行规模扩大。干冰的生产车间内,生产机器需要有人员进行操作,以确保机器高效运行。
然而,干冰的制作过程中需要使用大量的二氧化碳,在确保干冰生产质量的情况下,干冰生产车间属于实验室级别的车间,这就导致在通风系统老化损坏时,一旦车间内的二氧化碳过量,将导致生产人员窒息,严重威胁生产安全。
发明内容
基于此,有必要提供一种便于对车间氧气含量检测的车间含氧监控方法及装置。
一种车间含氧监控方法,所述方法包括:
获取车间的氧碳比量;
对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值;
根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,以调整所述车间氧气报警系统的报警状态。
一种车间含氧监控装置,包括:氧碳采集器以及含氧监控主板;所述氧碳采集器用于放置于干冰生产车间内,所述氧碳采集器还用于获取车间的氧碳比量;所述含氧监控主板的输入端与所述氧碳采集器的输出端连接,所述含氧监控主板用于对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值;根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号, 以控制所述车间氧气报警系统的报警状态。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中车间含氧监控方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,其为本发明一实施例的车间含氧监控方法的流程图。所述车 间含氧监控方法包括以下步骤的部分或全部。
S100:获取车间的氧碳比量。
在本实施例中,所述车间为生产干冰的生产车间,即将二氧化碳作为原料,通过干冰机制作成干冰,使得在车间内除了部分生产过程中残留的二氧化碳,还有车间内的生产人员通过消耗氧气所产生的二氧化碳。由于有轴流风机对车间内的空气进行空气流通,可以维持车间内的氧气与二氧化碳的平衡以降低车间内出现的窒息环境。为了进一步避免在车间内形成窒息环境,需要对车间内的氧气以及二氧化碳的含量进行实时监测,获取车间的氧碳比量,是将车间内的氧气含量与二氧化碳含量进行比较,获得氧气含量与二氧化碳含量的比值,即车间内的氧气量与二氧化碳量的相对值,以确定所述车间内的含氧量是否能够足,以便于后续根据所述氧碳比量对车间的窒息情况进行预警。
S200:对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值。
在本实施例中,所述氧碳比量为车间内的氧气含量与二氧化碳含量的比值,所述预设比量为车间内的氧气含量与二氧化碳含量的标准比值,即在车间为正常有氧环境下,车间的单位空间体积内氧气量与二氧化碳量的比值,也即在车间内的氧气持续下降至窒息环境时,车间的单位空间体积内氧气含量与二氧化碳含量的临界比值,是在氧气减少和/或二氧化碳增加的情况下,车间内的氧气含量与二氧化碳含量变化为窒息环境下的含量比值。对所述氧碳比量与预设比量进行比量差分处理,是对车间内的当前氧气与二氧化碳之间的含量比值与标准含量比值之间的比较,便于后续根据所述氧碳比差值确定车间是否出现了窒息情况。
S300:根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,以控制所述车间氧气报警系统的报警状态。
在本实施例中,所述氧碳比差值是车间氧气含量与二氧化碳含量比值与标准比值之间的差值,用于表示车间内的氧气含量与二氧化碳含量比值的实时变化情况,可以实时展示车间内的氧气占比变化情况,以及二氧化碳占比 变化情况,便于确定车间是否出现窒息环境的情况。例如,在所述氧碳比差值低于预定差值时,此时车间内的氧气含量较低,容易出现窒息情况,向车间氧气报警系统发送报警信号,便于及时发出报警信息。而且,在本实施例中,所述车间氧气报警系统包括通过远程信号控制的GDS系统(Gas Detection System,气体检测报警系统)。
在上述各实施例中,对车间内的氧气与二氧化碳进行含量比较,得到氧碳比量,以确定氧气与二氧化碳在车间内的占比的比值,之后再根据氧碳比量与预设比量的比较情况,确定车间内的氧碳比是否达到报警的比值,这样,在氧碳比差值的数值大小下,便于控制车间氧气报警系统的报警状态,从而便于在出现窒息环境时及时发出报警信号。
