WO2023085580A1 - 연성인쇄회로기판 제조방법 - Google Patents

연성인쇄회로기판 제조방법 Download PDF

Info

Publication number
WO2023085580A1
WO2023085580A1 PCT/KR2022/013753 KR2022013753W WO2023085580A1 WO 2023085580 A1 WO2023085580 A1 WO 2023085580A1 KR 2022013753 W KR2022013753 W KR 2022013753W WO 2023085580 A1 WO2023085580 A1 WO 2023085580A1
Authority
WO
WIPO (PCT)
Prior art keywords
coverlay film
coverlay
base
laser
film
Prior art date
Application number
PCT/KR2022/013753
Other languages
English (en)
French (fr)
Inventor
엄태승
배동석
Original Assignee
주식회사 이든
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이든 filed Critical 주식회사 이든
Publication of WO2023085580A1 publication Critical patent/WO2023085580A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a method for manufacturing a flexible printed circuit board in which an unformed coverlay film is attached to one side or both sides of a base (FCCL) and then a coverlay pattern is formed on the coverlay film using a laser.
  • FPCB flexible printed circuit boards
  • FPCBs are divided into three types according to the number of coverlays.
  • Single type combining one coverlay to the upper or lower part of the base
  • double type combining coverlays to the upper and lower parts of the base, respectively
  • multi-layers in which a plurality of coverlays and bases are combined Multi
  • FCCL supplied in a roll-to-roll method is cut into a set size, and on one or both sides of the FCCL as described above, a sheet cut to a size corresponding to the cut FCCL )-shaped coverlay film was laminated using a hot press. At this time, a circuit pattern is formed on the FCCL before the coverlay film is laminated, and a pattern hole corresponding to the circuit pattern of the FCCL is similarly formed on the coverlay film before the coverlay film is laminated.
  • FCCL and coverlay film raw materials are processed separately in each process, cumulative tolerances occur when contacting each other. Specifically, during the FCCL raw material process, that is, when forming a circuit pattern by via hole processing, exposure, etching, etc., tolerance due to FCCL shrinkage occurs.
  • processing tolerances occur during the coverlay film punching process.
  • the tolerances include numerical tolerances in mold manufacturing and tolerances in the punching process.
  • deformation (shrinkage) of the coverlay film occurs due to removal of the release paper when the cut-out coverlay film is tentatively attached.
  • a release paper is pre-attached to one side of the coverlay film so as to be removed when necessary.
  • the coverlay film shrinks to a certain extent or more.
  • adhesion tolerances occur when FCCL and coverlay film are tentatively attached. Specifically, an adhesion tolerance of approximately 0.1 mm to 0.2 mm occurs depending on the size of FCCL and coverlay film in the form of a sheet (based on 500 X 500 mm), and as the product size increases, this adhesion tolerance may increase proportionally.
  • EVs electric vehicles, etc.
  • FPCBs are also in the limelight as electric components for EVs by expanding their use range.
  • the reality is that the application of FPCB to cable sensors applied to secondary battery modules of EVs is increasing.
  • the FPCB applied to the cable sensors of the secondary battery module requires a relatively long length size compared to the FPCB applied to the personal mobile device, and the current FPCB manufacturing technology has a long In manufacturing FPCBs of length size, there is a problem in that it is difficult to respond flexibly, and in some cases, manufacturing is impossible.
  • the present invention has been made to solve the above-mentioned conventional problems, and in a state where the base and the unformed coverlay film are laminated, the coverlay film is irradiated with laser to form a pattern so that the circuit pattern previously formed on the base is exposed.
  • the present invention suppresses the occurrence of tolerances between the base and the coverlay film, so that a flexible printed circuit board having a longer length size (eg, 1 meter or more) than a flexible printed circuit board applied to a mobile terminal, etc. is stable and high quality
  • a flexible printed circuit board having a longer length size eg, 1 meter or more
  • a flexible printed circuit board applied to a mobile terminal, etc. is stable and high quality
  • Another object is to provide a method for manufacturing a flexible printed circuit board that can be manufactured as.
  • the step (d) may be performed by exposing the circuit pattern by radiating a laser beam toward the coverlay film through laser processing units provided on one side or both sides of the base.
  • step (d) Based on a state in which first and second copper foil layers are laminated on both sides of the insulating film layer, and first and second circuit patterns are formed on the first and second copper foil layers, respectively, in step (d), the A first coverlay pattern provided on the upper coverlay film on the upper side of the base is formed to correspond to the first circuit pattern, and a second coverlay pattern provided on the lower coverlay film on the lower side of the base is formed to correspond to the second circuit pattern. It can be formed to correspond with the pattern.
  • the base and the coverlay film may be supplied through a roll-to-roll method, respectively.
  • the laser may be an ultra high frequency UV laser.
  • laser patterning of the upper and lower cover-lay films may be performed sequentially.
  • the laser processing unit may include a laser irradiation nozzle for irradiating a laser toward the coverlay film; a nozzle moving unit for moving the laser irradiation nozzle along xy directions corresponding to left and right and up and down directions of the coverlay film; And when the laser irradiation nozzle and the nozzle moving unit complete the laser patterning operation on the upper coverlay film by inverting the laser irradiation assembly in which the laser irradiation nozzle and the nozzle moving unit are combined up and down by 180 degrees, the laser beam on the lower coverlay film It may include a vertical inversion unit to perform the patterning operation.
  • the step (d) may be performed by applying a laser direct ablation (LDTA) method using a microwave UV laser.
  • LDTA laser direct ablation
  • a carbide removal step of removing carbides generated during the step (d) may be further included.
  • a chemical based on permanganate may be sprayed toward the adhesive body while continuously transferring the adhesive body of the base and the coverlay film to be removed.
  • Steps (d) and (e) may be continuously performed in one roll-to-roll process.
  • a coverlay pattern corresponding to the circuit pattern is formed on the coverlay film. This eliminates the need for a separate mold and punching process for processing the upper and lower coverlay films, as well as the processing tolerances and attachment tolerances of the coverlay film that may occur in the process of attaching the coverlay film to the base and the cover. Additional tolerances such as shrinkage tolerances that occur when the release paper is removed from the ray film do not occur.
  • first and second coverlay patterns using a microwave UV laser, as well as various first and second coverlay patterns for single-sided/double-sided fpcb land exposed/unexposed structures. formation is possible.
  • the laser patterning operation of the upper coverlay film and the lower coverlay film is performed simultaneously, the laser patterning operation on both sides of the adhesive body can be performed more quickly, thereby reducing the overall process time and increasing productivity.
  • the laser processing unit to include a laser injection nozzle, a nozzle moving unit, and a vertical inversion unit, it is possible to perform coverlay patterning on the upper and lower surfaces of the attachment without additionally installing the laser irradiation nozzle and nozzle moving unit, thereby reducing manufacturing costs. There are benefits to savings.
  • the base and the coverlay film may not only be transported in a roll-to-roll manner, but also may be attached in a sheet form.
  • FIG. 1 is a flow chart showing a method for manufacturing a flexible printed circuit board according to an embodiment of the present invention
  • FIGS. 2 and 3 are views showing a process of manufacturing a flexible printed circuit board through a method for manufacturing a flexible printed circuit board according to an embodiment of the present invention
  • FIG. 4 is a view showing supply and attachment states of a base and a coverlay film in a method for manufacturing a flexible printed circuit board according to an embodiment of the present invention
  • FIG. 5 is a view showing another example of FIG. 4;
  • FIG. 6 is a view showing that a coverlay patterning operation and a carbide removal operation are performed in one roll-to-roll process while an attachment is transferred in a roll-to-roll method in a method for manufacturing a flexible printed circuit board according to an embodiment of the present invention
  • FIG. 7 is a view showing a laser processing unit for performing a coverlay patterning operation on an attachment in a flexible printed circuit board manufacturing method according to an embodiment of the present invention
  • FIG. 8 is a view showing a modified example of FIG. 7;
  • FIG. 9 is a view showing a cross section of a single-sided flexible printed circuit board.
  • a laser is irradiated on the coverlay film to form a pattern to expose a pre-formed circuit pattern on the base. , it is possible to secure stable quality by suppressing the occurrence of tolerance between the base and the coverlay film.
  • the flexible printed circuit board manufacturing method includes processing and supplying a flexible copper clad laminated film (S100), supplying a coverlay film (S200), and attaching a coverlay film (S300). ), a coverlay pattern forming step (S400) and a carbide removal step (S500).
  • the flexible copper clad laminated film processing and supplying step (S100) is a step of supplying the flexible copper clad laminated film, that is, FCCL (Flexible Copper Clad Laminate) to a subsequent process while forming a circuit pattern on one or both surfaces.
  • FCCL Flexible Copper Clad Laminate
  • a circuit pattern formed on one side or both sides of the FCCL is referred to as a base 100, and a case in which circuit patterns are formed on both sides of the FCCL will be described and illustrated.
  • the steps of attaching the coverlay film and forming the coverlay pattern proceed in the same process as described below.
  • the flexible copper clad laminated film processing and supply step (S100) includes a flexible copper clad laminated film preparation step (S110), a through hole forming step (S120), and a copper plating step. (S130) and the circuit pattern forming step (S140) are performed sequentially.
