WO2023085260A1 - 金属酸化物の製造装置及び金属酸化物の製造方法 - Google Patents
金属酸化物の製造装置及び金属酸化物の製造方法 Download PDFInfo
- Publication number
- WO2023085260A1 WO2023085260A1 PCT/JP2022/041527 JP2022041527W WO2023085260A1 WO 2023085260 A1 WO2023085260 A1 WO 2023085260A1 JP 2022041527 W JP2022041527 W JP 2022041527W WO 2023085260 A1 WO2023085260 A1 WO 2023085260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flux
- gas
- firing furnace
- region
- cooling
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 67
- 229910044991 metal oxide Inorganic materials 0.000 title claims description 121
- 150000004706 metal oxides Chemical class 0.000 title claims description 120
- 230000004907 flux Effects 0.000 claims abstract description 251
- 238000010304 firing Methods 0.000 claims abstract description 161
- 238000001816 cooling Methods 0.000 claims abstract description 100
- 238000006243 chemical reaction Methods 0.000 claims abstract description 91
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 69
- 230000000630 rising effect Effects 0.000 claims description 27
- 238000001704 evaporation Methods 0.000 claims description 26
- 239000000428 dust Substances 0.000 claims description 25
- 238000007599 discharging Methods 0.000 claims description 12
- 238000011084 recovery Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 239000000843 powder Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 229
- 239000013078 crystal Substances 0.000 description 33
- 239000002245 particle Substances 0.000 description 29
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 17
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 230000032258 transport Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000000376 reactant Substances 0.000 description 14
- 239000002184 metal Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000005078 molybdenum compound Substances 0.000 description 8
- 150000002752 molybdenum compounds Chemical class 0.000 description 8
- 229910052596 spinel Inorganic materials 0.000 description 8
- 239000011029 spinel Substances 0.000 description 8
- -1 aluminum compound Chemical class 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 7
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229940091250 magnesium supplement Drugs 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000002681 magnesium compounds Chemical class 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000007716 flux method Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 150000003377 silicon compounds Chemical class 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229960002337 magnesium chloride Drugs 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000003609 titanium compounds Chemical class 0.000 description 3
- XEFUJGURFLOFAN-UHFFFAOYSA-N 1,3-dichloro-5-isocyanatobenzene Chemical compound ClC1=CC(Cl)=CC(N=C=O)=C1 XEFUJGURFLOFAN-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229960000869 magnesium oxide Drugs 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- MODMKKOKHKJFHJ-UHFFFAOYSA-N magnesium;dioxido(dioxo)molybdenum Chemical compound [Mg+2].[O-][Mo]([O-])(=O)=O MODMKKOKHKJFHJ-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical group [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 2
- 150000003658 tungsten compounds Chemical class 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 150000003682 vanadium compounds Chemical class 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- JVPGYYNQTPWXGE-UHFFFAOYSA-N 2-(4-methylphenyl)-1,3-benzothiazole Chemical compound C1=CC(C)=CC=C1C1=NC2=CC=CC=C2S1 JVPGYYNQTPWXGE-UHFFFAOYSA-N 0.000 description 1
- RVDLHGSZWAELAU-UHFFFAOYSA-N 5-tert-butylthiophene-2-carbonyl chloride Chemical compound CC(C)(C)C1=CC=C(C(Cl)=O)S1 RVDLHGSZWAELAU-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241001168730 Simo Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- CZIMGECIMULZMS-UHFFFAOYSA-N [W].[Na] Chemical compound [W].[Na] CZIMGECIMULZMS-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- RCMWGBKVFBTLCW-UHFFFAOYSA-N barium(2+);dioxido(dioxo)molybdenum Chemical compound [Ba+2].[O-][Mo]([O-])(=O)=O RCMWGBKVFBTLCW-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- ZHXZNKNQUHUIGN-UHFFFAOYSA-N chloro hypochlorite;vanadium Chemical compound [V].ClOCl ZHXZNKNQUHUIGN-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- IKUPISAYGBGQDT-UHFFFAOYSA-N copper;dioxido(dioxo)molybdenum Chemical compound [Cu+2].[O-][Mo]([O-])(=O)=O IKUPISAYGBGQDT-UHFFFAOYSA-N 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- AGNOBAWAZFBMMI-UHFFFAOYSA-N dicesium dioxido(dioxo)molybdenum Chemical compound [Cs+].[Cs+].[O-][Mo]([O-])(=O)=O AGNOBAWAZFBMMI-UHFFFAOYSA-N 0.000 description 1
- NLPVCCRZRNXTLT-UHFFFAOYSA-N dioxido(dioxo)molybdenum;nickel(2+) Chemical compound [Ni+2].[O-][Mo]([O-])(=O)=O NLPVCCRZRNXTLT-UHFFFAOYSA-N 0.000 description 1
- AAQNGTNRWPXMPB-UHFFFAOYSA-N dipotassium;dioxido(dioxo)tungsten Chemical compound [K+].[K+].[O-][W]([O-])(=O)=O AAQNGTNRWPXMPB-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- YAFKGUAJYKXPDI-UHFFFAOYSA-J lead tetrafluoride Chemical compound F[Pb](F)(F)F YAFKGUAJYKXPDI-UHFFFAOYSA-J 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229960001708 magnesium carbonate Drugs 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- 229960005336 magnesium citrate Drugs 0.000 description 1
- 235000002538 magnesium citrate Nutrition 0.000 description 1
- 239000004337 magnesium citrate Substances 0.000 description 1
- CVMDVTFDSMNZTQ-UHFFFAOYSA-L magnesium dibenzoate tetrahydrate Chemical compound O.O.O.O.C(C1=CC=CC=C1)(=O)[O-].[Mg+2].C(C1=CC=CC=C1)(=O)[O-] CVMDVTFDSMNZTQ-UHFFFAOYSA-L 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000001755 magnesium gluconate Substances 0.000 description 1
- 235000015778 magnesium gluconate Nutrition 0.000 description 1
- 229960003035 magnesium gluconate Drugs 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229960000816 magnesium hydroxide Drugs 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 229960005218 magnesium salicylate tetrahydrate Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 229960003390 magnesium sulfate Drugs 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- IAKLPCRFBAZVRW-XRDLMGPZSA-L magnesium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;hydrate Chemical compound O.[Mg+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IAKLPCRFBAZVRW-XRDLMGPZSA-L 0.000 description 1
- NBQBEWAYWAMLJJ-UHFFFAOYSA-L magnesium;2-carboxyphenolate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O NBQBEWAYWAMLJJ-UHFFFAOYSA-L 0.000 description 1
- SNLQXUYQWUDJLB-UHFFFAOYSA-L magnesium;2-hydroxypropanoate;trihydrate Chemical compound O.O.O.[Mg+2].CC(O)C([O-])=O.CC(O)C([O-])=O SNLQXUYQWUDJLB-UHFFFAOYSA-L 0.000 description 1
- DZBOAIYHPIPCBP-UHFFFAOYSA-L magnesium;2-methylprop-2-enoate Chemical compound [Mg+2].CC(=C)C([O-])=O.CC(=C)C([O-])=O DZBOAIYHPIPCBP-UHFFFAOYSA-L 0.000 description 1
- USSBDBZGEDUBHE-UHFFFAOYSA-L magnesium;2-oxidooxycarbonylbenzoate Chemical compound [Mg+2].[O-]OC(=O)C1=CC=CC=C1C([O-])=O USSBDBZGEDUBHE-UHFFFAOYSA-L 0.000 description 1
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 1
- LGLXXNHIGIJYQQ-UHFFFAOYSA-L magnesium;dibromide;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Br-].[Br-] LGLXXNHIGIJYQQ-UHFFFAOYSA-L 0.000 description 1
- OFUAIAKLWWIPTC-UHFFFAOYSA-L magnesium;naphthalene-2-carboxylate Chemical compound [Mg+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 OFUAIAKLWWIPTC-UHFFFAOYSA-L 0.000 description 1
- PJYWQDOJMBTCCO-UHFFFAOYSA-L magnesium;oxalate;dihydrate Chemical compound O.O.[Mg+2].[O-]C(=O)C([O-])=O PJYWQDOJMBTCCO-UHFFFAOYSA-L 0.000 description 1
- JNZGLUUWTFPBKG-UHFFFAOYSA-K magnesium;potassium;trichloride Chemical compound [Mg+2].[Cl-].[Cl-].[Cl-].[K+] JNZGLUUWTFPBKG-UHFFFAOYSA-K 0.000 description 1
- DWLAVVBOGOXHNH-UHFFFAOYSA-L magnesium;prop-2-enoate Chemical compound [Mg+2].[O-]C(=O)C=C.[O-]C(=O)C=C DWLAVVBOGOXHNH-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- BQFYGYJPBUKISI-UHFFFAOYSA-N potassium;oxido(dioxo)vanadium Chemical compound [K+].[O-][V](=O)=O BQFYGYJPBUKISI-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- PLSARIKBYIPYPF-UHFFFAOYSA-H trimagnesium dicitrate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PLSARIKBYIPYPF-UHFFFAOYSA-H 0.000 description 1
- IYQJAGXFXWIEJE-UHFFFAOYSA-H trimagnesium;2-hydroxypropane-1,2,3-tricarboxylate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O IYQJAGXFXWIEJE-UHFFFAOYSA-H 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 150000003748 yttrium compounds Chemical class 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XAEWLETZEZXLHR-UHFFFAOYSA-N zinc;dioxido(dioxo)molybdenum Chemical compound [Zn+2].[O-][Mo]([O-])(=O)=O XAEWLETZEZXLHR-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
- C01F7/027—Treatment involving fusion or vaporisation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/16—Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/162—Magnesium aluminates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
Definitions
- the present invention relates to a metal oxide production apparatus and a metal oxide production method.