在其中一个实施例中,所述获取车间的氧碳比量,包括:获取车间的氧含量以及二氧化碳含量;对所述氧含量以及所述二氧化碳含量进行量比处理,得到所述氧碳比量。在本实施例中,所述氧含量为车间内的氧气体积所占的百分比,即所述氧含量为氧气在整个车间内的空间体积占比,所述二氧化碳含量为车间内的二氧化碳体积所占的百分比,即所述二氧化碳含量为二氧化碳在整个车间内的空间体积占比。所述氧含量以及所述二氧化碳含量均是相对于同一个空间体积进行采集的,即所述氧含量以及所述二氧化碳含量是相对于同一个车间获取的。对所述氧含量以及所述二氧化碳含量进行量比处理,是将同一个车间内的氧气与二氧化碳之间的体积占比进行比较,例如,所述氧碳比量为所述氧含量与所述二氧化碳含量的比值,便于确定每一个车间内的氧气与二氧化碳之间的体积占比,从而便于确定车间内的氧气相对于二氧化碳的含量,进而便于后续确定车间内的氧气含量是否充足。
进一步地,所述获取车间的氧含量以及二氧化碳含量,包括:获取车间内的多个采样空间区域内的采样含氧量;对多个所述采样含氧量进行期氧处理,得到所述氧含量。在本实施例中,所述氧含量是通过多个采样点采集的含氧量获取的,即在车间内设置有多个氧含量测试仪,通过对车内的多个位置的含氧量进行采集,便于展示车间内的氧气含量分布情况,从而便于求取 车间内各个位置的实际含氧量,即所述采样含氧量。在多个所述采样含氧量作为氧气采样样本时,通过对多个所述采样含氧量进行期氧处理,是对车间内的各个位置的氧气含量进行融合,以得到最能体现出车间的氧气含量,即所述氧含量,从而便于确保整个车间能在足够的氧气环境下工作。例如,所述氧含量为各所述采样含氧量中的最小值,这样,便于确定车间中氧含量最少的位置是否充足,同时也便于确保整个车间的每一个位置的氧气含量充足。
又进一步地,所述对多个所述采样含氧量进行期氧处理,包括:求取多个所述采样含氧量的期望含氧量。在本实施例中,所述采样含氧量为车间的含氧样本,是显示车间内的各位置空间的氧气含量,对多个所述采样含氧量进行期氧处理,以便于对多个所述采样含氧量进行样本期望的求取,从而便于确定多个所述采样含氧量中的含氧量的均值,确保车间内存在有足够多氧气量充足位置,使得车间内出现窒息情况的几率降低。
在其中一个实施例中,所述获取车间的氧含量以及二氧化碳含量,包括:获取车间内的多个采样空间区域内的采样含碳量;对多个所述采样含碳量进行期碳处理,得到所述二氧化碳含量。在本实施例中,所述二氧化碳含量是通过多个采样点采集的含碳量获取的,即在车间内设置有多个二氧化碳含量测试仪,通过对车内的多个位置的含碳量进行采集,便于展示车间内的二氧化碳含量分布情况,从而便于求取车间内各个位置的实际二氧化碳含量,即所述采样含碳量。在多个所述采样含碳量作为二氧化碳采样样本时,通过对多个所述采样含碳量进行期氧处理,是对车间内的各个位置的二氧化碳含量进行融合,以得到最能体现出车间的二氧化碳含量,即所述二氧化碳含量,从而便于确保整个车间能在足够的氧气环境下工作。例如,所述二氧化碳含量为各所述采样含碳量中的最小值,这样,便于确定车间中二氧化碳含量最少的位置的氧气是否充足,同时也便于确保整个车间的每一个位置的氧气含量充足。
进一步地,所述对多个所述采样含碳量进行期碳处理,包括:求取多个所述采样含碳量的期望二氧化碳含量。在本实施例中,所述采样含碳量为车 间的含二氧化碳样本,是显示车间内的各位置空间的二氧化碳含量,对多个所述采样含碳量进行期氧处理,以便于对多个所述采样含碳量进行样本期望的求取,从而便于确定多个所述采样含碳量中的含二氧化碳量的均值,确保了车间内二氧化碳不存在浓度过大的区域,即确保车间内存在有足够多氧气量充足位置,使得车间内出现窒息情况的几率降低。