  • a flexible copper clad laminate film in which the copper foil layer 120 is laminated on one or both surfaces of the insulating film layer 110 is prepared (S110). Thereafter, through holes are formed in the flexible copper clad laminated film through CNC processing or laser processing (S120). Thereafter, copper plating is performed so that both surfaces of the flexible copper clad laminate are entirely conductive (S130). Next, a photosensitive dry film is laminated on both sides of the flexible copper clad laminated film and stacked, and then sequentially exposed, developed, and etched to form a circuit pattern 121 (S140).
  • the flexible copper clad laminated film having circuit patterns 121 formed on both surfaces thereof is referred to as a base 100.
  • the through-hole forming step (S120), the copper plating step (S130), and the circuit pattern forming step (S140) may each be performed on a separate roll-to-roll process.
  • the unformed coverlay film 200 is continuously supplied to both sides (or one side) of the base 100. do.
  • the coverlay film 200 may be supplied through a roll to roll method, and as will be described later, the base 100 and the coverlay film 200 are rolled They can be attached to each other in the process of two-roll transfer.
  • the above-described 'unformed coverlay film' refers to a coverlay film that is not molded for exposure of the circuit pattern 121, that is, in a state in which no hole processing is performed.
  • the base 100 and the coverlay film 200 are tack-attached and laminated (300).
  • step S300 may attach the base 100 and the unformed coverlay film 200 through, for example, a roll lamination method.
  • the base 100 and the unformed coverlay film 200 are attached while passing between a pair of adjacently arranged rollers, and a constant temperature provided by the rollers in addition to physical pressure by the rollers. They can be stably attached to each other by the above heat.
  • the base 100 and the unformed coverlay film 200 attached through roll lamination can be laminated through a hot press process.
  • the upper coverlay film 210 and the lower coverlay film 220 are attached to both sides of the base 100 on which the circuit pattern 121 is formed, respectively, and then, as will be described later, the upper coverlay film By performing a hole processing operation for exposing the circuit pattern 121 in the 210 and the lower coverlay film 220, the following advantages are obtained.
  • the upper coverlay film 210 and the lower coverlay film 220 are attached to the base 100 without pre-processing, the upper coverlay film 210 and the lower coverlay film 220 are processed. There is no need for a separate mold and punching process for
  • coverlay that may occur in the process of attaching the coverlay film to the base Additional tolerances such as film processing tolerances, adhesion tolerances, and shrinkage tolerances that occur when the coverlay film release paper is removed do not occur.
  • the base 100 and the coverlay film 200 are bonded by roll lamination while being transported in a roll-to-roll method, but it is not limited thereto, and as shown in FIG. 5, the base 100 and the unformed coverlay Of course, after cutting the film 200 to an appropriate size, it is possible to laminate each other using tack welding and hot pressing.
  • a coverlay pattern 230 is formed on the upper and lower coverlay films 210 and 220 to correspond to the circuit pattern 121 previously formed on the copper foil layer 120. to form (S400).
  • first and second copper foil layers 123 and 125 are laminated on both sides of the insulating film layer 110, respectively, and the first and second copper foil layers 123 and 125 are respectively Based on the double-sided fpcb on which the first and second circuit patterns 127 and 129 are formed, the first and second circuit patterns 127 and 129 are at least partially exposed on the upper coverlay film 210 on the upper side of the base 100.
  • One coverlay pattern 232 is formed to correspond to the first circuit pattern 127
  • the second coverlay pattern 234 provided on the lower coverlay film 220 below the base 100 is the second circuit pattern. It is formed to correspond to (129).
  • step S400 the laser processing unit 500 provided on both sides (or one side) of the base 100 irradiates the laser toward the coverlay film 200, and the first and second circuits This is done by allowing the patterns 127 and 129 to be exposed.
  • step S400 is a LDCA (Laser Direct Cover-lay Patterned Ablation) process, in which the attachment (400, attachment of base and upper and lower coverlay films) attached in step S300 is transferred through a roll-to-roll method. and the attachment body on which the first and second coverlay patterns 232 and 234 are formed are transferred to a subsequent process (carbide removal process) in a continuous roll-to-roll manner.
  • LDCA Laser Direct Cover-lay Patterned Ablation
  • the attachment 400 is continuously transported, but temporarily stopped to form a coverlay pattern.
  • a coverlay pattern formation work is performed through laser irradiation in a stopped state, and then a separate roll It is not a two-roll process, but continuous work is performed through one roll-to-roll process up to the carbide removal process.
  • the laser can be applied as an ultra high frequency UV laser, and finer and more precise first and second coverlay patterns 232 and 234 can be formed through this ultra high frequency UV laser.
  • first and second coverlay patterns 232 and 234 it is possible to form various first and second coverlay patterns 232 and 234 for a structure in which a land is exposed/unexposed of a single-sided/double-sided fpcb.
  • step S400 may proceed in two ways as follows.
  • the laser processing unit 500 includes a laser irradiation nozzle 510 and a nozzle moving unit 520.
  • At least one laser irradiation nozzle 510 may be provided to irradiate a laser, that is, a microwave UV laser, toward the upper and lower coverlay films 210 and 220 .
  • the laser generated from the laser oscillator (not shown) is transferred to the laser irradiation nozzle 510 through a separate supply path.
  • the nozzle moving unit 520 is provided to move the laser irradiation nozzle 510 along xy directions corresponding to left and right and up and down directions of the upper and lower coverlay films 210 and 220 . Therefore, the first and second circuit patterns formed on the first and second copper foil layers 123 and 125 are formed on the upper and lower coverlay films through the movement of the laser irradiation nozzle 510 according to the driving of the nozzle moving unit 520 and laser irradiation. First and second coverlay patterns 232 and 234 corresponding to ( 127 and 129 ) may be formed.
  • the nozzle moving unit 520 may include a linear reciprocating means such as a ball screw or an LM guide.
  • step S400 is the upper coverlay film 210 and the lower coverlay film 210 in a state in which the upper coverlay film 210 and the lower coverlay film 220 are attached to the upper and lower surfaces of the base 100, respectively. Laser patterning of the lower coverlay film 220 may be performed simultaneously.
  • separate laser processing units 500 are disposed in the upper and lower directions of the attachment 400 to which the base and the coverlay film are attached, respectively, and the upper and lower laser irradiation nozzles
  • a patterning operation may be performed by simultaneously irradiating a laser to the upper coverlay film 210 and the lower coverlay film 220 through 510 .
  • the laser patterning operation on both sides of the attachment 400 can be performed more rapidly, thereby shortening the overall process time and increasing productivity.
  • the upper coverlay film 210 and the lower coverlay film 210 are attached in a state where the upper coverlay film 210 and the lower coverlay film 220 are attached to the upper and lower surfaces of the base 100, respectively.
  • Laser patterning of the lower coverlay film 220 may be performed sequentially. For example, when the patterning of the upper coverlay film 210 is completed, the patterning of the next lower coverlay film 220 may proceed.
  • the processing unit 500 may be disposed on only one side without arranging each.
  • the laser processing unit 500 may further include a laser irradiation nozzle 510 and a vertical inversion unit 530 other than the nozzle moving unit 520 .
  • the vertical reversing unit 530 vertically inverts the laser irradiation assembly in which the laser irradiation nozzle 510 and the nozzle moving unit 520 are combined by 180 degrees, so that the laser irradiation nozzle 510 and the nozzle moving unit 520 are formed in the upper coverlay.
  • the laser patterning of the film 210 is completed, the laser patterning of the lower coverlay film 220 may be performed.
  • the vertical reversing unit 530 may include a substantially ring-shaped movable support (not shown) provided to surround the attachment 400 in a circumferential direction in a form orthogonal to the transport direction of the attachment 400, ,
  • the nozzle moving unit 520 may be coupled to be movable along a moving support (not shown). That is, since the nozzle moving unit 520 is provided to variably adjust the coupling position with respect to the movable support body (not shown), both sides of the upper and lower sides of the attachment body are provided without installing separate laser processing units 500 on both sides of the upper and lower sides of the attachment. It is possible to form a coverlay pattern of
  • the coverlay pattern 230 of the first type fpcb can be formed as shown in FIG. 9(a) through a UV laser in a general wavelength range, but shown in FIG. 9(b) through a UV laser in a general wavelength range.
  • the coverlay pattern 230 of the second type fpcb cannot be processed.
  • the present invention utilizes a UV laser in the ultrashort wavelength range to satisfy both the first type and the second type fpcb manufacturing, that is, to secure coverlay pattern processability for realizing the first type as well as the second type fpcb.
  • the present invention has a great advantage in that not only the first type but also the second type fpcb coverlay pattern can be implemented by applying a laser direct ablation (LDTA) method using a microwave UV laser.
  • LDTA laser direct ablation
  • the method for manufacturing a flexible printed circuit board according to an embodiment of the present invention further includes a carbide removal step ( S500 ) of removing carbide generated during step S400 .
  • first and second coverlay patterns 232 and 234 are formed through steps S500 and S400.
  • a chemical based on permanganate is sprayed toward the attachment through a nozzle to remove carbides remaining on the surface of the attachment, especially the circuit pattern surface of the copper foil layer. .
  • steps S400 and S500 may be continuously performed in one roll-to-roll process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

