WO2023085260A1 - 金属酸化物の製造装置及び金属酸化物の製造方法 - Google Patents

金属酸化物の製造装置及び金属酸化物の製造方法 Download PDF

Info

Publication number
WO2023085260A1
WO2023085260A1 PCT/JP2022/041527 JP2022041527W WO2023085260A1 WO 2023085260 A1 WO2023085260 A1 WO 2023085260A1 JP 2022041527 W JP2022041527 W JP 2022041527W WO 2023085260 A1 WO2023085260 A1 WO 2023085260A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
gas
firing furnace
region
cooling
Prior art date
Application number
PCT/JP2022/041527
Other languages
English (en)
French (fr)
Inventor
秀之 村田
直人 矢木
正紀 飯田
彰志 今村
建軍 袁
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023559635A priority Critical patent/JP7480922B2/ja
Priority to CN202280071274.2A priority patent/CN118176161A/zh
Priority to DE112022005346.1T priority patent/DE112022005346T5/de
Publication of WO2023085260A1 publication Critical patent/WO2023085260A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/162Magnesium aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Definitions

  • the present invention relates to a metal oxide production apparatus and a metal oxide production method.
  • This application claims priority based on Japanese Patent Application No. 2021-183370 filed in Japan on November 10, 2021, the contents of which are incorporated herein.
  • the flux method was developed by making use of the knowledge that crystals (minerals) are created in the natural world, and is a method of precipitating crystals from solutions of inorganic compounds and metals at high temperatures.
  • the advantages of this flux method include the ability to grow crystals at a temperature much lower than the melting point of the target crystal, the growth of crystals with extremely few defects, and the development of idiomorphic shapes.
  • a flux slow cooling method is used in which a metal compound, which is a precursor of a metal oxide, is fired at a high temperature in the presence of an appropriate oxide or salt that serves as a flux, and then slowly cooled (1). and (2) flux evaporation methods for evaporating flux.
  • the flux slow cooling method forms a supersaturated state while slowly cooling, and promotes the crystal growth of the metal oxide. It promotes crystal growth.
  • the flux evaporation method since the flux escapes from the firing vessel by evaporation, it has the advantage of not requiring complicated work such as washing to remove the flux, unlike the flux slow cooling method.
  • Patent Document 1 describes an artificial corundum crystal having a hexagonal bipyramidal basic shape by a flux evaporation method in which a sample containing a raw material and a flux is heated, and crystals are precipitated and grown using the evaporation of the flux as a driving force.
  • An invention relating to a method for producing an artificial corundum crystal is described, which is characterized by producing
  • the present applicant has proposed a firing furnace for firing a metal compound in the presence of a flux, a cooling pipe connected to the firing furnace for pulverizing the flux vaporized by the firing, and the cooling A manufacturing apparatus having recovery means for recovering powdered flux in a pipe is disclosed (Patent Document 2).
  • Patent Document 2 the flux that evaporates from the kiln is pulverized mainly in the cooling pipes, collected in the dust collector, and the collected flux can be recycled to manufacture metal oxides, thereby reducing environmental impact and manufacturing costs. Realization is possible.
  • the cooling pipe includes a vertical pipe for discharging gas in the firing furnace, a horizontal pipe having a gas inlet at one end and connected to a recovery means at the other end, and the vertical pipe. It has a communication part that crosses and communicates with the horizontal pipe.
  • metal oxides such as molybdenum oxide (MoO 3 ) are produced using this production apparatus, powdered flux (molybdenum compound) adheres to the inner wall of the communicating portion, particularly to the inner wall of the vertical pipe.
  • the inside of the communication portion may be reduced in diameter due to the clothing, and as a result, it may be difficult to maintain a proper flow path.
  • the present invention provides a metal oxide manufacturing apparatus and a metal oxide manufacturing apparatus that can stably collect flux, does not require the installation of jigs and members for maintenance, and can significantly reduce the maintenance burden. It aims at providing the manufacturing method of an oxide.
  • An apparatus for producing metal oxides by a flux evaporation method a firing furnace for firing a metal compound in the presence of a flux;
  • a first gas introduction unit provided at one end of the firing furnace for introducing gas into the firing furnace, and a first gas introduction portion provided at the other end of the firing furnace for discharging gas in the firing furnace to the outside.
  • a gas outlet a transporting device disposed in the firing furnace for transporting the metal compound and the flux, or a metal oxide obtained by a reaction thereof, from one side of the first gas introduction section and the gas discharge section to the other side.
  • the firing furnace comprises a temperature raising region provided on one side of the gas discharge section and the first gas introduction section, and a temperature raising region provided on the other side of the gas discharge section and the first gas introduction section. and a reaction region provided between the temperature rising region and the cooling region and having a higher temperature than either the temperature rising region or the cooling region and in which the metal compound reacts with the flux. death,
  • the flux vaporized in the reaction area is pulverized in the temperature raising area or the cooling area by an air current of the gas introduced from the first gas introduction part, and the gas containing the pulverized flux is discharged as the gas.
  • Equipment for manufacturing metal oxides which is sent to departments.
  • the temperature raising region is provided on the gas discharge portion side, and the cooling region is provided on the first gas introduction portion side,
  • the airflow is countercurrent to the conveying direction of the conveying device and passes through the cooling area, the reaction area, and the temperature raising area in this order,
  • the temperature raising region is provided on the first gas introduction portion side, and the cooling region is provided on the gas discharge portion side,
  • the airflow is parallel to the conveying direction of the conveying device and passes through the temperature raising region, the reaction region and the cooling region in this order,
  • the gas discharge part is provided in a main flow path for discharging the gas in the firing furnace to the outside of the furnace, and is provided in the main flow path and supplies the gas containing powdered flux flowing in the main flow path from the outside.
  • a method for producing a metal oxide by a flux evaporation method A gas is introduced into the firing furnace from a gas introduction portion provided on one end side of the firing furnace for firing the metal compound in the presence of the flux, and a gas discharge portion provided on the other end side of the firing furnace. From, the gas in the firing furnace is discharged to the outside, conveying the metal compound and the flux, or the metal oxide obtained by the reaction thereof, from one side of the gas introduction section and the gas discharge section to the other side in the firing furnace; In the firing furnace, a temperature raising region is provided on one side of the gas discharge portion and the gas introduction portion, a cooling region is provided on the other side of the gas discharge portion and the gas introduction portion, and the temperature rise region and the gas introduction portion are provided.
  • a reaction region having a temperature higher than that of the temperature rising region and the cooling region and in which the metal compound reacts with the flux is provided, and an air current is generated by the gas introduced from the gas introduction portion. and powdering the flux vaporized in the reaction zone in the temperature rising zone or the cooling zone, and discharging a gas containing the powdered flux to the gas discharge part.
  • FIG. 1 is a schematic diagram showing an example of a metal oxide production apparatus according to this embodiment.
  • FIG. 2 is a schematic diagram showing a region inside the firing furnace of FIG.
  • FIG. 3 is a schematic diagram showing a modification of the metal oxide production apparatus according to the present embodiment.
  • FIG. 4 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
  • FIG. 5 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
  • FIG. 6 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
  • FIG. 1 is a schematic diagram showing an example of a metal oxide production apparatus according to this embodiment.
  • the manufacturing apparatus of FIG. 1 is a metal oxide manufacturing apparatus using a flux evaporation method.
  • a flux evaporation method is a method of producing a metal oxide by firing a metal compound in the presence of a flux. In the firing process, the flux evaporates, and the vaporization of the flux is used as a driving force to promote crystal growth of the metal oxide.
  • a metal oxide production apparatus 1A includes a firing furnace 10 for firing a metal compound in the presence of flux, and a firing furnace 10 provided at one end 10a side of the firing furnace 10, and a gas is introduced into the firing furnace 10.
  • a first gas introduction part 20 to be introduced a gas discharge part 30 provided on the other end 10b side of the firing furnace 10 and discharging the gas in the firing furnace 10 to the outside, and a metal compound and a conveying device 40 for conveying the flux or the metal oxide obtained by the reaction thereof from the side of the gas discharge section 30 to the side of the first gas introduction section 20 .
  • the firing furnace 10 of the present embodiment has the viewpoint that a high temperature region and a low temperature region can be easily formed in the furnace, and raw materials can be continuously supplied into the firing furnace, and mass production is possible. From a point of view, it is typically a continuous kiln.
  • the continuous kiln is not particularly limited, but includes a continuous rotary kiln kiln, roller hearth kiln, pusher kiln, conveyor kiln, net conveyor kiln, shaft kiln, fluidized kiln and the like.
  • roller hearth kiln furnaces, pusher furnaces, conveyor furnaces, and net conveyor furnaces are more preferred, and roller hearth kiln furnaces and pusher furnaces are even more preferred.
  • the heating method of the firing furnace 10 is not particularly limited, but electricity, gas, microwaves, infrared rays, etc. can be mentioned. Among these, the electric heating method is preferable from the viewpoint of easy industrialization and easy control.
  • a heater 11 is provided in the firing furnace 10 , and the heaters 11 are arranged on the upper wall and the bottom wall of the firing furnace 10 .
  • the heater 11 may be arranged on one of the top wall and the bottom wall of the kiln 10 .
  • the firing furnace 10 has a longitudinal direction, for example, along the conveying direction of the conveying device 40 (arrow direction in FIG. 1) and a direction orthogonal to the longitudinal direction (also referred to as a lateral direction or a lateral direction) in a plan view.
  • the one end portion 10a of the firing furnace 10 is the one end portion in the longitudinal direction
  • the other end portion 10b of the firing furnace 10 is the other end portion in the longitudinal direction.
  • the first gas introduction part 20 is preferably arranged on the side opposite to the installation position of the gas discharge part 30 from the viewpoint of efficiently discharging the powdered flux from the kiln.
  • the first gas introduction part 20 is arranged on the other end part 10a side opposite to the one end part 10b side of the firing furnace in which the gas discharge part 30 is installed.
  • the first gas introduction part 20 is arranged at the bottom wall or the lower part of the side wall of the firing furnace 10. is preferably provided in One first gas introduction part 20 may be provided in the firing furnace 10 , or two or more may be provided. Further, when two or more first gas introduction parts 20 are provided in the firing furnace 10, the first gas introduction part 20 serves as one or more main introduction parts for generating an airflow AF1 described later in the firing furnace 10. , and a plurality of sub-introduction portions provided at regular intervals in the bottom portion of the firing furnace 10 for forming an air flow from the bottom to the top within the firing furnace 10 .
  • the gas introduced from the first gas introduction unit 20 is not particularly limited as long as it does not have reactivity with the flux vapor. Oxygen, nitrogen, argon, water vapor and the like can be mentioned. Among these, the gas is preferably air from the viewpoint of cost.
  • the first gas introduction unit 20 may have a first air blower (not shown) that forcibly feeds gas into the firing furnace 10 .
  • a first air blower (not shown) that forcibly feeds gas into the firing furnace 10 .
  • the evaporation of the flux is the driving force for crystal growth. Therefore, the flux evaporation method can proceed favorably if the vaporized flux is easily moved from the reaction region to the temperature rising region, which will be described later. As a result, the metal oxide to be obtained can have a suitable crystal growth.
  • the first gas introduction unit 20 may have an opening adjustment damper (not shown) that adjusts the amount of gas introduced into the firing furnace, the speed, and the like.
  • the opening adjustment damper is not particularly limited, and a known one can be used.
  • the opening adjustment damper may have a motor, may be provided with a backflow prevention mechanism, or may have a slit.
  • the number of opening adjustment dampers may be one or two or more depending on the configuration of the firing furnace.
  • the gas discharge unit 30 discharges gas containing powdered flux to the outside of the firing furnace 10 .
  • the gas discharge part 30 includes, for example, a main flow path 31 for discharging the gas in the firing furnace 10 to the outside of the furnace, and a third gas introduction part provided in the main flow path 31 and supplying gas from the outside to the gas flowing in the main flow path 31. 32.
  • the gas discharge part 30 has, for example, a T-shaped pipe, the main flow path 31 is formed by an L-shaped part, and the third gas introduction part 32 is an I-shaped part communicating with the L-shaped part. formed by the part of
  • the material of the piping that constitutes the gas discharge part 30 is not particularly limited, and known metals and alloys can be used.
  • the gas introduced from the third gas introduction part 32 is not particularly limited as long as it does not have reactivity with the flux vapor. ), oxygen, nitrogen, argon, water vapor, and the like. Among these, the gas is preferably air from the viewpoint of cost.
  • the gas discharge section 30 may have a second air blower (not shown) that is provided in the third gas introduction section 32 and forcibly feeds air into the gas discharge section 30 . Due to the negative pressure generated by the gas introduced from the third gas introduction part, the gas containing the powdered flux in the firing furnace 10 is easily moved by the gas discharge part 30 . In addition, the flux-containing gas can be further cooled outside the firing furnace 10 in consideration of the flux temperature and the like at the time of downstream recovery. As a result, it is possible to collect a flux that has a uniform particle size and less or suppressed agglomeration of particles.
  • the third gas introduction part 32 may have an opening adjustment damper (not shown) for adjusting the amount of gas introduced into the firing furnace, the speed, etc.
  • the opening adjustment damper is not particularly limited, and a known one can be used.
  • the opening adjustment damper may have a motor, may be provided with a backflow prevention mechanism, or may have a slit.
  • the number of opening adjustment dampers may be one or two or more depending on the configuration of the firing furnace.
  • the conveying device 40 has, for example, a conveying portion and a driving portion that drives the conveying portion.
  • the container 41 is conveyed inside.
  • the conveying unit is not particularly limited, and rollers, base plates, carts, and the like can be used.
  • a container 41 placed on the transport unit is, for example, a sintering container called a sagger.
  • the reactor 41 contains the reactants (metallic compound and flux) on the upstream side of the reaction zone, which will be described later, and the product (metallic compound and flux) on the downstream side of the reaction zone. obtained metal oxide) is accommodated.
  • the first gas introduction part 20 is provided on the one end 10a side of the firing furnace 10, and the gas discharge part 30 is provided on the other end 10b side.
  • the conveying device 40 carries the container 41 containing the reactant into the firing furnace 10 from the one end portion 10b side of the firing furnace 10, and transports the container containing the product from the one end portion 10a side of the firing furnace 10. 41 is carried out.
  • FIG. 2 is a schematic diagram showing regions within the firing furnace 10 of FIG.
  • the firing furnace 10 includes a temperature raising region 12A provided on the side of the gas discharge portion 30, a cooling region 14A provided on the side of the first gas introduction portion 20, and the temperature raising region 12A and the cooling region. 14A and has a reaction area 13A which has a higher temperature than both the temperature raising area 12A and the cooling area 14A and where the metal compound reacts with the flux.
  • the temperature raising region 12A is a region for heating the container 41 transported into the firing furnace 10 and the reactants in the container 41 .
  • This temperature rising area 12A has a temperature gradient in which the temperature increases as it approaches the reaction area 13A in the conveying direction.
  • a heater 11 is installed in the temperature raising region 12A, and the heater 11 is controlled so as to have the above concentration gradient.
  • regions are arrange
  • the temperature raising region 12A is arranged on the upstream side of the gas discharge section 30 with respect to the flow direction of the airflow AF1, which will be described later.
  • the reaction area 13A is an area where the reactants in the container 41 transported from the temperature raising area 12A are reacted.
  • This reaction area 13A is not particularly limited as long as it has a higher temperature than either the temperature raising area 12A or the cooling area 14A. has a temperature of Further, the reaction area 13A may have a temperature gradient stepwise or continuously with respect to the conveying direction on the assumption that the reaction area 13A is higher in temperature than both the temperature raising area 12A and the cooling area 14A.
