WO2023083073A1 - 具有离焦功能的眼镜片及制备方法 - Google Patents

具有离焦功能的眼镜片及制备方法 Download PDF

Info

Publication number
WO2023083073A1
WO2023083073A1 PCT/CN2022/129270 CN2022129270W WO2023083073A1 WO 2023083073 A1 WO2023083073 A1 WO 2023083073A1 CN 2022129270 W CN2022129270 W CN 2022129270W WO 2023083073 A1 WO2023083073 A1 WO 2023083073A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
spectacle lens
fan
zone
optical zone
Prior art date
Application number
PCT/CN2022/129270
Other languages
English (en)
French (fr)
Inventor
陈冠南
周瑜
Original Assignee
阿尔玻科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿尔玻科技有限公司 filed Critical 阿尔玻科技有限公司
Publication of WO2023083073A1 publication Critical patent/WO2023083073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures

Definitions

  • the disclosure relates to the technical field of myopia prevention and control, in particular to a spectacle lens with a defocusing function and a preparation method thereof.
  • the inner or outer area of the traditional myopia lens is a concave lens of the same degree as the central area.
  • the concave lens in the central area of the lens corrects the central myopic defocus of the retina, and the concave lens in the inner and outer peripheral areas of the lens increases the hyperopic distance between the inner and outer retina. focus, promote eyeball growth, and increase the degree of myopia.
  • defocus spectacle lenses for myopia correction for the inner retina and outer retina have appeared on the market, for example: Patent No.: CN201420413649.
  • the utility model relates to a peripheral defocused frame spectacle lens in the medial lateral area, which belongs to the glasses for preventing and treating myopia.
  • Myopia has a state of refractive asymmetry around the retina, and the existing peripheral defocusing glasses cannot eliminate this asymmetry, and aggravate or produce anisometropia.
  • the utility model prepares unequal correction degrees for the inner functional area and the outer functional area, and the correction degree of the inner functional area is greater than that of the outer functional area, thereby eliminating or reducing the asymmetric refractive state around the retina.
  • This kind of peripheral defocus frame spectacle lens is used to correct the hyperopic defocus around the outer retina and inner retina, control the growth of myopic eyeballs, has a wide field of view, good wearing compliance, eliminates the asymmetrical refractive state around the retina, and restores the normal state of the human eye. Physiological optical state, effective prevention and control of myopia in children and adolescents.
  • the above-mentioned patent divides the inner functional area and the outer functional area of the spectacle lens.
  • the refraction of the eye is asymmetrical in the upper, lower, left, and right sides. Therefore, the above-mentioned patent does not divide the hyperopic functional area. and myopia functional area, does not have the function of hyperopia and myopia correction, resulting in defocused spectacle lenses can not be better and more comprehensive correction of myopia; at the same time the existing defocused spectacle lens is an integral structure, its production method is, defocused glasses
  • the overall structure is made of the same material. In this way, due to the same material and the same diopter of the material itself, it is difficult to process light areas with different diopters as a whole.
  • the present disclosure relates to a spectacle lens with a defocusing function, which includes a split defocusing spectacle lens, a central optical zone is set on the defocusing spectacle lens, a distance light zone, a near light zone are set on the defocusing spectacle lens
  • the light area, the inner light area and the outer light area, the far light area and the near light area are respectively located above and below the central optical area, and the inner light area and the outer light area are respectively located in the central optical area. both sides of the area;
  • the angular range of the far optical zone is a fan-shaped area of 30° to 150° counterclockwise along the horizontal radial line of the central optical zone, and the angular range of the near optical zone is 45° clockwise along the horizontal radial line of the central optical zone.
  • ° ⁇ 135° fan-shaped area two fan-shaped areas are formed between the far-use light area and the near-use light area, and the two fan-shaped areas are respectively the inner light area and the outer light area.
  • the defocused spectacle lens includes a spectacle lens body, and a fan-shaped groove for distance is provided on the body of the spectacle lens, and a distance lens is fitted in the fan-shaped groove for distance, and the distance lens
  • the spectacle lens body is provided with a fan-shaped groove for near, and a near lens is fitted in the fan-shaped groove for near, and the near lens forms the light zone for near
  • the The main body of the spectacle lens is provided with an inner fan-shaped groove, and an inner lens is fitted in the inner fan-shaped groove, and the inner lens forms the inner light zone.
  • the main body of the spectacle lens is provided with an outer fan-shaped groove, and the outer fan-shaped groove An outer optic is fitted inside, the outer optic forming the outer light zone.
  • the far fan-shaped groove, the proximal fan-shaped groove, the inner fan-shaped groove and the outer fan-shaped groove are sequentially connected to form a closed ring, and a positioning piece is arranged in the closed ring, and the positioning piece is used It is used to locate the position of any one of the distance lens, the near lens, the inner lens and the outer lens on the defocusing lens.
  • a glue injection hole is opened on the side wall of the defocused spectacle lens, and the glue injection hole communicates with the closed ring.
  • both sides of the distance lens and the near lens are provided with arc-shaped protrusions, and the arc-shaped protrusions are adapted to the arc surface of the central optical zone.
  • the defocused ophthalmic lens includes a refractive compensation layer, a functional layer and a refractive correction layer, the functional layer is located between the refractive compensation layer and the refractive correction layer, and the refractive
  • the side of the compensation layer away from the functional layer is a convex surface
  • the side of the refractive correction layer away from the functional layer is a concave surface
  • the functional layer is provided with a plurality of convex surfaces and a plurality of concave surfaces, and a plurality of the convex surfaces
  • a continuous annular structure is formed, a plurality of the concave surfaces form a continuous annular structure, each of the convex surfaces and each of the concave surfaces are alternately arranged along the radial direction, forming a continuous wave structure.
  • the functional layer is made of resin material.
  • the spectacle lens with defocusing function of the present disclosure can correct myopia more comprehensively, and at the same time adopts a split structure to make the defocusing spectacle lens, making the manufacture of the defocusing spectacle lens easier.
  • the present disclosure relates to a method of preparing an ophthalmic lens with defocus function, comprising:
  • the spectacle lens main body is obtained by using a mold
  • the surface of the spectacle lens is finely ground.
  • the present disclosure relates to a method of preparing an ophthalmic lens with defocus function, comprising:
  • the production of the refractive compensation layer and the refractive correction layer a mold space is formed inside the mold, a functional molding part is provided in the middle of the mold, and multiple convex parts and multiple concave parts are provided on both ends of the functional molding part.
  • the convex part forms a continuous ring structure, and a plurality of the concave parts form a continuous ring structure, and each of the convex parts and each of the concave parts is staggered along the radial direction to form a continuous wave shape
  • the structure is to inject defocused spectacle lens molding raw materials into the mold space through the injection molding hole on the mold, thereby forming a defocused spectacle lens semi-finished product, which has an installation space for a functional layer;
  • the semi-finished defocused spectacle lens is used as a functional layer to make a mold to form a functional layer in the installation space; the semi-finished defocused spectacle lens is placed in the plastic mold, and the shape of the inner space of the plastic mold is consistent with the outer shape of the semi-finished defocused spectacle lens Adaptation, the injection molding hole on the plastic mold is connected with the installation space, and the resin is injected into the installation space through the injection molding hole on the plastic mold.