연성인쇄회로기판 제조방법이 개시된다. 본 발명의 연성인쇄회로기판 제조방법은, (a) 절연필름층의 일면 또는 양면에 동박층이 적층되고 상기 동박층에 회로패턴이 형성된 베이스를 연속적으로 공급하는 단계; (b) 상기 동박층이 적층된 상기 베이스의 일측 또는 양측으로 미성형된 커버레이필름을 연속적으로 공급하는 단계; (c) 상기 베이스와 커버레이필름을 가접 및 적층하는 단계; 및 (d) 상기 회로패턴과 대응하도록 상기 커버레이필름에 커버레이 패턴을 형성하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 의하면, 상부 커버레이필름과 하부 커버레이필름을 미리 가공하지 않은 상태로 베이스에 부착한 후 커버레이필름에 회로패턴과 대응하는 커버레이 패턴을 형성함으로써, 상부 커버레이필름과 하부 커버레이필름 가공을 위한 별도의 금형과 타발 공정이 필요하지 않을 뿐만 아니라 베이스에 대해 커버레이필름을 부착하는 과정에서 발생할 수 있는 커버레이필름 가공공차 및 부착공차, 커버레이필름의 이형지 제거시 발생하는 수축공차 등의 추가 공차가 발생하지 않는다.

Description

연성인쇄회로기판 제조방법
본 발명은 베이스(FCCL)의 일면 또는 양면에 미성형 커버레이필름을 부착한 후 레이저를 이용하여 커버레이필름에 커버레이 패턴을 형성하는 연성인쇄회로기판 제조방법에 관한 것이다.
전자제품이 소형화 및 경량화가 되면서 개발된 전자부품으로 작업성이 뛰어나고, 내열성 및 내약품성이 강하며, 열에 강하고 반복 굴곡에의 높은 내구성을 가지며, 고밀도 배선이 가능하고, 배선의 오류가 없고 조립이 양호하며 신뢰성이 높은 연성인쇄회로기판(FPCB)이 널리 적용되고 있는 현실이다. 구체적으로는 이러한 FPCB는 모든 전자제품의 핵심부품으로서 카메라, COMPUTER 및 주변기기, HAND PHONE, VIDEO & AUDIO기기, CAMCORDER. PRINTER, DVD, TFT LCD, 위성장비, 군사장비, 의료장비 등에서 널리 사용되고 있다.
이러한 FPCB는 커버레이의 개수에 따라 3가지 타입으로 나뉜다. 베이스의 상부 또는 하부에 커버레이 1개를 결합하는 단면(Single) 타입, 베이스의 상부 및 하부에 커버레이를 각각 결합하는 양면(Double)타입, 커버레이 및 베이스의 결합이 복수개로 적층되는 다층(Multi)타입이 있다.
종래에는 양면 또는 단면 타입의 FPCB를 제조함에 있어서, 롤투롤 방식으로 공급되는 FCCL를 설정된 사이즈로 절단하고, FCCL의 일면 또는 양면에 전술한 바와 같이 절단된 FCCL과 대응하는 사이즈로 재단된 시트(sheet) 형태의 커버레이필름을 핫 프레스를 이용하여 적층하는 과정을 거쳤다. 이때, 커버레이필름이 적층되기 전 FCCL에는 회로패턴이 형성되어 있으며, 적층 전 커버레이필름에는 마찬가지로 FCCL의 회로패턴과 대응하는 패턴 홀이 형성되어 있다.
그러나, 이러한 종래의 방식은 다음과 같은 단점 발생이 불가피하다.
첫째, 커버레이필름이 부착된 후 FCCL에 형성되어 있는 회로패턴의 노출을 위해 커버레이필름에 패턴 홀 가공을 위한 별도 금형 제작 및 가공(타발) 공정 진행이 필요하다.
둘째, FCCL과 커버레이필름 원자재가 각각의 공정으로 별도 가공되기 때문에 상호 가접시 누적 공차 발생한다. 구체적으로, FCCL 원자재 공정 진행 시, 즉 비아홀 가공, 노광, 에칭 등에 의한 회로패턴 형성시 FCCL 수축 발생에 의한 공차가 발생한다.
또한, 커버레이필름 타발 공정시 가공 공차가 발생한다. 상기 공차는 금형제작 수치공차와 타발 공정시의 공차를 포함한다.
또한, 타발된 커버레이필름 가접시 이형지 제거에 따른 커버레이필름의 변형(수축)이 발생한다. 구체적으로, 커버레이필름의 일면에는 필요시 제거하도록 이형지가 기부착되어 있는데 FCCL과의 가접을 위해 이형지를 제거할 때 커버레이필름이 일정이상 수축되는 현상이 발생한다.
또한, FCCL과 커버레이필름 가접시 부착 공차가 발생한다. 구체적으로, 시트 형태의 FCCL과 커버레이필름 사이즈(500 X 500㎜ 기준)에 따라 대략 0.1mm 내지 0.2mm의 부착 공차가 발생하고, 제품 사이즈가 증가할 수록 이러한 부착 공차는 비례적으로 증가할 수 밖에 없다.
부연하자면, 전세계적으로 이동수단에 대한 친환경 에너지 사용의 요구 증대로 인해 EV(전기차 등) 개발이 활발하게 이루어지고 있으며, 따라서 FPCB도 사용 범위를 넓혀 EV의 전장부품으로 각광을 받고 있다. 구체적으로, EV의 2차전지모듈에 적용되는 케이블 센서류에 FPCB의 적용이 증대되고 있는 현실이다. 이와 같이 2차전지모듈의 케이블 센서류에 적용되는 FPCB는 개인 모바일기기에 적용되는 FPCB에 비해 상대적으로 장(長) 길이 사이즈가 요구되는바, 현재의 FPCB 제조기술은 전술한 다양한 공차 발생으로 인해 장 길이 사이즈의 FPCB를 제조함에 있어 유연하게 대응하기 힘든 문제가 있을 뿐 아니라 심하게는 제작이 불가한 경우도 있다.
본 발명은 상술한 종래의 문제점을 해결하기 위하여 안출된 것으로서, 베이스와 미성형 커버레이필름이 적층완료된 상태에서 커버레이필름에 레이저를 조사하여 베이스에 기형성되어 있는 회로패턴이 노출되도록 패턴을 형성함으로써, 종래 베이스와 커버레이필름 간에 발생하는 다양한 공차(정렬 불량)를 억제하여 안정적인 품질 확보를 가져올 수 있는 연성인쇄회로기판 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 베이스와 커버레이필름간의 공차 발생을 억제하여 모바일 단말 등에 적용되는 연성인쇄회로기판보다 장(長) 길이 사이즈(예를 들어 1미터 이상)를 갖는 연성인쇄회로기판을 안정적이면서 고품질로 제조할 수 있는 연성인쇄회로기판 제조방법을 제공하는 것을 다른 목적으로 한다.
본 발명의 일 측면에 따르면, (a) 절연필름층의 일면 또는 양면에 동박층이 적층되고 상기 동박층에 회로패턴이 형성된 베이스를 연속적으로 공급하는 단계; (b) 상기 동박층이 적층된 상기 베이스의 일측 또는 양측으로 미성형된 커버레이필름을 연속적으로 공급하는 단계; (c) 상기 베이스와 커버레이필름을 가접 및 적층하는 단계; 및 (d) 상기 회로패턴과 대응하도록 상기 커버레이필름에 커버레이 패턴을 형성하는 단계를 포함하는 연성인쇄회로기판 제조방법이 제공된다.
상기 (d)단계는, 상기 베이스를 기준으로 일측 또는 양측에 마련된 레이저 가공부가 상기 커버레이필름을 향해 레이저를 조사하여 상기 회로패턴이 노출되도록 함으로써 이루어질 수 있다.
상기 절연필름층의 양면에 각각 제1 및 제2 동박층이 적층되고 상기 제1 및 제2 동박층에 각각 제1 및 제2 회로패턴이 형성된 상태를 기준으로, 상기 (d)단계에서, 상기 베이스의 상측의 상부 커버레이필름에 마련되는 제1 커버레이 패턴은 상기 제1 회로패턴과 대응하도록 형성되고, 상기 베이스의 하측의 하부 커버레이필름에 마련되는 제2 커버레이 패턴은 상기 제2 회로패턴과 대응하도록 형성될 수 있다.