  • a heater 11 is installed in the reaction area 13A, and the heater 11 is controlled so as to maintain the constant temperature.
  • the cooling area 14A is an area for cooling the container 41 transported from the reaction area 13A and the product in the container 41.
  • the temperature rising region 12A has a temperature gradient in which the temperature decreases with increasing distance from the reaction region 13A in the transport direction.
  • a heater 11 is installed in a part of the reaction area 13A, and the heater 11 is controlled so as to have the above concentration gradient.
  • the heater 11 may be installed in a part of the cooling area 14A, or the heater 11 may not be installed.
  • the boundary between the temperature raising region 12A and the reaction region 13A and the boundary between the reaction region 13A and the cooling region 14A are not clearly provided, for example, among the regions in the firing furnace 10, the flux and the metal compound
  • the region where the temperature at which the intermediates obtained by the reaction are decomposed is maintained is the reaction region 13A
  • the upstream side of the reaction region 13A is the temperature rising region 12A
  • the downstream side of the reaction region 13A (the container 41 exit side) can be the cooling area 14A.
  • the temperature of each region for example, the temperature distribution in the heating region 12A, the reaction region 13A, and the cooling region 14A may be measured, and the average temperature of each temperature distribution may be obtained.
  • the temperature at the central portion of each of the heating region 12A, the reaction region 13A, and the cooling region 14A may be measured with respect to the transport direction.
  • the measured value of the temperature of each region for example, one or more of the temperature of the heater itself in each region and the ambient temperature near the heater by a thermocouple may be used.
  • the heating region 12A is provided on the other end 10b side of the firing furnace 10, and the cooling region 14A is provided on the one end 10a side of the firing furnace 10.
  • the container 41 is conveyed through the cooling area 14A, the reaction area 13A, and the heating area 12A in the kiln 10 in this order.
  • the flux evaporated in the reaction area 13A is pulverized in the cooling area 14A by the air flow AF1 of the gas introduced from the first gas introduction part 20, and the flux is pulverized.
  • the gas containing the solidified flux is delivered to the gas discharge section 30 .
  • the vaporized flux is pulverized in the firing furnace 10 by the in-furnace slow cooling method.
  • the airflow AF1 is countercurrent to the transport direction, and passes through the cooling area 14A, the reaction area 13A, and the temperature raising area 12A in this order. Then, the flux vaporized in the reaction area 13A is pulverized in the temperature rising area 12A. That is, in the present embodiment, the temperature raising region 12A functions as a region that raises the temperature of the reactant metal compound and the flux, cools the gas containing the vaporized flux, and pulverizes the flux. In the example of FIG. 2, the vaporized flux is pulverized at a position P1 on the airflow AF1 and above the conveying device 40 (above the temperature raising region 12A).
  • the gas introduced from the first gas introduction part 20 cools the container 41 in the cooling region 14A, and the gas passing through the cooling region 14A and the reaction region 13A cools the container 41 in the temperature raising region 12A. heat up.
  • the container 41 and the product in the container 41 are efficiently cooled in the cooling region 14A, and the container 41 and the reactant in the container 41 are efficiently heated in the heating region 12A.
  • a method for producing a metal oxide according to the present embodiment is a method for producing a metal oxide by a flux evaporation method, and has the following steps (1) to (3).
  • the order of steps (1) to (3) is not particularly limited, and can be changed without departing from the scope of the present invention. It may also have one or more other steps before step (1), after step (3), or between the two steps.
  • the metal oxide production method according to the present embodiment is not limited to the metal oxide production apparatus shown in FIG. 2, and can be performed by other metal oxide production apparatuses.
  • step (1) a gas is introduced into the firing furnace from a first gas introduction part provided on one end side of the firing furnace for firing the metal compound in the presence of flux, and the other end of the firing furnace
  • the gas in the firing furnace is discharged to the outside from the gas discharge part provided on the side.
  • the gas is introduced into the firing furnace 10 from the first gas introduction portion 20 provided at the one end portion 10a side of the firing furnace 10, and the gas is provided at the other end portion 10b side of the firing furnace 10.
  • the gas in the firing furnace 10 is discharged to the outside from the gas discharge unit 30 .
  • the gas introduced from the first gas introduction portion includes air, oxygen, nitrogen, argon, water vapor, etc. Among these, air is preferable from the viewpoint of cost.
  • the temperature of the blown gas is preferably 5° C. or higher, more preferably 10° C. or higher.
  • the gas blowing speed is preferably 1 to 500 L/min, more preferably 10 to 200 L/min, with respect to the effective volume of the firing furnace of 100 L.
  • the internal pressure in the firing furnace is not particularly limited, and may be positive pressure or reduced pressure, and can be -5000 to +1000 Pa. Moreover, from the viewpoint of suitably discharging the flux from the sintering furnace to the cooling pipe, the sintering is preferably performed under reduced pressure. A specific degree of reduced pressure can be -5000 to -10 Pa, -2000 to -20 Pa, or -1000 to -50 Pa.
  • fluxes examples include, but are not limited to, molybdenum compounds, tungsten compounds, vanadium compounds, chlorine compounds, fluorine compounds, boron compounds, sulfates, nitrates, and carbonates.
  • the tungsten compound is not particularly limited, but tungsten trioxide, tungsten sulfide, tungstic acid, tungsten chloride, calcium tungstate, potassium tungstate, lithium tungstate, aluminum tungstate, sodium tungsten, ammonium paratungstate, metatungsten. ammonium acid, phosphotungstic acid, silicotungstic acid, and the like.
  • the vanadium compound is not particularly limited, but includes vanadium oxide, ammonium metavanadate, potassium vanadate, sodium metavanadate, sodium vanadate, vanadium oxychloride, vanadium oxysulfate, and vanadium chloride.
  • Examples of the chlorine compound include, but are not particularly limited to, potassium chloride, sodium chloride, lithium chloride, magnesium chloride, barium chloride, and ammonium chloride.
  • the fluorine compound is not particularly limited, but includes aluminum fluoride, sodium fluoride, magnesium fluoride, calcium fluoride, cryolite, lead fluoride, and the like.
  • boron compound examples include, but are not limited to, boric acid, boron oxide, sodium borate, boron fluoride, and the like.
  • the sulfate is not particularly limited, but includes sodium sulfate, potassium sulfate, calcium sulfate, lithium sulfate, and the like.
  • the nitrate is not particularly limited, but includes sodium nitrate, potassium nitrate, calcium nitrate, lithium nitrate, and the like.
  • the carbonate is not particularly limited, but includes sodium carbonate, potassium carbonate, calcium carbonate, lithium carbonate, and the like.
  • These fluxes may be used alone or in combination of two or more.
  • the obtained metal oxide contains a molybdenum compound from the viewpoint of facilitating control of the single crystal structure and/or shape. More preferably, it contains molybdenum oxide.
  • the amount of flux used is not particularly limited, and can be appropriately selected according to the desired metal oxide.
  • the molar ratio of the flux metal constituting the flux to the metal element constituting the metal compound described later is 3. It is preferably greater than 0.
  • the molar ratio of the flux metal constituting the flux to the metal element constituting the metal compound described later is 0.5. 001 to 3.0 moles, more preferably 0.03 to 3.0 moles, even more preferably 0.08 to 0.7 moles.
  • metal compound examples include, but are not limited to, aluminum compounds, silicon compounds, titanium compounds, magnesium compounds, sodium compounds, potassium compounds, zirconium compounds, yttrium compounds, zinc compounds, copper compounds, iron compounds, and the like. Among these, aluminum compounds, silicon compounds, titanium compounds, and magnesium compounds are preferably used.
  • Examples of the aluminum compound include aluminum chloride, aluminum sulfate, basic aluminum acetate, aluminum hydroxide, boehmite, pseudoboehmite, and transitional aluminum oxides ( ⁇ -aluminum oxide, ⁇ -aluminum oxide, ⁇ -aluminum oxide, etc.). , ⁇ -aluminum oxide, mixed oxide aluminum having two or more crystal phases, and the like.
  • silicon compound examples include crystalline silica, silica gel, silica nanoparticles, artificially synthesized amorphous silica such as mesoporous silica, organic silicon compounds containing silicon, and biosilica.
  • the titanium compound is not particularly limited, but includes titanium chloride, titanium sulfate, metatitanic acid, amorphous titanium oxide, anatase-type titanium oxide, rutile-type titanium oxide, mixed anatase-rutile titanium oxide, and the like.
  • the magnesium compound is not particularly limited, but is magnesium oxide, magnesium hydroxide, magnesium acetate tetrahydrate, magnesium carbonate, magnesium sulfate, magnesium chloride, magnesium nitride, magnesium hydride, magnesium fluoride, magnesium iodide, bromine.
  • magnesium chloride magnesium acrylate, magnesium dimethacrylate, magnesium ethoxide, magnesium gluconate, magnesium naphthenate, magnesium salicylate tetrahydrate, magnesium stearate, magnesium molybdate, magnesium lactate trihydrate, magnesium potassium chloride, Magnesium nitrate hexahydrate, magnesium bromide hexahydrate, magnesium chloride hexahydrate, magnesium sulfate heptahydrate, magnesium oxalate dihydrate, magnesium benzoate tetrahydrate, magnesium citrate n water hydrate, trimagnesium dicitrate nonahydrate, magnesium monoperoxyphthalate and the like.
  • These metal compounds may be used alone or in combination of two or more.
  • a composite oxide When two or more metal compounds are used in combination, a composite oxide can be produced.
  • a composite oxide When two or more metal compounds are used in combination, a composite oxide can be produced.
  • a spinel composite oxide having a basic composition of MgAl 2 O 4 can be produced.
  • an aluminum compound an aluminum compound and a magnesium compound.
  • Step (2) a reactant (metallic compound and flux) or a product (metallic oxide obtained by the reaction of the metallic compound and flux) is introduced into the first gas introduction section (gas introduction section) and the It is conveyed from one side of the gas discharge section to the other side.
  • the reactants or products are transported from the gas discharge section 30 side to the first gas introduction section 20 side within the firing furnace 10 .
  • the form of transportation is not particularly limited as long as the reactants or products can be continuously transported in a predetermined direction within the firing furnace. This may carry reactants or products.
  • the transport speed of the reactants or products is not particularly limited as long as sufficient time for the metal compound and the flux to react in the firing furnace can be ensured.
  • Step (3) In the step (3), in the firing furnace, the temperature rising region is provided on one side of the gas discharge section and the first gas introduction section (gas introduction section), and on the other side of the gas discharge section and the first gas introduction section. Between the temperature rising region and the cooling region, a reaction region having a temperature higher than that of the temperature rising region and the cooling region and in which the metal compound reacts with the flux is provided.
  • the flux vaporized in the reaction area is pulverized in the temperature raising area or the cooling area by an air current of the gas introduced from the first gas introduction part, and the gas containing the pulverized flux is removed from the gas discharge part. send to For example, in the example of FIG.
  • the temperature raising region 12A is provided on the gas discharge section 30 side
  • the cooling region 14A is provided on the first gas introduction section 20 side
  • the temperature raising region 12A is provided between the temperature raising region 12A and the cooling region 14A.
  • a reaction area 13A which has a higher temperature than any of the cooling areas 14A and where the metal compound reacts with the flux, is provided. Flux vaporized in the reaction area 13A is pulverized in the temperature raising area 12A by an air flow AF1 of gas introduced from the first gas introduction section 20, and the gas containing the pulverized flux is discharged from the gas discharge section 30. send to
  • the temperature of the metal compound is raised in the presence of the flux, making it easier to evaporate the flux in the downstream reaction region.
  • the temperature raising region 12A in the temperature raising region 12A, the temperature of the metal compound and the flux is raised, and the gas containing the vaporized flux is cooled to pulverize the flux.
  • the temperature in the temperature rising region is not particularly limited, it is preferably 20 to 2000°C, more preferably 40 to 1500°C.
  • the heating rate of the metal compound and flux varies depending on the flux, metal compound, desired metal oxide, etc. used, but from the viewpoint of production efficiency, it is 0.5 to 100 ° C./min. is preferably 1 to 50°C/min, and even more preferably 2 to 10°C/min.
  • the temperature gradient (° C./m) and the conveying speed (m/s) in the temperature rising region in the firing furnace are set, and the temperature rising speed in the above range is adjusted from the set temperature gradient and conveying speed. can be realized.
  • the vaporized flux is cooled by the temperature difference between the heating area and the reaction area.
  • the cooling rate of the vaporized flux is not particularly limited, it is preferably 100 to 100000°C/sec, more preferably 1000 to 50000°C/sec. There is a tendency that the faster the cooling rate of the flux, the smaller the particle size and the larger the specific surface area of the flux powder.
  • the discharge speed of the powdered flux from the firing furnace to the gas discharge part can be controlled by the amount of flux used, the temperature of the firing furnace, the gas blown into the firing furnace, and the diameter of the firing furnace exhaust port. .
  • the discharge rate of the powdered flux from the firing furnace to the gas discharge part is preferably 0.001 to 100 g/min, more preferably 0.1 to 50 g/min, per 1 kg of the raw material metal compound. preferable.
  • the gas containing the powdered flux may be discharged outside the furnace by supplying the gas to the gas discharge unit from the outside.
  • the main flow path 31 of the gas discharge unit 30 discharges the gas containing the powdered flux in the firing furnace 10 to the outside of the furnace, and the third gas introduction provided in the main flow path 31
  • the part 32 supplies gas from the outside to the gas flowing through the main flow path 31 .
  • blowing speed and the flow speed in the pipe of the gas discharge part can be appropriately controlled by an opening adjustment damper (not shown).
  • metal oxides are produced by sintering metal compounds at high temperatures in the presence of flux and evaporating the flux (flux evaporation method).
  • the flux and metal compound usually react first to form an intermediate. Then, the intermediate can be decomposed to grow crystals to produce a metal oxide. At this time, the vaporization of the flux is used as a driving force to promote crystal growth of the metal oxide.
  • a metal molybdate metal salt is formed as an intermediate, which is decomposed to produce a metal oxide.
  • the molybdenum trioxide evaporates, and this is used as a driving force to promote crystal growth of the metal oxide.
  • the mixed state of the flux and the metal compound is not particularly limited as long as the flux and the metal compound exist in the same space.
  • the flux reaction can proceed even when the two are not mixed.
  • simple mixing of powders, mechanical mixing using a grinder or the like, mixing using a mortar or the like, etc. can be performed, and the resulting mixture is in a dry state. , wet state.
  • the sintering temperature is set to the sublimation temperature of the flux or higher, so that the vaporized flux comes into contact with the metal oxide, and a gas-solid reaction can be performed.
  • the firing temperature varies depending on the flux, metal compound, and desired metal oxide used, it is usually preferable to set the temperature at which the intermediates can be decomposed.
  • the firing temperature is preferably 500° C. to 900° C., preferably 600 to 900° C. °C, more preferably 700 to 900°C.
  • the reaction time is also not particularly limited, and can be, for example, 1 minute to 30 hours.
  • Vaporized flux is usually a metal oxide that constitutes the flux, although it varies depending on the flux used. For example, when ammonium molybdate is used as the flux, it is converted into thermodynamically stable molybdenum trioxide by firing, so the vaporized flux becomes the molybdenum trioxide. Depending on the flux evaporation method, the flux and the metal compound may form an intermediate. Vaporize.
  • the temperature of the vaporized flux varies depending on the type of flux used, it is preferably 200-2000°C, more preferably 400-1500°C. When the temperature of the vaporized flux is 2000° C. or less, it tends to be easily pulverized in the cooling region.
  • the metal oxide obtained by the reaction between the metal compound and the flux is cooled.
  • the obtained metal oxide is cooled and the gas introduced from the first gas introduction section 20 is heated in the cooling region 14A.
  • the temperature of the cooling region is not particularly limited, it is preferably 20 to 2000°C, more preferably 40 to 1500°C.
  • the cooling rate of the metal oxide varies depending on the flux used, the metal compound, the desired metal oxide, etc., but from the viewpoint of production efficiency, it is preferably 0.1 to 100° C./min. It is preferably 1 to 50°C/min, more preferably 2 to 20°C/min.