  • the defocused spectacle lens blank is finely ground to form a defocused spectacle lens.
  • the defocused spectacle lens since the diopters of the distance light zone, the near light zone, the inner light zone and the outer light zone are different, the defocused spectacle lens adopts a split design to form the distance light zone, The near optical area, inner optical area and outer optical area are independent of each other to avoid astigmatism. At the same time, each optical area of the defocused spectacle lens is reasonably divided to meet the needs of the physiological optical field of the human eye, which can be more comprehensive For myopia correction, at the same time, the defocused spectacle lens is made of a split structure, which makes the production of the defocused spectacle lens easier.
  • the positioning piece when installing the distance lens, the near lens, the inner lens and the outer lens, the positioning piece is used to quickly locate the position of one of the lenses, and then install the rest of the lenses accordingly, so that the corresponding lenses can be installed accurately in the corresponding light zone.
  • resin glue is injected into the ring of the defocused spectacle lens through the glue injection hole to fix each lens on the defocused spectacle lens to realize the installation of split spectacle lenses.
  • FIG. 1 is a front view of a spectacle lens with a defocusing function according to an embodiment of the present disclosure
  • Fig. 2 is a side view of Embodiment 1 of the spectacle lens with defocus function of the present disclosure
  • FIG. 3 is a schematic structural view of the main body of the spectacle lens in the spectacle lens with defocus function of the present disclosure
  • Fig. 4 is a side view of Embodiment 2 in the spectacle lens with defocusing function of the present disclosure.
  • FIG. 5 is a schematic diagram of the internal structure of the mold in Embodiment 2 of the present disclosure.
  • 1-defocus spectacle lens 2-central optical area, 3-distance optical area, 4-near optical area, 5-inner optical area, 6-outer optical area, 7-distance optical area, 8- Near lens, 9-inner lens, 10-outer lens, 11-positioning sheet, 12-glass lens body, 13-curved protrusion, 14-mold space, 15-refractive compensation layer, 16-functional layer, 17 -refractive correction layer, 18-convex surface, 19-concave surface, 20-convex part, 21-concave part.
  • the human eyeball is divided into distance vision zone, near vision zone, inner vision zone and outer vision zone. Different vision zones have different diopters to light.
  • Defocus glasses are produced to correct myopia in different vision zones.
  • Existing defocus glasses The production method of the lens is that the out-of-focus spectacle lens is made of the same material as the overall structure. In this way, because the material is the same, the diopter of the material itself is the same, so it is difficult to process the optical areas of different diopters as a whole, and the subsequent polishing process is required.
  • this application sets the defocused spectacle lens as a split structure to reduce the difficulty in processing and manufacturing the defocused spectacle lens.
  • the application provides two kinds of embodiments, and the structure of the out-of-focus spectacle lens according to the corresponding embodiments provides a corresponding processing and preparation method, specifically as follows:
  • the spectacle lens with defocusing function includes a defocusing spectacle lens 1, a central optical zone 2 is set on the defocusing spectacle lens 1, and a distance light zone 3 is arranged on the defocusing spectacle lens 1 , the near light zone 4, the inner light zone 5 and the outer light zone 6, the far light zone 3 and the near light zone 4 are respectively located above and below the central optical zone 2, the inner light zone 5 and the outer light zone 6 are respectively located Both sides of the central optical zone 2;
  • the angle range of the far optical zone 3 is a fan-shaped area of 30° to 150° counterclockwise along the horizontal radial line HM of the central optical zone 2, and the angle range of the near optical zone 4
  • the angular range is a fan-shaped area of 45° to 135° clockwise along the horizontal radial line HM of the central optical zone 2, and two fan-shaped areas are formed between the far-use light zone 3 and the near-use light zone 4, and the two fan-shaped areas are respectively The inner light zone 5 and the outer light zone 6; according
  • the inner light zone 5 and the outer light zone 6 make the defocused spectacle lens 1 more in line with the actual field of view of the glasses, and can more comprehensively correct myopia; about the distance light zone 3, the near light zone 4, and the inner light zone 5
  • the area division of the outer light area 6 adopts the four-division method: the division line of the symmetry axis is an imaginary line, and the imaginary symmetry axis is based on the 315°-135° axis and the 225°-45° axis, and the two axes intersect each other At the center of the retinal area and the optical center of the mirror field of view, two symmetrical axes divide the fundus retina into four symmetrical fan-shaped areas of the central retina (CR) located in the central circular area and the peripheral retina.
  • CR central retina
  • the four fan-shaped areas are: the upper retina (SR), the lower retina (IR), the inner retina (NR) and the outer retina (TR).
  • the circular central optical zone (CV) 2 and the four quadrants distributed in the peripheral parts are the distance light zone (SV) 3, the near light zone (IV) 4, the inner light zone (NV) 5, and the outer light zone ( TV)6, according to the principle of refraction and retinal mutual correspondence of the lens, the circular central optical zone (CV) 2 of the mirror surface corresponds to the central retina (CR), the distant area (SV) 3 of the peripheral part of the mirror surface corresponds to the lower retina (IR), and the inner side of the mirror surface
  • Optical zone (NV) 5 corresponds to the outer retina (TR), mirror near zone (IV) 4 corresponds to the upper retina (SR), and mirror outer zone (TV) 6 corresponds to the inner retina (NR).
  • the central optical zone 2 of different sizes or the inner optical zone 5 and the outer optical zone 6 of different sizes can change the circumferential azimuth angle of each zone.
  • the angle range of the far optical zone 3 is enlarged, and the angle range of the near optical zone 4 is enlarged.
  • the angle range becomes smaller, and the angle range of the inner light zone 5 is equal to the angle range of the outer light zone 6, thereby performing myopia correction on the periphery of the central optical zone 2.
  • the angle range of each light zone can be adjusted according to the actual conditions of the wearer's glasses. Diopter adjustment;
  • the defocused spectacle lens 1 comprises a spectacle lens main body 12, and the spectacle lens main body 12 is provided with a fan-shaped groove for far use, and a far-use lens 7 is adapted in the fan-shaped groove for far use, and The eyeglass 7 forms the light zone 3 for far use, and the spectacle lens main body 12 is provided with a fan-shaped groove for near use.
  • An inner fan-shaped groove is provided, and an inner lens 9 is adapted in the inner fan-shaped groove, and the inner lens 9 forms an inner light zone 5.
  • An outer fan-shaped groove is provided on the spectacle lens main body 12, and an outer lens 10 is adapted in the outer fan-shaped groove.
  • the central optical zone 2 is arranged in the middle of the spectacle lens main body 12, the distance lens 7, the near lens 8, the inner lens 9 and the outer lens 10 on the defocused spectacle lens 1 all adopt a split structure, It is fixed on the spectacle lens main body 12 by assembling and bonding, thereby forming a defocused spectacle lens 1.
  • the fan-shaped groove for far use, the fan-shaped groove for near use, the inner fan-shaped groove and the outer fan-shaped groove are successively connected to form a closed ring, and the closed Positioning sheet 11 is provided with in the ring, and positioning sheet 11 is used for positioning the position of any lens in lens 7, near lens 8, inner lens 9 and outer lens 10 on the defocused spectacle lens 1.
  • the positioning sheet 11 can be arranged on the critical line between the far light zone 3 and the inner light zone 5, or on the critical line between the far light zone 3 and the outer light zone 6, or on the inner light zone 5 and the near light zone.
  • the side wall of the defocused spectacle lens 1 is provided with a glue injection hole, and the glue injection hole communicates with the closed ring, and the resin glue is injected into the closed circle through the glue injection hole, and the resin glue flows into the closed circle under the action of pressure.