- This application claims priority based on Japanese Patent Application No. 2021-183370 filed in Japan on November 10, 2021, the contents of which are incorporated herein.
- the flux method was developed by making use of the knowledge that crystals (minerals) are created in the natural world, and is a method of precipitating crystals from solutions of inorganic compounds and metals at high temperatures.
- the advantages of this flux method include the ability to grow crystals at a temperature much lower than the melting point of the target crystal, the growth of crystals with extremely few defects, and the development of idiomorphic shapes.
- a flux slow cooling method is used in which a metal compound, which is a precursor of a metal oxide, is fired at a high temperature in the presence of an appropriate oxide or salt that serves as a flux, and then slowly cooled (1). and (2) flux evaporation methods for evaporating flux.
- the flux slow cooling method forms a supersaturated state while slowly cooling, and promotes the crystal growth of the metal oxide. It promotes crystal growth.
- the flux evaporation method since the flux escapes from the firing vessel by evaporation, it has the advantage of not requiring complicated work such as washing to remove the flux, unlike the flux slow cooling method.
- Patent Document 1 describes an artificial corundum crystal having a hexagonal bipyramidal basic shape by a flux evaporation method in which a sample containing a raw material and a flux is heated, and crystals are precipitated and grown using the evaporation of the flux as a driving force.
- An invention relating to a method for producing an artificial corundum crystal is described, which is characterized by producing
- the present applicant has proposed a firing furnace for firing a metal compound in the presence of a flux, a cooling pipe connected to the firing furnace for pulverizing the flux vaporized by the firing, and the cooling A manufacturing apparatus having recovery means for recovering powdered flux in a pipe is disclosed (Patent Document 2).
- Patent Document 2 the flux that evaporates from the kiln is pulverized mainly in the cooling pipes, collected in the dust collector, and the collected flux can be recycled to manufacture metal oxides, thereby reducing environmental impact and manufacturing costs. Realization is possible.
- the cooling pipe includes a vertical pipe for discharging gas in the firing furnace, a horizontal pipe having a gas inlet at one end and connected to a recovery means at the other end, and the vertical pipe. It has a communication part that crosses and communicates with the horizontal pipe.
- metal oxides such as molybdenum oxide (MoO 3 ) are produced using this production apparatus, powdered flux (molybdenum compound) adheres to the inner wall of the communicating portion, particularly to the inner wall of the vertical pipe.
- the inside of the communication portion may be reduced in diameter due to the clothing, and as a result, it may be difficult to maintain a proper flow path.
- the present invention provides a metal oxide manufacturing apparatus and a metal oxide manufacturing apparatus that can stably collect flux, does not require the installation of jigs and members for maintenance, and can significantly reduce the maintenance burden. It aims at providing the manufacturing method of an oxide.
- An apparatus for producing metal oxides by a flux evaporation method a firing furnace for firing a metal compound in the presence of a flux;
- a first gas introduction unit provided at one end of the firing furnace for introducing gas into the firing furnace, and a first gas introduction portion provided at the other end of the firing furnace for discharging gas in the firing furnace to the outside.
- a gas outlet a transporting device disposed in the firing furnace for transporting the metal compound and the flux, or a metal oxide obtained by a reaction thereof, from one side of the first gas introduction section and the gas discharge section to the other side.
- the firing furnace comprises a temperature raising region provided on one side of the gas discharge section and the first gas introduction section, and a temperature raising region provided on the other side of the gas discharge section and the first gas introduction section. and a reaction region provided between the temperature rising region and the cooling region and having a higher temperature than either the temperature rising region or the cooling region and in which the metal compound reacts with the flux. death,
- the flux vaporized in the reaction area is pulverized in the temperature raising area or the cooling area by an air current of the gas introduced from the first gas introduction part, and the gas containing the pulverized flux is discharged as the gas.
- Equipment for manufacturing metal oxides which is sent to departments.
- the temperature raising region is provided on the gas discharge portion side, and the cooling region is provided on the first gas introduction portion side,
- the airflow is countercurrent to the conveying direction of the conveying device and passes through the cooling area, the reaction area, and the temperature raising area in this order,
- the temperature raising region is provided on the first gas introduction portion side, and the cooling region is provided on the gas discharge portion side,
- the airflow is parallel to the conveying direction of the conveying device and passes through the temperature raising region, the reaction region and the cooling region in this order,
- the gas discharge part is provided in a main flow path for discharging the gas in the firing furnace to the outside of the furnace, and is provided in the main flow path and supplies the gas containing powdered flux flowing in the main flow path from the outside.
- a method for producing a metal oxide by a flux evaporation method A gas is introduced into the firing furnace from a gas introduction portion provided on one end side of the firing furnace for firing the metal compound in the presence of the flux, and a gas discharge portion provided on the other end side of the firing furnace. From, the gas in the firing furnace is discharged to the outside, conveying the metal compound and the flux, or the metal oxide obtained by the reaction thereof, from one side of the gas introduction section and the gas discharge section to the other side in the firing furnace; In the firing furnace, a temperature raising region is provided on one side of the gas discharge portion and the gas introduction portion, a cooling region is provided on the other side of the gas discharge portion and the gas introduction portion, and the temperature rise region and the gas introduction portion are provided.
- a reaction region having a temperature higher than that of the temperature rising region and the cooling region and in which the metal compound reacts with the flux is provided, and an air current is generated by the gas introduced from the gas introduction portion. and powdering the flux vaporized in the reaction zone in the temperature rising zone or the cooling zone, and discharging a gas containing the powdered flux to the gas discharge part.
- FIG. 1 is a schematic diagram showing an example of a metal oxide production apparatus according to this embodiment.
- FIG. 2 is a schematic diagram showing a region inside the firing furnace of FIG.
- FIG. 3 is a schematic diagram showing a modification of the metal oxide production apparatus according to the present embodiment.
- FIG. 4 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
- FIG. 5 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
- FIG. 6 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
- FIG. 1 is a schematic diagram showing an example of a metal oxide production apparatus according to this embodiment.
- the manufacturing apparatus of FIG. 1 is a metal oxide manufacturing apparatus using a flux evaporation method.
- a flux evaporation method is a method of producing a metal oxide by firing a metal compound in the presence of a flux. In the firing process, the flux evaporates, and the vaporization of the flux is used as a driving force to promote crystal growth of the metal oxide.
- a metal oxide production apparatus 1A includes a firing furnace 10 for firing a metal compound in the presence of flux, and a firing furnace 10 provided at one end 10a side of the firing furnace 10, and a gas is introduced into the firing furnace 10.
- a first gas introduction part 20 to be introduced a gas discharge part 30 provided on the other end 10b side of the firing furnace 10 and discharging the gas in the firing furnace 10 to the outside, and a metal compound and a conveying device 40 for conveying the flux or the metal oxide obtained by the reaction thereof from the side of the gas discharge section 30 to the side of the first gas introduction section 20 .
- the firing furnace 10 of the present embodiment has the viewpoint that a high temperature region and a low temperature region can be easily formed in the furnace, and raw materials can be continuously supplied into the firing furnace, and mass production is possible. From a point of view, it is typically a continuous kiln.
- the continuous kiln is not particularly limited, but includes a continuous rotary kiln kiln, roller hearth kiln, pusher kiln, conveyor kiln, net conveyor kiln, shaft kiln, fluidized kiln and the like.
- roller hearth kiln furnaces, pusher furnaces, conveyor furnaces, and net conveyor furnaces are more preferred, and roller hearth kiln furnaces and pusher furnaces are even more preferred.
- the heating method of the firing furnace 10 is not particularly limited, but electricity, gas, microwaves, infrared rays, etc. can be mentioned. Among these, the electric heating method is preferable from the viewpoint of easy industrialization and easy control.
- a heater 11 is provided in the firing furnace 10 , and the heaters 11 are arranged on the upper wall and the bottom wall of the firing furnace 10 .
- the heater 11 may be arranged on one of the top wall and the bottom wall of the kiln 10 .
- the firing furnace 10 has a longitudinal direction, for example, along the conveying direction of the conveying device 40 (arrow direction in FIG. 1) and a direction orthogonal to the longitudinal direction (also referred to as a lateral direction or a lateral direction) in a plan view.
- the one end portion 10a of the firing furnace 10 is the one end portion in the longitudinal direction
- the other end portion 10b of the firing furnace 10 is the other end portion in the longitudinal direction.
- the first gas introduction part 20 is preferably arranged on the side opposite to the installation position of the gas discharge part 30 from the viewpoint of efficiently discharging the powdered flux from the kiln.
- the first gas introduction part 20 is arranged on the other end part 10a side opposite to the one end part 10b side of the firing furnace in which the gas discharge part 30 is installed.
- the first gas introduction part 20 is arranged at the bottom wall or the lower part of the side wall of the firing furnace 10. is preferably provided in One first gas introduction part 20 may be provided in the firing furnace 10 , or two or more may be provided. Further, when two or more first gas introduction parts 20 are provided in the firing furnace 10, the first gas introduction part 20 serves as one or more main introduction parts for generating an airflow AF1 described later in the firing furnace 10. , and a plurality of sub-introduction portions provided at regular intervals in the bottom portion of the firing furnace 10 for forming an air flow from the bottom to the top within the firing furnace 10 .
- the gas introduced from the first gas introduction unit 20 is not particularly limited as long as it does not have reactivity with the flux vapor. Oxygen, nitrogen, argon, water vapor and the like can be mentioned. Among these, the gas is preferably air from the viewpoint of cost.
- the first gas introduction unit 20 may have a first air blower (not shown) that forcibly feeds gas into the firing furnace 10 .