  • metal oxide The metal oxide varies depending on the metal compound or the like used, but from the viewpoint of the functionality of the metal oxide, aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, sodium oxide, potassium oxide, zirconium oxide, yttrium oxide, zinc oxide, Copper oxide, iron oxide, and spinel composite oxides of aluminum and magnesium are preferred, and aluminum oxide, silicon oxide, titanium oxide, and spinel composite oxides of aluminum and magnesium are more preferred, and aluminum oxide and aluminum. and magnesium spinel composite oxide.
  • metal oxides since they are manufactured by the flux evaporation method, they usually have a dense single crystal structure.
  • a metal oxide having such a dense single crystal structure can have high functionality.
  • aluminum oxide and spinel composite oxides of aluminum and magnesium are inherently low in density and tend to have a polycrystalline structure, so phonon scattering tends to occur and high thermal conductivity can be obtained.
  • aluminum oxide and spinel composite oxides of aluminum and magnesium obtained by the flux evaporation method have a dense and highly ordered crystal structure, phonon scattering is suppressed and high thermal conductivity can be achieved.
  • such a crystal structure can be appropriately controlled by the type and amount of flux to be used, the type and amount of metal compound to be added, firing conditions, and the like.
  • the metal oxide may contain flux.
  • a molybdenum compound when used as a flux, as described above, most of it evaporates in the form of molybdenum trioxide or the like, but a part of the molybdenum compound is incorporated into the metal oxide. As a result, aluminum oxide containing molybdenum can be colored.
  • the content of the flux in the metal oxide is not particularly limited, but from the viewpoint of efficiently producing the metal oxide at low cost, it is preferably 10% by mass or less, more preferably 5% by mass or less. It is preferably 3 to 0.01% by mass, and more preferably 3 to 0.01% by mass.
  • the metal oxide produced by the flux method contains flux, the content tends to be higher than the metal elements (usually about 100 ppm) contained as inevitable impurities.
  • the average particle size of the metal oxide is not particularly limited, but is preferably 0.1 to 1000 ⁇ m, more preferably 0.2 to 100 ⁇ m, even more preferably 0.3 to 80 ⁇ m, .4 to 60 ⁇ m is particularly preferred.
  • the term "average particle size” means a value calculated by measuring the particle size of arbitrary 100 particles from an image obtained by a scanning electron microscope (SEM). In this case, the "particle size” means the maximum length among the distances between two points on the outline of the particle.
  • the shape of the metal oxide can be controlled by appropriately changing the manufacturing conditions according to the purpose. For example, when trying to produce ⁇ -crystalline aluminum oxide by using molybdenum oxide as a flux and aluminum oxide as a metal compound, ⁇ -crystalline aluminum oxide can be produced by appropriately changing the amount of flux added and the firing conditions. can do.
  • using a large amount of molybdenum oxide and slow crystal growth over a long period of time can produce hexagonal bipyramidal ⁇ -crystalline aluminum oxide.
  • Such ⁇ -crystalline aluminum oxide can be applied to applications such as laser oscillation materials, high-hardness bearing materials, standard materials for measuring physical properties, and jewelry.
  • ⁇ -crystalline aluminum oxide having a single crystal structure with a narrow grain size distribution can be produced by using a small amount of molybdenum oxide and growing the crystals in a short time.
  • Such ⁇ -crystalline aluminum oxide can be applied to applications such as resin fillers, abrasives, and raw materials for fine ceramics.
  • molybdenum oxide can selectively adsorb to the [113] plane of the aluminum oxide crystal.
  • the crystal component is less likely to be supplied to the [001] plane, and the appearance of the [001] plane can be suppressed.
  • ⁇ -crystalline aluminum oxide having such a crystal structure differs from plate-like ⁇ -aluminum oxide obtained by ordinary firing and polyhedrons having the [001] plane as the main crystal plane. It can be effectively suppressed and form polyhedral particles that are well-proportioned and nearly spherical.
  • the phrase "having a plane other than the [001] plane as the main crystal plane” means that the area of the [001] plane is 20% or less of the total area in the metal oxide. means.
  • the metal oxide is a spinel composite oxide having a basic composition of MgAl 2 O 4
  • polyhedral particles having a single crystal structure can be produced.
  • Such spinel particles can be applied to applications such as resin fillers, catalysts, optical materials, raw materials for substrates, and abrasives.
  • the metal oxide when the metal oxide is rutile-type titanium oxide, it has excellent hiding power and high infrared scattering ability, so it can be applied to applications such as paints, inks, and cosmetics.
  • the metal oxide when the metal oxide is silicon oxide, it is possible to produce a two-phase bicontinuous structure composed of Q4 bonds that practically do not contain silanol groups. , cosmetics, etc.
  • a step (4) of recovering the powdered flux may be provided after the step (3).
  • a dust collector or the like is used to collect powdered flux contained in the gas sent out from the gas discharge section.
  • a classifier may be used to classify the powdered flux contained in the gas sent from the gas discharge section, and the classified flux may be dust-collected.
  • the flux collection method is not particularly limited, and may be batch or continuous.
  • the powdered flux is recovered from the recovery means for each reaction.
  • the shape control of the metal oxides can be suitably performed by adjusting the addition amount, the particle size, etc. in advance.
  • the powdered flux is collected sequentially while the reaction continues.
  • the flux can be continuously mixed with the metal compound and charged into the firing furnace, and effects such as an increase in the amount of metal oxide produced within a unit time can be obtained.
  • the method may further include a step (4) for reusing the flux recovered in the step (3).
  • the flux recovered in step (4) is obtained by pulverizing the vaporized flux, and tends to have a high purity. Therefore, it can be reused for the production of metal oxides. As a result, the load on the environment can be reduced, and the manufacturing cost can be lowered.
  • the flux evaporated in the reaction area 13A is caused by the airflow AF1 of the gas introduced from the first gas introduction part 20 to be transferred to the temperature raising area 12A, which is lower in temperature than the reaction area 13A.
  • the gas containing the powdered flux is sent to the gas discharge unit 30, so that the flux in the airflow AF1 changes from gas to solid in the temperature rising region 12A in the firing furnace 10, and is vaporized.
  • Almost no flux is delivered to the gas discharge section 30 . Therefore, the flux can be stably recovered, and the adhesion of the flux to the gas discharge section 30 can be prevented.
  • the airflow AF1 is countercurrent to the conveying direction of the conveying device 40, passes through the cooling area 14A, the reaction area 13A, and the temperature raising area 12A in this order, and heats the flux vaporized in the reaction area 13A. Since pulverization occurs in the region 12A, the container 41 and the product in the container 41 are efficiently cooled by the relatively low-temperature airflow AF1 in the cooling region 14A, and the relatively high-temperature airflow AF1 in the temperature raising region 12A. The vessel 41 and the reactants within the vessel 41 are efficiently heated. Therefore, thermal energy can be effectively used by heat exchange between the gas constituting the airflow AF1 and the container 41 and the reactants or products in the container 41, and energy can be saved while the flux is stably recovered. can be planned.
  • FIG. 3 is a schematic diagram showing a modification of the metal oxide production apparatus according to the present embodiment.
  • the metal oxide production apparatus 1B includes a firing furnace 10 for firing a metal compound in the presence of flux, and a firing furnace 10 provided at one end 10b side of the firing furnace 10, and gas is introduced into the firing furnace 10.
  • a first gas introduction part 20 to be introduced a gas discharge part 30 provided on the other end 10a side of the firing furnace 10 and discharging the gas in the firing furnace 10 to the outside, and a metal compound and a conveying device 40 that conveys the flux or the metal oxide obtained by the reaction of these from the first gas introduction section 20 side to the gas discharge section 30 side.
  • the firing furnace 10 includes a temperature raising region 12B provided on the first gas introduction part 20 side, a cooling region 14B provided on the gas discharge part 30 side, and provided between the temperature raising region 12B and the cooling region 14B, It has a reaction area 13B which has a higher temperature than both the temperature raising area 12B and the cooling area 14B and where the metal compound reacts with the flux.
  • the heating region 12B is provided on one end side 10b of the firing furnace 10, and the cooling region 14B is provided on the other end side 10a of the firing furnace 10. Then, the container 41 is conveyed in this order through the heating area 12B, the reaction area 13B and the cooling area 14B in the kiln 10 .
  • the conveying device 40 is arranged in the firing furnace 10, and the metal compound and the flux, or the metal oxide obtained by the reaction of these, is supplied from the first gas introduction part 20 side. It is conveyed to the gas discharge part 30 side.
  • the flux that has been vaporized in the reaction area 13A is pulverized in the cooling area 14A by the airflow AF2 of the gas introduced from the first gas introduction part 20, and the powdered flux is included.
  • the gas is delivered to the gas discharge section 30 .
  • the airflow AF2 is parallel to the transport direction of the transport device 40 and passes through the temperature raising area 12B, the reaction area 13B and the cooling area 14B in this order. Then, the flux vaporized in the reaction area 13B is pulverized in the cooling area 14B.
  • the cooling region 14B functions as a region that cools the metal oxide that is the product, cools the gas containing the vaporized flux, and pulverizes the flux.
  • the vaporized flux is pulverized at a position P2 on the airflow AF2 and above the conveying device 40 (above the cooling area 14B).
  • the airflow AF2 is parallel to the transport direction of the transport device 40, the metal compound and the flux transported by the transport device 40, which are located in the upstream portion 13Ba of the reaction region 13B with respect to the transport direction,
  • the vaporized flux obtained from the compound and flux can be supplied to the metal compound located in the downstream portion 13Bb of the reaction zone 13B. Therefore, even if the flux decreases in the downstream portion 13Bb and the reaction between the metal compound and the flux is insufficient, the flux is supplied to the metal compound located in the downstream portion 13Bb, and the metal compound and the flux sufficiently react. In addition, it is possible to increase the reaction rate between the metal compound and the flux.
  • the flux that is vaporized in the reaction region 13A is pulverized in the cooling region 14B, which is lower in temperature than the reaction region 13B, by the airflow AF2 of the gas introduced from the first gas introduction part 20. Since the gas containing the solidified flux is sent to the gas discharge section 30, the flux in the airflow AF2 changes from gas to solid in the cooling area 14B in the firing furnace 10, and the vaporized flux is discharged to the gas discharge section 30. Very few are sent. Therefore, the flux can be stably recovered, and the adhesion of the flux to the gas discharge section 30 can be prevented. There is no need to provide a member such as a heat-insulating sleeve to prevent reaction with flux, and the maintenance burden can be significantly reduced.
  • the metal compound and the flux are sufficiently mixed. can be reacted, and particles of a metal oxide such as aluminum oxide obtained as a reactant can be easily plate-shaped, and the plate-like formation of the particles can be promoted.
  • FIG. 4 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
  • the metal oxide production apparatus 1C further includes a second gas introduction unit 50 provided in the cooling area 14B of the firing furnace 10 and supplying gas to the airflow AF2 passing through the cooling area 14B.
  • the second gas introduction part 50 is provided, for example, on the upper wall of the firing furnace 10 .
  • the second gas introduction part 50 is preferably arranged directly above the cooling region 14B, and more preferably arranged directly above the position P2 where the flux is powdered. preferable.
  • the gas from the second gas introduction part 50 is supplied from above the airflow AF2, and collides with the airflow AF2 at right angles. , may also collide at other angles, such as an acute angle.
  • the second gas introduction part 50 may be provided at, for example, the bottom or side surface of the firing furnace 10 other than the upper wall of the firing furnace 10 as long as the airflow AF2 can be cooled in the cooling region 14B.
  • the gas introduced from the second gas introduction part 50 is not particularly limited as long as it does not have reactivity with the flux vapor. ), oxygen, nitrogen, argon, water vapor, and the like. Among these, the gas is preferably air from the viewpoint of cost.
  • the temperature of the gas introduced from the second gas introduction part 50 is preferably 5 to 100°C, more preferably 5 to 40°C.
  • the blowing speed of the gas introduced from the second gas introduction part 50 is not particularly limited, but it is preferably 1 to 500 L/min, more preferably 10 to 200 L/min, when the effective volume of the firing furnace 10 is 100 L. It is more preferable to have
  • the second gas introduction unit 50 has a second air blower (not shown) that forcibly feeds air into the firing furnace 10 and a cooling device (not shown) that cools the air fed into the firing furnace 10. good. Thereby, the airflow AF2 can be further cooled. Further, the second gas introduction section 50 may have an opening adjustment damper (not shown) for adjusting the amount of gas introduced into the firing furnace, the speed, and the like.
  • the gas is supplied to the airflow AF2 passing through the cooling region 14B by the second gas introduction part 50, so that the cooling of the airflow AF2 is promoted in the cooling region 14B, and the particle size is uniform. It is possible to more stably collect the flux with less or suppressed cohesion. Further, by lowering the temperature of the gas introduced from the second gas introduction part 50, it is possible to collect flux having large particle diameters, uniform particle diameters, and less cohesion between particles. can do.
  • FIG. 5 is a schematic diagram showing another modification of the metal oxide production apparatus according to this embodiment.
  • the firing furnace 10 may include a corrosion-resistant heat insulating portion 15 attached to the inner surface of the firing furnace 10 .
  • the heat insulating part 15 is provided on at least a part of the inner surfaces of the bottom wall, the side walls and the top wall of the kiln 10, and is preferably attached to the inner surfaces of the bottom wall, the side walls and the top wall.
  • the material of the heat insulating part 15 is not particularly limited as long as it has corrosion resistance in addition to the prerequisite heat insulating properties and heat resistance. From the viewpoint of corrosion resistance to flux such as molybdenum oxide, alumina fiber, clay brick, high alumina brick, and the like are preferable.
  • the corrosion-resistant heat insulating portion 15 is attached to the inner surface of the firing furnace 10, the heat radiation of the firing furnace 10 is suppressed, the thermal efficiency is improved, and deterioration of the firing furnace 10 due to corrosion is suppressed. and the maintenance burden can be further reduced.
  • FIG. 6 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
  • the metal oxide manufacturing apparatus 1C includes a recovery device 80 that is connected to the gas discharge section 30 and recovers the powdered flux contained in the gas.
  • the recovery device 80 includes a dust collector 81 that collects the powdered flux, and a classifier 82 that is provided between the gas discharge section 30 and the dust collector 81 and classifies the powdered flux.
  • the collection device 80 has the dust collector 81 and the classifier 82 , but is not limited to this and may not have the classifier 82 .
  • the dust collector 81 is directly connected to the gas discharge section 30 of the kiln 10 .
  • the dust collector 81 collects the powdered flux in the cooling area 14B inside the kiln 10 .
  • Examples of the dust collector 81 include, but are not limited to, a cyclone dust collector, a bag filter dust collector, an inertial dust collector, a moving bed dust collector, a wet dust collector, a filter dust collector, an electric dust collector, and the like.
  • the classifier 82 classifies the powdered flux in the cooling area 14B in the kiln 10 according to the difference in particle size (particle diameter). As a result, flux having a size (particle size) within a predetermined range is delivered to the dust collector 81 .
  • the classifier 82 is not particularly limited, but is, for example, a dry classifier, and as a dry classifier, a centrifugal weight classifier such as a cyclone, a gravity classifier, an inertial classifier, or the like can be used.
  • a blower device 90 as a third blower device is connected to the collection device 80 .
  • the insides of the dust collector 81, the classifier 82, and the gas discharge section 30 are sucked, and the outside air is blown to the gas discharge section 30 from the third gas introduction section 32 of the gas discharge section 30. . That is, the suction of the exhaust device 90 passively blows the air to the gas discharge section 30 .
  • the dust collector 81 collects the powdered flux in the cooling area 14B in the firing furnace 10, so the collected flux can be recycled for the production of metal oxides.
  • the classifier 82 classifies the powdered flux
  • the dust collector 81 arranged downstream can collect flux of a predetermined size range (for example, a relatively large particle size). can.
  • the collected flux can be used for recycling as it is, and the flux having a size outside the predetermined range (for example, a relatively small particle size) can be separately collected and used for other purposes.
  • the particle size of the flux it becomes possible to easily control the plate-like formation of the metal oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

