WO2023082967A1 - 一种量子点薄膜、量子点发光二极管及其制备方法 - Google Patents

一种量子点薄膜、量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2023082967A1
WO2023082967A1 PCT/CN2022/126607 CN2022126607W WO2023082967A1 WO 2023082967 A1 WO2023082967 A1 WO 2023082967A1 CN 2022126607 W CN2022126607 W CN 2022126607W WO 2023082967 A1 WO2023082967 A1 WO 2023082967A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
quantum
emitting diode
dot light
poly
Prior art date
Application number
PCT/CN2022/126607
Other languages
English (en)
French (fr)
Inventor
聂志文
闫晓林
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023082967A1 publication Critical patent/WO2023082967A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Definitions

  • the present application relates to the field of display technology, in particular to a quantum dot thin film, a quantum dot light-emitting diode and a preparation method thereof.
  • the self-luminous QLED Quantum Dot Light-Emitting Diode, quantum dot electroluminescent semiconductor
  • inorganic quantum dots as electroluminescent materials
  • the external quantum efficiency and lifetime of red and green QLEDs are comparable to those of organic electroluminescent devices.
  • the device performance of blue QLEDs, especially the lifetime is still far behind. Therefore, how to further improve the lifetime of blue QLED devices is a key technical issue for the real commercialization of QLEDs at this stage.
  • the current technology selects different quantum dot film materials to prepare QLED devices with different external quantum efficiencies. Among them, QLED devices prepared by using one type of quantum dot thin film materials have higher external quantum efficiency, but the measured lifetime of such QLED devices is often very low; QLED devices prepared by using another type of quantum dot thin film materials have higher measured However, such QLED devices have low external quantum efficiency. Therefore, it is difficult for QLED devices prepared from existing quantum dot thin film materials to have high measured lifetime characteristics while having high external quantum dot efficiency characteristics.
  • the QLED device prepared by the existing quantum dot film material has the technical problem that it is difficult to have the characteristic of high measured lifetime while having the characteristic of high external quantum dot efficiency.
  • the present application provides a quantum dot thin film, a quantum dot light-emitting diode and a preparation method thereof.
  • the quantum dot film contains quantum dots, at least part of the surface of the quantum dots is connected with a first ligand, and the quantum dots include a first quantum dot and a second quantum dot;
  • the first ligand is used to stack the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • the external quantum efficiency of the first quantum dot light-emitting diode prepared by using the first quantum dot alone is greater than or equal to 10%, and the brightness of the first quantum dot light-emitting diode is The measured lifespan under 1000 nit is less than or equal to 1 h; the measured lifespan under 1000 nits of the brightness of the second quantum dot light-emitting diode prepared by using the second quantum dots alone is between 1 h and 20 h.
  • the external quantum efficiency of the first quantum dot light-emitting diode prepared by using the first quantum dot alone is between 10% and 22%.
  • the measured lifespan of the second quantum dot light-emitting diode prepared solely by using the second quantum dots at 1000 nit is between 3h and 10h.
  • the first ligand is selected from exciton delocalization ligands.
  • the exciton delocalization ligand is selected from phenyl dithiocarbamate and 1,3-dimethyl-4,5-disubstituted imidazolylene One or more of N-heterocyclic carbenes.
  • the mass percentage of the first ligand in the quantum dot film ranges from 2% to 15%.
  • the mass percentage of the first ligand in the quantum dot film ranges from 2% to 8%.
  • the mass ratio of the first quantum dots to the second quantum dots ranges from 1:1 to 1:10.
  • the emission wavelengths of the first quantum dot and the second quantum dot are in the same wavelength range and have the same energy band width; wherein, the energy band width is energy The energy range between the lowest and highest energy levels in a band.
  • the first quantum dots and the second quantum dots are independently selected from core-shell quantum dots.
  • the first quantum dots or the second quantum dots are independently selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe , CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS , HgZnSeTe, HgZnSTe, CdHgSeS
  • the embodiment of the present application also provides a quantum dot light emitting diode, the quantum dot light emitting diode includes a first electrode and a second electrode, and a quantum dot light emitting diode arranged between the first electrode and the second electrode layer, wherein the quantum dot light-emitting layer is a quantum dot light-emitting layer prepared from the above-mentioned quantum dot thin film.
  • one of the first electrode and the second electrode is an anode, and the other is a cathode;
  • the quantum dot light-emitting diode includes a hole injection layer, a hole A hole transport layer and an electron transport layer; the hole injection layer and the hole transport layer are arranged between the anode and the quantum dot light-emitting layer, and the hole injection layer is arranged near the anode side, The hole transport layer is arranged close to the quantum dot luminescent layer; the electron transport layer is arranged between the cathode and the quantum dot luminescent layer;
  • the material of the hole injection layer includes poly(ethylene di Oxythiophene): polystyrenesulfonate, poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine), polyarylamine, poly(N -vinylcarbazole), polyaniline, polypyrrole, N,
  • the embodiment of the present application also provides a method for preparing a quantum dot light-emitting diode, including the following steps: providing a first electrode; forming a quantum dot thin film on the first electrode, performing thermal annealing treatment, and forming a quantum dot light-emitting layer; A second electrode is formed in the quantum dot light-emitting layer; wherein, the quantum dot film contains quantum dots, at least part of the surface of the quantum dots is connected with a first ligand, and the quantum dots include a first quantum dot and a second quantum dot. Two quantum dots; wherein, the first ligand is used to stack the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • the forming the quantum dot film on the first electrode includes: setting the quantum dot ink on the first electrode to form a wet film, and drying forming the quantum dot thin film.