- a first air blower (not shown) that forcibly feeds gas into the firing furnace 10 .
- the evaporation of the flux is the driving force for crystal growth. Therefore, the flux evaporation method can proceed favorably if the vaporized flux is easily moved from the reaction region to the temperature rising region, which will be described later. As a result, the metal oxide to be obtained can have a suitable crystal growth.
- the first gas introduction unit 20 may have an opening adjustment damper (not shown) that adjusts the amount of gas introduced into the firing furnace, the speed, and the like.
- the opening adjustment damper is not particularly limited, and a known one can be used.
- the opening adjustment damper may have a motor, may be provided with a backflow prevention mechanism, or may have a slit.
- the number of opening adjustment dampers may be one or two or more depending on the configuration of the firing furnace.
- the gas discharge unit 30 discharges gas containing powdered flux to the outside of the firing furnace 10 .
- the gas discharge part 30 includes, for example, a main flow path 31 for discharging the gas in the firing furnace 10 to the outside of the furnace, and a third gas introduction part provided in the main flow path 31 and supplying gas from the outside to the gas flowing in the main flow path 31. 32.
- the gas discharge part 30 has, for example, a T-shaped pipe, the main flow path 31 is formed by an L-shaped part, and the third gas introduction part 32 is an I-shaped part communicating with the L-shaped part. formed by the part of
- the material of the piping that constitutes the gas discharge part 30 is not particularly limited, and known metals and alloys can be used.
- the gas introduced from the third gas introduction part 32 is not particularly limited as long as it does not have reactivity with the flux vapor. ), oxygen, nitrogen, argon, water vapor, and the like. Among these, the gas is preferably air from the viewpoint of cost.
- the gas discharge section 30 may have a second air blower (not shown) that is provided in the third gas introduction section 32 and forcibly feeds air into the gas discharge section 30 . Due to the negative pressure generated by the gas introduced from the third gas introduction part, the gas containing the powdered flux in the firing furnace 10 is easily moved by the gas discharge part 30 . In addition, the flux-containing gas can be further cooled outside the firing furnace 10 in consideration of the flux temperature and the like at the time of downstream recovery. As a result, it is possible to collect a flux that has a uniform particle size and less or suppressed agglomeration of particles.
- the third gas introduction part 32 may have an opening adjustment damper (not shown) for adjusting the amount of gas introduced into the firing furnace, the speed, etc.
- the opening adjustment damper is not particularly limited, and a known one can be used.
- the opening adjustment damper may have a motor, may be provided with a backflow prevention mechanism, or may have a slit.
- the number of opening adjustment dampers may be one or two or more depending on the configuration of the firing furnace.
- the conveying device 40 has, for example, a conveying portion and a driving portion that drives the conveying portion.
- the container 41 is conveyed inside.
- the conveying unit is not particularly limited, and rollers, base plates, carts, and the like can be used.
- a container 41 placed on the transport unit is, for example, a sintering container called a sagger.
- the reactor 41 contains the reactants (metallic compound and flux) on the upstream side of the reaction zone, which will be described later, and the product (metallic compound and flux) on the downstream side of the reaction zone. obtained metal oxide) is accommodated.
- the first gas introduction part 20 is provided on the one end 10a side of the firing furnace 10, and the gas discharge part 30 is provided on the other end 10b side.
- the conveying device 40 carries the container 41 containing the reactant into the firing furnace 10 from the one end portion 10b side of the firing furnace 10, and transports the container containing the product from the one end portion 10a side of the firing furnace 10. 41 is carried out.
- FIG. 2 is a schematic diagram showing regions within the firing furnace 10 of FIG.
- the firing furnace 10 includes a temperature raising region 12A provided on the side of the gas discharge portion 30, a cooling region 14A provided on the side of the first gas introduction portion 20, and the temperature raising region 12A and the cooling region. 14A and has a reaction area 13A which has a higher temperature than both the temperature raising area 12A and the cooling area 14A and where the metal compound reacts with the flux.
- the temperature raising region 12A is a region for heating the container 41 transported into the firing furnace 10 and the reactants in the container 41 .
- This temperature rising area 12A has a temperature gradient in which the temperature increases as it approaches the reaction area 13A in the conveying direction.
- a heater 11 is installed in the temperature raising region 12A, and the heater 11 is controlled so as to have the above concentration gradient.
- regions are arrange
- the temperature raising region 12A is arranged on the upstream side of the gas discharge section 30 with respect to the flow direction of the airflow AF1, which will be described later.
- the reaction area 13A is an area where the reactants in the container 41 transported from the temperature raising area 12A are reacted.
- This reaction area 13A is not particularly limited as long as it has a higher temperature than either the temperature raising area 12A or the cooling area 14A. has a temperature of Further, the reaction area 13A may have a temperature gradient stepwise or continuously with respect to the conveying direction on the assumption that the reaction area 13A is higher in temperature than both the temperature raising area 12A and the cooling area 14A.
- a heater 11 is installed in the reaction area 13A, and the heater 11 is controlled so as to maintain the constant temperature.
- the cooling area 14A is an area for cooling the container 41 transported from the reaction area 13A and the product in the container 41.
- the temperature rising region 12A has a temperature gradient in which the temperature decreases with increasing distance from the reaction region 13A in the transport direction.
- a heater 11 is installed in a part of the reaction area 13A, and the heater 11 is controlled so as to have the above concentration gradient.
- the heater 11 may be installed in a part of the cooling area 14A, or the heater 11 may not be installed.
- the boundary between the temperature raising region 12A and the reaction region 13A and the boundary between the reaction region 13A and the cooling region 14A are not clearly provided, for example, among the regions in the firing furnace 10, the flux and the metal compound
- the region where the temperature at which the intermediates obtained by the reaction are decomposed is maintained is the reaction region 13A
- the upstream side of the reaction region 13A is the temperature rising region 12A
- the downstream side of the reaction region 13A (the container 41 exit side) can be the cooling area 14A.
- the temperature of each region for example, the temperature distribution in the heating region 12A, the reaction region 13A, and the cooling region 14A may be measured, and the average temperature of each temperature distribution may be obtained.
- the temperature at the central portion of each of the heating region 12A, the reaction region 13A, and the cooling region 14A may be measured with respect to the transport direction.
- the measured value of the temperature of each region for example, one or more of the temperature of the heater itself in each region and the ambient temperature near the heater by a thermocouple may be used.
- the heating region 12A is provided on the other end 10b side of the firing furnace 10, and the cooling region 14A is provided on the one end 10a side of the firing furnace 10.
- the container 41 is conveyed through the cooling area 14A, the reaction area 13A, and the heating area 12A in the kiln 10 in this order.
- the flux evaporated in the reaction area 13A is pulverized in the cooling area 14A by the air flow AF1 of the gas introduced from the first gas introduction part 20, and the flux is pulverized.
- the gas containing the solidified flux is delivered to the gas discharge section 30 .
- the vaporized flux is pulverized in the firing furnace 10 by the in-furnace slow cooling method.
- the airflow AF1 is countercurrent to the transport direction, and passes through the cooling area 14A, the reaction area 13A, and the temperature raising area 12A in this order. Then, the flux vaporized in the reaction area 13A is pulverized in the temperature rising area 12A. That is, in the present embodiment, the temperature raising region 12A functions as a region that raises the temperature of the reactant metal compound and the flux, cools the gas containing the vaporized flux, and pulverizes the flux. In the example of FIG. 2, the vaporized flux is pulverized at a position P1 on the airflow AF1 and above the conveying device 40 (above the temperature raising region 12A).
- the gas introduced from the first gas introduction part 20 cools the container 41 in the cooling region 14A, and the gas passing through the cooling region 14A and the reaction region 13A cools the container 41 in the temperature raising region 12A. heat up.
- the container 41 and the product in the container 41 are efficiently cooled in the cooling region 14A, and the container 41 and the reactant in the container 41 are efficiently heated in the heating region 12A.
- a method for producing a metal oxide according to the present embodiment is a method for producing a metal oxide by a flux evaporation method, and has the following steps (1) to (3).
- the order of steps (1) to (3) is not particularly limited, and can be changed without departing from the scope of the present invention. It may also have one or more other steps before step (1), after step (3), or between the two steps.
- the metal oxide production method according to the present embodiment is not limited to the metal oxide production apparatus shown in FIG. 2, and can be performed by other metal oxide production apparatuses.
- step (1) a gas is introduced into the firing furnace from a first gas introduction part provided on one end side of the firing furnace for firing the metal compound in the presence of flux, and the other end of the firing furnace
- the gas in the firing furnace is discharged to the outside from the gas discharge part provided on the side.
- the gas is introduced into the firing furnace 10 from the first gas introduction portion 20 provided at the one end portion 10a side of the firing furnace 10, and the gas is provided at the other end portion 10b side of the firing furnace 10.
- the gas in the firing furnace 10 is discharged to the outside from the gas discharge unit 30 .
- the gas introduced from the first gas introduction portion includes air, oxygen, nitrogen, argon, water vapor, etc. Among these, air is preferable from the viewpoint of cost.
- the temperature of the blown gas is preferably 5° C. or higher, more preferably 10° C. or higher.
- the gas blowing speed is preferably 1 to 500 L/min, more preferably 10 to 200 L/min, with respect to the effective volume of the firing furnace of 100 L.
- the internal pressure in the firing furnace is not particularly limited, and may be positive pressure or reduced pressure, and can be -5000 to +1000 Pa. Moreover, from the viewpoint of suitably discharging the flux from the sintering furnace to the cooling pipe, the sintering is preferably performed under reduced pressure. A specific degree of reduced pressure can be -5000 to -10 Pa, -2000 to -20 Pa, or -1000 to -50 Pa.