在其中一个实施例中,所述根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,包括:检测所述氧碳比差值与预设比差值是否匹配;当所述氧碳比差值与所述预设比差值匹配时,向所述车间氧气报警系统发送低氧报警信号。在本实施例中,所述氧碳比差值用于展示车间内的氧气与二氧化碳的实时变化,即所述氧碳比差值作为车间当前的氧气与二氧化碳的实时占比变化,也即所述氧碳比差值用于体现氧气在车间内所占比值与二氧化碳所占比值的相对变化情况,便于展示车间内的当前氧气含量以及二氧化碳含量的变化情况。所述预设比差值为车间内的氧气与二氧化碳之间的标准比的差值,所述预设比差值对应为车间内氧气含量占比与二氧化碳含量占比的标准差值,即所述预设比差值对应于在车间处于窒息情况下氧气与二氧化碳之间的含量比差值。所述氧碳比差值与所述预设比差值匹配,表明了车间内的氧气与二氧化碳之间的含量比与预设比差值相对应,即表明了车间内的氧气与二氧化碳之间的含量比处于窒息情况下氧气与二氧化碳之间的含量比,也即表明了车间处于氧含量较低的情况。这样,此时车间出现了氧气含量低的情况,即车间内出现了二氧化碳浓度过大的情况,也即车间即将出现窒息情况,向所述车间氧气报警系统发送低氧报警信号,以便于及时向监控人员提供车间窒息预警。在另一个实施例中,在所述车间氧气报警系统接收到低氧报警信号后,通过连锁控制轴流风机的转速以及开启数量,以提高车间内的空气流通速率,从而提高车间内的氧气含量,进一步降低车间出现窒息情况的几率。
进一步地,所述检测所述氧碳比差值与预设比差值是否匹配,之后还包括:当所述氧碳比差值与所述预设比差值不匹配时,向所述车间氧气报警系 统发送含氧正常信号。在本实施例中,所述氧碳比差值用于展示车间内的氧气与二氧化碳的实时变化,即所述氧碳比差值作为车间当前的氧气与二氧化碳的实时占比变化,也即所述氧碳比差值用于体现氧气在车间内所占比值与二氧化碳所占比值的相对变化情况,便于展示车间内的当前氧气含量以及二氧化碳含量的变化情况。所述预设比差值为车间内的氧气与二氧化碳之间的标准比的差值,所述预设比差值对应为车间内氧气含量占比与二氧化碳含量占比的标准差值,即所述预设比差值对应于在车间处于窒息情况下氧气与二氧化碳之间的含量比差值。所述氧碳比差值与所述预设比差值不匹配,表明了车间内的氧气与二氧化碳之间的含量比与预设比差值不对应,即表明了车间内的氧气与二氧化碳之间的含量比处于非窒息情况下氧气与二氧化碳之间的含量比,也即表明了车间处于氧含量较高的情况。这样,此时车间出现了氧气含量高的情况,即车间内出现了二氧化碳浓度普遍较低的情况,也即车间处于氧气充足的情况,向所述车间氧气报警系统发送含氧正常信号,以便于及时向监控人员提供车间氧气含量正常信息。在另一个实施例中,所述预设比差值为0.19至0.29,例如,所述预设比差值为0.24。
可以理解的,在对车间内的氧气以及二氧化碳的含量采集过程中,是通过在车间内增设气体含量检测装置,例如,在车间的墙壁上安装多个氧含量检测仪,用于对车间内的氧气占比进行检测,确保对车间内的氧气含量进行实时监测,以确保对车间防止窒息提供预警。
然而,车间的内部空间较大,氧含量检测仪需要对车间内的各个位置进行氧气含量的采样,否则容易出现对车间中的某一个或一些区域的采集,即对氧气含量的采样位置过于集中,例如,只对轴流风机所在位置进行氧气含量采样,使得对车间防止窒息预警存在精准度下降的情况,甚至无法及时做出准确的预警判断。
为了提高对车间含氧监控预警的准确性,所述获取车间的氧碳比量,之前还包括以下步骤:
获取车间的采布图像;
根据所述采布图像获取各采样点的样点间距;
检测所有的样点间距是否与预设间距匹配;
当所有的样点间距与所述预设间距匹配时,执行步骤S100。
在本实施例中,所述采布图像为车间内各氧含量检测仪的分布图像,即所述采布图像为车间内各个氧含量检测仪所在的采样点的位置图像,例如,所述采布图像是通过设置在车间的顶部的摄像装置采集的,此时所述采布图像即为各氧含量检测仪的平面分布图像,便于获取各氧含量检测仪进行车间位置分布情况。在获取了所述采布图像后,各氧含量检测仪的位置对应为采样点,相邻两个采样点之间的间距,例如,所述样点间距为相邻两个所述采样点之间的间距,即所述样点间距为相邻两个氧含量检测仪之间的间距。所述预设间距为车间内各氧含量检测仪的标准分布对应的间距,此间距能有效地将车间内的各个位置的氧含量进行检测,即所述预设间距作为各氧含量检测仪之间的标准间距。这样,所有的样点间距与所述预设间距匹配,表明了车间内的各氧含量检测仪的分布间距与标准间距对应,即表明了车间内的各采样点的分布情况与标准采样分布情况相同,使得各氧含量检测仪对车间内的氧气含量的检测充分,从而使得车间内的氧含量分布情况得以被正确采集,提高了对车间含氧监控预警的准确性。在另一个实施例中,所述预设间距为固定值,即所述预设间距对应于等间距分布的各氧含量检测仪。