  • the pressure of the standing treatment is normal pressure, and the time is 2 minutes to 10 minutes.
  • the temperature of the standing treatment is 10°C-35°C.
  • the temperature of the thermal annealing treatment is between 50° C. and 120° C., and the time is between 5 minutes and 30 minutes.
  • one of the first electrode and the second electrode is an anode, and the other is a cathode;
  • the preparation method includes: A hole injection layer and a hole transport layer are formed between the quantum dot luminescent layers, the hole injection layer is arranged near the anode side, and the hole transport layer is arranged near the quantum dot luminescent layer; and in the An electron transport layer is formed between the cathode and the quantum dot luminescent layer;
  • the material of the hole injection layer includes poly(ethylenedioxythiophene): polystyrene sulfonate, poly(9,9-bis Octyl-fluorene-co-N-(4-butylphenyl)-diphenylamine), polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N ',N'-Tetrakis(4-methoxyphenyl)-benzidine, 4-bis[N
  • the quantum dot film of the present application includes quantum dots, at least part of the surface of the quantum dots is connected with a first ligand, and the quantum dots include a first quantum dot and a second quantum dot; wherein the first ligand is used for The first excitons generated by the first quantum dots are stacked with the second excitons generated by the second quantum dots; the quantum dot film is added between the first quantum dots and the second quantum dots.
  • the first ligand, the first ligand can stack the first excitons generated by the first quantum dot and the second excitons generated by the second quantum dot, and the stacking effect between the excitons makes a part
  • Fig. 1 is a schematic cross-sectional structure diagram of a quantum dot light-emitting diode provided in an embodiment of the present application
  • Fig. 2 is a schematic flow chart of a method for preparing a quantum dot light-emitting device provided in an embodiment of the present application
  • Fig. 3 is a schematic flowchart of another method for preparing a quantum dot light-emitting device provided in an embodiment of the present application.
  • a description of a range from 1 to 6 should be considered to have specifically disclosed subranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., and Single numbers within the stated ranges, eg 1, 2, 3, 4, 5 and 6, apply regardless of the range. Additionally, whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • At least one means one or more, and “multiple” means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • the embodiments of the present application can improve the above technical problems.
  • An embodiment of the present application provides a quantum dot film, the quantum dot film contains quantum dots, at least part of the surface of the quantum dots is connected with a first ligand, and the quantum dots include a first quantum dot and a second quantum dot ; wherein the first ligand is used to stack the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • an embodiment of the present application provides a quantum dot film, including a first quantum dot, a second quantum dot, and a first ligand bound to the surface of the first quantum dot and/or the second quantum dot;
  • the first ligand is used to stack the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • the quantum dot film only the surface of the first quantum dot may be connected with the first ligand, or only the surface of the second quantum dot may be connected with the first ligand, or the first quantum dot and the second quantum dot may be connected with each other.
  • the surfaces of the quantum dots are all connected with first ligands.
  • the surface of the first quantum dot and the surface of the second quantum dot are both connected with a first ligand.
  • the first ligand can bind the first quantum dot to
  • the generated first excitons are stacked with the second excitons generated by the second quantum dots, and the stacking effect between the excitons makes the quantum dots of the entire hybrid system have the advantages of two different types of quantum dots, so that the above-mentioned quantum dots
  • the quantum dot light-emitting diodes prepared by the dot film have the characteristics of high efficiency and high measured life, which solves the contradiction between the high efficiency and high measured life of conventional quantum dot light-emitting diodes to a certain extent, and further improves the luminescence of quantum dots. Diode performance.
  • the embodiment of the present application first provides a quantum dot film, including first quantum dots, second quantum dots, and first ligands bound to the surface of the first quantum dots and/or the second quantum dots; wherein, The first ligand is used to stack the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • the external quantum efficiency of the first quantum dot light-emitting diode prepared by using the first quantum dot alone is at least greater than or equal to 10%, preferably between 10% and 22%, and the first The measured lifetime of the quantum dot light-emitting diode at 1000 nit brightness is less than or equal to 1 h; the measured lifetime of the second quantum dot light-emitting diode prepared by using the second quantum dot alone at 1000 nit is between 1 h and 20 h, preferably 3 h to 20 h. Between 10h.
  • the efficiency of external quantum dots is the ratio of the electron-hole logarithm injected into the quantum dots into the number of photons emitted, and the unit is %. It is an important parameter to measure the quality of electroluminescent devices. Instrumental measurement can be obtained. The test conditions are carried out at room temperature, and the air humidity is 30-60%.
  • the lifetime of a QLED device is the time required for the brightness to decrease to a certain percentage of the maximum brightness under constant current or voltage driving, and the time when the brightness drops to 95% of the maximum brightness is defined as T95, which is the measured lifetime.
  • the test condition is to use a life test system to test the life of the corresponding QLED device at room temperature, and the air humidity is 30-60%.
  • the first ligand includes at least one of phenyl dithiocarbamate and 1,3-dimethyl-4,5-disubstituted imidazolylidene N-heterocyclic carbene kind.
  • the mass percentage of the first ligand in the quantum dot film ranges from 2% to 15%.