- fluxes examples include, but are not limited to, molybdenum compounds, tungsten compounds, vanadium compounds, chlorine compounds, fluorine compounds, boron compounds, sulfates, nitrates, and carbonates.
- the tungsten compound is not particularly limited, but tungsten trioxide, tungsten sulfide, tungstic acid, tungsten chloride, calcium tungstate, potassium tungstate, lithium tungstate, aluminum tungstate, sodium tungsten, ammonium paratungstate, metatungsten. ammonium acid, phosphotungstic acid, silicotungstic acid, and the like.
- the vanadium compound is not particularly limited, but includes vanadium oxide, ammonium metavanadate, potassium vanadate, sodium metavanadate, sodium vanadate, vanadium oxychloride, vanadium oxysulfate, and vanadium chloride.
- Examples of the chlorine compound include, but are not particularly limited to, potassium chloride, sodium chloride, lithium chloride, magnesium chloride, barium chloride, and ammonium chloride.
- the fluorine compound is not particularly limited, but includes aluminum fluoride, sodium fluoride, magnesium fluoride, calcium fluoride, cryolite, lead fluoride, and the like.
- boron compound examples include, but are not limited to, boric acid, boron oxide, sodium borate, boron fluoride, and the like.
- the sulfate is not particularly limited, but includes sodium sulfate, potassium sulfate, calcium sulfate, lithium sulfate, and the like.
- the nitrate is not particularly limited, but includes sodium nitrate, potassium nitrate, calcium nitrate, lithium nitrate, and the like.
- the carbonate is not particularly limited, but includes sodium carbonate, potassium carbonate, calcium carbonate, lithium carbonate, and the like.
- These fluxes may be used alone or in combination of two or more.
- the obtained metal oxide contains a molybdenum compound from the viewpoint of facilitating control of the single crystal structure and/or shape. More preferably, it contains molybdenum oxide.
- the amount of flux used is not particularly limited, and can be appropriately selected according to the desired metal oxide.
- the molar ratio of the flux metal constituting the flux to the metal element constituting the metal compound described later is 3. It is preferably greater than 0.
- the molar ratio of the flux metal constituting the flux to the metal element constituting the metal compound described later is 0.5. 001 to 3.0 moles, more preferably 0.03 to 3.0 moles, even more preferably 0.08 to 0.7 moles.
- metal compound examples include, but are not limited to, aluminum compounds, silicon compounds, titanium compounds, magnesium compounds, sodium compounds, potassium compounds, zirconium compounds, yttrium compounds, zinc compounds, copper compounds, iron compounds, and the like. Among these, aluminum compounds, silicon compounds, titanium compounds, and magnesium compounds are preferably used.
- Examples of the aluminum compound include aluminum chloride, aluminum sulfate, basic aluminum acetate, aluminum hydroxide, boehmite, pseudoboehmite, and transitional aluminum oxides ( ⁇ -aluminum oxide, ⁇ -aluminum oxide, ⁇ -aluminum oxide, etc.). , ⁇ -aluminum oxide, mixed oxide aluminum having two or more crystal phases, and the like.
- silicon compound examples include crystalline silica, silica gel, silica nanoparticles, artificially synthesized amorphous silica such as mesoporous silica, organic silicon compounds containing silicon, and biosilica.
- the titanium compound is not particularly limited, but includes titanium chloride, titanium sulfate, metatitanic acid, amorphous titanium oxide, anatase-type titanium oxide, rutile-type titanium oxide, mixed anatase-rutile titanium oxide, and the like.
- the magnesium compound is not particularly limited, but is magnesium oxide, magnesium hydroxide, magnesium acetate tetrahydrate, magnesium carbonate, magnesium sulfate, magnesium chloride, magnesium nitride, magnesium hydride, magnesium fluoride, magnesium iodide, bromine.
- magnesium chloride magnesium acrylate, magnesium dimethacrylate, magnesium ethoxide, magnesium gluconate, magnesium naphthenate, magnesium salicylate tetrahydrate, magnesium stearate, magnesium molybdate, magnesium lactate trihydrate, magnesium potassium chloride, Magnesium nitrate hexahydrate, magnesium bromide hexahydrate, magnesium chloride hexahydrate, magnesium sulfate heptahydrate, magnesium oxalate dihydrate, magnesium benzoate tetrahydrate, magnesium citrate n water hydrate, trimagnesium dicitrate nonahydrate, magnesium monoperoxyphthalate and the like.
- These metal compounds may be used alone or in combination of two or more.
- a composite oxide When two or more metal compounds are used in combination, a composite oxide can be produced.
- a composite oxide When two or more metal compounds are used in combination, a composite oxide can be produced.
- a spinel composite oxide having a basic composition of MgAl 2 O 4 can be produced.
- an aluminum compound an aluminum compound and a magnesium compound.
- Step (2) a reactant (metallic compound and flux) or a product (metallic oxide obtained by the reaction of the metallic compound and flux) is introduced into the first gas introduction section (gas introduction section) and the It is conveyed from one side of the gas discharge section to the other side.
- the reactants or products are transported from the gas discharge section 30 side to the first gas introduction section 20 side within the firing furnace 10 .
- the form of transportation is not particularly limited as long as the reactants or products can be continuously transported in a predetermined direction within the firing furnace. This may carry reactants or products.
- the transport speed of the reactants or products is not particularly limited as long as sufficient time for the metal compound and the flux to react in the firing furnace can be ensured.
- Step (3) In the step (3), in the firing furnace, the temperature rising region is provided on one side of the gas discharge section and the first gas introduction section (gas introduction section), and on the other side of the gas discharge section and the first gas introduction section. Between the temperature rising region and the cooling region, a reaction region having a temperature higher than that of the temperature rising region and the cooling region and in which the metal compound reacts with the flux is provided.
- the flux vaporized in the reaction area is pulverized in the temperature raising area or the cooling area by an air current of the gas introduced from the first gas introduction part, and the gas containing the pulverized flux is removed from the gas discharge part. send to For example, in the example of FIG.
- the temperature raising region 12A is provided on the gas discharge section 30 side
- the cooling region 14A is provided on the first gas introduction section 20 side
- the temperature raising region 12A is provided between the temperature raising region 12A and the cooling region 14A.
- a reaction area 13A which has a higher temperature than any of the cooling areas 14A and where the metal compound reacts with the flux, is provided. Flux vaporized in the reaction area 13A is pulverized in the temperature raising area 12A by an air flow AF1 of gas introduced from the first gas introduction section 20, and the gas containing the pulverized flux is discharged from the gas discharge section 30. send to
- the temperature of the metal compound is raised in the presence of the flux, making it easier to evaporate the flux in the downstream reaction region.
- the temperature raising region 12A in the temperature raising region 12A, the temperature of the metal compound and the flux is raised, and the gas containing the vaporized flux is cooled to pulverize the flux.
- the temperature in the temperature rising region is not particularly limited, it is preferably 20 to 2000°C, more preferably 40 to 1500°C.
- the heating rate of the metal compound and flux varies depending on the flux, metal compound, desired metal oxide, etc. used, but from the viewpoint of production efficiency, it is 0.5 to 100 ° C./min. is preferably 1 to 50°C/min, and even more preferably 2 to 10°C/min.
- the temperature gradient (° C./m) and the conveying speed (m/s) in the temperature rising region in the firing furnace are set, and the temperature rising speed in the above range is adjusted from the set temperature gradient and conveying speed. can be realized.
- the vaporized flux is cooled by the temperature difference between the heating area and the reaction area.
- the cooling rate of the vaporized flux is not particularly limited, it is preferably 100 to 100000°C/sec, more preferably 1000 to 50000°C/sec. There is a tendency that the faster the cooling rate of the flux, the smaller the particle size and the larger the specific surface area of the flux powder.
- the discharge speed of the powdered flux from the firing furnace to the gas discharge part can be controlled by the amount of flux used, the temperature of the firing furnace, the gas blown into the firing furnace, and the diameter of the firing furnace exhaust port. .
- the discharge rate of the powdered flux from the firing furnace to the gas discharge part is preferably 0.001 to 100 g/min, more preferably 0.1 to 50 g/min, per 1 kg of the raw material metal compound. preferable.
- the gas containing the powdered flux may be discharged outside the furnace by supplying the gas to the gas discharge unit from the outside.
- the main flow path 31 of the gas discharge unit 30 discharges the gas containing the powdered flux in the firing furnace 10 to the outside of the furnace, and the third gas introduction provided in the main flow path 31
- the part 32 supplies gas from the outside to the gas flowing through the main flow path 31 .
- blowing speed and the flow speed in the pipe of the gas discharge part can be appropriately controlled by an opening adjustment damper (not shown).
- metal oxides are produced by sintering metal compounds at high temperatures in the presence of flux and evaporating the flux (flux evaporation method).
- the flux and metal compound usually react first to form an intermediate. Then, the intermediate can be decomposed to grow crystals to produce a metal oxide. At this time, the vaporization of the flux is used as a driving force to promote crystal growth of the metal oxide.
- a metal molybdate metal salt is formed as an intermediate, which is decomposed to produce a metal oxide.
- the molybdenum trioxide evaporates, and this is used as a driving force to promote crystal growth of the metal oxide.
- the mixed state of the flux and the metal compound is not particularly limited as long as the flux and the metal compound exist in the same space.
- the flux reaction can proceed even when the two are not mixed.
- simple mixing of powders, mechanical mixing using a grinder or the like, mixing using a mortar or the like, etc. can be performed, and the resulting mixture is in a dry state. , wet state.
- the sintering temperature is set to the sublimation temperature of the flux or higher, so that the vaporized flux comes into contact with the metal oxide, and a gas-solid reaction can be performed.