  • each lens is bonded on the spectacle lens main body 12 by resin glue, and both sides of the far-use lens 7 and the near-use lens 8 are all provided with arc-shaped protrusions 13, and the arc-shaped protrusions 13 are connected with the central optical lens.
  • the arc surface of zone 2 is adapted, and the bonding gap is produced between the far lens 7 and the inner lens 9 through the arc-shaped protrusion 13, and the bonding gap is generated between the inner lens 9 and the near lens 8, and the near lens 8 and the A bonding gap is produced between the outer eyeglasses 10, and a bonding gap is produced between the outer eyeglasses 10 and the distance lens 7, thereby facilitating the resin glue to flow into the bonding gap, thereby improving the bonding effect;
  • Corresponding fan-shaped grooves are provided on the main body 12, so that after each lens is assembled on the spectacle lens main body 12, the structural resin glue makes the surface of each lens transition smoothly and reduces the drop between each lens.
  • a method for preparing a spectacle lens with a defocusing function comprising the following steps:
  • the mode of mold processing is adopted to make the distance lens 7 blanks, the near lens 8 blanks, the inside lens 9 blanks and the outside lens 10 blanks of corresponding diopters; Different refractive materials are used between them, so it is difficult to use the overall processing of the mold, otherwise the melted materials will circulate and mix in the mold, so that the required defocus spectacle lens 1, distance lens 7, and near lens 8 cannot be made. 1. After the inner lens 9 and the outer lens 10 are set separately, corresponding refractive lenses can be obtained through processing respectively, so that the production of defocused spectacle lenses is simpler and faster;
  • the distance lens 7, the near lens 8, the inner lens 9 and the outer lens 10 are assembled on the defocusing spectacle lens 1;
  • the surface of the spectacle lens is finely ground.
  • the spectacle lens with defocusing function includes a defocusing spectacle lens 1, a central optical zone 2 is set on the defocusing spectacle lens 1, and a telescopic lens is arranged on the defocusing spectacle lens 1.
  • the defocused spectacle lens 1 includes a refractive compensation layer 15, a functional layer 16 and a refractive correction layer 17, and the functional layer 16 is located at the refractive compensation layer 15 and the refractive correction layer 17 Among them, the side of the refractive compensation layer 15
  • the positive addition value of 2 diopters relative to the central optical zone is +0.50D to 3.50D; the positive addition value of the diopter of the outer optical zone 6 relative to the 2 diopters of the central optical zone is +0.2D to 2.50D, then the functional layer 16
  • the diopters of the convex surface 18 and the concave surface 19 located in the distance optical zone 3 are both +0.50D to 3.00D relative to the diopter of the central optical zone 2, and the functional layer 16 is located in the near optical zone
  • the diopters of the convex surface 18 and the concave surface 19 in 4 are both +0.10D to 3.50D relative to the diopter of the central optical zone 2
  • the functional layer 16 is located on the convex surface 18 in the inner optical zone 5
  • the diopters of the concave surface 19 and the positive addition value of the diopter of the central optical zone 2 are +0.50D ⁇ 3.50D, and the diopters of the convex surface 18 and the concave surface 19 of the functional layer 16 located in the
  • the radius of curvature of the concave surface 19 and the convex surface 18 can be changed to change the refractive power of the functional layer, which can also achieve the purpose of adjusting the diopter of the corresponding light zone.
  • the combined refraction of the inner surface of the light correction layer 17 finally forms an image on the retina, which is the correction area.
  • the parallel light rays are refracted by the convex surface 18, and finally imaged in front of the retina after the joint refraction of the inner surface of the refractive correction layer 17. This is the out-of-focus area.
  • the parallel curves can change the light refraction position and focus position according to the predetermined bending requirements of the convex surface 18 and the concave surface 19 respectively, effectively realizing the correction of hyperopia defocus and ametropia.
  • the functional layer 16 is made of resin material, the resin has a low melting point, which is convenient for solidification and molding.
  • the refractive compensation layer 15 and the refractive correction layer 17 are made of the same material, and the melting point temperature of the material is higher than the melting point of the resin, which is convenient for subsequent Processing and molding, the specific processing methods are as follows:
  • a method for preparing spectacle lenses with a defocus function comprising the following steps:
  • refraction compensation layer 15 and refraction correction layer 17 The making of refraction compensation layer 15 and refraction correction layer 17; As shown in Figure 5, mold space 14 is formed inside the mold, and an inner wall of mold space 14 is provided with the arc surface that matches the convex surface of refraction compensation layer 15 , the other symmetrical inner wall is provided with a curved surface matching the concave surface of the refractive correction layer 17, a functional molding part is provided in the middle of the mold, and an optical surface is provided in the middle of the functional molding part, thereby forming a center in the center of the functional layer In the optical zone 2, a plurality of convex portions 20 and a plurality of concave portions 21 are provided on both ends of the functional molding portion, the plurality of convex portions 20 form a continuous ring structure, and the plurality of concave portions 21 form a continuous ring structure, each convex portion 20 and each concave portion 21 are arranged staggered along the radial direction to form a continuous wave-shaped structure,
  • the defocused spectacle lens semi-finished product is used as a functional layer to make a mold to form the functional layer 16 in the installation space; the defocused spectacle lens semi-finished product is placed in the plastic mold, and the plastic mold is divided into an upper mold and a lower mold, and the inner space of the plastic mold
  • the shape is suitable for the external formation of the semi-finished defocused spectacle lens.
  • the injection hole on the plastic mold is connected with the installation space, and the resin is injected into the installation space through the injection hole on the plastic mold.
  • a functional layer is formed in the installation space to make a defocused spectacle lens blank; in practice, the refractive compensation layer 15 and the refractive correction layer 17 are made of the same material, so as to ensure that the refractive compensation layer can be molded at the same time in step S1 15 and the refractive correction layer 17, while the melting point of the material of the refractive compensation layer 15 is greater than the melting point of the resin, so that when the functional layer 16 is formed, the molten resin will not melt the refractive compensation layer 15, due to the shape of the inner space of the shaping mold Compatible with the external formation of the defocused ophthalmic lens blank, even if the injection of resin softens the refractive compensation layer 15 and the refractive correction layer 17, it does not affect the external shape of the refractive compensation layer 15 and the refractive correction layer 17, ensuring The processing quality of defocused spectacle lenses; and
  • the defocus spectacle lens blank is finely ground to form a defocus spectacle lens 1 .
  • the present disclosure provides two structural embodiments of the split-type defocused spectacle lens 1.
  • the embodiment does not have high requirements on the mold itself, and the mold is simple to manufacture, but has high requirements on assembly and there are assembly errors and the processing error of each lens; embodiment two, because the mold is provided with a functional molding part that requires the mold itself, and a plurality of convex parts 20 and a plurality of concave parts 21 are provided on the functional molding part to make a functional layer, thereby It makes the production of the mold itself difficult, but it can indirectly form an integral defocused spectacle lens, which reduces the assembly steps of the defocused spectacle lens, eliminates assembly errors and processing errors of each lens, and makes the defocused spectacle lens 1 has a higher precision; therefore, users can select defocused spectacle lenses with different split structures according to specific conditions, and make the defocused spectacle lenses 1 of the present disclosure according to corresponding preparation methods.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Eyeglasses (AREA)