상기 (a)단계 및 상기 (b)단계에서 상기 베이스와 상기 커버레이필름은 각각 롤투롤 방식을 통해 공급될 수 있다.
상기 레이저는 극초단파 UV 레이저(Ultra high frequency UV laser)일 수 있다.
상기 베이스의 상하 양면에 상부 커버레이필름과 하부 커버레이필름이 각각 부착된 상태에서, 상기 상부 커버레이필름과 하부 커버레이필름으로의 레이저 패터닝작업은 동시에 이루어질 수 있다.
상기 베이스의 상하 양면에 상부 커버레이필름과 하부 커버레이필름이 각각 부착된 상태에서, 상기 상부 커버레이필름과 하부 커버레이필름으로의 레이저 패터닝작업은 순차적으로 이루어질 수 있다.
상기 레이저 가공부는, 상기 커버레이필름을 향해 레이저를 조사하는 레이저 조사노즐; 상기 레이저 조사노즐을 상기 커버레이필름의 좌우 및 상하방향에 대응하는 xy방향을 따라 이동시키는 노즐 이동부; 및 상기 레이저 조사노즐과 상기 노즐 이동부가 결합된 레이저 조사조립체를 180도 상하 반전하여 상기 레이저 조사노즐과 노즐 이동부가 상기 상부 커버레이필름으로의 레이저 패터닝 작업을 완료하면 상기 하부 커버레이필름으로의 레이저 패터닝작업을 실시하도록 하는 상하 반전부를 포함할 수 있다.
상기 (d)단계는 극초단파 UV 레이저를 이용한 LDTA(laser direct ablation) 공법을 적용하여 이루어질 수 있다.
(e) 상기 (d)단계가 진행되는 동안 발생한 탄화물을 제거하는 탄화물 제거단계를 더 포함할 수 있다.
상기 탄화물 제거단계는, 상기 베이스와 커버레이필름의 부착체를 연속적으로 이송시키면서 과망간산염(Permanganate)을 기재로한 약품을 상기 부착체를 향해 분사하여 제거할 수 있다.
상기 (d)단계와 (e)단계는 하나의 롤투롤 공정상에서 연속적으로 진행될 수 있다.
상기에서 설명한 본 발명의 연성인쇄회로기판 제조방법에 의하면, 상부 커버레이필름과 하부 커버레이필름을 미리 가공하지 않은 상태로 베이스에 부착한 후 커버레이필름에 회로패턴과 대응하는 커버레이 패턴을 형성함으로써, 상부 커버레이필름과 하부 커버레이필름 가공을 위한 별도의 금형과 타발 공정이 필요하지 않을 뿐만 아니라 베이스에 대해 커버레이필름을 부착하는 과정에서 발생할 수 있는 커버레이필름 가공공차 및 부착공차, 커버레이필름의 이형지 제거시 발생하는 수축공차 등의 추가 공차가 발생하지 않는다.
덧붙이자면, 커버레이필름을 가공하기 위한 별도 금형 제작 및 가공(타발) 공정이 필요없으며, FCCL과 커버레이필름 원자재가 각각의 공정으로 별도 가공되지 않기 때문에 커버레이 가공 공차, 부착 공차, 이형지제거 시 발생하는 수축문제 등 추가 공차가 발생되지 않는다.
또한, 극초단파 UV 레이저를 통해 더욱 미세하고 정밀한 제1 및 제2 커버레이 패턴 형성작업이 가능할 뿐만 아니라, 단면/양면 fpcb의 랜드(land) 노출/미노출 구조를 위한 다양한 제1 및 제2 커버레이 패턴 형성작업이 가능하다.
또한, 베이스와 커버레이필름간의 공차 발생이 없으므로, 연성인쇄회로기판의 좌우 및 상하 사이즈가 증가하는 장(長) 길이 사이즈 기판을 제조함에 있어 더욱 유리한 이점이 있다.
또한, 상부 커버레이필름과 하부 커버레이필름으로의 레이저 패터닝작업이 동시에 이루어짐으로써, 부착체 양측으로의 레이저 패터닝 작업을 한층 신속하게 실시하여 전체적으로 공정 소요시간을 단축하여 생산성을 증대시킬 수 있다.
또한, 레이저 가공부를 레이저 분사노즐, 노즐 이동부 및 상하 반전부를 포함하도록 구성함으로써, 레이저 조사노즐과 노즐 이동부를 추가적으로 설치하지 않은 상태에서 부착체의 상하면에 커버레이 패터닝 작업을 실시할 수 있으므로 제조비용 절감의 이점이 있다.
또한, 베이스와 커버레이필름을 부착함에 있어, 베이스와 커버레이필름을 각각 롤투롤 방식으로 이송하면서 진행할 수 있을뿐만 아니라 각각 시트(sheet) 형태로 부착 공정을 진행할 수도 있다.
또한, 제1 및 제2 커버레이 패턴이 형성된 베이스와 커버레이필름의 부착체가 탄화물 제거가 이루어지는 공정까지 하나의 롤루롤 방식으로 이송되는바, 연성인쇄회로기판의 제조에 소요되는 단위공정 시간을 획기적으로 단축하여 전체적인 생산성을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법을 나타내는 순서도,
도 2 및 도 3은 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법을 통해 연성인쇄회로기판이 제조되는 과정을 나타내는 도면,
도 4는 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법에서 베이스와 커버레이필름의 공급 및 부착상태를 나타내는 도면,
도 5는 도 4의 다른 예를 나타내는 도면,
도 6은 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법에서 부착체가 롤투롤 방식으로 이송되면서 커버레이 패터닝 작업과 탄화물 제거작업이 하나의 롤투롤 공정에서 이루어지는 것을 나타내는 도면,
도 7은 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법에서 부착체에 커버레이 패터닝 작업을 실시하기 위한 레이저 가공부를 나타내는 도면,
도 8은 도 7의 변형예를 나타내는 도면,
도 9는 단면 연성인쇄회로기판의 단면을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
본 발명의 바람직한 실시예에 따른 연성인쇄회로기판 제조방법은 베이스와 미성형 커버레이필름이 적층 완료된 상태에서 커버레이필름에 레이저를 조사하여 베이스에 기형성되어 있는 회로패턴이 노출되도록 패턴을 형성함으로써, 베이스와 커버레이필름 간의 공차 발생을 억제하여 안정적인 품질 확보를 가져올 수 있다.
이하, 실시예를 참조하여 본 발명을 상세히 설명한다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법은 연성동박적층필름 가공 및 공급단계(S100), 커버레이필름 공급단계(S200), 커버레이필름 부착단계(S300), 커버레이 패턴 형성단계(S400) 및 탄화물 제거단계(S500)를 포함한다.
먼저, 연성동박적층필름 가공 및 공급단계(S100)는 연성동박적층필름, 즉 FCCL(Flexible Copper Clad Lami nate)의 일면 또는 양면에 회로패턴을 형성하면서 후공정으로 공급하는 단계이다. 이하에서는 편의를 위해 FCCL의 일면 또는 양면에 회로패턴이 형성된 것을 베이스(100)라 칭하고, 또한 FCCL의 양면에 회로패턴이 형성되는 경우를 기준으로 설명 및 도시하기로 한다. 물론, FCCL의 일면에만 회로패턴이 형성되는 경우에도 커버레이필름 부착과 커버레이 패턴 형성단계는 후술하는 바와 동일한 과정으로 진행됨을 밝혀둔다.
도 1 및 도 2에 도시한 바와 같이, 본 발명의 실시예에서, 연성동박적층필름 가공 및 공급단계(S100)는 연성동박적층필름 준비단계(S110), 관통홀 형성단계(S120), 동도금 단계(S130) 및 회로패턴 형성단계(S140)가 순차적으로 진행되어 이루어진다.