- the firing temperature varies depending on the flux, metal compound, and desired metal oxide used, it is usually preferable to set the temperature at which the intermediates can be decomposed.
- the firing temperature is preferably 500° C. to 900° C., preferably 600 to 900° C. °C, more preferably 700 to 900°C.
- the reaction time is also not particularly limited, and can be, for example, 1 minute to 30 hours.
- Vaporized flux is usually a metal oxide that constitutes the flux, although it varies depending on the flux used. For example, when ammonium molybdate is used as the flux, it is converted into thermodynamically stable molybdenum trioxide by firing, so the vaporized flux becomes the molybdenum trioxide. Depending on the flux evaporation method, the flux and the metal compound may form an intermediate. Vaporize.
- the temperature of the vaporized flux varies depending on the type of flux used, it is preferably 200-2000°C, more preferably 400-1500°C. When the temperature of the vaporized flux is 2000° C. or less, it tends to be easily pulverized in the cooling region.
- the metal oxide obtained by the reaction between the metal compound and the flux is cooled.
- the obtained metal oxide is cooled and the gas introduced from the first gas introduction section 20 is heated in the cooling region 14A.
- the temperature of the cooling region is not particularly limited, it is preferably 20 to 2000°C, more preferably 40 to 1500°C.
- the cooling rate of the metal oxide varies depending on the flux used, the metal compound, the desired metal oxide, etc., but from the viewpoint of production efficiency, it is preferably 0.1 to 100° C./min. It is preferably 1 to 50°C/min, more preferably 2 to 20°C/min.
- metal oxide The metal oxide varies depending on the metal compound or the like used, but from the viewpoint of the functionality of the metal oxide, aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, sodium oxide, potassium oxide, zirconium oxide, yttrium oxide, zinc oxide, Copper oxide, iron oxide, and spinel composite oxides of aluminum and magnesium are preferred, and aluminum oxide, silicon oxide, titanium oxide, and spinel composite oxides of aluminum and magnesium are more preferred, and aluminum oxide and aluminum. and magnesium spinel composite oxide.
- metal oxides since they are manufactured by the flux evaporation method, they usually have a dense single crystal structure.
- a metal oxide having such a dense single crystal structure can have high functionality.
- aluminum oxide and spinel composite oxides of aluminum and magnesium are inherently low in density and tend to have a polycrystalline structure, so phonon scattering tends to occur and high thermal conductivity can be obtained.
- aluminum oxide and spinel composite oxides of aluminum and magnesium obtained by the flux evaporation method have a dense and highly ordered crystal structure, phonon scattering is suppressed and high thermal conductivity can be achieved.
- such a crystal structure can be appropriately controlled by the type and amount of flux to be used, the type and amount of metal compound to be added, firing conditions, and the like.
- the metal oxide may contain flux.
- a molybdenum compound when used as a flux, as described above, most of it evaporates in the form of molybdenum trioxide or the like, but a part of the molybdenum compound is incorporated into the metal oxide. As a result, aluminum oxide containing molybdenum can be colored.
- the content of the flux in the metal oxide is not particularly limited, but from the viewpoint of efficiently producing the metal oxide at low cost, it is preferably 10% by mass or less, more preferably 5% by mass or less. It is preferably 3 to 0.01% by mass, and more preferably 3 to 0.01% by mass.
- the metal oxide produced by the flux method contains flux, the content tends to be higher than the metal elements (usually about 100 ppm) contained as inevitable impurities.
- the average particle size of the metal oxide is not particularly limited, but is preferably 0.1 to 1000 ⁇ m, more preferably 0.2 to 100 ⁇ m, even more preferably 0.3 to 80 ⁇ m, .4 to 60 ⁇ m is particularly preferred.
- the term "average particle size” means a value calculated by measuring the particle size of arbitrary 100 particles from an image obtained by a scanning electron microscope (SEM). In this case, the "particle size” means the maximum length among the distances between two points on the outline of the particle.
- the shape of the metal oxide can be controlled by appropriately changing the manufacturing conditions according to the purpose. For example, when trying to produce ⁇ -crystalline aluminum oxide by using molybdenum oxide as a flux and aluminum oxide as a metal compound, ⁇ -crystalline aluminum oxide can be produced by appropriately changing the amount of flux added and the firing conditions. can do.
- using a large amount of molybdenum oxide and slow crystal growth over a long period of time can produce hexagonal bipyramidal ⁇ -crystalline aluminum oxide.
- Such ⁇ -crystalline aluminum oxide can be applied to applications such as laser oscillation materials, high-hardness bearing materials, standard materials for measuring physical properties, and jewelry.
- ⁇ -crystalline aluminum oxide having a single crystal structure with a narrow grain size distribution can be produced by using a small amount of molybdenum oxide and growing the crystals in a short time.
- Such ⁇ -crystalline aluminum oxide can be applied to applications such as resin fillers, abrasives, and raw materials for fine ceramics.
- molybdenum oxide can selectively adsorb to the [113] plane of the aluminum oxide crystal.
- the crystal component is less likely to be supplied to the [001] plane, and the appearance of the [001] plane can be suppressed.
- ⁇ -crystalline aluminum oxide having such a crystal structure differs from plate-like ⁇ -aluminum oxide obtained by ordinary firing and polyhedrons having the [001] plane as the main crystal plane. It can be effectively suppressed and form polyhedral particles that are well-proportioned and nearly spherical.
- the phrase "having a plane other than the [001] plane as the main crystal plane” means that the area of the [001] plane is 20% or less of the total area in the metal oxide. means.
- the metal oxide is a spinel composite oxide having a basic composition of MgAl 2 O 4
- polyhedral particles having a single crystal structure can be produced.
- Such spinel particles can be applied to applications such as resin fillers, catalysts, optical materials, raw materials for substrates, and abrasives.
- the metal oxide when the metal oxide is rutile-type titanium oxide, it has excellent hiding power and high infrared scattering ability, so it can be applied to applications such as paints, inks, and cosmetics.
- the metal oxide when the metal oxide is silicon oxide, it is possible to produce a two-phase bicontinuous structure composed of Q4 bonds that practically do not contain silanol groups. , cosmetics, etc.
- a step (4) of recovering the powdered flux may be provided after the step (3).
- a dust collector or the like is used to collect powdered flux contained in the gas sent out from the gas discharge section.
- a classifier may be used to classify the powdered flux contained in the gas sent from the gas discharge section, and the classified flux may be dust-collected.
- the flux collection method is not particularly limited, and may be batch or continuous.
- the powdered flux is recovered from the recovery means for each reaction.
- the shape control of the metal oxides can be suitably performed by adjusting the addition amount, the particle size, etc. in advance.
- the powdered flux is collected sequentially while the reaction continues.
- the flux can be continuously mixed with the metal compound and charged into the firing furnace, and effects such as an increase in the amount of metal oxide produced within a unit time can be obtained.
- the method may further include a step (4) for reusing the flux recovered in the step (3).
- the flux recovered in step (4) is obtained by pulverizing the vaporized flux, and tends to have a high purity. Therefore, it can be reused for the production of metal oxides. As a result, the load on the environment can be reduced, and the manufacturing cost can be lowered.
- the flux evaporated in the reaction area 13A is caused by the airflow AF1 of the gas introduced from the first gas introduction part 20 to be transferred to the temperature raising area 12A, which is lower in temperature than the reaction area 13A.
- the gas containing the powdered flux is sent to the gas discharge unit 30, so that the flux in the airflow AF1 changes from gas to solid in the temperature rising region 12A in the firing furnace 10, and is vaporized.
- Almost no flux is delivered to the gas discharge section 30 . Therefore, the flux can be stably recovered, and the adhesion of the flux to the gas discharge section 30 can be prevented.
- the airflow AF1 is countercurrent to the conveying direction of the conveying device 40, passes through the cooling area 14A, the reaction area 13A, and the temperature raising area 12A in this order, and heats the flux vaporized in the reaction area 13A. Since pulverization occurs in the region 12A, the container 41 and the product in the container 41 are efficiently cooled by the relatively low-temperature airflow AF1 in the cooling region 14A, and the relatively high-temperature airflow AF1 in the temperature raising region 12A. The vessel 41 and the reactants within the vessel 41 are efficiently heated. Therefore, thermal energy can be effectively used by heat exchange between the gas constituting the airflow AF1 and the container 41 and the reactants or products in the container 41, and energy can be saved while the flux is stably recovered. can be planned.
- FIG. 3 is a schematic diagram showing a modification of the metal oxide production apparatus according to the present embodiment.
- the metal oxide production apparatus 1B includes a firing furnace 10 for firing a metal compound in the presence of flux, and a firing furnace 10 provided at one end 10b side of the firing furnace 10, and gas is introduced into the firing furnace 10.
- a first gas introduction part 20 to be introduced a gas discharge part 30 provided on the other end 10a side of the firing furnace 10 and discharging the gas in the firing furnace 10 to the outside, and a metal compound and a conveying device 40 that conveys the flux or the metal oxide obtained by the reaction of these from the first gas introduction section 20 side to the gas discharge section 30 side.
- the firing furnace 10 includes a temperature raising region 12B provided on the first gas introduction part 20 side, a cooling region 14B provided on the gas discharge part 30 side, and provided between the temperature raising region 12B and the cooling region 14B, It has a reaction area 13B which has a higher temperature than both the temperature raising area 12B and the cooling area 14B and where the metal compound reacts with the flux.
- the heating region 12B is provided on one end side 10b of the firing furnace 10, and the cooling region 14B is provided on the other end side 10a of the firing furnace 10. Then, the container 41 is conveyed in this order through the heating area 12B, the reaction area 13B and the cooling area 14B in the kiln 10 .