Abstract

一种具有离焦功能的眼镜片,其包括分体式的离焦眼镜片,离焦眼镜片上设置出中心光学区(2),离焦眼镜片上设置有远用光区(3)、近用光区(4)、内侧光区(5)和外侧光区(6),远用光区(3)和近用光区(4)分别位于中心光学区(2)的上方和下方,内侧光区(5)和外侧光区(6)分别位于中心光学区(2)的两侧,远用光区(3)的角度范围为沿中心光学区水平径线逆时针方向30°~150°的扇形区域,近用光区(4)的角度范围为沿中心光学区水平径线顺时针方向45°~135°的扇形区域,远用光区(3)与近用光区(4)之间形成有两个扇形区域,两个扇形区域分别为内侧光区(5)和外侧光区(6)。

Description

具有离焦功能的眼镜片及制备方法
相关申请的引用
本公开要求于2021年11月9日向中华人民共和国国家知识产权局提交的申请号为202111322334.7、发明名称为“一种具有离焦功能的眼镜片及制备方法”的中国发明专利申请的全部权益,并通过引用的方式将其全部内容并入本公开中。
领域
本公开涉及近视防控技术领域,具体为一种具有离焦功能的眼镜片及制备方法。
背景
现今医学公认:人体视眼的眼球增长依赖着视网膜周边聚焦调控,视网膜周边远视性离焦促进眼球增长,矫正视网膜周边远视性离焦,可以控制近视眼球增长。传统近视眼镜片的内侧或者外侧区域与中央区域为相同度数凹透镜片,镜片中央区域凹透镜片在矫正视网膜中央近视性离焦的同时,镜片内侧外侧周边区域凹透镜片增加内侧和外侧视网膜周边远视性离焦,促进眼球增长、增加近视眼度数,在此情况下市面上出现了针对内侧视网膜和外侧视网膜进行近视矫正的离焦眼镜片,例如:专利号:CN201420413649.1的实用新型专利,公开了一种内侧外侧区周边离焦框架眼镜片属于近视眼防治眼镜。近视眼存在视网膜周边屈光不对称性状态,现有周边离焦眼镜片不能消除这种不对称状态,还加重或者产生屈光参差。本实用新型将内侧功能区和外侧功能区制备不等量矫正度数,内侧功能区矫正度数大于外侧功能区矫正度数,从而消除或者减少视网膜周边不对称屈光状态。这种周边离焦框架眼镜片用于矫正外侧视网膜和内侧视网膜周边远视性离焦、控制近视眼球增长,具有视野宽阔、配戴顺应性好、消除视网膜周边不对称屈光状态,恢复人眼正常生理光学状态,有效防控儿童及青少年近视眼。
上述专利对眼镜片划分内侧功能区和外侧功能区,然而根据眼球 独特的生理机构,眼睛的屈光在上、下、左、右均存在不对称性,因此,上述专利并未划分远视功能区和近视功能区,不具备远视和近视矫正作用,导致离焦眼镜片不能更好更全面的对近视进行矫正;同时现有的离焦眼镜片为整体式结构,其制作方式为,离焦眼镜片采用同种材质制成整体结构,此种方式由于材质相同,其材质本身的屈光度数相同,因此难以整体加工出不同屈光度的光区,需要后续打磨的过程中调节各个光区的曲率半径,以达到所需的屈光度,但对打磨要求较高,且屈光度相差较大的光区之间难以平滑过渡,导致离焦眼镜片的表面落差较大,影响其正常使用。
概述
一方面,本公开涉及具有离焦功能的眼镜片,其包括分体式的离焦眼镜片,所述离焦眼镜片上设置出中心光学区,所述离焦眼镜片上设置有远用光区、近用光区、内侧光区和外侧光区,所述远用光区和近用光区分别位于所述中心光学区的上方和下方,所述内侧光区和外侧光区分别位于所述中心光学区的两侧;
所述远用光区的角度范围为沿中心光学区水平径线逆时针方向30°~150°的扇形区域,所述近用光区的角度范围为沿中心光学区水平径线顺时针方向45°~135°的扇形区域,所述远用光区与近用光区之间形成有两个扇形区域,两个所述扇形区域分别为内侧光区和外侧光区。
在某些实施方案中,所述离焦眼镜片包括眼镜片主体,所述眼镜片主体上开设有远用扇形槽,所述远用扇形槽内适配有远用镜片,所述远用镜片形成所述远用光区,所述眼镜片主体上开设有近用扇形槽,所述近用扇形槽内适配有近用镜片,所述近用镜片形成所述近用光区,所述眼镜片主体上开设有内侧扇形槽,所述内侧扇形槽内适配有内侧镜片,所述内侧镜片形成所述内侧光区,所述眼镜片主体上开设有外侧扇形槽,所述外侧扇形槽内适配有外侧镜片,所述外侧镜片形成所述外侧光区。
在某些实施方案中,所述远用扇形槽、近用扇形槽、内侧扇形槽和外侧扇形槽依次连通形成封闭的圆环,且封闭的圆环内设置有定位 片,所述定位片用于定位远用镜片、近用镜片、内侧镜片和外侧镜片中任意一个镜片在所述离焦眼镜片上的位置。
在某些实施方案中,所述离焦眼镜片的侧壁开设有注胶孔、所述注胶孔与封闭的圆环相通。
在某些实施方案中,所述远用镜片和近用镜片的两侧均设置有弧形凸起,所述弧形凸起与中心光学区的弧面适配。
在某些实施方案中,所述离焦眼镜片包括屈光补偿层、功能层和屈光矫正层,所述功能层位于所述屈光补偿层和屈光矫正层之间,所述屈光补偿层远离功能层的一面为凸面,所述屈光矫正层远离功能层的一面为凹面,所述功能层上设置有多个凸形面和多个凹形面,多个所述凸形面形成连续的环状结构,多个所述凹形面形成连续的环状结构,各所述凸形面和各所述凹形面沿径向交错设置,形成连续的波浪型结构。
在某些实施方案中,所述功能层采用树脂材质制成。
在某些实施方案中,本公开的具有离焦功能的眼镜片能更加全面的进行近视矫正,同时采用分体式结构制成离焦眼镜片,使离焦眼镜片的制作更加简单。
另一方面,本公开涉及制备具有离焦功能的眼镜片的方法,其包括:
采用模具得到眼镜片主体;
采用模具加工的方式制作相应屈光度数的远用镜片毛坯、近用镜片毛坯、内侧镜片毛坯和外侧镜片毛坯;
对远用镜片毛坯、近用镜片毛坯、内侧镜片毛坯和外侧镜片毛坯进行打磨修边处理;
将远用镜片、近用镜片、内侧镜片和外侧镜片装配至离焦眼镜片上;
通过注胶孔向离焦眼镜片内注入树脂胶,用于将远用镜片、近用镜片、内侧镜片和外侧镜片粘连在离焦眼镜片上形成完整的眼镜片;以及
对眼镜片的表面进行精打磨。
再一方面,本公开涉及制备具有离焦功能的眼镜片的方法,其包括:
屈光补偿层和屈光矫正层的制作;模具内部形成有模具空间,模具的中部设置有功能成型部,功能成型部两端面均设置有多个凸形部和多个凹形部,多个所述凸形部形成连续的环状结构,多个所述凹形部形成连续的环状结构,各所述凸形部和各所述凹形部沿径向交错设置,形成连续的波浪型结构,通过模具上的注模孔向模具空间内注入离焦眼镜片成型原材料,从而形成离焦眼镜片半成品,离焦眼镜片半成品内具有功能层的安装空间;
将离焦眼镜片半成品作为功能层制作模具,用以在安装空间内形成功能层;将离焦眼镜片半成品放置在整形模具内,整形模具的内部空间形状与离焦眼镜片半成品的外部形成相适配,整形模具上的注模孔与安装空间连通,通过整形模具上的注模孔向安装空间内注入树脂,固化后在离焦眼镜片半成品的安装空间内形成功能层,制成离焦眼镜片毛坯;以及
将所述离焦眼镜片毛坯进行精细打磨形成离焦眼镜片。