전술한 단계들에 대해 간략하게 설명하면 다음과 같다.
먼저, 도 2에 도시한 바와 같이, 절연필름층(110, 폴리이미드 수지(PI))의 일면 또는 양면에 동박층(120)이 적층된 연성동박적층필름을 준비한다(S110). 이후, CNC 가공 또는 레이저 가공을 통해 연성동박적층필름에 관통홀을 형성한다(S120). 이후, 동 도금을 실시하여 연성동박적층필름의 양면이 전체적으로 도통되도록 한다(S130). 다음, 연성동박적층필름의 양면에 감광성 드라이 필름을 라미네이팅하여 적층한 후 순차적으로 노광, 현상, 에칭하여 회로패턴(121)을 형성한다(S140).
도 2에 도시한 바와 같이, 본 발명에서는 양면에 각각 회로패턴(121)이 형성된 연성동박적층필름을 베이스(100)라 명하기로 한다. 본 발명의 실시예에서, 관통홀 형성단계(S120), 동도금 단계(S130) 및 회로패턴 형성단계(S140)는 각각 별도의 롤투롤(Roll to Roll) 공정상에서 진행될 수 있다.
다음, 도 1, 도 3 및 도 4에 도시한 바와 같이, 커버레이필름 공급단계(S200)는 베이스(100)의 양측면(또는 일측면)으로 미성형된 커버레이필름(200)을 연속적으로 공급한다.
도 4에 도시한 바와 같이, S200 단계에서 커버레이필름(200)은 롤투롤(Roll to Roll) 방식을 통해 공급될 수 있고, 후술하는 바와 같이 베이스(100)와 커버레이필름(200)은 롤투롤 이송되는 과정에 상호 부착될 수 있다.
본 발명의 실시예에서, 전술한 '미성형된 커버레이필름'이라 함은 회로패턴(121)의 노출을 위해 성형되지 않은, 즉 어떠한 홀 가공도 이루어지지 않은 상태의 커버레이필름을 의미한다.
다음, 도 1 및 도 4에 도시한 바와 같이, 베이스(100)와 커버레이필름(200)을 가접 및 적층한다(300).
본 발명의 실시예에서, S300 단계는 베이스(100)와 미성형된 커버레이필름(200)을 예를 들면 롤 라미네이션(roll lamination) 방식을 통해 부착할 수 있다. 롤 라미네이션 부착방식은 인접하게 배치된 한 쌍의 롤러 사이를 베이스(100)와 미성형된 커버레이필름(200)이 통과하면서 부착시키는 것으로서, 롤러에 의한 물리적인 가압과 더불어 롤러에서 제공되는 일정 온도이상의 열에 의해 안정적으로 상호간 부착될 수 있다. 롤 라미네이션을 통해 부착된 베이스(100)와 미성형 커버레이필름(200)은 핫 프레스 공정을 통해 적층 가능하다.
즉, 본 발명은 회로패턴(121)이 형성되어 있는 베이스(100)의 양면에 상부 커버레이필름(210)과 하부 커버레이필름(220)을 각각 부착하고, 이후 후술하는 바와 같이 상부 커버레이필름(210)과 하부 커버레이필름(220)에 회로패턴(121)의 노출을 위한 홀 가공작업을 진행함으로써, 다음과 같은 이점이 있다.
구체적으로, 상부 커버레이필름(210)과 하부 커버레이필름(220)을 미리 가공하지 않은 상태로 베이스(100)에 부착함에 따라 상부 커버레이필름(210)과 하부 커버레이필름(220) 가공을 위한 별도의 금형과 타발 공정이 필요하지 않게 된다.
또한, 베이스(100)와 상부 커버레이필름(210), 하부 커버레이필름(220) 원자재가 각각의 공정으로 별도 가공되지 않기 때문에, 베이스에 대해 커버레이필름을 부착하는 과정에서 발생할 수 있는 커버레이필름 가공공차 및 부착공차, 커버레이필름의 이형지 제거시 발생하는 수축공차 등의 추가 공차가 발생하지 않는다.
전술한 바와 같이, 베이스(100)와 커버레이필름(200)간의 공차 발생이 없으므로 이러한 경우 연성인쇄회로기판의 좌우 및 상하 사이즈가 증가하는 장(長) 길이 사이즈(예를 들어 1미터 이상) 기판을 제조함에 있어 더욱 유리한 이점이 있다.
이상, 베이스(100)와 커버레이필름(200)이 롤투롤 방식으로 이송되면서 롤 라미네이션 가접되는 것을 설명하였지만, 이에 한정되지 않으며 도 5에 도시한 바와 같이, 베이스(100)와 미성형된 커버레이필름(200)을 적절한 사이즈로 절단한 후 상호간을 가접 및 핫 프레스를 이용하여 적층할 수 있음은 물론이다.
다음, 도 1, 도 3 및 도 6에 도시한 바와 같이, 동박층(120)에 기형성되어 있는 회로패턴(121)과 대응하도록 상부 및 하부 커버레이필름(210,220)에 커버레이 패턴(230)을 형성한다(S400).
덧붙이자면, 도 3 및 도 6에 도시한 바와 같이, 절연필름층(110)의 양면에 각각 제1 및 제2 동박층(123,125)이 적층되고 제1 및 제2 동박층(123,125)에 각각 제1 및 제2 회로패턴(127,129)이 형성된 양면 fpcb를 기준으로, 제1 및 제2 회로패턴(127,129)이 적어도 부분적으로 노출되도록 베이스(100) 상측의 상부 커버레이필름(210)에 마련되는 제1 커버레이 패턴(232)은 제1 회로패턴(127)과 대응하도록 형성되고, 베이스(100) 하측의 하부 커버레이필름(220)에 마련되는 제2 커버레이 패턴(234)은 제2 회로패턴(129)과 대응하도록 형성된다.
도 7에 도시한 바와 같이, S400 단계는 베이스(100)를 기준으로 양측(또는 일측)에 마련된 레이저 가공부(500)가 커버레이필름(200)을 향해 레이저를 조사하여 제1 및 제2 회로패턴(127,129)이 노출되도록 함으로써 이루어진다.
여기서, S400 단계는 LDCA(Laser Direct Cover-lay Patterned Ablation) 공정으로서, S300 단계에서 부착된 부착체(400, 베이스와 상부 및 하부 커버레이필름의 부착체)가 롤투롤 방식을 통해 이송되는 상태에서 이루어지고, 제1 및 제2 커버레이 패턴(232,234)이 형성된 부착체는 연속적인 하나의 롤투롤 방식으로 후공정(탄화물 제거공정)으로 이송된다.
부연하자면, 상기 부착체(400)가 연속적으로 이송되다가 커버레이 패턴 형성을 위해서는 일시적으로 정지한 상태가 되며, 이와 같이 정지 상태에서 레이저 조사를 통한 커버레이 패턴 형성작업이 이루어지고, 이후 별도의 롤투롤 공정이 아니라 탄화물 제거공정까지 하나의 롤투롤 공정을 통해 연속적인 작업이 이루어진다.
본 발명의 실시예에서, 레이저는 극초단파 UV 레이저(Ultra high frequency UV laser)로 적용 가능하며, 이러한 극초단파 UV 레이저를 통해 더욱 미세하고 정밀한 제1 및 제2 커버레이 패턴(232,234) 형성작업이 가능할 뿐만 아니라, 후술하는 바와 같이 단면/양면 fpcb의 랜드(land) 노출/미노출 구조를 위한 다양한 제1 및 제2 커버레이 패턴(232,234) 형성작업이 가능하다.
본 발명의 실시예에서, S400 단계는 다음과 같이 2가지의 방법으로 진행될 수 있다.
공정 진행 방법을 설명하기 전에, 레이저 가공부(500)에 대해 구체적으로 설명하면, 도 7에 도시한 바와 같이, 레이저 가공부(500)는 레이저 조사노즐(510), 노즐 이동부(520)를 포함한다.