- the conveying device 40 is arranged in the firing furnace 10, and the metal compound and the flux, or the metal oxide obtained by the reaction of these, is supplied from the first gas introduction part 20 side. It is conveyed to the gas discharge part 30 side.
- the flux that has been vaporized in the reaction area 13A is pulverized in the cooling area 14A by the airflow AF2 of the gas introduced from the first gas introduction part 20, and the powdered flux is included.
- the gas is delivered to the gas discharge section 30 .
- the airflow AF2 is parallel to the transport direction of the transport device 40 and passes through the temperature raising area 12B, the reaction area 13B and the cooling area 14B in this order. Then, the flux vaporized in the reaction area 13B is pulverized in the cooling area 14B.
- the cooling region 14B functions as a region that cools the metal oxide that is the product, cools the gas containing the vaporized flux, and pulverizes the flux.
- the vaporized flux is pulverized at a position P2 on the airflow AF2 and above the conveying device 40 (above the cooling area 14B).
- the airflow AF2 is parallel to the transport direction of the transport device 40, the metal compound and the flux transported by the transport device 40, which are located in the upstream portion 13Ba of the reaction region 13B with respect to the transport direction,
- the vaporized flux obtained from the compound and flux can be supplied to the metal compound located in the downstream portion 13Bb of the reaction zone 13B. Therefore, even if the flux decreases in the downstream portion 13Bb and the reaction between the metal compound and the flux is insufficient, the flux is supplied to the metal compound located in the downstream portion 13Bb, and the metal compound and the flux sufficiently react. In addition, it is possible to increase the reaction rate between the metal compound and the flux.
- the flux that is vaporized in the reaction region 13A is pulverized in the cooling region 14B, which is lower in temperature than the reaction region 13B, by the airflow AF2 of the gas introduced from the first gas introduction part 20. Since the gas containing the solidified flux is sent to the gas discharge section 30, the flux in the airflow AF2 changes from gas to solid in the cooling area 14B in the firing furnace 10, and the vaporized flux is discharged to the gas discharge section 30. Very few are sent. Therefore, the flux can be stably recovered, and the adhesion of the flux to the gas discharge section 30 can be prevented. There is no need to provide a member such as a heat-insulating sleeve to prevent reaction with flux, and the maintenance burden can be significantly reduced.
- the metal compound and the flux are sufficiently mixed. can be reacted, and particles of a metal oxide such as aluminum oxide obtained as a reactant can be easily plate-shaped, and the plate-like formation of the particles can be promoted.
- FIG. 4 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
- the metal oxide production apparatus 1C further includes a second gas introduction unit 50 provided in the cooling area 14B of the firing furnace 10 and supplying gas to the airflow AF2 passing through the cooling area 14B.
- the second gas introduction part 50 is provided, for example, on the upper wall of the firing furnace 10 .
- the second gas introduction part 50 is preferably arranged directly above the cooling region 14B, and more preferably arranged directly above the position P2 where the flux is powdered. preferable.
- the gas from the second gas introduction part 50 is supplied from above the airflow AF2, and collides with the airflow AF2 at right angles. , may also collide at other angles, such as an acute angle.
- the second gas introduction part 50 may be provided at, for example, the bottom or side surface of the firing furnace 10 other than the upper wall of the firing furnace 10 as long as the airflow AF2 can be cooled in the cooling region 14B.
- the gas introduced from the second gas introduction part 50 is not particularly limited as long as it does not have reactivity with the flux vapor. ), oxygen, nitrogen, argon, water vapor, and the like. Among these, the gas is preferably air from the viewpoint of cost.
- the temperature of the gas introduced from the second gas introduction part 50 is preferably 5 to 100°C, more preferably 5 to 40°C.
- the blowing speed of the gas introduced from the second gas introduction part 50 is not particularly limited, but it is preferably 1 to 500 L/min, more preferably 10 to 200 L/min, when the effective volume of the firing furnace 10 is 100 L. It is more preferable to have
- the second gas introduction unit 50 has a second air blower (not shown) that forcibly feeds air into the firing furnace 10 and a cooling device (not shown) that cools the air fed into the firing furnace 10. good. Thereby, the airflow AF2 can be further cooled. Further, the second gas introduction section 50 may have an opening adjustment damper (not shown) for adjusting the amount of gas introduced into the firing furnace, the speed, and the like.
- the gas is supplied to the airflow AF2 passing through the cooling region 14B by the second gas introduction part 50, so that the cooling of the airflow AF2 is promoted in the cooling region 14B, and the particle size is uniform. It is possible to more stably collect the flux with less or suppressed cohesion. Further, by lowering the temperature of the gas introduced from the second gas introduction part 50, it is possible to collect flux having large particle diameters, uniform particle diameters, and less cohesion between particles. can do.
- FIG. 5 is a schematic diagram showing another modification of the metal oxide production apparatus according to this embodiment.
- the firing furnace 10 may include a corrosion-resistant heat insulating portion 15 attached to the inner surface of the firing furnace 10 .
- the heat insulating part 15 is provided on at least a part of the inner surfaces of the bottom wall, the side walls and the top wall of the kiln 10, and is preferably attached to the inner surfaces of the bottom wall, the side walls and the top wall.
- the material of the heat insulating part 15 is not particularly limited as long as it has corrosion resistance in addition to the prerequisite heat insulating properties and heat resistance. From the viewpoint of corrosion resistance to flux such as molybdenum oxide, alumina fiber, clay brick, high alumina brick, and the like are preferable.
- the corrosion-resistant heat insulating portion 15 is attached to the inner surface of the firing furnace 10, the heat radiation of the firing furnace 10 is suppressed, the thermal efficiency is improved, and deterioration of the firing furnace 10 due to corrosion is suppressed. and the maintenance burden can be further reduced.
- FIG. 6 is a schematic diagram showing another modification of the metal oxide production apparatus according to the present embodiment.
- the metal oxide manufacturing apparatus 1C includes a recovery device 80 that is connected to the gas discharge section 30 and recovers the powdered flux contained in the gas.
- the recovery device 80 includes a dust collector 81 that collects the powdered flux, and a classifier 82 that is provided between the gas discharge section 30 and the dust collector 81 and classifies the powdered flux.
- the collection device 80 has the dust collector 81 and the classifier 82 , but is not limited to this and may not have the classifier 82 .
- the dust collector 81 is directly connected to the gas discharge section 30 of the kiln 10 .
- the dust collector 81 collects the powdered flux in the cooling area 14B inside the kiln 10 .
- Examples of the dust collector 81 include, but are not limited to, a cyclone dust collector, a bag filter dust collector, an inertial dust collector, a moving bed dust collector, a wet dust collector, a filter dust collector, an electric dust collector, and the like.
- the classifier 82 classifies the powdered flux in the cooling area 14B in the kiln 10 according to the difference in particle size (particle diameter). As a result, flux having a size (particle size) within a predetermined range is delivered to the dust collector 81 .
- the classifier 82 is not particularly limited, but is, for example, a dry classifier, and as a dry classifier, a centrifugal weight classifier such as a cyclone, a gravity classifier, an inertial classifier, or the like can be used.
- a blower device 90 as a third blower device is connected to the collection device 80 .
- the insides of the dust collector 81, the classifier 82, and the gas discharge section 30 are sucked, and the outside air is blown to the gas discharge section 30 from the third gas introduction section 32 of the gas discharge section 30. . That is, the suction of the exhaust device 90 passively blows the air to the gas discharge section 30 .
- the dust collector 81 collects the powdered flux in the cooling area 14B in the firing furnace 10, so the collected flux can be recycled for the production of metal oxides.
- the classifier 82 classifies the powdered flux
- the dust collector 81 arranged downstream can collect flux of a predetermined size range (for example, a relatively large particle size). can.
- the collected flux can be used for recycling as it is, and the flux having a size outside the predetermined range (for example, a relatively small particle size) can be separately collected and used for other purposes.