製造装置(1A)は、焼成炉(10)の一端部(10a)側に設けられ、焼成炉(10)内に気体を導入する第1気体導入部(20)と、焼成炉(10)の他端部(10b)側に設けられ、焼成炉(10)内の気体を外部に排出する気体排出部(30)と、金属化合物とフラックスを気体排出部(30)側から第1気体導入部(20)側に搬送する搬送装置(40)とを備える。焼成炉(10)は、昇温領域(12A)と、冷却領域(14A)と、昇温領域(12A)及び冷却領域(14A)の間に設けられ、金属化合物とフラックスとが反応する反応領域(13A)を有する。製造装置(1A)では、第1気体導入部(20)から導入された気体による気流(AF1)により、反応領域(13A)で気化されたフラックスを冷却領域(14A)で粉体化し、粉体化されたフラックスを含む気体を気体排出部(30)に送出する。

Description

金属酸化物の製造装置及び金属酸化物の製造方法
 本発明は、金属酸化物の製造装置及び金属酸化物の製造方法に関する。
 本出願は、2021年11月10日に、日本に出願された特願2021-183370に基づき優先権を主張し、その内容をここに援用する。
 近年、自然や生物に学ぶ無機材料合成研究が盛んに行われている。その中でフラックス法は自然界で結晶(鉱物)が創り出される知恵を活かして開発されたものであり、高温で無機化合物や金属の溶液から結晶を析出させる方法である。このフラックス法の特長として、目的結晶の融点よりもはるかに低い温度で結晶を育成できる、欠陥の極めて少ない結晶が成長する、自形が発達するなどが挙げられる。
 フラックス法により金属酸化物を製造する方法として、フラックスとなる適当な酸化物または塩の存在下で、金属酸化物の前駆体である金属化合物を高温焼成した後、(1)徐冷するフラックス徐冷法、および(2)フラックスを蒸発させるフラックス蒸発法が知られている。この際、前記フラックス徐冷法は徐冷をしながら過飽和状態を形成し、金属酸化物の結晶成長を促すものであるのに対し、前記フラックス蒸発法はフラックスの蒸発を駆動力として、金属酸化物の結晶成長を促すものである。なお、前記フラックス蒸発法は、フラックスが蒸発で焼成容器から抜け出すことから、前記フラックス徐冷法のように、洗浄によりフラックスを除去する等の煩雑な作業が不要である等の利点がある。
 フラックス蒸発法は、煩雑な作業が不要であることから、幅広く金属酸化物の製造に用いられている。例えば、特許文献1には、原料およびフラックスを含有する試料を加熱し、フラックスの蒸発を駆動力として結晶を析出および成長させるフラックス蒸発法により、六角両錐形を基本形状とする人工コランダム結晶を製造することを特徴とする人工コランダム結晶の製造方法に係る発明が記載されている。
 ここで、フラックス蒸発法による金属酸化物の製造においては、フラックスの蒸発を駆動力とする性質上、蒸発したフラックスが装置系外/環境に放出されることから、環境への負荷が大きい、製造コストが高いといった問題点があった。
 この問題を解消するべく、本出願人により、フラックスの存在下で金属化合物を焼成する焼成炉と、前記焼成炉に接続され、前記焼成により気化したフラックスを粉体化する冷却配管と、前記冷却配管で粉体化されたフラックスを回収する回収手段と、を有する製造装置が開示されている(特許文献2)。この製造装置では、焼成炉から蒸発したフラックスが、主に冷却配管において粉体化し、集塵機において回収され、回収されたフラックスは金属酸化物の製造にリサイクルできるので、環境負荷や製造コストの低減を実現することが可能となっている。
国際公開第2005/054550号 特許第6455747号公報
 上記従来の製造装置では、冷却管が、焼成炉内の気体を排出する縦管と、一端部に気体導入口を有すると共に他端部が回収手段に接続された横管と、上記縦管と横管とが交差して連通する連通部とを有している。この製造装置を用いて酸化モリブデン(MoO)などの金属酸化物を製造すると、連通部の内壁、特に縦管の内壁に粉体化されたフラックス(モリブデン化合物)が付着し、このフラックスの付着物に因って連通部内が縮径して、その結果適正な流路の維持が困難となる場合がある。この対策として、スクレーパーなどの治具を冷却管に設置してフラックスの付着物を定期的に除去する方法があるが、焼成炉から排出される気体に酸化モリブデンが含まれるため、酸化モリブデンに因って治具が腐食するという問題がある。また、縦管の内側に断熱スリーブを設けて、焼成炉からの気化したフラックスと縦管との反応を防止する方法があるが、この場合でも断熱スリーブが酸化モリブデンを含む気体に曝されるため、酸化モリブデンに因って腐食してしまう。
 本発明は、フラックスを安定的に回収することができ、また、メンテナンスのための治具や部材の設置が不要であり、メンテナンス負担を格段に低減することができる金属酸化物の製造装置及び金属酸化物の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は以下の手段を提供する。
[1]フラックス蒸発法による金属酸化物の製造装置であって、
 フラックスの存在下で金属化合物を焼成する焼成炉と、
 前記焼成炉の一端部側に設けられ、前記焼成炉内に気体を導入する第1気体導入部と、 前記焼成炉の他端部側に設けられ、前記焼成炉内の気体を外部に排出する気体排出部と、
 前記焼成炉内に配置され、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記第1気体導入部及び前記気体排出部のうちの一方側から他方側に搬送する搬送装置と、
 を備え、
 前記焼成炉は、前記気体排出部及び前記第1気体導入部のうちの一方側に設けられた昇温領域と、前記気体排出部及び前記第1気体導入部のうちの他方側に設けられた冷却領域と、前記昇温領域及び前記冷却領域の間に設けられ、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域と、を有し、
 前記第1気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造装置。
[2]前記昇温領域が前記気体排出部側に設けられると共に、前記冷却領域が前記第1気体導入部側に設けられ、
 前記気流は、前記搬送装置の搬送方向に対して向流であり、前記冷却領域、前記反応領域及び前記昇温領域をこの順に通過し、
 前記反応領域で気化されたフラックスを、前記昇温領域で粉体化する、上記[1]に記載の金属酸化物の製造装置。
[3]前記昇温領域が前記第1気体導入部側に設けられると共に、前記冷却領域が前記気体排出部側に設けられ、
 前記気流は、前記搬送装置の搬送方向に対して並流であり、前記昇温領域、前記反応領域及び前記冷却領域をこの順に通過し、
 前記反応領域で気化されたフラックスを、前記冷却領域で粉体化する、上記[1]に記載の金属酸化物の製造装置。
[4]前記搬送装置にて搬送される金属化合物及びフラックスのうち、前記搬送方向に関して前記反応領域の上流部に位置する金属化合物及びフラックスから得られた気化された金属酸化物を、前記反応領域の下流部に位置する金属化合物及びフラックスに供給する、上記[3]に記載の金属酸化物の製造装置。
[5]前記焼成炉の前記冷却領域に設けられ、前記冷却領域を通過する前記気流に気体を供給する第2気体導入部を更に備える、上記[3]又は[4]に記載の金属酸化物の製造装置。
[6]前記気体排出部は、前記焼成炉内の気体を炉外に排出する主流路と、前記主流路に設けられ、前記主流路を流れる粉体化されたフラックスを含む気体に外部から気体を供給する第3気体導入部とを有する、上記[1]~[5]のいずれかに記載の金属酸化物の製造装置。
[7]前記焼成炉は、前記焼成炉の内面に取り付けられた耐腐食性の断熱部を備える、上記[1]~[6]のいずれかに記載の金属酸化物の製造装置。
[8]前記気体排出部に接続され、前記気体に含まれる前記粉体化されたフラックスを回収する回収装置を備える、上記[1]に記載の金属酸化物の製造装置。
[9]前記回収装置は、前記粉体化されたフラックスを集塵する集塵機を有する、上記[8]に記載の金属酸化物の製造装置。
[10]前記回収装置は、前記気体排出部と前記集塵機の間に設けられ、前記粉体化されたフラックスを分級する分級機を更に有する、上記[9]に記載の金属酸化物の製造装置。
[11]フラックス蒸発法による金属酸化物の製造方法であって、
 フラックスの存在下で金属化合物を焼成する焼成炉の一端部側に設けられた気体導入部から、前記焼成炉内に気体を導入し、前記焼成炉の他端部側に設けられた気体排出部から、前記焼成炉内の気体を外部に排出し、
 前記焼成炉内で、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記気体導入部及び前記気体排出部のうちの一方側から他方側に搬送し、
 前記焼成炉において、前記気体排出部及び前記気体導入部のうちの一方側に昇温領域を、前記気体排出部及び前記気体導入部のうちの他方側に冷却領域を、前記昇温領域及び前記冷却領域の間に、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域をそれぞれ設けて、前記気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造方法。
 本発明によれば、フラックスを安定的に回収することができ、また、メンテナンスのための治具や部材の設置が不要であり、メンテナンス負担を各段に低減することができる金属酸化物の製造装置及び金属酸化物の製造方法が提供される。
図1は、本実施形態に係る金属酸化物の製造装置の一例を示す模式図である。 図2は、図1の焼成炉内の領域を示す模式図である。 図3は、本実施形態に係る金属酸化物の製造装置の変形例を示す模式図である。 図4は、本実施形態に係る金属酸化物の製造装置の他の変形例を示す模式図である。 図5は、本実施形態に係る金属酸化物の製造装置の他の変形例を示す模式図である。 図6は、本実施形態に係る金属酸化物の製造装置の他の変形例を示す模式図である。
 以下、本発明の実施形態を図面を参照しながら詳細に説明する。
 なお、以下の説明で用いる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがあり、各構成要素の寸法比率などが実際と同じであるとは限らないものとする。また、以下の説明において例示される構造、材料等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<金属酸化物の製造装置>
 図1は、本実施形態に係る金属酸化物の製造装置の一例を示す模式図である。図1の製造装置は、フラックス蒸発法による金属酸化物の製造装置である。フラックス蒸発法とは、フラックスの存在下で金属化合物を焼成させることで金属酸化物を製造する方法である。なお、焼成過程において、フラックスは蒸発し、当該フラックスの蒸発を駆動力として金属酸化物の結晶成長が進行する。
 図1に示すように、金属酸化物の製造装置1Aは、フラックスの存在下で金属化合物を焼成する焼成炉10と、焼成炉10の一端部10a側に設けられ、焼成炉10内に気体を導入する第1気体導入部20と、焼成炉10の他端部10b側に設けられ、焼成炉10内の気体を外部に排出する気体排出部30と、焼成炉10内に配置され、金属化合物とフラックス或いはこれらの反応によって得られる金属酸化物を、気体排出部30側から第1気体導入部20側に搬送する搬送装置40と、を備える。
 本実施形態の焼成炉10は、炉内に高温領域と低温領域とを容易に形成できる観点、及び、原料を焼成炉内に連続的に供給することが可能であり、大量生産が可能である観点から、典型的には連続式焼成炉である。連続式焼成炉としては、特に制限されないが、連続型ロータリーキルン焼成炉、ローラーハースキルン炉、プッシャー炉、コンベア炉、ネットコンベア炉、シャフトキルン炉、流動化焼成炉等が挙げられる。これらのうち、ローラーハースキルン炉、プッシャー炉、コンベア炉、ネットコンベア炉であることがより好ましく、ローラーハースキルン炉、プッシャー炉であることがさらに好ましい。
 焼成炉10の加熱方式としては、特に制限されないが、電気、ガス、マイクロ波、赤外線等が挙げられる。これらのうち、工業化が容易であり、制御しやすい観点から、電気式加熱方式であることが好ましい。本実施形態では、焼成炉10内にはヒーター11が設けられており、ヒーター11は、焼成炉10の上壁及び底壁に配置されている。ヒーター11は、焼成炉10の上壁及び底壁のうちの一方に配置されてもよい。
 焼成炉10は、平面視において、例えば搬送装置40の搬送方向(図1中の矢印方向)に沿う長手方向と、該長手方向に直交する方向(短手方向或いは横方向ともいう)とを有する。本実施形態では、焼成炉10の一端部10aは、上記長手方向の一端部であり、焼成炉10の他端部10bは、上記長手方向の他端部である。
 第1気体導入部20は、粉体化されたフラックスを効率的に焼成炉から排出できる観点から、気体排出部30の設置位置とは反対側に配置されるのが好ましい。本実施形態では、第1気体導入部20は、気体排出部30が設置される焼成炉の一端部10b側とは反対の他端部10a側に配置されている。
 また、第1気体導入部20は、焼成炉10内の全体で第1気体導入部20から気体排出部30に向かう気流を効率的に形成する観点からは、焼成炉10の底壁或いは側壁下部に設けられるのが好ましい。第1気体導入部20は、焼成炉10に1つ設けられてもよいし、2つ以上設けられてもよい。
 また、第1気体導入部20が焼成炉10に2つ以上設けられる場合、第1気体導入部20は、焼成炉10内に後述する気流AF1を生成するための1又は複数の主導入部と、焼成炉10の底部に一定間隔で設けられ、焼成炉10内において下部から上部への気流を形成するための複数の副導入部とを有していてもよい。
 第1気体導入部20から導入される気体としては、フラックス蒸気との反応性を有しないものであれば特に制限されないが、空気(この場合、気体吸気口を「外気吸気口」とも称する)、酸素、窒素、アルゴン、水蒸気等が挙げられる。このうち、気体としては、コストの観点から空気であることが好ましい。
 第1気体導入部20は、焼成炉10内に気体を強制的に送り込む不図示の第1送風装置を有していてもよい。これにより、焼成炉10内で後述する反応領域から昇温領域に向かう気流を十分に発生させると共に、焼成炉10内で粉体化されたフラックスを好適に焼成炉外に排出することができる。具体的には、焼成炉10内に気体を強制的に送り込むと、焼成炉10内に一方向の気流が生じ、気体を強制的に焼成炉内に送り込まない場合と比較して、焼成炉10内の気体(粉体化されたフラックスを含む)が気体排出部30により移動しやすくなる。このため、粉体化されたフラックスを迅速かつ効果的に回収することができる。また、フラックス蒸発法においてはフラックスの蒸発が結晶成長の駆動力となるため、気化したフラックスを後述する反応領域から昇温領域に移動しやすくすると、フラックス蒸発法が好適に進行しうる。その結果、得られる金属酸化物は好適に結晶成長したものとなりうる。