  • the first quantum dot or the second quantum dot includes CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe , ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZn SeS, HgZnSeTe, HgZnSTe, GaN,
  • the mass ratio of the first quantum dots to the second quantum dots ranges from 1:1 to 1:10.
  • the embodiment of the present application also provides a quantum dot light-emitting diode prepared by using the quantum dot thin film.
  • the quantum dot light-emitting diode includes a first electrode and a second electrode, and a quantum dot light-emitting layer arranged between the first electrode and the second electrode, wherein the quantum dot light-emitting layer is provided by the present application.
  • Quantum dot luminescent layer prepared by quantum dot thin film.
  • the quantum dot light-emitting layer is prepared from the quantum dot thin film provided in this application.
  • the quantum dot luminescent layer includes quantum dots, at least part of the surface of the quantum dots is connected with a first ligand, and the quantum dots include a first quantum dot and a second quantum dot; wherein, the first ligand is used for A first ligand is connected to the surface of at least part of the quantum dots in the first excitons generated by the first quantum dots and the second excitons generated by the second quantum dots in the stack.
  • the quantum dot light-emitting layer includes first quantum dots, second quantum dots, and first ligands bound to the surface of the first quantum dots and/or the second quantum dots.
  • one of the first electrode and the second electrode is an anode, and the other is a cathode.
  • FIG. 1 it is a schematic cross-sectional structure diagram of a quantum dot light emitting diode provided in the embodiment of the present application;
  • the quantum dot light emitting diode 10 includes a substrate 11, an anode 12 disposed on the substrate 11, and a The hole injection layer 13 on the anode 12, the hole transport layer 14 disposed on the hole injection layer 13, the electron transport layer 16 disposed on the hole transport layer 14, and the electron transport layer 16 disposed on the electron cathode 17 on transport layer 16;
  • the quantum dot luminescent layer 15 is arranged between the hole transport layer 14 and the electron transport layer 16; the quantum dot luminescent layer 15 includes a first quantum dot, a second quantum dot, and a the first ligand on the surface of the first quantum dot and/or the second quantum dot;
  • the external quantum efficiency of the first quantum dot light-emitting diode prepared by using the first quantum dots alone is greater than or equal to 10% and less than or equal to 22%
  • the second quantum dot light-emitting diode prepared by using the second quantum dots alone The measured lifetime at 1000 nit is between 1 h and 20 h, and the first ligand is used to couple the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • the substrate 11 includes rigid and flexible substrates, specifically glass, silicon wafer, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate Alcohol esters, polyamides, polyethersulfones, or combinations thereof.
  • the anode 12 is composed of a conductive material with a relatively high work function, which may be composed of doped or undoped metal oxides, such as ITO, IZO, ITZO, ICO, SnO 2 , In 2 O 3 , Cd : ZnO, F: SnO 2 , In: SnO 2 , Ga: SnO 2 or AZO, etc.; ), iridium (Ir) or carbon nanotube (CNT) metal materials.
  • doped or undoped metal oxides such as ITO, IZO, ITZO, ICO, SnO 2 , In 2 O 3 , Cd : ZnO, F: SnO 2 , In: SnO 2 , Ga: SnO 2 or AZO, etc.
  • Ir iridium
  • CNT carbon nanotube
  • the material of the hole injection layer 13 includes poly(ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N -(4-butylphenyl)-diphenylamine)(TFB), polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'- Tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4', 4”-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA), 4,4’,4”-tris(N-carbazolyl)-triphenylamine (TCTA), 1,1-bis[(di-4), poly
  • the hole transport layer 14 when the hole transport layer 14 includes organic materials, it includes arylamines, such as 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl -N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine ( ⁇ -NPD), N,N'-diphenyl-N,N'-bis (3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), N,N'-bis(3-methylphenyl)-N,N' -bis(phenyl)-spiro(spiro-TPD), N,N'-bis(4-(N,N'-diphenyl-amino)phenyl)-N,N'-diphenylbenzidine ( DNTPD), 4,4',4'-tris(N-carbazolyl)-triphenyl
  • the electron transport layer 16 may be composed of inorganic materials and/or organic materials.
  • inorganic may consist of an inorganic material selected from the group consisting of metal/non-metal oxides undoped or doped with Al, Mg, In, Li, Ga, Cd, Cs or Cu (for example, TiO 2 , ZnO, ZrO, SnO 2 , WO 3 , Ta 2 O 3 , HfO 3 , Al 2 O 3 , ZrSiO 4 , BaTiO 3 and BaZrO 3 ); undoped or with Al, Mg, In, Li, Ga, Cd, Cs, or Cu doped semiconductor particles (eg, CdS, ZnSe, and ZnS); nitrides, such as Si 3 N 4 ; and combinations thereof.
  • organic material such as oxazole compound, isoxazole compound, triazole compound, isothiazole compound, oxadiazole compound, thiadiazole
  • the cathode 17 has a relatively low work function conductive material composition, which can be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF 2 /Al, CsF/Al, CaCO 3 /Al, BaF 2 /Ca/Al, Al, Mg, Au:Mg or Ag:Mg.
  • a relatively low work function conductive material composition which can be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF 2 /Al, CsF/Al, CaCO 3 /Al, BaF 2 /Ca/Al, Al, Mg, Au:Mg or Ag:Mg.