在某些实施方案中,由于远用光区、近用光区、内侧光区和外侧光区各个光区的屈光度数各不相通,因此离焦眼镜片采用分体式设计形成远用光区、近用光区、内侧光区和外侧光区,各个光区相互独立,避免像散产生,同时对离焦眼镜片各个光区进行合理划分,以符合人眼睛生理光学视场需要,能更加全面的进行近视矫正,同时采用分体式结构制成离焦眼镜片,使离焦眼镜片的制作更加简单。
在某些实施方案中,在进行远用镜片、近用镜片、内侧镜片和外侧镜片的安装时,通过定位片快速定位其中一个镜片的位置,然后相应安装其余镜片,从而将相应镜片精确的安装在相应的光区内。
在某些实施方案中,通过注胶孔向离焦眼镜片的圆环内注入树脂胶,用以将各个镜片固定在离焦眼镜片上,实现分体式眼镜片的安装。
附图简要说明
图1为本公开一实施方案的具有离焦功能的眼镜片的正视图;
图2为本公开的具有离焦功能的眼镜片中实施例一的侧视图;
图3为本公开的具有离焦功能的眼镜片中眼镜片主体的结构示意图;
图4为本公开的具有离焦功能的眼镜片中实施例二的侧视图;以及
图5为本公开的实施例二中模具的内部结构示意图;
图中,1-离焦眼镜片,2-中心光学区,3-远用光区,4-近用光区,5-内侧光区,6-外侧光区,7-远用镜片,8-近用镜片,9-内侧镜片,10-外侧镜片,11-定位片,12-眼镜片主体,13-弧形凸起,14-模具空间,15-屈光补偿层,16-功能层,17-屈光矫正层,18-凸形面,19-凹形面,20-凸形部,21-凹形部。
详述
下面结合附图进一步详细描述本公开的技术方案,但本公开的保护范围不局限于以下所述。
人体眼球分为远用视区、近用视区、内侧视区和外侧视区,不同视区对光线的屈光度不同,为矫正不同视区的近视度产生了离焦眼镜,现有离焦眼镜片的制作方式为,离焦眼镜片采用同种材质制成整体结构,此种方式由于材质相同,其材质本身的屈光度数相同,因此难以整体加工出不同屈光度的光区,需要后续打磨的过程中调节各个光区的曲率半径,以达到所需的屈光度,但对打磨要求较高,且屈光度相差较大的光区之间难以平滑过渡,导致离焦眼镜片的表面落差较大,影响其正常使用;鉴于现有技术整体离焦眼镜片存在制作困难的问题,本申请将离焦眼镜片设为分体式结构,降低离焦眼镜片的加工制作难以,针对离焦眼镜片的分体式结构本申请提供了两种实施例,本根据相应实施例离焦眼镜片的结构提供了相对应的加工制备方法,具体如下:
实施例一
如图1和图3所示,具有离焦功能的眼镜片,包括离焦眼镜片1,离焦眼镜片1上设置出中心光学区2,离焦眼镜片1上设置有远用光 区3、近用光区4、内侧光区5和外侧光区6,远用光区3和近用光区4分别位于中心光学区2的上方和下方,内侧光区5和外侧光区6分别位于中心光学区2的两侧;如图1所示,远用光区3的角度范围为沿中心光学区2水平径线HM逆时针方向30°~150°的扇形区域,近用光区4的角度范围为沿中心光学区2水平径线HM顺时针方向45°~135°的扇形区域,远用光区3与近用光区4之间形成有两个扇形区域,两个扇形区域分别为内侧光区5和外侧光区6;根据人眼球的视场对离焦眼镜片1进行合理的光区划分,从而在离焦眼镜片1上形成远用光区3、近用光区4、内侧光区5和外侧光区6,使离焦眼镜片1更加符合眼镜的实际使用视场,能更加全面的进行近视矫正;关于远用光区3、近用光区4、内侧光区5和外侧光区6的区域划分采用四区分法:对称轴划分线是一想象线,模拟想象的对称轴线是以315°-135°轴线和225°-45°轴线为基准,两条轴线相互交叉于视网膜区圆心和镜面视场光学中心,两条对称轴线将眼底视网膜划分出一个位于中央圆形区域的中央视网膜(CR)和周边视网膜的四个对称扇形区域。四个扇形区域分别是:上侧视网膜(SR)、下侧视网膜(IR)、内侧视网膜(NR)和外侧视网膜(TR),离焦眼镜片1的镜面视场也同样划分出一个位于光学中心的圆形中央光学区(CV)2和四个象限性分布于周边部位的远用光区(SV)3、近用光区(IV)4、内侧光区(NV)5、外侧光区(TV)6,按照镜片折射视网膜相互对应原则,镜面圆形中央光学区(CV)2对应中央视网膜(CR),镜面周边部位的远用区(SV)3对应下侧视网膜(IR),镜面内侧光区(NV)5对应外侧视网膜(TR),镜面近用区(IV)4对应上侧视网膜(SR),镜面外侧光区(TV)6对应内侧视网膜(NR),在设计时,为了设置不同尺寸的中央光学区2或者不同尺寸的内侧光区5和外侧光区6,可变化设计各区圆周方位角,如本申请将远用光区3的角度范围变大、近用光区4的角度范围变小,内侧光区5的角度范围等于外侧光区6的角度范围,从而对中心光学区2的周边进行近视矫正,具体实施时,各个光区的角度范围可根据佩戴者眼镜的实际屈光度数进行调整;
进一步地,如图1和图3所示,离焦眼镜片1包括眼镜片主体12, 眼镜片主体12上开设有远用扇形槽,远用扇形槽内适配有远用镜片7,远用镜片7形成远用光区3,眼镜片主体12上开设有近用扇形槽,近用扇形槽内适配有近用镜片8,近用镜片8形成近用光区4,眼镜片主体12上开设有内侧扇形槽,内侧扇形槽内适配有内侧镜片9,内侧镜片9形成内侧光区5,眼镜片主体12上开设有外侧扇形槽,外侧扇形槽内适配有外侧镜片10,外侧镜片10形成外侧光区6,中心光学区2设置在眼镜片主体12的中部,离焦眼镜片1上的远用镜片7、近用镜片8、内侧镜片9和外侧镜片10均采用分体式结构,采用拼装粘合的方式固定在眼镜片主体12上,从而形成离焦眼镜片1,远用扇形槽、近用扇形槽、内侧扇形槽和外侧扇形槽依次连通形成封闭的圆环,且封闭的圆环内设置有定位片11,定位片11用于定位远用镜片7、近用镜片8、内侧镜片9和外侧镜片10中任意一个镜片在离焦眼镜片1上的位置,具体实施时,定位片11可设置在远用光区3与内侧光区5的临界线上,或设置在远用光区3与外侧光区6的临界线上,或设置在内侧光区5与近用光区4的临界线上,或设置在外侧光区6与近用光区4的临界线上,通过定位片11快速定位其中一个镜片的位置,然后相应安装其余镜片,从而将相应镜片精确的安装在相应的光区内。
进一步地,离焦眼镜片1的侧壁开设有注胶孔、注胶孔与封闭的圆环相通,通过注胶孔向封闭的圆环内注入树脂胶,在压力的作用下使树脂胶流入各个镜片之间,从而通过树脂胶将各个镜片粘合在眼镜片主体12上,远用镜片7和近用镜片8的两侧均设置有弧形凸起13,弧形凸起13与中心光学区2的弧面适配,通过弧形凸起13使远用镜片7与内侧镜片9之间产生粘合间隙、内侧镜片9与近用镜片8之间产生粘合间隙、近用镜片8与外侧镜片10之间产生粘合间隙、外侧镜片10与远用镜片7之间产生粘合间隙,从而便于树脂胶流入粘合间隙内,从而提高粘合效果;根据各个镜片的曲率半径在眼镜片主体12上开设相对应的扇形槽,使各个镜片装配在眼镜片主体12上后,结构树脂胶使各个镜片的表面平滑过渡,减小各个镜片之间的落差。
结合实施例一中离焦眼镜片的分体结构,提供了具有离焦功能的眼镜片制备方法,包括以下步骤:
采用模具得到离焦眼镜片1;