레이저 조사노즐(510)은 상부 및 하부 커버레이필름(210,220)을 향해 레이저, 즉 극초단파 UV 레이저를 조사하도록 적어도 하나가 마련될 수 있다. 레이저 발진기(미도시)로부터 생성된 레이저는 별도의 공급경로를 통해 레이저 조사노즐(510)로 전달된다.
노즐 이동부(520)는 레이저 조사노즐(510)을 상부 및 하부 커버레이필름(210,220)의 좌우 및 상하방향에 대응하는 xy방향을 따라 이동시키도록 마련된다. 따라서, 노즐 이동부(520) 구동에 따른 레이저 조사노즐(510)의 이동과 레이저 조사를 통해 상부 및 하부 커버레이필름에는 제1 및 제2 동박층(123,125)에 형성된 제1 및 제2 회로패턴(127,129)과 대응하는 제1 및 제2 커버레이 패턴(232,234)이 형성될 수 있다. 이러한 노즐 이동부(520)는 볼 스크루, LM 가이드 등 직선 왕복이동수단을 포함할 수 있다.
본 발명의 실시예에서, 첫째, S400 단계는 베이스(100)의 상하 양면에 상부 커버레이필름(210)과 하부 커버레이필름(220)이 각각 부착된 상태에서, 상부 커버레이필름(210)과 하부 커버레이필름(220)으로의 레이저 패터닝작업이 동시에 이루어질 수 있다.
이를 위해, 도 7에 도시한 바와 같이, 베이스와 커버레이필름이 부착된 부착체(400)의 상측과 하측 방향에 각각 별도의 레이저 가공부(500)를 배치하고, 상측과 하측의 레이저 조사노즐(510)을 통해 상부 커버레이필름(210)과 하부 커버레이필름(220)으로 동시에 레이저를 조사하여 패터닝 작업을 실시할 수 있다. 이 경우, 부착체(400) 양측으로의 레이저 패터닝 작업을 한층 신속하게 실시하여 전체적으로 공정 소요시간을 단축하여 생산성을 증대시킬 수 있다.
본 발명의 실시예에서, 둘째, S400 단계는 베이스(100)의 상하 양면에 상부 커버레이필름(210)과 하부 커버레이필름(220)이 각각 부착된 상태에서, 상부 커버레이필름(210)과 하부 커버레이필름(220)으로의 레이저 패터닝작업이 순차적으로 이루어지도록 할 수 있다. 예를 들면, 상부 커버레이필름(210)으로의 패터닝 작업이 완료되면 다음 하부 커버레이필름(220)으로의 패터닝 작업이 진행되도록 할 수 있고, 이 경우 전술한 바와 다르게 부착체의 상하 양측에 레이저 가공부(500)를 각각 배치하지 않고 어느 일측에만 배치할 수 있다.
이를 위해, 도 8에 도시한 바와 같이, 레이저 가공부(500)는 레이저 조사노즐(510)과 노즐 이동부(520) 외의 상하 반전부(530)를 더 포함할 수 있다.
상하 반전부(530)는 레이저 조사노즐(510)과 노즐 이동부(520)가 결합된 레이저 조사조립체를 180도 상하 반전시킴으로써, 레이저 조사노즐(510)과 노즐 이동부(520)가 상부 커버레이필름(210)으로의 레이저 패터닝 작업을 완료하면 하부 커버레이필름(220)으로의 레이저 패터닝작업을 실시하도록 할 수 있다.
여기서, 상하 반전부(530)는 부착체(400)의 이송방향과 직교하는 형태로 부착체(400)를 둘레방향으로 감싸도록 마련되는 대략 링 형상의 이동 지지체(미도시)를 포함할 수 있고, 노즐 이동부(520)는 이동 지지체(미도시)를 따라 이동 가능하도록 결합될 수 있다. 즉, 노즐 이동부(520)가 이동 지지체(미도시)에 대한 결합위치를 가변적으로 조절할 수 있도록 마련됨으로써, 부착체의 상하 양측에 별도의 레이저 가공부(500)를 설치하지 않은 상태에서 상하 양측의 커버레이 패턴 형성작업이 가능하다.
이 경우, 레이저 가공부(500), 즉 레이저 조사노즐(510)과 노즐 이동부(520)를 추가적으로 설치하지 않아도 되므로 구성 생략에 따른 제조비용 절감의 이점이 있다.
한편, 커버레이 패턴형성이 완료된 단면 또는 양면 연성인쇄회로기판은 도 9에 도시한 바와 같이, 제1 회로패턴(127)의 상측면만 노출되고 가장자리 랜드(land) 부분이 미노출되면서 동박층의 회로패턴 상부가 일부 제거되는 제1 타입과, 제1 회로패턴(127)의 상측면 뿐만 아니라 가장자리 랜드(land) 부분이 노출되면서 동박층의 회로패턴 상부가 제거되지 않는 오픈랜드(open land)의 제2 타입이 있다. 도 9에는 도시의 편의를 위해 일 예로 단면 fpcb의 경우를 기준으로 도시하였으나, 양면 fpcb의 경우도 마찬가지로 적용된다.
여기서, 일반적인 파장대의 UV 레이저를 통해 도 9(a)에 도시한 바와 같이 제1 타입 fpcb의 커버레이 패턴(230)을 형성할 수 있지만, 일반적인 파장대의 UV를 통해서는 도 9(b)에 도시한 바와 같이 제2 타입 fpcb의 커버레이 패턴(230)을 가공할 수 없는 문제가 있다.
따라서, 본 발명은 제1 타입과 제2 타입 fpcb 제조를 모두 만족하도록, 즉 제1 타입은 물론 제2 타입 fpcb를 구현하기 위한 커버레이 패턴 가공성을 확보하기 위해, 극초단 파장대의 UV 레이저를 이용할 수 있다.
덧붙여, 본 발명은 극초단파 UV 레이저를 이용한 LDTA(laser direct ablation) 공법을 적용하여 제1 타입 뿐만 아니라 제2 타입의 fpcb 커버레이 패턴을 구현할 수 있는 커다란 이점을 갖는다.
다음, 도 1 및 도 6에 도시한 바와 같이, 본 발명의 실시예에 따른 연성인쇄회로기판 제조방법은 S400 단계가 진행되는 동안 발생한 탄화물을 제거하는 탄화물 제거단계(S500)를 더 포함한다.
극초단파 UV 레이저를 조사하여 커버레이필름(200)에 홀 가공을 진행하는 동안 물리, 화학적 반응에 의해 탄화물이 발생하며, S500 단계에서는 S400 단계를 거쳐 제1 및 제2 커버레이 패턴(232,234)이 형성된 부착체(400)가 연속적으로 이송되는 과정에 과망간산염(Permanganate)을 기재로한 약품을 노즐을 통해 부착체를 향해 분사하여 부착체 표면, 특히 동박층의 회로패턴 표면에 잔재하는 탄화물을 제거한다.
한편, 본 발명의 실시예에서, S400 단계와 S500 단계는 하나의 롤투롤 공정상에서 연속적으로 진행될 수 있다.
즉, 도 6에 도시한 바와 같이, 제1 및 제2 커버레이 패턴(232,234)이 형성된 베이스(100)와 커버레이필름(200)의 부착체가 탄화물 제거가 이루어지는 공정까지 하나의 롤루롤 방식으로 이송되는바, 연성인쇄회로기판의 제조에 소요되는 단위공정 시간을 획기적으로 단축하여 전체적인 생산성을 향상시킬 수 있다.
이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 도시하고 설명하였으나, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려 첨부된 청구범위의 사상 및 범위를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다.
본 발명은 베이스와 미성형 커버레이필름이 적층완료된 상태에서 커버레이필름에 레이저를 조사하여 베이스에 기형성되어 있는 회로패턴이 노출되도록 패턴을 형성함으로써, 종래 베이스와 커버레이필름 간에 발생하는 다양한 공차(정렬 불량)를 억제하여 안정적인 품질 확보를 가져올 수 있는 측면에서 산업상 이용가능성이 있다.