  • the thickness of the anode 12 is 20-200 nm; the thickness of the hole injection layer 13 is 20-200 nm; the thickness of the hole transport layer 14 is 30-180 nm; the quantum dot The total thickness of the light emitting layer 15 is 30-180 nm.
  • the electron transport layer 16 has a thickness of 10-180 nm; the cathode 17 has a thickness of 40-190 nm.
  • the external quantum efficiency of the first quantum dot light-emitting diode prepared by using the first quantum dot alone is between 10% and 22%, and the measured lifespan under the brightness of 1000 nit is 0 ⁇ 1h;
  • the measured lifespan of the second quantum dot light-emitting diode prepared by the second quantum dot at 1000 nit is 1-20 h, preferably 3-10 h.
  • the first quantum dots or the second quantum dots in the quantum dot light-emitting layer 15 are independently selected from the group II-VI CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS , HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe , CdZnSTe, CdHgSeS, CdHgSeTe , CdHgSTe, HgZnSeS, HgZnS
  • the first quantum dot light-emitting diode has a relatively high external quantum efficiency, and the external quantum dot efficiency is an important index to measure the luminous performance of the device. layer and form excitons.
  • the efficiency of external quantum dots such as: the quality of quantum dots, the energy level barrier between the charge transport layer and the quantum dot layer, the film thickness of each functional layer, and the degradation of functional layer materials.
  • the quality of quantum dots is high enough and matches the energy level of the charge transport layer
  • the external quantum dot efficiency of the device can reach the theoretical limit of 25%.
  • the device EQE of the quantum dots can reach 10-22% when the device is separately prepared to be high-efficiency. Quantum dot selection. Theoretically, all the types of quantum dots listed above are acceptable.
  • the second quantum dot light emitting diode has a relatively high lifetime, and the lifetime is used as a key performance index to measure whether the quantum dot light emitting diode 10 can realize industrial application.
  • the development of quantum dot light emitting diodes 10 is also at a critical stage of improving the lifespan, but because there is no unified understanding of the mechanism of device aging and attenuation, the development of the lifespan of quantum dot light emitting diodes 10 is still a long way to go.
  • quantum dot light-emitting diode 10 There are multiple factors affecting the lifetime of the quantum dot light-emitting diode 10 , not only related to the stability of the quantum dot itself, but also related to the degradation of functional layer materials, charge accumulation/leakage and Joule heat caused by unbalanced charge injection. Therefore, different quantum dot materials can theoretically achieve a higher lifetime when matching a suitable type of functional layer. However, due to many problems in the quality of the quantum dot itself and the selection of the functional layer, the lifetime of the device, especially the lifetime of the blue quantum dot light-emitting diode 10 is still not effectively resolved. In theory, all the types of quantum dots listed above can be selected.
  • the emission wavelengths of the first quantum dot and the second quantum dot are in the same wavelength band, and have the same energy band width.
  • the energy band width refers to the energy range between the lowest energy level and the highest energy level in the energy band.
  • setting the luminescence wavelengths of the first quantum dot and the second quantum dot in the same wavelength band can make the luminescence wavelength of the light emitted by the quantum dot film prepared after mixing the above two quantum dots within a wavelength range inside; setting the energy band widths of the first quantum dot and the second quantum dot to be the same is to make it easier for the first ligand to combine the first excitons produced by the first quantum dot with the The second excitons produced by the second quantum dots are stacked (the energy range of exciton movement is within the energy band width).
  • the mass ratio of the first quantum dots to the second quantum dots ranges from 1:10 to 1:1; wherein, the first quantum dots and the second quantum dots are mixed
  • Film formation, film formation methods include coating, spraying, inkjet printing and other technologies.
  • the first ligand is an exciton delocalization ligand;
  • the exciton delocalization ligand is a type of ligand having a frontier molecular orbital strongly bonded to a quantum dot band edge state.
  • the exciton delocalization ligand can promote the carrier wave function to diffuse out of the quantum dot, so that the excitons inside the quantum dot radiate to the quantum dot band edge state, thereby enhancing the coupling between the quantum dot excitons and adjacent molecules effect.
  • the exciton delocalization ligand is used to generate the first excitons emitted from the surface of the first quantum dot having a high external quantum efficiency with the second excitons emitted from the surface of the second quantum dot having a high measured lifetime
  • the coupling effect makes the first excitons stack with the second excitons, and the stacking effect between the excitons makes the quantum dot device of the whole hybrid system have the advantages of two different types of quantum dots, so that the final mixed
  • the quantum dot light-emitting diode 10 device prepared by the quantum dot light-emitting layer 15 has the indicators of high efficiency and long life.
  • the mass of the quantum dot ligands in the quantum dot luminescent layer 15 usually accounts for about 20% of the total mass of the quantum dot luminescent layer 15, wherein the first ligand is The mass percentage of the first ligand in the quantum dot light-emitting layer 15 is about 2% to 15%, and the rest of the ligands are conventional ligands.
  • the conventional ligands include C 5 to C 30 saturated or unsaturated fatty acids, C 5 to C 30 linear or branched alkyl thiols, C 1 to C 20 linear or branched alkylamines, and C 1 to C 20 linear Or at least one of branched chain alkyl phosphines.
  • the conventional ligand has the function of stabilizing the core and shell of the quantum dot film, and on the other hand, it has the effect of improving the dissolution or dispersion of the core and shell of the quantum dot film in the organic
  • the mass percent range of the first ligand accounting for the quantum dot light-emitting layer 15 is preferably between 2% and 8%; wherein, the quantity of the first ligand can be controlled by controlling the first ligand
  • the amount used during the exchange can be obtained, and the specific ligand content can be obtained by performing a thermogravimetric analysis test on the quantum dots after each exchange and combining with infrared.