- the particle size of the flux it becomes possible to easily control the plate-like formation of the metal oxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
本出願は、2021年11月10日に、日本に出願された特願2021-183370に基づき優先権を主張し、その内容をここに援用する。
[1]フラックス蒸発法による金属酸化物の製造装置であって、
フラックスの存在下で金属化合物を焼成する焼成炉と、
前記焼成炉の一端部側に設けられ、前記焼成炉内に気体を導入する第1気体導入部と、 前記焼成炉の他端部側に設けられ、前記焼成炉内の気体を外部に排出する気体排出部と、
前記焼成炉内に配置され、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記第1気体導入部及び前記気体排出部のうちの一方側から他方側に搬送する搬送装置と、
を備え、
前記焼成炉は、前記気体排出部及び前記第1気体導入部のうちの一方側に設けられた昇温領域と、前記気体排出部及び前記第1気体導入部のうちの他方側に設けられた冷却領域と、前記昇温領域及び前記冷却領域の間に設けられ、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域と、を有し、
前記第1気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造装置。
前記気流は、前記搬送装置の搬送方向に対して向流であり、前記冷却領域、前記反応領域及び前記昇温領域をこの順に通過し、
前記反応領域で気化されたフラックスを、前記昇温領域で粉体化する、上記[1]に記載の金属酸化物の製造装置。
前記気流は、前記搬送装置の搬送方向に対して並流であり、前記昇温領域、前記反応領域及び前記冷却領域をこの順に通過し、
前記反応領域で気化されたフラックスを、前記冷却領域で粉体化する、上記[1]に記載の金属酸化物の製造装置。
フラックスの存在下で金属化合物を焼成する焼成炉の一端部側に設けられた気体導入部から、前記焼成炉内に気体を導入し、前記焼成炉の他端部側に設けられた気体排出部から、前記焼成炉内の気体を外部に排出し、
前記焼成炉内で、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記気体導入部及び前記気体排出部のうちの一方側から他方側に搬送し、
前記焼成炉において、前記気体排出部及び前記気体導入部のうちの一方側に昇温領域を、前記気体排出部及び前記気体導入部のうちの他方側に冷却領域を、前記昇温領域及び前記冷却領域の間に、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域をそれぞれ設けて、前記気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造方法。
なお、以下の説明で用いる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがあり、各構成要素の寸法比率などが実際と同じであるとは限らないものとする。また、以下の説明において例示される構造、材料等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
図1は、本実施形態に係る金属酸化物の製造装置の一例を示す模式図である。図1の製造装置は、フラックス蒸発法による金属酸化物の製造装置である。フラックス蒸発法とは、フラックスの存在下で金属化合物を焼成させることで金属酸化物を製造する方法である。なお、焼成過程において、フラックスは蒸発し、当該フラックスの蒸発を駆動力として金属酸化物の結晶成長が進行する。
また、第1気体導入部20が焼成炉10に2つ以上設けられる場合、第1気体導入部20は、焼成炉10内に後述する気流AF1を生成するための1又は複数の主導入部と、焼成炉10の底部に一定間隔で設けられ、焼成炉10内において下部から上部への気流を形成するための複数の副導入部とを有していてもよい。
図2に示すように、焼成炉10は、気体排出部30側に設けられた昇温領域12Aと、第1気体導入部20側に設けられた冷却領域14Aと、昇温領域12A及び冷却領域14Aの間に設けられ、昇温領域12Aと冷却領域14Aのいずれよりも高温であって金属化合物とフラックスとが反応する反応領域13Aとを有する。
この昇温領域12Aは、例えば搬送装置40の搬送方向に関して気体排出部30の下流側に配置されている。換言すれば、昇温領域12Aは、後述する気流AF1の流れ方向に関して気体排出部30の上流側に配置されている。
本実施形態に係る金属酸化物の製造方法は、フラックス蒸発法による金属酸化物の製造方法であって、以下の工程(1)~(3)を有する。工程(1)~(3)の順番は、特に制限されず、本発明の趣旨を逸脱しない範囲で変更することができる。また、工程(1)の前、工程(3)の後、或いは2工程間の間に1又は複数の他の工程を有していてもよい。
工程(1)では、フラックスの存在下で金属化合物を焼成する焼成炉の一端部側に設けられた第1気体導入部から、前記焼成炉内に気体を導入し、前記焼成炉の他端部側に設けられた気体排出部から、前記焼成炉内の気体を外部に排出する。例えば、図2の例では、焼成炉10の一端部10a側に設けられた第1気体導入部20から、焼成炉10内に気体を導入し、焼成炉10の他端部10b側に設けられた気体排出部30から、焼成炉10内の気体を外部に排出する。
上記第1気体導入部から焼成炉に気体を送風する場合、送風する気体の温度は、5℃以上であることが好ましく、10℃以上であることがより好ましい。
また、気体の送風速度は、焼成炉の有効容積が100Lに対して、1~500L/分であることが好ましく、10~200L/分であることがより好ましい。
フラックスとしては、特に制限されないが、モリブデン化合物、タングステン化合物、バナジウム化合物、塩素化合物、フッ素化合物、ホウ素化合物、硫酸塩、硝酸塩、炭酸塩等が挙げられる。
金属化合物としては、特に制限されないが、アルミニウム化合物、ケイ素化合物、チタン化合物、マグネシウム化合物、ナトリウム化合物、カリウム化合物、ジルコニウム化合物、イットリウム化合物、亜鉛化合物、銅化合物、鉄化合物等が挙げられる。これらのうち、アルミニウム化合物、ケイ素化合物、チタン化合物、マグネシウム化合物を用いることが好ましい。
工程(2)では、焼成炉内で、反応物(金属化合物とフラックス)、或いは生成物(金属化合物とフラックスの反応によって得られる金属酸化物)を、第1気体導入部(気体導入部)及び気体排出部のうちの一方側から他方側に搬送する。例えば、図2の例では、焼成炉10内で、反応物或いは生成物を、気体排出部30側から第1気体導入部20側に搬送する。搬送形態は、反応物或いは生成物を焼成炉内の所定方向に連続的に搬送できれば、特に制限されないが、例えば複数の容器に反応物或いは生成物を収容し、これらを炉内で順次移動させることで、反応物或いは生成物を搬送してもよい。また、反応物或いは生成物の搬送速度は、焼成炉内で金属化合物とフラックスとが十分に反応する時間が確保できれば、特に制限されない。
工程(3)では、焼成炉において、気体排出部及び第1気体導入部(気体導入部)のうちの一方側に昇温領域を、気体排出部及び第1気体導入部のうちの他方側に冷却領域を、前記昇温領域及び前記冷却領域の間に、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域をそれぞれ設けて、前記第1気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する。例えば、図2の例では、気体排出部30側に昇温領域12Aを、第1気体導入部20側に冷却領域14Aを、昇温領域12A及び冷却領域14Aの間に、昇温領域12Aと冷却領域14Aのいずれよりも高温であって金属化合物とフラックスとが反応する反応領域13Aをそれぞれ設ける。そして、第1気体導入部20から導入された気体による気流AF1により、反応領域13Aで気化されたフラックスを昇温領域12Aで粉体化し、粉体化されたフラックスを含む気体を気体排出部30に送出する。
気化されたフラックスの冷却は、昇温領域と反応領域との温度差により行われる。
気化されたフラックスは、使用するフラックスによって異なるが、通常フラックスを構成する金属酸化物である。例えば、フラックスとして、モリブデン酸アンモニウムを用いる場合には、焼成により熱力学的に安定な三酸化モリブデンに変換されることから、気化するフラックスは前記三酸化モリブデンとなる。なお、フラックス蒸発法によっては、フラックスと金属化合物とが中間体を生成する場合があるが、この場合でも焼成により中間体が分解して結晶成長するため、フラックスは熱力学的に安定な形態で気化する。
金属酸化物は、用いる金属化合物等により異なるが、金属酸化物の機能性の観点から、酸化アルミニウム、酸化シリコン、酸化チタン、酸化マグネシウム、酸化ナトリウム、酸化カリウム、酸化ジルコニウム、酸化イットリウム、酸化亜鉛、酸化銅、酸化鉄、アルミニウムとマグネシウムとのスピネル複合酸化物であることが好ましく、酸化アルミニウム、酸化ケイ素、酸化チタン、アルミニウムとマグネシウムとのスピネル複合酸化物であることがより好ましく、酸化アルミニウム、アルミニウムとマグネシウムとのスピネル複合酸化物であることがさらに好ましい。
工程(4)では、例えば集塵機などを用いて、気体排出部から送出された気体に含まれる粉体化されたフラックスを集塵する。また、例えば分級機などを用いて、気体排出部から送出された気体に含まれる粉体化されたフラックスを分級し、分級されたフラックスを集塵してもよい。
工程(4)において回収されたフラックスは、気化したものを粉体化して得られたものであり、純度が高い傾向がある。よって、これを再度金属酸化物の製造に再利用することができる。これにより、環境への負荷を低減することができ、また、製造コストを低くすることができる。
図3に示すように、金属酸化物の製造装置1Bは、フラックスの存在下で金属化合物を焼成する焼成炉10と、焼成炉10の一端部10b側に設けられ、焼成炉10内に気体を導入する第1気体導入部20と、焼成炉10の他端部10a側に設けられ、焼成炉10内の気体を外部に排出する気体排出部30と、焼成炉10内に配置され、金属化合物とフラックス或いはこれらの反応によって得られる金属酸化物を、第1気体導入部20側から気体排出部30側に搬送する搬送装置40と、を備える。
第2気体導入部50は、冷却領域14Bで気流AF2を冷却することができれば、焼成炉10の上壁以外、例えば焼成炉10の底部もしくは側面に設けられてもよい。
1B 製造装置
1C 製造装置
10 焼成炉
10a 一端部(他端部)
10b 他端部(一端部)
11 ヒーター
12A 昇温領域
12B 昇温領域
13A 反応領域
13B 反応領域
13Ba 上流部分
13Bb 下流部分
14A 冷却領域
14B 冷却領域
15 断熱部
20 第1気体導入部
30 気体排出部
31 主流路
32 第3気体導入部
40 搬送装置
41 容器
50 第2気体導入部
80 回収装置
81 集塵機
82 分級機
90 排風装置
Claims (11)
- フラックス蒸発法による金属酸化物の製造装置であって、
フラックスの存在下で金属化合物を焼成する焼成炉と、
前記焼成炉の一端部側に設けられ、前記焼成炉内に気体を導入する第1気体導入部と、
前記焼成炉の他端部側に設けられ、前記焼成炉内の気体を外部に排出する気体排出部と、
前記焼成炉内に配置され、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記第1気体導入部及び前記気体排出部のうちの一方側から他方側に搬送する搬送装置と、
を備え、
前記焼成炉は、前記気体排出部及び前記第1気体導入部のうちの一方側に設けられた昇温領域と、前記気体排出部及び前記第1気体導入部のうちの他方側に設けられた冷却領域と、前記昇温領域及び前記冷却領域の間に設けられ、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域と、を有し、
前記第1気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造装置。 - 前記昇温領域が前記気体排出部側に設けられると共に、前記冷却領域が前記第1気体導入部側に設けられ、
前記気流は、前記搬送装置の搬送方向に対して向流であり、前記冷却領域、前記反応領域及び前記昇温領域をこの順に通過し、
前記反応領域で気化されたフラックスを、前記昇温領域で粉体化する、請求項1に記載の金属酸化物の製造装置。 - 前記昇温領域が前記第1気体導入部側に設けられると共に、前記冷却領域が前記気体排出部側に設けられ、
前記気流は、前記搬送装置の搬送方向に対して並流であり、前記昇温領域、前記反応領域及び前記冷却領域をこの順に通過し、
前記反応領域で気化されたフラックスを、前記冷却領域で粉体化する、請求項1に記載の金属酸化物の製造装置。 - 前記搬送装置にて搬送される金属化合物及びフラックスのうち、前記搬送方向に関して前記反応領域の上流部に位置する金属化合物及びフラックスから得られた気化された金属酸化物を、前記反応領域の下流部に位置する金属化合物及びフラックスに供給する、請求項3に記載の金属酸化物の製造装置。
- 前記焼成炉の前記冷却領域に設けられ、前記冷却領域を通過する前記気流に気体を供給する第2気体導入部を更に備える、請求項3又は4に記載の金属酸化物の製造装置。