采用模具加工的方式制作相应屈光度数的远用镜片7毛坯、近用镜片8毛坯、内侧镜片9毛坯和外侧镜片10毛坯;由于远用镜片7、近用镜片8、内侧镜片9和外侧镜片10之间采用不同的屈光材质,难以采用模具整体加工,否则融化的材质之间将在模具内流通混合,从而不能制成所需的离焦眼镜片1,远用镜片7、近用镜片8、内侧镜片9和外侧镜片10分体设置后,可通过分别加工得到相对应的屈光镜片,从而使离焦眼镜片的制作更加简单快捷;
对远用镜片7毛坯、近用镜片8毛坯、内侧镜片9毛坯和外侧镜片10毛坯进行打磨修边处理;
将远用镜片7、近用镜片8、内侧镜片9和外侧镜片10装配至离焦眼镜片1上;
通过注胶孔向离焦眼镜片1内注入树脂胶,用于将远用镜片7、近用镜片8、内侧镜片9和外侧镜片10粘连在离焦眼镜片1上形成完整的眼镜片;以及
对眼镜片的表面进行精打磨。
实施例二
如图1、图4和图5所示,具有离焦功能的眼镜片,包括离焦眼镜片1,离焦眼镜片1上设置出中心光学区2,离焦眼镜片1上设置有远用光区3、近用光区4、内侧光区5和外侧光区6,远用光区3和近用光区4分别位于中心光学区2的上方和下方,内侧光区5和外侧光区6分别位于中心光学区2的两侧;远用光区3的角度范围为沿中心光学区2水平径线HM逆时针方向30°~150°的扇形区域,近用光区4的角度范围为沿中心光学区2水平径线HM顺时针方向45°~135°的扇形区域,远用光区3与近用光区4之间形成有两个扇形区域,两个扇形区域分别为内侧光区5和外侧光区6;如图4所示,离焦眼镜片1包括屈光补偿层15、功能层16和屈光矫正层17,功能层16位于屈光补偿层15和屈光矫正层17之间,屈光补偿层15远离功能层16的一面为凸面,屈光矫正层17远离功能层16的一面为凹面,功能层16 的中部设有中心光学区2,功能层16上设置有多个凸形面18和多个凹形面19,多个凸形面18形成连续的环状结构,多个凹形面19形成连续的环状结构,各凸形面18和各凹形面19沿径向交错设置,形成连续的波浪型结构;具体实施时,位于远用光区3内的凸形面18和凹形面19的屈光度数等于远用光区3的屈光度数,位于近用光区4内的凸形面18和凹形面19的屈光度数等于近用光区4的屈光度数,位于内侧光区5内的凸形面18和凹形面19的屈光度数等于内侧光区5的屈光度数,位于外侧光区6内的凸形面18和凹形面19的屈光度数等于外侧光区6的屈光度数,举例说明,如远用光区3的屈光度数相对于中心光学区2屈光度数的正加值为+0.50D~3.00D;近用光区4的屈光度数相对于中心光学区2屈光度数的正加值为+0.10D~3.50D;内侧光区5的屈光度数相对于中心光学区2屈光度数的正加值为+0.50D~3.50D;外侧光区6的屈光度数相对于中心光学区2屈光度数的正加值为+0.2D~2.50D,则功能层16位于远用光区3内的凸形面18和凹形面19的屈光度数相对于中心光学区2屈光度数的正加值均为+0.50D~3.00D,功能层16位于近用光区4内的凸形面18和凹形面19的屈光度数相对于中心光学区2屈光度数的正加值均为+0.10D~3.50D,功能层16位于内侧光区5内的凸形面18和凹形面19的屈光度数相对于中心光学区2屈光度数的正加值均为+0.50D~3.50D,功能层16位于外侧光区6内的凸形面18和凹形面19的屈光度数相对于中心光学区2屈光度数的正加值均为+0.20D~2.50D,沿着离焦眼镜片1的厚度方向进行分体设置,通过功能层16使各个光区的屈光度数满足设计要求,具体为,凹形面19与凸形面18的直径均保持一致,通过改变凹形面19和凸形面18的凸出弧形长度改变其屈光力的大小,进而调节相应光区的屈光度数,同时还可以改变凹形面19与凸形面18的曲率半径改变功能层的屈光力的大小,同样能达到调节相应光区的屈光度数的目的,平行光线经过凹形面18散射,经过屈光矫正层17内表面联合折射最终在视网膜上成像,此为矫正区域,平行光线经过凸形面18折射,经过屈光矫正层17内表面联合折射最终在视网膜前成像,此为离焦区域,通过上述设 置,使得平行曲线分别按照凸形面18和凹形面19的既定曲折要求实现光线折射位置和焦点位置的改变,有效实现远视离焦和屈光不正的矫正。
进一步地,功能层16采用树脂材质制成,树脂的熔点低,便于固化成型,同时屈光补偿层15和屈光矫正层17所用材质相同,且材质的熔点温度高于树脂的熔点,便于后续加工成型,具体加工方式如下:
针对实施例二提供了具有离焦功能的眼镜片制备方法,包括以下步骤:
屈光补偿层15和屈光矫正层17的制作;如图5所示,模具内部形成有模具空间14,模具空间14的一内壁设有与屈光补偿层15的凸面相适配的弧面,另一对称内壁上设有与屈光矫正层17的凹面相适配的弧面,模具的中部设置有功能成型部,功能成型部的中部设有光学面,从而在功能层的中心形成中心光学区2,功能成型部两端面均设置有多个凸形部20和多个凹形部21,多个凸形部20形成连续的环状结构,多个凹形部21形成连续的环状结构,各凸形部20和各凹形部21沿径向交错设置,形成连续的波浪型结构,通过模具上的注模孔向模具空间14内注入离焦眼镜片成型原材料,从而形成离焦眼镜片半成品,离焦眼镜片半成品内具有功能层16的安装空间;
将离焦眼镜片半成品作为功能层制作模具,用以在安装空间内形成功能层16;将离焦眼镜片半成品放置在整形模具内,整形模具分为上模和下模,整形模具的内部空间形状与离焦眼镜片半成品的外部形成相适配,整形模具上的注模孔与安装空间连通,通过整形模具上的注模孔向安装空间内注入树脂,固化后在离焦眼镜片半成品的安装空间内形成功能层,制成离焦眼镜片毛坯;具体实施时,屈光补偿层15和屈光矫正层17采用相同的材质,从而保证在步骤S1中能同时模具成型出屈光补偿层15和屈光矫正层17,同时屈光补偿层15的材质熔点大于树脂的熔点,从而在成型功能层16时,熔化的树脂不会将屈光补偿层15熔化,由于整形模具的内部空间形状与离焦眼镜片毛坯的外部形成相适配,即使树脂的注入让屈光补偿层15和屈光矫正层17软化,也不影响屈光补偿层15和屈光矫正层17的外部形状,保证能离 焦眼镜片的加工质量;以及
将所述离焦眼镜片毛坯进行精细打磨形成离焦眼镜片1。
综上所述,本公开提供了两种分体式离焦眼镜片1的结构实施例,实施例一对模具本身的要求不高,且模具制作简单,但对装配的要求较高,存在装配误差和各个镜片的加工误差;实施例二由于模具内部设有对模具本身要求功能成型部,功能成型部上设置有多个凸形部20和多个凹形部21,用以制作功能层,从而使模具本身的制作变得困难,但可间接性成型出呈整体式的离焦眼镜片,减少了离焦眼镜片的装配步骤,消除了装配误差和各个镜片的加工误差,使离焦眼镜片1的精度更高;因此,使用者可根据具体情况选择不同分体结构的离焦眼镜片,并根据相应的制备方法制作本公开的离焦眼镜片1。
以上所述仅是本公开的某些实施方式,应当理解本公开并非局限于本文所披露的形式,不应看作是对其他实施方式的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本公开的精神和范围,则都应在本公开所附权利要求书的保护范围内。