  • the first ligand accounts for no more than 8% by mass of the quantum dot light-emitting layer 15, and if the first ligand accounts for more than 8% by mass of the quantum dot light-emitting layer 15, it may cause The exciton degree of the quantum dot itself is too high, resulting in a too large delocalization range of the excitons, not only the optical bandgap redshift of the quantum dot itself is too large, but also may cause the delocalized excitons to be easily affected by the external environment to produce bursts.
  • the mass percentage of the first ligand accounting for the quantum dot light-emitting layer 15 is not less than 2%, if the mass percentage of the first ligand accounting for the quantum dot light-emitting layer 15 is less than 2%, As a result, the exciton delocalization degree of the quantum dot itself is too small, and the excitons between different types of quantum dots are not easy to stack, so it is difficult to balance the contradiction between the high efficiency of the device and the high measured lifetime.
  • the first ligand includes but is not limited to phenyl dithiocarbamate (PDTC), 1,3-dimethyl-4,5-disubstituted imidazolylidene N-hetero Cyclocarbene (NHC) and others.
  • PDTC phenyl dithiocarbamate
  • NHS 1,3-dimethyl-4,5-disubstituted imidazolylidene N-hetero Cyclocarbene
  • the first ligand can be prepared by ligand exchange using the existing technology, and the exchange method will not be repeated here.
  • the quantum dot light-emitting layer 15 formed after the above mixing has the following beneficial effects: the first ligand has a frontier molecular orbital that is strongly combined with the quantum dot band edge state, and promotes the carrier wave function to diffuse to the quantum dot In addition, the coupling effect between quantum dot excitons and neighboring molecules is enhanced.
  • the excitons of the two different types of quantum dots delocalized to the surface are in the Under the action of the first ligand, a certain degree of stacking will occur, and the stacking effect between excitons makes the device of quantum dots in the whole hybrid system have the advantages of two different types of quantum dots, which is manifested in that the device has both high efficiency and high
  • the measured life solves the problem of the contradiction between the high efficiency of conventional devices and the high measured life, thereby improving the performance of the device.
  • the embodiment of the present application also provides a method for manufacturing the aforementioned quantum dot light-emitting diode 10, please refer to FIG. 2, which is a schematic flow chart of a method for manufacturing a quantum dot light-emitting device provided in the embodiment of the present application; specifically , the method includes:
  • Step S11 providing a first electrode
  • Step S12 forming a quantum dot thin film on the first electrode, and performing thermal annealing treatment to form a quantum dot light-emitting layer;
  • Step S13 forming a second electrode on the quantum dot light-emitting layer
  • the quantum dot film contains quantum dots, at least part of the surface of the quantum dots is connected with a first ligand, and the quantum dots include a first quantum dot and a second quantum dot; wherein, the first ligand for stacking the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots
  • the preparation method of quantum dot light-emitting diode 10 includes:
  • the quantum dot light-emitting layer 15 includes first quantum dots, second quantum dots, and first ligands bound to the surface of the first quantum dots and/or the second quantum dots;
  • the external quantum efficiency of the first quantum dot light-emitting diode prepared by using the first quantum dots alone is greater than or equal to 10% and less than or equal to 22%
  • the second quantum dot light-emitting diode prepared by using the second quantum dots alone The measured lifetime at 1000 nit is between 1 h and 20 h, and the first ligand is used to stack the first excitons generated by the first quantum dots with the second excitons generated by the second quantum dots.
  • Figure 3 is a schematic flow chart of another method for preparing a quantum dot light-emitting device provided in the embodiment of the present application; specifically, the method includes:
  • the S201 also includes:
  • a metal layer is deposited on a substrate 11, and the metal layer is patterned to form an anode 12, and the deposition method of the anode 12 can be selected from a vacuum evaporation method or a sputtering method; wherein the substrate 11 Includes rigid, flexible substrates, specifically glass, silicon wafers, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyether Sulfone, or a combination thereof; further, the anode 12 is composed of a conductive material with a relatively high work function, which may be composed of doped or undoped metal oxides, such as ITO, IZO, ITZO, ICO, SnO 2 , In 2 O 3 , Cd:ZnO, F:SnO 2 , In:SnO 2 , Ga:SnO 2 or AZO, etc.; ), silver (Ag), iridium (Ir) or carbon nanotube (CNT) metal materials.
  • the S202 also includes:
  • Hole injection layer 13 is prepared on described anode 12, and the deposition mode of described hole injection layer 13 can be selected from solution method or vacuum evaporation method respectively;
  • Described hole injection layer 13 comprises poly(ethylene dioxide Thiophene): polystyrene sulfonate (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), poly Arylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis [N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine ( m-MTDATA), 4,
  • the S203 also includes:
  • a hole transport layer 14 is prepared on the hole injection layer 13; the deposition method of the hole transport layer 14 can be respectively selected from a solution method or a vacuum evaporation method; wherein the hole transport layer 14 includes an organic material When composed, including arylamines such as 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl )-1,1'-biphenyl-4,4"-diamine ( ⁇ -NPD), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1, 1'-biphenyl)-4,4'-diamine (TPD), N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-spiro(spiro-TPD ), N,N'-bis(4-(N,N'-diphenyl-amino)phenyl
  • the S204 also includes:
  • the surface of the hole transport layer 14 is coated with quantum dot ink
  • the coating method includes spin coating, scraping or inkjet printing, etc.; wherein, the quantum dot ink includes the first type of quantum dot ink, The second type of quantum dot ink and the first ligand, the first type of quantum dot ink is used to form the first quantum dot, and the second type of quantum dot ink is used to form the second quantum dot.