进一步地,所述根据所述采布图像获取各采样点的样点间距,包括:
根据所述采布图像获取各采样点的第一样点间距以及第二样点;
所述检测所有的样点间距是否与预设间距匹配,包括:
检测所述第一样点间距与第一预设间距是否相等,以及检测所述第二样点间距与第二预设间距是否相等;
所述当所有的样点间距与所述预设间距匹配时,执行步骤S100,包括:
当第一样点间距与所述第一预设间距相等,以及所述第二样点间距与所述第二预设间距相等时,执行步骤S100。
在本实施例中,所述第一样点间距为各采样点沿第一方向分布的间距, 所述第二样点间距为各采样点沿第二方向分布的间距,其中,所述第一方向与所述第二方向相互垂直,例如,所述第一方向与所述第二方向分别对应于车间的两个相邻且垂直的墙壁,使得各氧含量检测仪环绕车间内的干冰生产设备分布。而且,为了对车间进行充分的氧含量采集,所述第一预设间距与所述第二预设间距不等,使得各氧含量检测仪检测车间不同位置的氧含量,还充分将车间内的采样点利用起来,进一步提高了对车间含氧监控预警的准确性。在另一个实施例中,所述采布图像为车间的侧壁上的图像采集装置采集的图像,此时所述采集图像中的样点间距还包括竖直方向上的采样点的分布间距,例如,与第一方向以及第二方向均垂直的第三方向的样点间距。
更进一步地,所述检测所有的样点间距是否与预设间距匹配,之前还包括以下步骤:
对各所述样点间距进行邻间处理,得到多个样邻距差;
检测各所述样邻距差是否均相等;
当各所述样邻距差均相等时,检测所有的样点间距是否与预设间距匹配。
在本实施例中,所述样点间距为相邻两个采样点之间的间距,即所述样点间距用于展示各采样点在车间内的分布情况。对各所述样点间距进行邻间处理,是对各采样点之间的间距进行二次距离处理,即对各所述样点间距进行间距差处理,例如,求取相邻两个所述样点间距之间的差值,即所述样邻距差。每一个所述样邻距差是相邻两个样点间距之间的差值,即对采样点之间的间距的再一次的求差,也即对样点间距的变化情况进行展示。各所述样邻距差均相等,表明了相邻两个所述样点间距不同,即表明了相邻两个所述样点间距在逐步增大或减小,也即表明了多个采样点的分布出现间距逐步增大或减小的情况,使得车间内的采样点分布方式更加丰富,便于对不同的车间进行不同的采样点的分布,从而便于对车间内的氧气含量进行更多位置的采样。
在其中一个实施例中,本申请还提供一种车间含氧监控装置,其采用上述任一实施例中所述的车间含氧监控方法。在其中一个实施例中,所述车间 含氧监控装置具有用于实现所述车间含氧监控方法各步骤对应的功能模块。所述车间含氧监控装置包括氧碳采集器以及含氧监控主板;所述氧碳采集器用于放置于干冰生产车间内,所述氧碳采集器还用于获取车间的氧碳比量;所述含氧监控主板的输入端与所述氧碳采集器的输出端连接,所述含氧监控主板用于对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值;根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,以控制所述车间氧气报警系统的报警状态。在本实施例中,含氧监控主板对氧碳采集器采集的车间内的氧气与二氧化碳进行含量比较,得到氧碳比量,以确定氧气与二氧化碳在车间内的占比的比值,之后含氧监控主板再根据氧碳比量与预设比量的比较情况,确定车间内的氧碳比是否达到报警的比值,这样,在氧碳比差值的数值大小下,便于控制车间氧气报警系统的报警状态,从而便于在出现窒息环境时及时发出报警信号。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种车间含氧监控方法,其特征在于,包括:
    获取车间的氧碳比量;
    对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值;
    根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,以调整所述车间氧气报警系统的报警状态。
  2. 根据权利要求1所述的车间含氧监控方法,其特征在于,所述获取车间的氧碳比量,包括:
    获取车间的氧含量以及二氧化碳含量;
    对所述氧含量以及所述二氧化碳含量进行量比处理,得到所述氧碳比量。
  3. 根据权利要求2所述的车间含氧监控方法,其特征在于,所述氧含量以及所述二氧化碳含量为相对于同一个车间内的空间体积占比。
  4. 根据权利要求2所述的车间含氧监控方法,其特征在于,所述获取车间的氧含量以及二氧化碳含量,包括:
    获取车间内的多个采样空间区域内的采样含氧量;
    对多个所述采样含氧量进行期氧处理,得到所述氧含量。
  5. 根据权利要求2所述的车间含氧监控方法,其特征在于,所述对多个所述采样含氧量进行期氧处理,包括:
    求取多个所述采样含氧量的最小值。
  6. 根据权利要求4所述的车间含氧监控方法,其特征在于,所述对多个所述采样含氧量进行期氧处理,包括:
    求取多个所述采样含氧量的期望含氧量。
  7. 根据权利要求2所述的车间含氧监控方法,其特征在于,所述获取车间的氧含量以及二氧化碳含量,包括:
    获取车间内的多个采样空间区域内的采样含碳量;
    对多个所述采样含碳量进行期碳处理,得到所述二氧化碳含量。
  8. 根据权利要求7所述的车间含氧监控方法,其特征在于,所述对多个 所述采样含碳量进行期碳处理,包括:
    求取多个所述采样含碳量的期望二氧化碳含量。
  9. 根据权利要求7所述的车间含氧监控方法,其特征在于,所述对多个所述采样含碳量进行期碳处理,包括:
    求取多个所述采样含碳量的最小值。
  10. 根据权利要求1所述的车间含氧监控方法,其特征在于,所述根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,包括:
    检测所述氧碳比差值与预设比差值是否匹配;
    当所述氧碳比差值与所述预设比差值匹配时,向所述车间氧气报警系统发送低氧报警信号。
  11. 根据权利要求10所述的车间含氧监控方法,其特征在于,所述检测所述氧碳比差值与预设比差值是否匹配,之后还包括:
    当所述氧碳比差值与所述预设比差值不匹配时,向所述车间氧气报警系统发送含氧正常信号。
  12. 根据权利要求10所述的车间含氧监控方法,其特征在于,所述预设比差值为0.19至0.29。
  13. 根据权利要求12所述的车间含氧监控方法,其特征在于,所述预设比差值为0.24。
  14. 根据权利要求1所述的车间含氧监控方法,其特征在于,所述获取车间的氧碳比量,之前还包括:
    获取车间的采布图像;
    根据所述采布图像获取各采样点的样点间距;
    检测所有的样点间距是否与预设间距匹配;
    当所有的样点间距与所述预设间距匹配时,采样所述氧碳比量;
    其中,所述根据所述采布图像获取各采样点的样点间距,包括:
    根据所述采布图像获取各采样点的第一样点间距以及第二样点;
    所述检测所有的样点间距是否与预设间距匹配,包括:
    检测所述第一样点间距与第一预设间距是否相等,以及检测所述第二样点间距与第二预设间距是否相等;
    所述当所有的样点间距与所述预设间距匹配时,采样所述氧碳比量,包括:
    当第一样点间距与所述第一预设间距相等,以及所述第二样点间距与所述第二预设间距相等时,采样所述氧碳比量;
    以及,所述检测所有的样点间距是否与预设间距匹配,之前还包括:
    对各所述样点间距进行邻间处理,得到多个样邻距差;
    检测各所述样邻距差是否均相等;
    当各所述样邻距差均相等时,检测所有的样点间距是否与预设间距匹配。
  15. 一种车间含氧监控装置,其特征在于,包括:
    氧碳采集器,所述氧碳采集器用于放置于干冰生产车间内,所述氧碳采集器还用于获取车间的氧碳比量;
    含氧监控主板,所述含氧监控主板的输入端与所述氧碳采集器的输出端连接,所述含氧监控主板用于对所述氧碳比量与预设比量进行比量差分处理,得到氧碳比差值;根据所述氧碳比差值调整向车间氧气报警系统发送的含氧报警信号,以控制所述车间氧气报警系统的报警状态。
PCT/CN2021/132659 2021-11-17 2021-11-24 车间含氧监控方法及装置 WO2023087339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111363715.X 2021-11-17