Claims (8)

  1. (a) 절연필름층의 일면 또는 양면에 동박층이 적층되고 상기 동박층에 회로패턴이 형성된 베이스를 연속적으로 공급하는 단계;
    (b) 상기 동박층이 적층된 상기 베이스의 일측 또는 양측으로 미성형된 커버레이필름을 연속적으로 공급하는 단계;
    (c) 상기 베이스와 커버레이필름을 가접 및 적층하는 단계; 및
    (d) 상기 회로패턴과 대응하도록 상기 커버레이필름에 커버레이 패턴을 형성하는 단계를 포함하고,
    상기 (d)단계는, 상기 베이스를 기준으로 일측에 마련된 레이저 가공부가 상기 커버레이필름을 향해 레이저를 조사하여 상기 회로패턴이 노출되도록 함으로써 이루어지며,
    상기 베이스의 상하 양면에 상부 커버레이필름과 하부 커버레이필름이 각각 부착된 상태에서, 상기 상부 커버레이필름과 하부 커버레이필름으로의 레이저 패터닝작업은 순차적으로 이루어지고,
    상기 레이저 가공부는,
    상기 커버레이필름을 향해 레이저를 조사하는 레이저 조사노즐;
    상기 레이저 조사노즐을 상기 커버레이필름의 좌우 및 상하방향에 대응하는 xy방향을 따라 이동시키는 노즐 이동부; 및
    상기 레이저 조사노즐과 상기 노즐 이동부가 결합된 레이저 조사조립체를 180도 상하 반전하여 상기 레이저 조사노즐과 노즐 이동부가 상기 상부 커버레이필름으로의 레이저 패터닝 작업을 완료하면 상기 하부 커버레이필름으로의 레이저 패터닝작업을 실시하도록 하는 상하 반전부를 포함하고,
    상기 상하 반전부는 상기 베이스와 상부 및 하부 커버레이필름의 부착체의 이송방향과 직교하는 형태로 상기 부착체를 둘레방향으로 감싸도록 마련되는 링 형상의 이동 지지체를 포함하고, 상기 노즐 이동부는 상기 이동 지지체에 대한 결합위치를 가변적으로 조절하도록 상기 이동 지지체를 따라 이동 가능하게 결합되는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  2. 제1항에 있어서,
    상기 절연필름층의 양면에 각각 제1 및 제2 동박층이 적층되고 상기 제1 및 제2 동박층에 각각 제1 및 제2 회로패턴이 형성된 상태를 기준으로,
    상기 (d)단계에서, 상기 베이스의 상측의 상부 커버레이필름에 마련되는 제1 커버레이 패턴은 상기 제1 회로패턴과 대응하도록 형성되고, 상기 베이스의 하측의 하부 커버레이필름에 마련되는 제2 커버레이 패턴은 상기 제2 회로패턴과 대응하도록 형성되는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  3. 제1항에 있어서,
    상기 (a)단계 및 상기 (b)단계에서 상기 베이스와 상기 커버레이필름은 각각 롤투롤 방식을 통해 공급되는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  4. 제1항에 있어서,
    상기 레이저는 극초단파 UV 레이저(Ultra high frequency UV laser)인 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  5. 제1항에 있어서,
    상기 (d)단계는 극초단파 UV 레이저를 이용한 LDTA(laser direct ablation) 공법을 적용하여 이루어지는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  6. 제1항에 있어서,
    (e) 상기 (d)단계가 진행되는 동안 발생한 탄화물을 제거하는 탄화물 제거단계를 더 포함하는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  7. 제6항에 있어서,
    상기 탄화물 제거단계는, 상기 베이스와 커버레이필름의 부착체를 연속적으로 이송시키면서 과망간산염(Permanganate)을 기재로 한 약품을 상기 부착체를 향해 분사하여 제거하는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
  8. 제6항에 있어서,
    상기 (d)단계와 (e)단계는 하나의 롤투롤 공정상에서 연속적으로 진행되는 것을 특징으로 하는 연성인쇄회로기판 제조방법.
PCT/KR2022/013753 2021-11-11 2022-09-15 연성인쇄회로기판 제조방법 WO2023085580A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210155027A KR102417529B1 (ko) 2021-11-11 2021-11-11 연성인쇄회로기판 제조방법
KR10-2021-0155027 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023085580A1 true WO2023085580A1 (ko) 2023-05-19