  • the quantum dot ink is left for a period of time and then dried to form a quantum dot film. It specifically includes: placing the wet film formed by the quantum dot ink in a normal pressure environment for 2 minutes to 10 minutes, then transferring it to a vacuum chamber, and drying it in a reduced pressure environment to form the quantum dot film; wherein, the quantum dot
  • the temperature of the film can be controlled between 10°C and 35°C during the process of placing the film under normal pressure.
  • thermal annealing is performed on the quantum dot film to form the quantum dot light-emitting layer 15; wherein, the thermal annealing temperature of the quantum dot film is between 50° C. and 120° C., and the time is between 5 minutes and 30 minutes.
  • the S205 also includes:
  • the electron transport layer 16 is formed by a solution method, wherein the process of forming the electron transport layer 16 by the solution method may include solution coating, drying and drying the dried film. Perform operations such as annealing treatment.
  • the coating method of the above-mentioned solution method includes spin coating, blade coating or inkjet printing and the like.
  • the electron transport layer 16 may be composed of inorganic materials and/or organic materials.
  • inorganic may consist of an inorganic material selected from the group consisting of metal/non-metal oxides undoped or doped with Al, Mg, In, Li, Ga, Cd, Cs or Cu (for example, TiO 2 , ZnO, ZrO, SnO 2 , WO 3 , Ta 2 O 3 , HfO 3 , Al 2 O 3 , ZrSiO 4 , BaTiO 3 and BaZrO 3 ); undoped or with Al, Mg, In, Li, Ga, Cd, Cs, or Cu doped semiconductor particles (eg, CdS, ZnSe, and ZnS); nitrides, such as Si 3 N 4 ; and combinations thereof.
  • organic material such as oxazole compound, isoxazole compound, triazole compound, isothiazole compound, oxadiazole compound, thiadiazole compound, perylene compound or aluminum complex and other organic materials.
  • the S206 also includes:
  • a cathode 17 is prepared on the electron transport layer 16, and the deposition method of the cathode 17 can be selected from vacuum evaporation or sputtering; wherein, the cathode 17 has a relatively low work function conductive material composition, which can be Ca , Ba, Ca/Al, LiF/Ca, LiF/Al, BaF 2 /Al, CsF/Al, CaCO 3 /Al, BaF 2 /Ca/Al, Al, Mg, Au:Mg or Ag:Mg.
  • a relatively low work function conductive material composition which can be Ca , Ba, Ca/Al, LiF/Ca, LiF/Al, BaF 2 /Al, CsF/Al, CaCO 3 /Al, BaF 2 /Ca/Al, Al, Mg, Au:Mg or Ag:Mg.
  • 12 different quantum dot light emitting diodes 10 were prepared according to the preparation method of the above quantum dot light emitting diode 10, and after the preparation of the above quantum dot light emitting diode 10 device was completed, the above quantum dot light emitting diode 10 device was placed at 120°C Heat treatment for 15min. Then perform subsequent performance characterization on the quantum dot light-emitting diode 10 device after heat treatment.
  • the quantum dot light-emitting diode 10 (QLED1) provided in the first embodiment of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 80nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is TFB and PVK with a thickness of 60nm;
  • the quantum dot luminescent layer 15 is:
  • the first ligand on the surface of the two quantum dots is phenyl dithiocarbamate (PDTC), and the content of the first ligand is 5%;
  • the electron transport layer 16 is ZnO with a thickness of 70nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED1-1) prepared in the first comparative example compared with the first example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 90nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is PVK with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x S/Cd y Zn 1-y S/ZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 471nm, thickness 20nm, peak width 22nm;
  • the electron transport layer 16 is ZnO with a thickness of 80nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED1-2) prepared in the second comparative example compared with the first example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 90nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 60nm;
  • the hole transport layer 14 is TFB with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x Se/Cd y Zn 1-y Se/CdZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 471nm, thickness 20nm, peak width 20nm;
  • the electron transport layer 16 is ZnO with a thickness of 60nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 provided in the second embodiment of the present application includes: the substrate 11 is a glass substrate;
  • the anode 12 is ITO with a thickness of 80nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is TFB and PVK with a thickness of 60nm;
  • the quantum dot luminescent layer 15 is:
  • the first ligand on the surface of the two quantum dots is phenyl dithiocarbamate (PDTC), and the content of the first ligand is 5%;
  • the electron transport layer 16 is ZnO with a thickness of 70nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED2-1) prepared in the first comparative example compared with the second example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 90nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is PVK with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x S/Cd y Zn 1-y S/ZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 475nm, thickness 20nm, peak width 19nm;
  • the electron transport layer 16 is ZnO with a thickness of 80nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED2-2) prepared in the second comparative example compared with the second example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 80nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 70nm;
  • the hole transport layer 14 is TFB with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x Se/Cd y Zn 1-y Se/CdZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 475nm, thickness 20nm, peak width 23nm;
  • the electron transport layer 16 is ZnO with a thickness of 50nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED3) provided in the third embodiment of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 80nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is TFB and PVK with a thickness of 70nm;
  • the quantum dot luminescent layer 15 is:
  • the first ligand on the surface of the two quantum dots is 1,3-dimethyl-4,5-disubstituted imidazolylidene N-heterocyclic carbene (NHC), and the content of the first ligand is 3%;
  • the electron transport layer 16 is a mixed layer of ZnO and ZnMgO (15% Mg content), with a thickness of 50nm;
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED3-1) prepared in the first comparative example compared with the third example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 90nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is PVK with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x S/Cd y Zn 1-y S/ZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 465nm, thickness 20nm, peak width 22nm;
  • the electron transport layer 16 is ZnO with a thickness of 60nm.