- 前記気体排出部は、前記焼成炉内の気体を炉外に排出する主流路と、前記主流路に設けられ、前記主流路を流れる粉体化されたフラックスを含む気体に外部から気体を供給する第3気体導入部とを有する、請求項1~5のいずれか1項に記載の金属酸化物の製造装置。
- 前記焼成炉は、前記焼成炉の内面に取り付けられた耐腐食性の断熱部を備える、請求項1又は2に記載の金属酸化物の製造装置。
- 前記気体排出部に接続され、前記気体に含まれる前記粉体化されたフラックスを回収する回収装置を備える、請求項1に記載の金属酸化物の製造装置。
- 前記回収装置は、前記粉体化されたフラックスを集塵する集塵機を有する、請求項8に記載の金属酸化物の製造装置。
- 前記回収装置は、前記気体排出部と前記集塵機の間に設けられ、前記粉体化されたフラックスを分級する分級機を更に有する、請求項9に記載の金属酸化物の製造装置。
- フラックス蒸発法による金属酸化物の製造方法であって、
フラックスの存在下で金属化合物を焼成する焼成炉の一端部側に設けられた気体導入部から、前記焼成炉内に気体を導入し、前記焼成炉の他端部側に設けられた気体排出部から、前記焼成炉内の気体を外部に排出し、
前記焼成炉内で、前記金属化合物と前記フラックス、或いはこれらの反応によって得られる金属酸化物を、前記気体導入部及び前記気体排出部のうちの一方側から他方側に搬送し、
前記焼成炉において、前記気体排出部及び前記気体導入部のうちの一方側に昇温領域を、前記気体排出部及び前記気体導入部のうちの他方側に冷却領域を、前記昇温領域及び前記冷却領域の間に、前記昇温領域と前記冷却領域のいずれよりも高温であって前記金属化合物と前記フラックスとが反応する反応領域をそれぞれ設けて、前記気体導入部から導入された気体による気流により、前記反応領域で気化されたフラックスを前記昇温領域又は前記冷却領域で粉体化し、粉体化されたフラックスを含む気体を前記気体排出部に送出する、金属酸化物の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023559635A JP7480922B2 (ja) | 2021-11-10 | 2022-11-08 | 金属酸化物の製造装置及び金属酸化物の製造方法 |
CN202280071274.2A CN118176161A (zh) | 2021-11-10 | 2022-11-08 | 金属氧化物的制造装置和金属氧化物的制造方法 |
DE112022005346.1T DE112022005346T5 (de) | 2021-11-10 | 2022-11-08 | Metalloxidfertigungsvorrichtung und metalloxidfertigungsverfahren |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021183370 | 2021-11-10 | ||
JP2021-183370 | 2021-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023085260A1 true WO2023085260A1 (ja) | 2023-05-19 |
Family
ID=86335731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/041527 WO2023085260A1 (ja) | 2021-11-10 | 2022-11-08 | 金属酸化物の製造装置及び金属酸化物の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7480922B2 (ja) |
CN (1) | CN118176161A (ja) |
DE (1) | DE112022005346T5 (ja) |
WO (1) | WO2023085260A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208226A (ja) * | 1994-11-30 | 1996-08-13 | Sumitomo Chem Co Ltd | 複合金属酸化物粉末の製造方法 |
JP2005146406A (ja) * | 2003-10-23 | 2005-06-09 | Zenhachi Okumi | 微粒子の製造方法及びそのための装置 |
WO2005054550A1 (ja) * | 2003-12-01 | 2005-06-16 | Dai Nippon Printing Co., Ltd. | 人工コランダム結晶 |
JP2008150239A (ja) * | 2006-12-15 | 2008-07-03 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体結晶の製造方法 |
JP2013170085A (ja) * | 2012-02-17 | 2013-09-02 | Ihi Corp | 結晶成長方法及び結晶成長装置 |
JP2015036347A (ja) * | 2013-08-12 | 2015-02-23 | Dic株式会社 | 三酸化モリブデンの捕集法 |
WO2018003481A1 (ja) * | 2016-06-29 | 2018-01-04 | Dic株式会社 | 金属酸化物の製造装置および前記金属酸化物の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6455747U (ja) | 1987-10-01 | 1989-04-06 | ||
US5939693A (en) | 1998-02-02 | 1999-08-17 | Motorola Inc. | Polynomial calculator device, and method therefor |
KR102006385B1 (ko) | 2018-04-20 | 2019-08-01 | 주식회사 진우이앤티 | 열회수장치 및 공기정화장치가 내장된 일체형 리플로우 시스템 |
JP7504539B2 (ja) | 2020-05-22 | 2024-06-24 | 株式会社ディスコ | ドレッシング部材 |
-
2022
- 2022-11-08 WO PCT/JP2022/041527 patent/WO2023085260A1/ja active Application Filing
- 2022-11-08 CN CN202280071274.2A patent/CN118176161A/zh active Pending
- 2022-11-08 DE DE112022005346.1T patent/DE112022005346T5/de active Pending
- 2022-11-08 JP JP2023559635A patent/JP7480922B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208226A (ja) * | 1994-11-30 | 1996-08-13 | Sumitomo Chem Co Ltd | 複合金属酸化物粉末の製造方法 |
JP2005146406A (ja) * | 2003-10-23 | 2005-06-09 | Zenhachi Okumi | 微粒子の製造方法及びそのための装置 |
WO2005054550A1 (ja) * | 2003-12-01 | 2005-06-16 | Dai Nippon Printing Co., Ltd. | 人工コランダム結晶 |
JP2008150239A (ja) * | 2006-12-15 | 2008-07-03 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体結晶の製造方法 |
JP2013170085A (ja) * | 2012-02-17 | 2013-09-02 | Ihi Corp | 結晶成長方法及び結晶成長装置 |
JP2015036347A (ja) * | 2013-08-12 | 2015-02-23 | Dic株式会社 | 三酸化モリブデンの捕集法 |
WO2018003481A1 (ja) * | 2016-06-29 | 2018-01-04 | Dic株式会社 | 金属酸化物の製造装置および前記金属酸化物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112022005346T5 (de) | 2024-08-22 |
JP7480922B2 (ja) | 2024-05-10 |
CN118176161A (zh) | 2024-06-11 |
JPWO2023085260A1 (ja) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6455747B2 (ja) | 金属酸化物の製造装置および前記金属酸化物の製造方法 | |
US11701630B2 (en) | Reactor system for producing a nano-active powder material | |
Moumin et al. | Solar treatment of cohesive particles in a directly irradiated rotary kiln | |
Okuyama et al. | Preparation of ZnS and CdS fine particles with different particle sizes by a spray-pyrolysis method | |
US20180178292A1 (en) | Novel Methods of Metals Processing | |
US20080190243A1 (en) | Method for producing molybdenum metal and molybdenum metal | |
KR20030011775A (ko) | 금속 함유 화합물을 금속이나 금속 산화물로 신속전환하는 방법 | |
KR100596103B1 (ko) | 회전로상식 환원로의 조업 방법 및 회전로상식 환원로 설비 | |
WO2023085260A1 (ja) | 金属酸化物の製造装置及び金属酸化物の製造方法 | |
JP2022135131A (ja) | 複合タングステン酸化物粒子の製造方法 | |
EP2160438B1 (en) | Phospohorous pentoxide producing methods | |
RU2457072C1 (ru) | Способ получения цинкового порошка и установка для осуществления способа | |
Kravtsov et al. | Nucleation and growth of YAG: Yb crystallites: A step towards the dispersity control | |
US7192467B2 (en) | Method for producing molybdenum metal and molybdenum metal | |
RU2384522C1 (ru) | Способ получения наночастиц оксида металла | |
KR100626437B1 (ko) | 금속산화물의 수소환원 장치 및 이를 이용한 수소환원 방법 | |
SV et al. | Formation of SiO and related Si-based materials through carbothermic reduction of silica-containing slag | |
Manukyan et al. | Size-tunable germanium particles prepared by self-sustaining reduction of germanium oxide | |
JP6028702B2 (ja) | 酸化珪素の製造方法 | |
JP2004123487A (ja) | 酸化ニッケル粉末の製造方法 | |
JP2004123488A (ja) | 酸化ニッケル粉末の製造方法 | |
Nassini et al. | Understanding the solid-state calcium metavanadate synthesis pathway | |
BR112019008730B1 (pt) | Método e sistema de reator para produzir um material em pó nanoativo | |
RU102534U1 (ru) | Установка для получения окиси цинка и устройство для окисления паров | |
JP2003040613A (ja) | 無機質球状粉末の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22892758 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023559635 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280071274.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18709177 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022005346 Country of ref document: DE |