CN202111363715.XA CN114047297A (zh) 2021-11-17 2021-11-17 车间含氧监控方法及装置

Publications (1)

Publication Number Publication Date
WO2023087339A1 true WO2023087339A1 (zh) 2023-05-25

Family

ID=80209950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132659 WO2023087339A1 (zh) 2021-11-17 2021-11-24 车间含氧监控方法及装置

Country Status (2)

Country Link
CN (1) CN114047297A (zh)
WO (1) WO2023087339A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113709A1 (en) * 2003-11-24 2005-05-26 Titanium Ventures Inc. Diagnostic system and methods for detecting disorders in the respiratory control chemoreceptors
CN102848999A (zh) * 2012-09-18 2013-01-02 浙江吉利汽车研究院有限公司杭州分公司 一种车内氧含量智能监测控制方法和装置
CN107402532A (zh) * 2017-06-23 2017-11-28 深圳市盛路物联通讯技术有限公司 一种基于物联网车间环境监测方法和系统
CN111374634A (zh) * 2018-12-27 2020-07-07 北京光华纺织集团有限公司 一种预防婴儿窒息的检测方法及婴儿被
CN212180729U (zh) * 2020-03-27 2020-12-18 无锡市远通气体有限公司 一种干冰生产车间气体浓度监测警报装置
CN212723705U (zh) * 2020-08-19 2021-03-16 西藏大学 一种高原供氧监测控制装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636541B (zh) * 2012-03-19 2015-10-21 深圳派成铝业科技有限公司 一种氧浓度监测控制装置
CN103884780B (zh) * 2014-04-04 2015-06-17 广东省宜华木业股份有限公司 家具油漆车间voc浓度的建模和预测方法
CN205049450U (zh) * 2015-09-25 2016-02-24 宋卓雄 一种适用于工厂车间的粉尘监控系统
CN206573551U (zh) * 2017-03-07 2017-10-20 王天明 一种居室缺氧含量监测与缺氧报警仪
CN107045313A (zh) * 2017-04-25 2017-08-15 无为皖江粮食机械有限公司 一种面粉加工安全监控系统和方法
CN107844136A (zh) * 2017-10-31 2018-03-27 四川和智创展企业管理咨询有限公司 一种氧气和二氧化碳含量调节设备
CN109584502A (zh) * 2018-11-13 2019-04-05 武汉科技大学 一种车内生命体智能安全监测报警装置及方法
CN109697824A (zh) * 2018-12-28 2019-04-30 广东菲柯特电子科技有限公司 一种具有氧气含量检测功能的报警系统
CN211235758U (zh) * 2019-12-06 2020-08-11 广州吉好食品有限公司 一种含氧量在线监测装置
CN212483514U (zh) * 2020-05-20 2021-02-05 昆山热映光电有限公司 报警类二氧化碳、氧气多测点检测仪