  • the top electrode is Ag with a thickness of 60nm.
  • the quantum dot light-emitting diode 10 (QLED3-2) prepared in the second comparative example compared with the third example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 70nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 60nm;
  • the hole transport layer 14 is TFB with a thickness of 60nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x Se/Cd y Zn 1-y Se/CdZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 465nm, thickness 20nm, peak width 20nm;
  • the electron transport layer 16 is ZnMgO (15% Mg content) with a thickness of 60 nm; and the top electrode is Ag with a thickness of 50 nm.
  • the quantum dot light-emitting diode 10 (QLED4) provided by the fourth embodiment of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 80nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is TFB and PVK with a thickness of 60nm;
  • the quantum dot luminescent layer 15 is:
  • the first ligand on the surface of the two quantum dots is 1,3-dimethyl-4,5-disubstituted imidazolylidene N-heterocyclic carbene (NHC), and the content of the first ligand is 5%;
  • the electron transport layer 16 is a mixed layer of ZnO and ZnMgO (15% Mg content), with a thickness of 60nm;
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED4-1) prepared in the first comparative example compared with the fourth example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 90nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer 14 is PVK with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x S/Cd y Zn 1-y S/ZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 468nm, thickness 20nm, peak width 18nm;
  • the electron transport layer 16 is ZnO with a thickness of 80nm.
  • the top electrode is Ag with a thickness of 50nm.
  • the quantum dot light-emitting diode 10 (QLED4-2) prepared in the first comparative example compared with the fourth example of the present application includes:
  • the substrate 11 is a glass substrate
  • the anode 12 is ITO with a thickness of 80nm;
  • the hole injection layer 13 is PEDOT:PSS with a thickness of 70nm;
  • the hole transport layer 14 is TFB with a thickness of 50nm;
  • the quantum dot luminescent layer 15 is a mixed layer of Cd x Zn 1-x Se/Cd y Zn 1-y Se/CdZnS (wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x>y), and the emission wavelength is 468nm, thickness 20nm, peak width 20nm;
  • the electron transport layer 16 is ZnMgO (10% Mg content) with a thickness of 50nm;
  • the top electrode is Ag with a thickness of 50nm.
  • EQE max in Table 1 is the maximum external quantum efficiency of the quantum dot light-emitting diode 10
  • T95 1000nit is the time for the brightness to drop to 95% of the maximum brightness under the brightness of 1000nit;
  • External quantum dot efficiency the ratio of electron-hole logarithms injected into quantum dots into the number of photons emitted, in %, is an important parameter to measure the quality of electroluminescent devices, using EQE optical test Instrumental measurement can be obtained.
  • the specific calculation formula is as follows:
  • ⁇ e is the light output coupling efficiency
  • ⁇ r is the ratio of the number of recombined carriers to the number of injected carriers
  • is the ratio of the number of excitons generating photons to the total number of excitons
  • KR is the rate of the radiation process
  • KNR is Nonradiative Process Rates.
  • Test conditions carried out at room temperature, the air humidity is 30-60%.
  • Quantum dot light-emitting diode device life the time required for the device to reduce its brightness to a certain percentage of the maximum brightness under constant current or voltage drive, and the time when the brightness drops to 95% of the maximum brightness is defined as T95, which is The lifespan is the measured lifespan.
  • the device life test is usually carried out by accelerating device aging with reference to organic light-emitting diode device testing under high brightness, and the life under high brightness is obtained by fitting the extended exponential decay brightness attenuation fitting formula, for example: under 1000nit
  • the life of the meter is T951000nit.
  • the specific calculation formula is as follows:
  • T95 L T95 H *(L H /L L ) A
  • T95 L is the lifetime under low brightness
  • T95 H is the measured lifetime under high brightness
  • L H is the acceleration of the device to the highest brightness
  • L L is 1000nit
  • A is the acceleration factor.
  • this value is usually 1.6 to 2.
  • the A value is 1.7 by measuring the lifetime of several groups of green QLED devices at the rated brightness.
  • test conditions for carrying out the life test on the corresponding devices by using the life test system are as follows: it is carried out at room temperature, and the air humidity is 30-60%.