Claims (9)

  1. 具有离焦功能的眼镜片,其包括分体式的离焦眼镜片,所述离焦眼镜片上设置出中心光学区,所述离焦眼镜片上设置有远用光区、近用光区、内侧光区和外侧光区,所述远用光区和近用光区分别位于所述中心光学区的上方和下方,所述内侧光区和外侧光区分别位于所述中心光学区的两侧;
    所述远用光区的角度范围为沿中心光学区水平径线逆时针方向30°~150°的扇形区域,所述近用光区的角度范围为沿中心光学区水平径线顺时针方向45°~135°的扇形区域,所述远用光区与近用光区之间形成有两个扇形区域,两个所述扇形区域分别为内侧光区和外侧光区。
  2. 如权利要求1所述的具有离焦功能的眼镜片,其中,所述离焦眼镜片包括眼镜片主体,眼镜片主体上开设有远用扇形槽,所述远用扇形槽内适配有远用镜片,所述远用镜片形成所述远用光区,所述眼镜片主体上开设有近用扇形槽,所述近用扇形槽内适配有近用镜片,所述近用镜片形成所述近用光区,所述眼镜片主体上开设有内侧扇形槽,所述内侧扇形槽内适配有内侧镜片,所述内侧镜片形成所述内侧光区,所述眼镜片主体上开设有外侧扇形槽,所述外侧扇形槽内适配有外侧镜片,所述外侧镜片形成所述外侧光区。
  3. 如权利要求2所述的具有离焦功能的眼镜片,其中,所述远用扇形槽、近用扇形槽、内侧扇形槽和外侧扇形槽依次连通形成封闭的圆环,且封闭的圆环内设置有定位片,所述定位片用于定位远用镜片、近用镜片、内侧镜片和外侧镜片中任意一个镜片在所述离焦眼镜片上的位置。
  4. 如权利要求1至3中任一权利要求所述的具有离焦功能的眼镜片,其中,所述离焦眼镜片的侧壁开设有注胶孔、所述注胶孔与封闭的圆环相通。
  5. 如权利要求1至4中任一权利要求所述的具有离焦功能的眼镜片,其中,所述远用镜片和近用镜片的两侧均设置有弧形凸起,所述弧形凸起与中心光学区的弧面适配。
  6. 如权利要求1至5中任一权利要求所述的具有离焦功能的眼镜片,其中,所述离焦眼镜片包括屈光补偿层、功能层和屈光矫正层,所述功能层位于所述屈光补偿层和屈光矫正层之间,所述屈光补偿层远离功能层的一面为凸面,所述屈光矫正层远离功能层的一面为凹面,所述功能层上设置有多个凸形面和多个凹形面,多个所述凸形面形成连续的环状结构,多个所述凹形面形成连续的环状结构,各所述凸形面和各所述凹形面沿径向交错设置,形成连续的波浪型结构。
  7. 如权利要求6所述的具有离焦功能的眼镜片,其中,所述功能层采用树脂材质制成。
  8. 制备权利要求1至5中任一权利要求所述的具有离焦功能的眼镜片的方法,其包括:
    采用模具得到眼镜片主体;
    采用模具加工的方式制作相应屈光度数的远用镜片毛坯、近用镜片毛坯、内侧镜片毛坯和外侧镜片毛坯;
    对远用镜片毛坯、近用镜片毛坯、内侧镜片毛坯和外侧镜片毛坯进行打磨修边处理;
    将远用镜片、近用镜片、内侧镜片和外侧镜片装配至离焦眼镜片上;
    通过注胶孔向离焦眼镜片内注入树脂胶,用于将远用镜片、近用镜片、内侧镜片和外侧镜片粘连在离焦眼镜片上形成完整的眼镜片;以及
    对眼镜片的表面进行精打磨。
  9. 制备权利要求6或7所述的具有离焦功能的眼镜片的方法,其 包括:
    屈光补偿层和屈光矫正层的制作;模具内部形成有模具空间,模具的中部设置有功能成型部,功能成型部两端面均设置有多个凸形部和多个凹形部,多个所述凸形部形成连续的环状结构,多个所述凹形部形成连续的环状结构,各所述凸形部和各所述凹形部沿径向交错设置,形成连续的波浪型结构,通过模具上的注模孔向模具空间内注入离焦眼镜片成型原材料,从而形成离焦眼镜片半成品,离焦眼镜片半成品内具有功能层的安装空间;
    将离焦眼镜片半成品作为功能层制作模具,用以在安装空间内形成功能层;将离焦眼镜片半成品放置在整形模具内,整形模具的内部空间形状与离焦眼镜片半成品的外部形成相适配,整形模具上的注模孔与安装空间连通,通过整形模具上的注模孔向安装空间内注入树脂,固化后在离焦眼镜片半成品的安装空间内形成功能层,制成离焦眼镜片毛坯;以及
    将所述离焦眼镜片毛坯进行精细打磨形成离焦眼镜片。
PCT/CN2022/129270 2021-11-09 2022-11-02 具有离焦功能的眼镜片及制备方法 WO2023083073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111322334.7 2021-11-09
CN202111322334.7A CN114415394A (zh) 2021-11-09 2021-11-09 一种具有离焦功能的眼镜片及制备方法