 第1気体導入部20は、焼成炉に導入される気体量、速度等を調整する不図示の開度調整ダンパーを有していてもよい。開度調整ダンパーとしては、特に制限されず、公知ものが使用されうる。開度調整ダンパーは、モーターを有していてもよし、逆流防止機構が設けられていてもよいし、スリットを有していてもよい。また、開度調整ダンパーは、焼成炉の構成により、1つであっても、2以上有していてもよい。
 気体排出部30は、粉体化されたフラックスを含む気体を焼成炉10の外部に排出する。気体排出部30は、例えば、焼成炉10内の気体を炉外に排出する主流路31と、主流路31に設けられ、主流路31を流れる気体に外部から気体を供給する第3気体導入部32とを有する。気体排出部30は、例えばT字形状の配管を有しており、主流路31がL字型の部位によって形成され、第3気体導入部32は、L字型の部位に連通するI字型の部位によって形成される。気体排出部30を上記のような形状にすることにより、導入される外気が直線的に進行して後述する集塵機に輸送されるため、短時間で回収する工程に移行することができる。これにより、大粒径且つ粒子同士の凝集の少ないフラックスを回収することが可能となりうる。
 気体排出部30を構成する配管の材質は、特に制限されず、公知の金属や合金が使用されうる。
 第3気体導入部32から導入される気体としては、フラックス蒸気との反応性を有しないものであれば特に制限されないが、空気(この場合、本明細書では気体吸気口を特に「外気吸気口」とも称する)、酸素、窒素、アルゴン、水蒸気等が挙げられる。このうち、気体としては、コストの観点から空気であることが好ましい。
 気体排出部30は、第3気体導入部32に設けられ、気体排出部30内に空気を強制的に送り込む不図示の第2送風装置を有していてもよい。第3気体導入部から導入される気体によって生じる負圧により、焼成炉10内の粉体化されたフラックスを含む気体が気体排出部30により移動し易くなる。また、下流の回収時のフラックス温度等を考慮して、焼成炉10の外部においてフラックスを含む気体を更に冷却することができる。これにより、粒径が均一で、粒子同士の凝集が少なく、あるいは抑制されたフラックスを回収することができる。
 第3気体導入部32は、焼成炉に導入される気体量、速度等を調整する不図示の開度調整ダンパーを有していてもよい。開度調整ダンパーとしては、特に制限されず、公知ものが使用されうる。開度調整ダンパーは、モーターを有していてもよし、逆流防止機構が設けられていてもよいし、スリットを有していてもよい。また、開度調整ダンパーは、焼成炉の構成により、1つであっても、2以上有していてもよい。
 搬送装置40は、例えば搬送部と、該搬送部を駆動する駆動部とを有しており、搬送部に容器41を載置して、駆動部によって搬送部を駆動させることにより、焼成炉10内で容器41を搬送する。搬送部としては、特に制限されず、ローラ、台板、台車などを使用することができる。搬送部に載置される容器41は、例えばサヤと呼ばれる焼成容器である。搬送装置40の搬送方向に関して、後述する反応領域の上流側では、容器41には、反応物(金属化合物とフラックス)が収容され、反応領域の下流側では生成物(金属化合物及びフラックスの反応によって得られた金属酸化物)が収容される。
 本実施形態では、焼成炉10の一端部10a側に第1気体導入部20が設けられ、他端部10b側に気体排出部30が設けられている。そして搬送装置40は、焼成炉10の一端部10b側から、反応物が収容された容器41を焼成炉10内に搬入し、焼成炉10の一端部10a側から、生成物が収容された容器41を搬出する。
 図2は、図1の焼成炉10内の領域を示す模式図である。
 図2に示すように、焼成炉10は、気体排出部30側に設けられた昇温領域12Aと、第1気体導入部20側に設けられた冷却領域14Aと、昇温領域12A及び冷却領域14Aの間に設けられ、昇温領域12Aと冷却領域14Aのいずれよりも高温であって金属化合物とフラックスとが反応する反応領域13Aとを有する。
 昇温領域12Aは、焼成炉10内に搬送された容器41及び容器41内の反応物を加熱する領域である。この昇温領域12Aは、搬送方向に関して反応領域13Aに近くなるに従って温度が高くなる温度勾配を有している。昇温領域12Aにはヒーター11が設置されており、上記濃度勾配を有するようにヒーター11が制御される。
 この昇温領域12Aは、例えば搬送装置40の搬送方向に関して気体排出部30の下流側に配置されている。換言すれば、昇温領域12Aは、後述する気流AF1の流れ方向に関して気体排出部30の上流側に配置されている。
 反応領域13Aは、昇温領域12Aから搬送された容器41内の反応物を反応させる領域である。この反応領域13Aは、昇温領域12Aと冷却領域14Aのいずれよりも高温であれば、特に制限されないが、例えば、搬送方向に関して実質的な温度勾配を有しておらず、搬送方向に関してほぼ一定の温度を有している。また、反応領域13Aは、昇温領域12Aと冷却領域14Aのいずれよりも高温であることを前提として、搬送方向に関して段階的或いは連続的に温度勾配を有していてもよい。反応領域13Aにはヒーター11が設置されており、上記の一定温度を有するようにヒーター11が制御される。
 冷却領域14Aは、反応領域13Aから搬送された容器41及び容器41内の生成物を冷却する領域である。この昇温領域12Aは、搬送方向に関して反応領域13Aから離れるに従って温度が低くなる温度勾配を有している。反応領域13Aの一部にはヒーター11が設置されており、上記濃度勾配を有するようにヒーター11が制御される。冷却領域14Aには、その一部にヒーター11が設置されていてもよいし、ヒーター11が設置されていなくてもよい。
 昇温領域12Aと反応領域13Aの境界、及び反応領域13Aと冷却領域14Aの境界は明確に設けられるものではないが、例えば、焼成炉10内の領域のうち、搬送方向に関して、フラックスと金属化合物との反応により得られる中間体が分解する温度が維持される領域を反応領域13A、反応領域13Aの上流側(容器41の入口側)を昇温領域12A、反応領域13Aの下流側(容器41の出口側)を冷却領域14Aとすることができる。各領域の温度としては、例えば、昇温領域12A、反応領域13A及び冷却領域14Aでのそれぞれの温度分布を測定し、各温度分布の平均温度を求めてもよい。或いは、各領域の温度として、搬送方向に関して、昇温領域12A、反応領域13A及び冷却領域14Aでのそれぞれの中心部での温度を測定してもよい。各領域の温度の測定値としては、例えば、各領域におけるヒーター自体の温度や、熱電対によるヒーター近傍の雰囲気温度の1又は複数を用いることが挙げられる。
 本実施形態では、昇温領域12Aが焼成炉10の他端部10b側に設けられ、冷却領域14Aが焼成炉10の一端部10a側に設けられている。容器41は、焼成炉10内の冷却領域14A、反応領域13A及び昇温領域12Aを通って、この順で搬送される。
 上記のように構成される金属酸化物の製造装置1Aでは、第1気体導入部20から導入された気体による気流AF1により、反応領域13Aで気化されたフラックスを冷却領域14Aで粉体化し、粉体化されたフラックスを含む気体を気体排出部30に送出する。このように本実施形態では、炉内徐冷方式にて、気化されたフラックスを焼成炉10内で粉体化する。
 また本実施形態では、気流AF1は、上記搬送方向に対して向流であり、冷却領域14A、反応領域13A及び昇温領域12Aをこの順に通過する。そして、反応領域13Aで気化されたフラックスを、昇温領域12Aで粉体化する。すなわち本実施形態では、昇温領域12Aが、反応物である金属化合物とフラックスを昇温すると共に、気化されたフラックスを含む気体を冷却して、フラックスを粉体化する領域として機能する。図2の例では、気流AF1上であって且つ搬送装置40の上方(昇温領域12Aの上部)の位置P1で、気化されたフラックスを粉体化する。
 また本実施形態では、第1気体導入部20から導入された気体が冷却領域14Aの容器41を冷却すると共に、冷却領域14A及び反応領域13Aを通った気体が、昇温領域12Aの容器41を加熱する。これにより、冷却領域14Aにおいて容器41及び容器41内の生成物が効率的に冷却され、また、昇温領域12Aにおいて容器41及び容器41内の反応物が効率的に加熱される。
<金属酸化物の製造方法>
 本実施形態に係る金属酸化物の製造方法は、フラックス蒸発法による金属酸化物の製造方法であって、以下の工程(1)~(3)を有する。工程(1)~(3)の順番は、特に制限されず、本発明の趣旨を逸脱しない範囲で変更することができる。また、工程(1)の前、工程(3)の後、或いは2工程間の間に1又は複数の他の工程を有していてもよい。
 以下、本実施形態に係る金属酸化物の製造方法の一例を、図2の金属酸化物の製造装置を参照しながら説明する。本実施形態に係る金属酸化物の製造方法は、図2の金属酸化物の製造装置に限らず、他の金属酸化物の製造装置でも行うことができる。
(工程(1))
 工程(1)では、フラックスの存在下で金属化合物を焼成する焼成炉の一端部側に設けられた第1気体導入部から、前記焼成炉内に気体を導入し、前記焼成炉の他端部側に設けられた気体排出部から、前記焼成炉内の気体を外部に排出する。例えば、図2の例では、焼成炉10の一端部10a側に設けられた第1気体導入部20から、焼成炉10内に気体を導入し、焼成炉10の他端部10b側に設けられた気体排出部30から、焼成炉10内の気体を外部に排出する。
 上記第1気体導入部から導入される気体としては、空気、酸素、窒素、アルゴン、水蒸気等が挙げられ、これらのうち、コストの観点からは空気であることが好ましい。
 上記第1気体導入部から焼成炉に気体を送風する場合、送風する気体の温度は、5℃以上であることが好ましく、10℃以上であることがより好ましい。
 また、気体の送風速度は、焼成炉の有効容積が100Lに対して、1~500L/分であることが好ましく、10~200L/分であることがより好ましい。
 焼成炉内の内部圧力は、特に制限されず、陽圧であっても減圧であってもよく、-5000~+1000Paとすることができる。また、フラックスを好適に焼成炉から冷却配管に排出する観点からは、焼成は減圧下で行われることが好ましい。具体的な減圧度としては、-5000~-10Pa、-2000~-20Pa、或いは-1000~-50Paとすることができる。
 (フラックス)
 フラックスとしては、特に制限されないが、モリブデン化合物、タングステン化合物、バナジウム化合物、塩素化合物、フッ素化合物、ホウ素化合物、硫酸塩、硝酸塩、炭酸塩等が挙げられる。
 前記モリブデン化合物としては、特に制限されないが、金属モリブデン、三酸化モリブデン、二酸化モリブデン、硫化モリブデン、モリブデン酸アンモニウム、HPMo1240、HSiMo1240、KMo3n+1(n=1~3)、NaMo3n+1(n=1~3)、LiMonO3n+1(n=1~3)、MgMo3n+1(n=1~3)、モリブデン酸アルミニウム、モリブデン酸ケイ素、モリブデン酸マグネシウム、モリブデン酸ナトリウム、モリブデン酸チタニウム、モリブデン酸鉄、モリブデン酸カリウム、モリブデン酸亜鉛、モリブデン酸ホウ素、モリブデン酸リチウム、モリブデン酸コバルト、モリブデン酸ニッケル、モリブデン酸マンガン、モリブデン酸クロム、モリブデン酸セシウム、モリブデン酸バリウム、モリブデン酸ストロンチウム、モリブデン酸イットリウム、モリブデン酸ジルコニウム、モリブデン酸銅等が挙げられる。
 前記タングステン化合物としては、特に制限されないが、三酸化タングステン、硫化タングステン、タングステン酸、塩化タングステン、タングステン酸カルシウム、タングステン酸カリウム、タングステン酸リチウム、タングステン酸アルミニウム、タングステンナトリウム、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、リンタングステン酸、ケイタングステン酸等が挙げられる。
 前記バナジウム化合物としては、特に制限されないが、酸化バナジウム、メタバナジウム酸アンモニウム、バナジウム酸カリウム、メタバナジウム酸ナトリウム、バナジウム酸ナトリウム、オキシ塩化バナジウム、オキシ硫酸バナジウム、塩化バナジウム等が挙げられる。
 前記塩素化合物としては、特に制限されないが、塩化カリウム、塩化ナトリウム、塩化リチウム、塩化マグネシウム、塩化バリウム、塩化アンモニウム等が挙げられる。
 前記フッ素化合物としては、特に制限されないが、フッ化アルミニウム、フッ化ナトリウム、フッ化マグネシウム、フッ化カルシウム、氷晶石、フッ化鉛等が挙げられる。
 前記ホウ素化合物としては、特に制限されないが、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、フッ化ホウ素等が挙げられる。
 前記硫酸塩としては、特に制限されないが、硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、硫酸リチウム等が挙げられる。
 前記硝酸塩としては、特に制限されないが、硝酸ナトリウム、硝酸カリウム、硝酸カルシウム、硝酸リチウム等が挙げられる。
 前記炭酸塩としては、特に制限されないが、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸リチウム等が挙げられる。
 これらのフラックスは、単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、これらのうち、得られる金属酸化物が単結晶構造および/または形状制御しやすい観点から、モリブデン化合物を含むことが好ましく、気化したフラックスを粉末化する際に効率よく回収できる観点から、三酸化モリブデンを含むことがより好ましい。
 フラックスの使用量としては、特に制限されず、所望とする金属酸化物に応じて適宜選択することができる。例えば、粒径が大きい(1mm以上)金属酸化物を製造する場合には、後述する金属化合物を構成する金属元素に対するフラックスを構成するフラックス金属のモル比(フラックス金属/金属元素)が、3.0超であることが好ましい。一方、粒径が小さい(1mm未満)金属酸化物を製造する場合には、後述する金属化合物を構成する金属元素に対するフラックスを構成するフラックス金属のモル比(フラックス金属/金属元素)が、0.001~3.0モルであることが好ましく、0.03~3.0であることがより好ましく、0.08~0.7であることがさらに好ましい。