Family

ID=82400286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013753 WO2023085580A1 (ko) 2021-11-11 2022-09-15 연성인쇄회로기판 제조방법

Country Status (2)

Country Link
KR (1) KR102417529B1 (ko)
WO (1) WO2023085580A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102417529B1 (ko) * 2021-11-11 2022-07-06 주식회사 이든 연성인쇄회로기판 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180355B1 (ko) * 2012-02-21 2012-09-07 주식회사 비에이치 양면형 다층 구조의 연성인쇄회로기판 제조방법 및 이를 이용하여 제조된 양면형 다층 구조의 연성인쇄회로기판
KR20140101562A (ko) * 2013-02-12 2014-08-20 조기우 연성인쇄회로기판용 커버레이 필름 가접 방법
KR20160003930A (ko) * 2014-07-01 2016-01-12 (주)프로템 레이저를 이용한 롤투롤 필름 패터닝 장치
KR20200117493A (ko) * 2019-04-04 2020-10-14 유영명 양면 노출형 연성회로 기판의 제조방법
KR20210069551A (ko) * 2019-12-03 2021-06-11 주식회사 에스아이 플렉스 Bvh를 포함하는 연성인쇄회로기판 제조 방법
KR102417529B1 (ko) * 2021-11-11 2022-07-06 주식회사 이든 연성인쇄회로기판 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060002086A (ko) 2004-07-01 2006-01-09 대덕전자 주식회사 플렉시블 인쇄 회로 기판 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180355B1 (ko) * 2012-02-21 2012-09-07 주식회사 비에이치 양면형 다층 구조의 연성인쇄회로기판 제조방법 및 이를 이용하여 제조된 양면형 다층 구조의 연성인쇄회로기판
KR20140101562A (ko) * 2013-02-12 2014-08-20 조기우 연성인쇄회로기판용 커버레이 필름 가접 방법
KR20160003930A (ko) * 2014-07-01 2016-01-12 (주)프로템 레이저를 이용한 롤투롤 필름 패터닝 장치
KR20200117493A (ko) * 2019-04-04 2020-10-14 유영명 양면 노출형 연성회로 기판의 제조방법
KR20210069551A (ko) * 2019-12-03 2021-06-11 주식회사 에스아이 플렉스 Bvh를 포함하는 연성인쇄회로기판 제조 방법
KR102417529B1 (ko) * 2021-11-11 2022-07-06 주식회사 이든 연성인쇄회로기판 제조방법

Also Published As

Publication number Publication date
KR102417529B1 (ko) 2022-07-06

Similar Documents

Publication Publication Date Title
US7293353B2 (en) Method of fabricating rigid flexible printed circuit board
EP2810543B1 (en) Method of making a flexible circuit
WO2012091373A2 (en) Method for manufacturing printed circuit board
JP2006128686A (ja) リジッドフレキシブル基板の製造方法
WO2023085580A1 (ko) 연성인쇄회로기판 제조방법
WO2018101503A1 (ko) 인쇄회로기판의 제조방법 및 그에 따라서 제조된 인쇄회로기판
KR100731317B1 (ko) 연성인쇄회로기판의 제조방법
WO2023085581A1 (ko) 양면 노출형 연성인쇄회로기판 제조방법
KR101164598B1 (ko) 다층 회로기판의 제조 방법
US20140182899A1 (en) Rigid-flexible printed circuit board and method for manufacturing same
JP3078635B2 (ja) 多層プリント配線板の製造方法
US20100018638A1 (en) Method for manufacturing flexible printed circuit board
KR20030085211A (ko) 양면구조의 연성 인쇄회로기판의 제조 방법
WO2017213333A1 (ko) 일반 인쇄회로기판을 활용한 고전류 전송 방법
CN100469216C (zh) 多层柔性布线板的制造方法
WO2021256790A1 (ko) 연성인쇄회로기판의 제조 방법
KR101180355B1 (ko) 양면형 다층 구조의 연성인쇄회로기판 제조방법 및 이를 이용하여 제조된 양면형 다층 구조의 연성인쇄회로기판
KR100797675B1 (ko) 박형 기판용 이송 지그 부착 테이프
KR20040058418A (ko) 휴대폰용 리지드 플렉시블 인쇄회로기판의 제조방법
WO2018186654A1 (ko) 인쇄회로기판 및 이의 제조 방법
WO2020017881A1 (ko) 다층 회로 기판 및 그 제조 방법
WO2022045666A1 (ko) 연성 인쇄회로기판의 제조방법 및 이에 의해 제조된 연성 인쇄회로기판
WO2024005449A1 (ko) 안테나 패턴 제조 방법 및 이에 의해 제조된 안테나 패턴
KR100796979B1 (ko) 경연성기판 및 그 제조방법
JP3196662B2 (ja) プリント配線板の印刷方法及びプリント配線板印刷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893003

Country of ref document: EP

Kind code of ref document: A1