Publications (1)

Publication Number Publication Date
WO2023083073A1 true WO2023083073A1 (zh) 2023-05-19

Family

ID=81265735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129270 WO2023083073A1 (zh) 2021-11-09 2022-11-02 具有离焦功能的眼镜片及制备方法

Country Status (3)

Country Link
CN (1) CN114415394A (zh)
TW (1) TWI821007B (zh)
WO (1) WO2023083073A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699871A (zh) * 2023-05-29 2023-09-05 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415394A (zh) * 2021-11-09 2022-04-29 阿尔玻科技有限公司 一种具有离焦功能的眼镜片及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142265A1 (en) * 2002-01-31 2003-07-31 Opticlear Inc. Progressive lens with reduced distortion
CN103777368A (zh) * 2014-01-16 2014-05-07 段亚东 一种宽视场近视周边离焦眼镜片
CN105785589A (zh) * 2016-05-10 2016-07-20 段亚东 四象限区周边离焦框架眼镜片
CN107861262A (zh) * 2017-12-10 2018-03-30 段亚东 扇环形同心圆周边离焦眼镜片
CN110082932A (zh) * 2019-04-15 2019-08-02 深圳市明瞳视光科技有限公司 三焦点眼镜
CN113341593A (zh) * 2021-07-01 2021-09-03 阿尔玻科技有限公司 具有离焦功能的眼镜片
CN114415394A (zh) * 2021-11-09 2022-04-29 阿尔玻科技有限公司 一种具有离焦功能的眼镜片及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510177B2 (ja) * 1999-07-08 2010-07-21 東海光学株式会社 眼鏡用累進焦点レンズ及びその製造方法並びに眼鏡用累進焦点レンズを用いた眼鏡
US6533416B1 (en) * 2001-07-20 2003-03-18 Ocular Sciences, Inc. Contact or intraocular lens and method for its preparation
FR2936880B1 (fr) * 2008-10-07 2011-03-11 Essilor Int Verre ophtalmique multifocal.
KR101870142B1 (ko) * 2016-08-12 2018-06-25 이성준 노안용 콘택트렌즈
CN111610643A (zh) * 2019-02-26 2020-09-01 丹阳佰易视光学眼镜有限公司 一种预防和控制近视发展的多区复合离焦镜片
CN112649971A (zh) * 2021-01-28 2021-04-13 段亚东 衍射坡环型周边离焦眼镜片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142265A1 (en) * 2002-01-31 2003-07-31 Opticlear Inc. Progressive lens with reduced distortion
CN103777368A (zh) * 2014-01-16 2014-05-07 段亚东 一种宽视场近视周边离焦眼镜片
CN105785589A (zh) * 2016-05-10 2016-07-20 段亚东 四象限区周边离焦框架眼镜片
CN107861262A (zh) * 2017-12-10 2018-03-30 段亚东 扇环形同心圆周边离焦眼镜片
CN110082932A (zh) * 2019-04-15 2019-08-02 深圳市明瞳视光科技有限公司 三焦点眼镜
CN113341593A (zh) * 2021-07-01 2021-09-03 阿尔玻科技有限公司 具有离焦功能的眼镜片
CN114415394A (zh) * 2021-11-09 2022-04-29 阿尔玻科技有限公司 一种具有离焦功能的眼镜片及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699871A (zh) * 2023-05-29 2023-09-05 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法
CN116699871B (zh) * 2023-05-29 2023-11-10 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法

Also Published As

Publication number Publication date
TW202328770A (zh) 2023-07-16
CN114415394A (zh) 2022-04-29
TWI821007B (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
CN213122475U (zh) 眼镜光学镜片、未切割光学镜片、镜片元件
WO2023083073A1 (zh) 具有离焦功能的眼镜片及制备方法
US20220317478A1 (en) Vision correction lens and method for preparation of the same
US9046698B2 (en) Multi-axis lens design for astigmatism
CN201804169U (zh) 近视渐进离焦矫正眼镜
CN210690971U (zh) 微透镜周边离焦眼镜片
CN110687689A (zh) 微透镜周边离焦眼镜片
CN117031778A (zh) 镜片元件
CN108008544B (zh) 用于制造角膜塑形镜的方法
CN208969368U (zh) 鼻颞侧区周边离焦眼镜片
CN105785589A (zh) 四象限区周边离焦框架眼镜片
CN201845140U (zh) 一种远视眼周边离焦矫正眼镜
CN114815309A (zh) 一种离焦眼镜片及模具
KR20240035896A (ko) 근시 진행 제어용 링 초점 안경 렌즈 및 그 제조 방법
CN109725440A (zh) 控制近视发展并矫正近视散光的隐形眼镜及设计方法
CN212965668U (zh) 一种用于延缓近视加深的环焦近视镜片及其制备模具
CN210038367U (zh) 角膜塑形镜组件
CN112147795B (zh) 角膜塑形镜制造方法、角膜塑形镜销售方法与角膜塑形镜组件
AU2017292799A1 (en) Prism ballasted contact lens
CN207817337U (zh) 无形双圆周边离焦眼镜片
CN115903269A (zh) 眼镜片及框架眼镜
CN115185105A (zh) 一种近视防控镜片及其制备方法
CN205809452U (zh) 四象限区周边离焦框架眼镜片
WO2023240675A1 (zh) 基于角膜形态和屈光数据的角膜塑形镜制作方法和装置
CN220543225U (zh) 一种可矫正弱视的眼科离焦镜片和具有其的框架眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891868

Country of ref document: EP

Kind code of ref document: A1