 (金属化合物)
 金属化合物としては、特に制限されないが、アルミニウム化合物、ケイ素化合物、チタン化合物、マグネシウム化合物、ナトリウム化合物、カリウム化合物、ジルコニウム化合物、イットリウム化合物、亜鉛化合物、銅化合物、鉄化合物等が挙げられる。これらのうち、アルミニウム化合物、ケイ素化合物、チタン化合物、マグネシウム化合物を用いることが好ましい。
 前記アルミニウム化合物としては、塩化アルミニウム、硫酸アルミニウム、塩基性酢酸アルミニウム、水酸化アルミニウム、ベーマイト、擬ベーマイト、遷移酸化物アルミニウム(γ-酸化物アルミニウム、δ-酸化物アルミニウム、θ-酸化物アルミニウムなど)、α-酸化物アルミニウム、2種以上の結晶相を有する混合酸化物アルミニウム等が挙げられる。
 前記ケイ素化合物としては、結晶性シリカ、シリカゲル、シリカナノ粒子、メソポーラスシリカなどの人工合成されたアモルファスシリカ、シリコンを含有する有機シリコン化合物、バイオシリカ等が挙げられる。
 前記チタン化合物としては、特に制限されないが、塩化チタン、硫酸チタン、メタチタン酸、アモルファス酸化チタン、アナターゼ型酸化チタン、ルチル型酸化チタン、アナターゼ型とルチル型との混合型酸化チタン等が挙げられる。
 前記マグネシウム化合物としては、特に制限されないが、酸化マグネシウム、水酸化マグネシウム、酢酸マグネシウム四水和物、炭酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、窒化マグネシウム、水素化マグネシウム、フッ化マグネシウム、ヨウ化マグネシウム、臭化マグネシウム、アクリル酸マグネシウム、ジメタクリル酸マグネシウム、マグネシウムエトキシド、グルコン酸マグネシウム、ナフテン酸マグネシウム、サリチル酸マグネシウム四水和物、ステアリン酸マグネシウム、モリブデン酸マグネシウム、乳酸マグネシウム三水和物、塩化カリウムマグネシウム、硝酸マグネシウム六水和物、臭化マグネシウム六水和物、塩化マグネシウム六水和物、硫酸マグネシウム七水和物、シュウ酸マグネシウム二水和物、安息香酸マグネシウム四水和物、クエン酸マグネシウムn水和物、二クエン酸三マグネシウム九水和物、モノペルオキシフタル酸マグネシウム等が挙げられる。
 これらの金属化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、金属化合物を2種以上組み合わせて用いる場合には、複合酸化物が製造されうる。例えば、アルミニウム化合物およびマグネシウム化合物を組み合わせて用いた場合には、MgAlの基本組成を有するスピネル複合酸化物を製造することができる。
 これらのうち、アルミニウム化合物、アルミニウム化合物およびマグネシウム化合物を用いることが好ましい。
(工程(2))
 工程(2)では、焼成炉内で、反応物(金属化合物とフラックス)、或いは生成物(金属化合物とフラックスの反応によって得られる金属酸化物)を、第1気体導入部(気体導入部)及び気体排出部のうちの一方側から他方側に搬送する。例えば、図2の例では、焼成炉10内で、反応物或いは生成物を、気体排出部30側から第1気体導入部20側に搬送する。搬送形態は、反応物或いは生成物を焼成炉内の所定方向に連続的に搬送できれば、特に制限されないが、例えば複数の容器に反応物或いは生成物を収容し、これらを炉内で順次移動させることで、反応物或いは生成物を搬送してもよい。また、反応物或いは生成物の搬送速度は、焼成炉内で金属化合物とフラックスとが十分に反応する時間が確保できれば、特に制限されない。
(工程(3))
 工程(3)では、焼成炉において、気体排出部及び第1気体導入部(気体導入部)のうちの一方側に昇温領域を、気体排出部及び第1気体導入部のうちの他方側に冷却領域を、前記昇温領域及び前記冷却領域の間に、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域をそれぞれ設けて、前記第1気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する。例えば、図2の例では、気体排出部30側に昇温領域12Aを、第1気体導入部20側に冷却領域14Aを、昇温領域12A及び冷却領域14Aの間に、昇温領域12Aと冷却領域14Aのいずれよりも高温であって金属化合物とフラックスとが反応する反応領域13Aをそれぞれ設ける。そして、第1気体導入部20から導入された気体による気流AF1により、反応領域13Aで気化されたフラックスを昇温領域12Aで粉体化し、粉体化されたフラックスを含む気体を気体排出部30に送出する。
 昇温領域では、フラックスの存在下、金属化合物を昇温し、下流の反応領域においてフラックスを蒸発させ易くする。また、図2の例では、昇温領域12Aにて、金属化合物とフラックスを昇温すると共に、気化されたフラックスを含む気体を冷却して、フラックスを粉体化する。
 昇温領域の温度は、特に制限されないが、20~2000℃であることが好ましく、40~1500℃であることがより好ましい。
 昇温領域において、金属化合物及びフラックスの昇温速度は、使用するフラックス、金属化合物、および所望とする金属酸化物等によっても異なるが、製造効率の観点から、0.5~100℃/分であることが好ましく、1~50℃/分であることがより好ましく、2~10℃/分であることがさらに好ましい。具体的には、焼成炉内の昇温領域における温度勾配(℃/m)と、搬送速度(m/s)とを設定し、設定された温度勾配及び搬送速度から上記範囲の昇温速度を実現することができる。
 (気化されたフラックスの冷却)
 気化されたフラックスの冷却は、昇温領域と反応領域との温度差により行われる。
 気化されたフラックスの冷却速度は、特に制限されないが、100~100000℃/秒であることが好ましく、1000~50000℃/秒であることがより好ましい。なお、フラックスの冷却速度が早くなるほど、粒径の小さく、比表面積の大きいフラックスの粉体が得られる傾向がある。
 焼成炉から気体排出部への粉体化されたフラックスの排出速度は、使用するフラックス量、焼成炉の温度、焼成炉内への気体の送風、焼成炉排気口の口径により制御することができる。焼成炉から気体排出部への粉体化されたフラックスの排出速度は、原料の金属化合物1kgあたり0.001~100g/分であることが好ましく、0.1~50g/分であることがより好ましい。
 また、気体排出部に外部から気体を供給することによって、粉体化されたフラックスを含む気体を炉外に排出してもよい。例えば、図2の例では、気体排出部30の主流路31が、焼成炉10内の粉体化されたフラックスを含む気体を炉外に排出し、主流路31に設けられた第3気体導入部32が、主流路31を流れる上記気体に外部から気体を供給する。
 なお、送風速度や気体排出部の管内流速は、不図示の開度調整ダンパーにより適宜制御することができる。
 反応領域では、フラックスの存在下、金属化合物を高温焼成し、フラックスを蒸発させることで、金属酸化物を製造する(フラックス蒸発法)。
 フラックス蒸発法は、通常、まずフラックスと金属化合物とが反応して中間体を形成する。次いで、前記中間体を、分解して結晶成長させることで金属酸化物を製造することができる。この際、フラックスの蒸発を駆動力として、金属酸化物の結晶成長が促される。
 なお、例えば、フラックスとしてモリブデン化合物を用いた場合には、中間体としてモリブデン酸金属塩を形成し、これが分解して金属酸化物が製造される。この際、三酸化モリブデンが気化によって蒸発し、これを駆動力として金属酸化物の結晶成長が促される。
 フラックスと金属化合物との混合状態は、特に限定されず、フラックスと金属化合物とが同一の空間に存在すればよい。例えば、両者が混合されていない状態であっても、フラックス反応は進行しうる。両者を混合する場合には、粉体を混ぜ合わせる簡便な混合、粉砕機等を用いた機械的な混合、乳鉢等を用いた混合等を行うことができ、この際、得られる混合物は乾式状態、湿式状態のいずれであってもよい。両者が混ざっていない状態である場合は、焼成温度をフラックスの昇華温度以上とすることで、気化したフラックスが金属酸化物と接触することとなり、気体-固体の反応を行うことができる。
 焼成温度としては、使用するフラックス、金属化合物、および所望とする金属酸化物等によっても異なるが、通常、中間体が分解できる温度とすることが好ましい。例えば、フラックスとしてモリブデン化合物を、金属化合物としてアルミニウム化合物を用いる場合には、中間体として、モリブデン酸アルミニウムが形成されうることから、焼成温度は500℃~900℃であることが好ましく、600~900℃であることがより好ましく、700~900℃であることがさらに好ましい。
 反応時間についても特に制限はなく、例えば、1分~30時間とすることができる。
 (気化されたフラックス)
 気化されたフラックスは、使用するフラックスによって異なるが、通常フラックスを構成する金属酸化物である。例えば、フラックスとして、モリブデン酸アンモニウムを用いる場合には、焼成により熱力学的に安定な三酸化モリブデンに変換されることから、気化するフラックスは前記三酸化モリブデンとなる。なお、フラックス蒸発法によっては、フラックスと金属化合物とが中間体を生成する場合があるが、この場合でも焼成により中間体が分解して結晶成長するため、フラックスは熱力学的に安定な形態で気化する。
 気化されたフラックスの温度は、使用するフラックスの種類によっても異なるが、200~2000℃であることが好ましく、400~1500℃であることがより好ましい。なお、気化したフラックスの温度が2000℃以下であると、通常、冷却領域において、容易に粉体化することができる傾向がある。
 冷却領域では、金属化合物とフラックスの反応によって得られた金属酸化物を冷却する。また、図2の例では、冷却領域14Aにて、得られた金属酸化物を冷却すると共に、第1気体導入部20から導入された気体を加熱する。
 冷却領域の温度は、特に制限されないが、20~2000℃であることが好ましく、40~1500℃であることがより好ましい。
 冷却領域において、金属酸化物の冷却速度は、使用するフラックス、金属化合物、および所望とする金属酸化物等によっても異なるが、製造効率の観点から、0.1~100℃/分であることが好ましく、1~50℃/分であることがより好ましく、2~20℃/分であることがさらに好ましい。
 (金属酸化物)
 金属酸化物は、用いる金属化合物等により異なるが、金属酸化物の機能性の観点から、酸化アルミニウム、酸化シリコン、酸化チタン、酸化マグネシウム、酸化ナトリウム、酸化カリウム、酸化ジルコニウム、酸化イットリウム、酸化亜鉛、酸化銅、酸化鉄、アルミニウムとマグネシウムとのスピネル複合酸化物であることが好ましく、酸化アルミニウム、酸化ケイ素、酸化チタン、アルミニウムとマグネシウムとのスピネル複合酸化物であることがより好ましく、酸化アルミニウム、アルミニウムとマグネシウムとのスピネル複合酸化物であることがさらに好ましい。
 金属酸化物の結晶構造等については、フラックス蒸発法により製造されることから、通常、緻密な単結晶構造を有しうる。かような緻密な単結晶構造を有する金属酸化物は高い機能性を有しうる。例えば、酸化アルミニウム、アルミニウムとマグネシウムとのスピネル複合酸化物は、本来的には、緻密性が低く、多結晶構造を有する傾向があるため、フォノンの散乱を起こしやく、高熱伝導率を得ることが困難である。しかしながら、フラックス蒸発法により得られる酸化アルミニウム、アルミニウムとマグネシウムとのスピネル複合酸化物は緻密な規則の高い結晶構造を有するため、フォノンの散乱が抑制され、高熱伝導率の実現が可能である。このような結晶構造等は、フラックス蒸発法において、使用するフラックスの種類および添加量、金属化合物の種類および添加量、焼成条件等により適宜制御することができる。
 なお、金属酸化物はフラックスを含みうる。例えば、フラックスとしてモリブデン化合物を用いた場合には、上述の通り、三酸化モリブデン等の形態で多くは蒸発するが、一部のモリブデン化合物は金属酸化物に取り込まれる。その結果、モリブデンを含む酸化アルミニウムは、着色したものとなりうる。
 金属酸化物中のフラックスの含有量は、特に制限されないが、金属酸化物を低コストで効率的に製造する観点から、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3~0.01質量%であることがさらに好ましい。なお、フラックス法により製造された金属酸化物がフラックスを含む場合、不可避不純物として含まれる金属元素(通常、100ppm程度)よりも含有量が多くなる傾向がある。
 金属酸化物の平均粒径は、特に制限されないが、0.1~1000μmであることが好ましく、0.2~100μmであることがより好ましく、0.3~80μmであることがさらに好ましく、0.4~60μmであることが特に好ましい。なお、本明細書において、「平均粒径」とは、任意の100個の粒子の粒径を走査型電子顕微鏡(SEM)により得られたイメージから測定、算出された値を意味する。この際、「粒径」とは、粒子の輪郭線上の2点間の距離のうち、最大の長さを意味する。
 金属酸化物の形状は、目的に応じて、製造条件を適宜変更することで制御することができる。例えば、フラックスとして酸化モリブデンを、金属化合物として酸化アルミニウムを用いて、α結晶の酸化アルミニウムを製造しようとする場合、フラックスの添加量および焼成条件を適宜変更することで、α結晶の酸化アルミニウムを製造することができる。
 一実施形態において、多量の酸化モリブデンを使用し、長時間かけてゆっくりと結晶成長させると、六角両錐形のα結晶酸化アルミニウムを製造することができる。このようなα結晶酸化アルミニウムは、レーザー発振材料、高硬度軸受材料、物性測定用標準材料、宝飾品等の用途に適用することができる。
 また、別の一実施形態において、少量の酸化モリブデンを使用し、短時間で結晶成長させると、単結晶構造を有する粒径分布の狭い単結晶構造のα結晶酸化アルミニウムを製造することができる。このようなα結晶酸化アルミニウムは、樹脂フィラー、研磨剤、ファインセラミックスの原料等の用途に適用することができる。
 なお、上記いずれの場合にも、酸化モリブデンが酸化アルミニウム結晶の[113]面に選択的に吸着しうる。その結果、結晶成分は[001]面に供給されにくくなり、[001]面の出現を抑制できる。その結果、[001]面以外の面を主結晶面とするα結晶の酸化アルミニウムを製造することができる。このような結晶構造を有するα結晶の酸化アルミニウムは、通常の焼成で得られる板状のα-酸化アルミニウムや[001]面を主結晶面とする多面体とは異なり、[001]結晶面成長は効率的に抑制され、均整で球に近い多面体形状の粒子となりうる。なお、本明細書において、「[001]面以外の面を主結晶面とする」とは、[001]面の面積が、金属酸化物中の全面積に対して20%以下であることを意味する。