CN112863142A (zh) * 2021-02-25 2021-05-28 上海克故消防设备有限公司 用于公共场所人员聚集空间的氧气报警器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113709A1 (en) * 2003-11-24 2005-05-26 Titanium Ventures Inc. Diagnostic system and methods for detecting disorders in the respiratory control chemoreceptors
CN102848999A (zh) * 2012-09-18 2013-01-02 浙江吉利汽车研究院有限公司杭州分公司 一种车内氧含量智能监测控制方法和装置
CN107402532A (zh) * 2017-06-23 2017-11-28 深圳市盛路物联通讯技术有限公司 一种基于物联网车间环境监测方法和系统
CN111374634A (zh) * 2018-12-27 2020-07-07 北京光华纺织集团有限公司 一种预防婴儿窒息的检测方法及婴儿被
CN212180729U (zh) * 2020-03-27 2020-12-18 无锡市远通气体有限公司 一种干冰生产车间气体浓度监测警报装置
CN212723705U (zh) * 2020-08-19 2021-03-16 西藏大学 一种高原供氧监测控制装置

Also Published As

Publication number Publication date
CN114047297A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN104360677B (zh) 一种卷烟加工过程质量评价与诊断方法
CN115077627B (zh) 一种多融合环境数据监管方法及监管系统
CN110674001B (zh) 一种服务器、基于服务器的温度告警方法及系统
CN108956875A (zh) 一种基于物联网的实验室安全监测系统及方法
CN112218261A (zh) 一种工厂危险气体智能监测系统
CN116105802A (zh) 一种基于物联网的地下设施安全监测预警方法
WO2023087339A1 (zh) 车间含氧监控方法及装置
CN114137302B (zh) 一种电能计量器具检定全过程监控系统
CN107093568B (zh) 一种晶元在线监测方法及装置
CN117035564B (zh) 一种适用于工程监理的施工质量监管系统
KR20110085470A (ko) 발전용수 수질측정의 제어 및 감시용 컨트롤러를 이용한 통합형 수질측정 시스템
CN116517862B (zh) 一种矿井通风机异常诊断系统
GB2614967A (en) Gas detection system and detection method
CN112782504A (zh) 一种通风冷却的环网柜故障诊断方法
CN115307380A (zh) 一种工业制冷设备运行在线监测调控管理系统
CN108956888B (zh) 一种智能化工控设备湿度异常的监控方法
US11566967B2 (en) Abnormality detection device and abnormality detection method
CN113552853A (zh) 一种化工系统多工况的报警管理方法及装置
CN111948105A (zh) 一种轧机粉尘检测系统及方法
CN116448174B (zh) 用于洁净生产车间环境在线监测系统
CN116597327B (zh) 基于无人机的水利设施隐患排查系统
CN117152926A (zh) 基于数据分析的自动压力检测预警系统
CN111271981B (zh) 一种冶金炉温度监控方法及监控系统
CN116736817B (zh) 用于亲水银纤维敷料生产加工的智能控制方法
CN117191130A (zh) 一种多场景在线温湿度监控方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964488

Country of ref document: EP

Kind code of ref document: A1