 なお、金属酸化物がMgAlの基本組成を有するスピネル複合酸化物である場合には、単結晶構造を有する多面体粒子を製造することができる。このようなスピネル粒子は、樹脂フィラー、触媒、光学材料、基板の原料、研磨剤等の用途に適用することができる。
 また、金属酸化物がルチル型酸化チタンである場合には、優れた隠蔽性と高い赤外線散乱能力を有するため、塗料、インキ、化粧品等の用途に適用することができる。また、金属酸化物が酸化ケイ素である場合には、シラノール基を事実上含まないQ4結合で構成される2相共連続構造体を製造することができ、ライフサイエンスにおける担持体や樹脂フィラー、触媒、化粧品等の用途に適用することができる。
 上記工程(3)の後に、粉体化されたフラックスを回収する工程(4)を有していてもよい。
 工程(4)では、例えば集塵機などを用いて、気体排出部から送出された気体に含まれる粉体化されたフラックスを集塵する。また、例えば分級機などを用いて、気体排出部から送出された気体に含まれる粉体化されたフラックスを分級し、分級されたフラックスを集塵してもよい。
 フラックスの回収方法は、特に制限されず、バッチ式であっても、連続式であってもよい。
 バッチ式である場合には、反応ごとに回収手段から粉体化したフラックスを回収する。この場合には、回収したフラックスを金属酸化物の製造に使用する際に、事前に添加量、粒径等を調整することで、金属酸化物の形状制御等を好適に行うことができる。
 また、連続式である場合には、反応継続中に、粉末化したフラックスを順次回収する。この場合には、フラックスをそのまま連続的に金属化合物と混合して焼成炉に仕込むことができ、単位時間内に金属酸化物の製造量の増加等の効果が得られうる。
 また、上記工程(4)の後に、工程(3)で回収したフラックスを再利用する工程(4)等を更に有していてもよい。
 工程(4)において回収されたフラックスは、気化したものを粉体化して得られたものであり、純度が高い傾向がある。よって、これを再度金属酸化物の製造に再利用することができる。これにより、環境への負荷を低減することができ、また、製造コストを低くすることができる。
 上述したように、本実施形態によれば、第1気体導入部20から導入された気体による気流AF1により、反応領域13Aで気化されたフラックスを、反応領域13Aよりも低温である昇温領域12Aで粉体化し、粉体化されたフラックスを含む気体を気体排出部30に送出するので、焼成炉10内の昇温領域12Aで気流AF1中のフラックスが気体から固体に変化し、気化されたフラックスが気体排出部30に送出されることは殆ど無い。このため、フラックスを安定的に回収することができ、また、気体排出部30でのフラックスの付着を防止することができ、フラックスの付着物を除去するための治具や、気体排出部30とフラックスとの反応防止のための断熱スリーブ等の部材を設ける必要が無く、メンテナンス負担を各段に低減することができる。
 また、気流AF1は、搬送装置40の搬送方向に対して向流であり、冷却領域14A、反応領域13A及び昇温領域12Aをこの順に通過し、反応領域13Aで気化されたフラックスを、昇温領域12Aで粉体化するので、冷却領域14Aにおいて比較的低温の気流AF1によって容器41及び容器41内の生成物が効率的に冷却され、また、昇温領域12Aにおいて比較的高温の気流AF1によって容器41及び容器41内の反応物が効率的に加熱される。よって気流AF1を構成する気体と、容器41及び容器41内の反応物或いは生成物との間の熱交換によって熱エネルギーを有効利用することができ、フラックスを安定的に回収しつつ、省エネルギー化を図ることができる。
 図3は、本実施形態に係る金属酸化物の製造装置の変形例を示す模式図である。
 図3に示すように、金属酸化物の製造装置1Bは、フラックスの存在下で金属化合物を焼成する焼成炉10と、焼成炉10の一端部10b側に設けられ、焼成炉10内に気体を導入する第1気体導入部20と、焼成炉10の他端部10a側に設けられ、焼成炉10内の気体を外部に排出する気体排出部30と、焼成炉10内に配置され、金属化合物とフラックス或いはこれらの反応によって得られる金属酸化物を、第1気体導入部20側から気体排出部30側に搬送する搬送装置40と、を備える。
 焼成炉10は、第1気体導入部20側に設けられた昇温領域12Bと、気体排出部30側に設けられた冷却領域14Bと、昇温領域12B及び冷却領域14Bの間に設けられ、昇温領域12Bと冷却領域14Bのいずれよりも高温であって金属化合物とフラックスとが反応する反応領域13Bとを有している。
 本変形例では、昇温領域12Bが焼成炉10の一端側10bに設けられ、冷却領域14Bが焼成炉10の他端側10aに設けられている。そして容器41は、焼成炉10内の昇温領域12B、反応領域13B及び冷却領域14Bを通って、この順で搬送される。
 この金属酸化物の製造装置1Bでは、搬送装置40は、焼成炉10内に配置されており、金属化合物とフラックス、或いはこれらの反応によって得られる金属酸化物を、第1気体導入部20側から気体排出部30側に搬送する。
 金属酸化物の製造装置1Bでは、第1気体導入部20から導入された気体による気流AF2により、反応領域13Aで気化されたフラックスを冷却領域14Aで粉体化し、粉体化されたフラックスを含む気体を気体排出部30に送出する。本変形例では、気流AF2は、搬送装置40の搬送方向に対して並流であり、昇温領域12B、反応領域13B及び冷却領域14Bをこの順に通過する。そして、反応領域13Bで気化されたフラックスを、冷却領域14Bで粉体化する。すなわち本実施形態では、冷却領域14Bが、生成物である金属酸化物を冷却すると共に、気化されたフラックスを含む気体を冷却して、フラックスを粉体化する領域として機能する。図3の例では、気流AF2上であって且つ搬送装置40の上方(冷却領域14Bの上部)の位置P2で、気化されたフラックスを粉体化する。
 また、気流AF2が搬送装置40の搬送方向に対して並流であることにより、搬送装置40にて搬送される金属化合物及びフラックスのうち、搬送方向に関して反応領域13Bの上流部分13Baに位置する金属化合物及びフラックスから得られた気化されたフラックスを、反応領域13Bの下流部分13Bbに位置する金属化合物に供給することができる。よって、下流部分13Bbではフラックスが少なくなって金属化合物とフラックスとの反応が十分でない場合であっても、下流部分13Bbに位置する金属化合物にフラックスを供給し、金属化合物とフラックスとを十分に反応させることができ、加えて金属化合物とフラックスとの反応速度を増大させることが可能となる。
 本変形例によれば、第1気体導入部20から導入された気体による気流AF2により、反応領域13Aで気化されたフラックスを、反応領域13Bよりも低温である冷却領域14Bで粉体化し、粉体化されたフラックスを含む気体を気体排出部30に送出するので、焼成炉10内の冷却領域14Bで気流AF2中のフラックスが気体から固体に変化し、気化されたフラックスが気体排出部30に送出されることは殆ど無い。このため、フラックスを安定的に回収することができ、また、気体排出部30でのフラックスの付着を防止することができ、フラックスの付着物を除去するための治具や、気体排出部30とフラックスとの反応防止のための断熱スリーブ等の部材を設ける必要が無く、メンテナンス負担を各段に低減することができる。
 また、反応領域13Bの上流部分13Baに位置する金属化合物及びフラックスから得られた気化されたフラックスを、反応領域13Bの下流部分13Bbに位置する金属化合物に供給するので、金属化合物とフラックスとを十分に反応させることができ、反応物として得られる酸化アルミニウムなどの金属酸化物の粒子が板状化し易くなり、粒子の板状化を促進することができる。
 図4は、本実施形態に係る金属酸化物の製造装置の他の変形例を示す模式図である。 図4に示すように、金属酸化物の製造装置1Cは、焼成炉10の冷却領域14Bに設けられ、冷却領域14Bを通過する気流AF2に気体を供給する第2気体導入部50を更に備えている。
 第2気体導入部50は、例えば焼成炉10の上壁に設けられる。第2気体導入部50は、気流AF2をより冷却する観点からは、冷却領域14Bの直上に配置されるのが好ましく、フラックスの粉体化が生じている位置P2の直上に配置させるのがより好ましい。また本変形例では、第2気体導入部50からの気体は、気流AF2の上方から供給されており、気流AF2に対して直角に衝突するが、気流AF2の流れ方向に影響を与えない範囲で、鋭角などの他の角度で衝突させてもよい。
 第2気体導入部50は、冷却領域14Bで気流AF2を冷却することができれば、焼成炉10の上壁以外、例えば焼成炉10の底部もしくは側面に設けられてもよい。
 第2気体導入部50から導入される気体としては、フラックス蒸気との反応性を有しないものであれば特に制限されないが、空気(この場合、本明細書では気体吸気口を特に「外気吸気口」とも称する)、酸素、窒素、アルゴン、水蒸気等が挙げられる。このうち、気体としては、コストの観点から空気であることが好ましい。
 第2気体導入部50から導入される気体の温度は、5~100℃であることが好ましく、5~40℃であることがより好ましい。
 第2気体導入部50から導入される気体の送風速度は、特に制限されないが、焼成炉10の有効容積が100Lに対して、1~500L/minであることが好ましく、10~200L/minであることがより好ましい。
 第2気体導入部50は、焼成炉10内に空気を強制的に送り込む不図示の第2送風装置や、焼成炉10内に送り込まれる空気を冷却する不図示の冷却装置を有していてもよい。これにより、気流AF2をより冷却することができる。また、第2気体導入部50は、焼成炉に導入される気体量、速度等を調整する不図示の開度調整ダンパーを有していてもよい。
 本変形例によれば、第2気体導入部50によって冷却領域14Bを通過する気流AF2に気体が供給されるので、冷却領域14Bにて気流AF2の冷却が促進され、粒径が均一で、粒子同士の凝集が少なく、あるいは抑制されたフラックスをより安定的に回収することができる。また、第2気体導入部50から導入される気体の温度をより低温にすることにより、大粒径且つ粒径が均一で、粒子同士の凝集が更に少ないフラックスを回収できる。することができる。
 図5は、本実施形態に係る金属酸化物の製造装置の他の変形例を示す模式図である。 図5に示すように、焼成炉10は、焼成炉10の内面に取り付けられた耐腐食性の断熱部15を備えていてもよい。断熱部15は、焼成炉10の底壁、側壁、上壁の内面のうちの少なくとも一部に設けられるが、底壁、側壁及び上壁の内面に取り付けられるのが好ましい。
 断熱部15の材料は、前提となる断熱性、耐熱性に加えて耐腐食性を有していれば特に制限されないが、例えばグラスウールなとが挙げられる。酸化モリブデンなどのフラックスに対する耐腐食性の観点からは、アルミナファイバー、粘土質れんが、高アルミナ質レンガ、などが好ましい。
 本変形例によれば、耐腐食性の断熱部15が焼成炉10の内面に取り付けられるので、焼成炉10の放熱を抑制して熱効率が向上すると共に、焼成炉10の腐食による劣化を抑制することができ、メンテナンス負担を更に低減することができる。
 図6は、本実施形態に係る金属酸化物の製造装置の他の変形例を示す模式図である。 図6に示すように、金属酸化物の製造装置1Cは、気体排出部30に接続され、気体に含まれる粉体化されたフラックスを回収する回収装置80を備えている。回収装置80は、粉体化されたフラックスを集塵する集塵機81と、気体排出部30と集塵機81の間に設けられ、粉体化されたフラックスを分級する分級機82と、を有する。本変形例では、回収装置80は、集塵機81と分級機82とを有するが、これに限らず、分級機82を有していなくてもよい。この場合、集塵機81は、焼成炉10の気体排出部30に直接接続される。
 集塵機81は、焼成炉10内の冷却領域14Bで粉体化されたフラックスを回収する。集塵機81としては、特に制限されないが、サイクロン集塵機、バグフィルター集塵機、慣性集塵機、移動層集塵機、湿式集塵機、フィルター集塵機、電気集塵機などが挙げられる。
 分級機82は、焼成炉10内の冷却領域14Bで粉体化されたフラックスを粒子の大きさ(粒径)の相違によって分ける。これにより、所定範囲の大きさ(粒径)のフラックスが集塵機81に送出される。分級機82は、特に制限されないが、例えば乾式分級機であり、乾式分級機としては、サイクロンなどの遠心重量分級機や、重力分級機、慣性分級機などを用いることができる。
 回収装置80には、第3送風装置としての排風装置90が接続されている。排風装置90が排風することにより、集塵機81、分級機82及び気体排出部30内が吸引され、気体排出部30が有する第3気体導入部32から外気が気体排出部30に送風される。すなわち、排風装置90の吸引によって、受動的に気体排出部30に送風が生じる。
 本変形例によれば、集塵機81が焼成炉10内の冷却領域14Bで粉体化されたフラックスを回収するので、回収されたフラックスを金属酸化物の製造にリサイクルすることができる。その結果、環境への負荷を低減するとともに、製造コストを低くすることができる。また、分級機82が、粉体化されたフラックスを分級するので、下流に配置された集塵機81にて、所定範囲の大きさ(例えば、相対的に大粒径)のフラックスを回収することができる。その結果、回収されたフラックスをそのままリサイクルに利用することができ、所定範囲外の大きさ(例えば、相対的に小粒径)のフラックスは、別途回収して他の用途で使用することができる。またフラックスの粒径を揃えることにより、金属酸化物の板状化等の制御を容易に行うことが可能となる。
 以上、本実施形態を説明したが、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
1A 製造装置
1B 製造装置
1C 製造装置
10 焼成炉
10a 一端部(他端部)
10b 他端部(一端部)
11 ヒーター
12A 昇温領域
12B 昇温領域
13A 反応領域
13B 反応領域
13Ba 上流部分
13Bb 下流部分
14A 冷却領域
14B 冷却領域
15 断熱部
20 第1気体導入部
30 気体排出部
31 主流路
32 第3気体導入部
40 搬送装置
41 容器
50 第2気体導入部
80 回収装置
81 集塵機
82 分級機
90 排風装置

Claims (11)

  1.  フラックス蒸発法による金属酸化物の製造装置であって、
     フラックスの存在下で金属化合物を焼成する焼成炉と、
     前記焼成炉の一端部側に設けられ、前記焼成炉内に気体を導入する第1気体導入部と、
     前記焼成炉の他端部側に設けられ、前記焼成炉内の気体を外部に排出する気体排出部と、
     前記焼成炉内に配置され、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記第1気体導入部及び前記気体排出部のうちの一方側から他方側に搬送する搬送装置と、
     を備え、
     前記焼成炉は、前記気体排出部及び前記第1気体導入部のうちの一方側に設けられた昇温領域と、前記気体排出部及び前記第1気体導入部のうちの他方側に設けられた冷却領域と、前記昇温領域及び前記冷却領域の間に設けられ、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域と、を有し、
     前記第1気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造装置。
  2.  前記昇温領域が前記気体排出部側に設けられると共に、前記冷却領域が前記第1気体導入部側に設けられ、
     前記気流は、前記搬送装置の搬送方向に対して向流であり、前記冷却領域、前記反応領域及び前記昇温領域をこの順に通過し、
     前記反応領域で気化されたフラックスを、前記昇温領域で粉体化する、請求項1に記載の金属酸化物の製造装置。
  3.  前記昇温領域が前記第1気体導入部側に設けられると共に、前記冷却領域が前記気体排出部側に設けられ、
     前記気流は、前記搬送装置の搬送方向に対して並流であり、前記昇温領域、前記反応領域及び前記冷却領域をこの順に通過し、
     前記反応領域で気化されたフラックスを、前記冷却領域で粉体化する、請求項1に記載の金属酸化物の製造装置。
  4.  前記搬送装置にて搬送される金属化合物及びフラックスのうち、前記搬送方向に関して前記反応領域の上流部に位置する金属化合物及びフラックスから得られた気化された金属酸化物を、前記反応領域の下流部に位置する金属化合物及びフラックスに供給する、請求項3に記載の金属酸化物の製造装置。
  5.  前記焼成炉の前記冷却領域に設けられ、前記冷却領域を通過する前記気流に気体を供給する第2気体導入部を更に備える、請求項3又は4に記載の金属酸化物の製造装置。
  6.  前記気体排出部は、前記焼成炉内の気体を炉外に排出する主流路と、前記主流路に設けられ、前記主流路を流れる粉体化されたフラックスを含む気体に外部から気体を供給する第3気体導入部とを有する、請求項1~5のいずれか1項に記載の金属酸化物の製造装置。
  7.  前記焼成炉は、前記焼成炉の内面に取り付けられた耐腐食性の断熱部を備える、請求項1又は2に記載の金属酸化物の製造装置。
  8.  前記気体排出部に接続され、前記気体に含まれる前記粉体化されたフラックスを回収する回収装置を備える、請求項1に記載の金属酸化物の製造装置。
  9.  前記回収装置は、前記粉体化されたフラックスを集塵する集塵機を有する、請求項8に記載の金属酸化物の製造装置。
  10.  前記回収装置は、前記気体排出部と前記集塵機の間に設けられ、前記粉体化されたフラックスを分級する分級機を更に有する、請求項9に記載の金属酸化物の製造装置。
  11.  フラックス蒸発法による金属酸化物の製造方法であって、
     フラックスの存在下で金属化合物を焼成する焼成炉の一端部側に設けられた気体導入部から、前記焼成炉内に気体を導入し、前記焼成炉の他端部側に設けられた気体排出部から、前記焼成炉内の気体を外部に排出し、
     前記焼成炉内で、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記気体導入部及び前記気体排出部のうちの一方側から他方側に搬送し、
     前記焼成炉において、前記気体排出部及び前記気体導入部のうちの一方側に昇温領域を、前記気体排出部及び前記気体導入部のうちの他方側に冷却領域を、前記昇温領域及び前記冷却領域の間に、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域をそれぞれ設けて、前記気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造方法。
PCT/JP2022/041527 2021-11-10 2022-11-08 金属酸化物の製造装置及び金属酸化物の製造方法 WO2023085260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023559635A JP7480922B2 (ja) 2021-11-10 2022-11-08 金属酸化物の製造装置及び金属酸化物の製造方法
CN202280071274.2A CN118176161A (zh) 2021-11-10 2022-11-08 金属氧化物的制造装置和金属氧化物的制造方法
DE112022005346.1T DE112022005346T5 (de) 2021-11-10 2022-11-08 Metalloxidfertigungsvorrichtung und metalloxidfertigungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021183370 2021-11-10
JP2021-183370 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023085260A1 true WO2023085260A1 (ja) 2023-05-19

Family

ID=86335731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041527 WO2023085260A1 (ja) 2021-11-10 2022-11-08 金属酸化物の製造装置及び金属酸化物の製造方法

Country Status (4)

Country Link
JP (1) JP7480922B2 (ja)
CN (1) CN118176161A (ja)
DE (1) DE112022005346T5 (ja)
WO (1) WO2023085260A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208226A (ja) * 1994-11-30 1996-08-13 Sumitomo Chem Co Ltd 複合金属酸化物粉末の製造方法
JP2005146406A (ja) * 2003-10-23 2005-06-09 Zenhachi Okumi 微粒子の製造方法及びそのための装置
WO2005054550A1 (ja) * 2003-12-01 2005-06-16 Dai Nippon Printing Co., Ltd. 人工コランダム結晶
JP2008150239A (ja) * 2006-12-15 2008-07-03 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体結晶の製造方法
JP2013170085A (ja) * 2012-02-17 2013-09-02 Ihi Corp 結晶成長方法及び結晶成長装置
JP2015036347A (ja) * 2013-08-12 2015-02-23 Dic株式会社 三酸化モリブデンの捕集法
WO2018003481A1 (ja) * 2016-06-29 2018-01-04 Dic株式会社 金属酸化物の製造装置および前記金属酸化物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455747U (ja) 1987-10-01 1989-04-06
US5939693A (en) 1998-02-02 1999-08-17 Motorola Inc. Polynomial calculator device, and method therefor
KR102006385B1 (ko) 2018-04-20 2019-08-01 주식회사 진우이앤티 열회수장치 및 공기정화장치가 내장된 일체형 리플로우 시스템
JP7504539B2 (ja) 2020-05-22 2024-06-24 株式会社ディスコ ドレッシング部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208226A (ja) * 1994-11-30 1996-08-13 Sumitomo Chem Co Ltd 複合金属酸化物粉末の製造方法
JP2005146406A (ja) * 2003-10-23 2005-06-09 Zenhachi Okumi 微粒子の製造方法及びそのための装置
WO2005054550A1 (ja) * 2003-12-01 2005-06-16 Dai Nippon Printing Co., Ltd. 人工コランダム結晶
JP2008150239A (ja) * 2006-12-15 2008-07-03 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体結晶の製造方法
JP2013170085A (ja) * 2012-02-17 2013-09-02 Ihi Corp 結晶成長方法及び結晶成長装置
JP2015036347A (ja) * 2013-08-12 2015-02-23 Dic株式会社 三酸化モリブデンの捕集法
WO2018003481A1 (ja) * 2016-06-29 2018-01-04 Dic株式会社 金属酸化物の製造装置および前記金属酸化物の製造方法

Also Published As

Publication number Publication date
DE112022005346T5 (de) 2024-08-22
JP7480922B2 (ja) 2024-05-10
CN118176161A (zh) 2024-06-11
JPWO2023085260A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
JP6455747B2 (ja) 金属酸化物の製造装置および前記金属酸化物の製造方法
US11701630B2 (en) Reactor system for producing a nano-active powder material
Moumin et al. Solar treatment of cohesive particles in a directly irradiated rotary kiln
Okuyama et al. Preparation of ZnS and CdS fine particles with different particle sizes by a spray-pyrolysis method
US20180178292A1 (en) Novel Methods of Metals Processing
US20080190243A1 (en) Method for producing molybdenum metal and molybdenum metal
KR20030011775A (ko) 금속 함유 화합물을 금속이나 금속 산화물로 신속전환하는 방법
KR100596103B1 (ko) 회전로상식 환원로의 조업 방법 및 회전로상식 환원로 설비
WO2023085260A1 (ja) 金属酸化物の製造装置及び金属酸化物の製造方法
JP2022135131A (ja) 複合タングステン酸化物粒子の製造方法
EP2160438B1 (en) Phospohorous pentoxide producing methods
RU2457072C1 (ru) Способ получения цинкового порошка и установка для осуществления способа
Kravtsov et al. Nucleation and growth of YAG: Yb crystallites: A step towards the dispersity control
US7192467B2 (en) Method for producing molybdenum metal and molybdenum metal
RU2384522C1 (ru) Способ получения наночастиц оксида металла
KR100626437B1 (ko) 금속산화물의 수소환원 장치 및 이를 이용한 수소환원 방법
SV et al. Formation of SiO and related Si-based materials through carbothermic reduction of silica-containing slag
Manukyan et al. Size-tunable germanium particles prepared by self-sustaining reduction of germanium oxide
JP6028702B2 (ja) 酸化珪素の製造方法
JP2004123487A (ja) 酸化ニッケル粉末の製造方法
JP2004123488A (ja) 酸化ニッケル粉末の製造方法
Nassini et al. Understanding the solid-state calcium metavanadate synthesis pathway
BR112019008730B1 (pt) Método e sistema de reator para produzir um material em pó nanoativo
RU102534U1 (ru) Установка для получения окиси цинка и устройство для окисления паров
JP2003040613A (ja) 無機質球状粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559635

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280071274.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18709177

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022005346

Country of ref document: DE