  • Example 1 comparing Example 1 with Comparative Example 1-1 and Comparative Example 1-2 shows that the quantum dot light-emitting diode provided by Comparative Example 1-1 has a relatively high maximum external quantum efficiency and a relatively short measured Life characteristics, the quantum dot light-emitting diode provided by Comparative Example 1-2 has a relatively long measured life and relatively low maximum external quantum efficiency characteristics, the maximum external quantum efficiency of the quantum dot light-emitting diode provided by Example 1 is between the comparative file 1- 1 and the maximum external quantum efficiency of the comparative file 1-2, the measured life of the quantum dot light-emitting diode provided by embodiment 1 is between the measured life of the comparative file 1-1 and the comparative file 1-2; therefore, embodiment 1
  • the provided quantum dot light-emitting diode has the characteristics of high efficiency and high measured lifetime due to the addition of the first ligand. The same applies to the quantum dot light-emitting diodes provided in Embodiment 2, Embodiment 3, and Embodiment 4,
  • Example 1 comparing Example 1 with Example 2, it can be known that, under the condition that the material and content of the first ligand are the same and other film layers are approximately the same, the quantum dot luminescent layer 15 has a relatively high
  • the mass percentage of the first quantum dot with the maximum external quantum efficiency accounts for the total mass of the quantum dot light-emitting layer 15, the maximum external quantum efficiency of the quantum dot light-emitting diode prepared at this time becomes smaller, and the measured life time becomes longer.
  • Example 2 comparing Example 2 with Example 4, it can be seen that the content of the first ligand in Example 2 is the same as that in Example 4, and the other film layers are approximately Under the same circumstances, when the material of the first ligand is phenyl dithiocarbamate, the maximum external quantum efficiency of the quantum dot light-emitting diode prepared is greater than that of the material of the first ligand being 1,3-dithiocarbamate.
  • the measured lifetime of the quantum dot light-emitting diode is higher than that of the quantum dot light-emitting diode prepared when the material of the first ligand is 1,3-dimethyl-4,5-disubstituted imidazolylidene N-heterocyclic carbene life.
  • Example 3 comparing Example 3 with Example 4, it can be seen that the material of the first ligand in Example 3 is the same as that of the first ligand in Example 4, and the other film layers are roughly Under the same conditions, the mass percentage of the first ligand in the quantum dot light-emitting layer 15 increases within a certain range, and the maximum external quantum efficiency and the measured lifetime of the prepared quantum dot light-emitting diode both increase.
  • Comparative Example 1-1 Comparative Example 1-1
  • Comparative Example 3-1 Comparative Example 3-1
  • the embodiment of the present application also provides a display device, including the quantum dot light emitting diode 10 described in any one of the above items.
  • the embodiment of the present application provides a quantum dot film, a quantum dot light-emitting diode and its preparation method, and a display device;
  • the quantum dot film includes a first quantum dot, a second quantum dot, and a A quantum dot and/or a first ligand on the surface of the second quantum dot, wherein the first ligand is used to combine the first excitons generated by the first quantum dot with the first excitons generated by the second quantum dot
  • the second exciton stack the above-mentioned quantum dot thin film adds the first ligand between the first quantum dot and the second quantum dot, and the first ligand can make the first quantum dot
  • the generated first excitons are stacked with the second excitons generated by the second quantum dot, and the stacking effect between the excitons makes a part of the first excitons follow the second excitons stacked with it to radiatively recombine and output to the In the core-shell of the second quantum dot, at
  • a quantum dot light-emitting diode provided in the embodiment of the present application, its preparation method, and display device have been introduced in detail above.
  • specific examples are used to illustrate the principle and implementation of the present invention.
  • the description of the above embodiment is only It is used to help understand the method and its core idea of the present invention; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application.
  • this specification The content should not be construed as a limitation of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例提供一种量子点薄膜、量子点发光二极管及其制备方法;量子点薄膜包括第一量子点、第二量子点、以及第一配体,通过第一配体能够将第一量子点产生的第一激子与第二量子点产生的第二激子堆叠,激子间的堆叠作用使得整个混合体系的量子点兼具两种不同类型的量子点的优势,提升了量子点发光二极管的发光性能。

Description

一种量子点薄膜、量子点发光二极管及其制备方法
本申请要求于2021年11月09日在中国专利局提交的、申请号为202111322270.0、申请名称为“量子点薄膜、量子点发光二极管及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种量子点薄膜、量子点发光二极管及其制备方法。
背景技术
以无机量子点作为电致发光材料的自发光QLED(Quantum Dot Light-Emitting Diode,量子点电致发光半导体)器件具有色域覆盖广、色纯度高、超薄轻便、可弯折卷曲等优势,因此已经受到学术与产业界的广泛关注。
目前红绿光QLED的外量子效率和寿命已经可以和有机电致发光器件相媲美。但是,蓝光QLED的器件性能,尤其是寿命仍旧远远落后。因此,如何进一步提高蓝光QLED器件寿命是QLED现阶段真正实现商业化的关键技术问题。当前技术通过对不同量子点薄膜材料进行选择,以制备出不同外量子效率的QLED器件。其中,使用一类量子点薄膜材料制备的QLED器件具有较高的外量子效率,然而此类QLED器件的实测寿命往往很低;使用另一类量子点薄膜材料制备的QLED器件具有较高的实测寿命,然而此类QLED器件又具有较低的外量子效率。因此,现有的量子点薄膜材料制备的QLED器件在具有高外量子点效率特性的同时,难以具有高实测寿命的特性。
综上所述,确有必要来开发一种量子点薄膜、量子点发光二极管及其制备方法、显示装置,以克服现有技术的缺陷。
技术问题
现有的量子点薄膜材料制备的QLED器件在具有高外量子点效率特性的同时,难以具有高实测寿命的特性的技术问题。
技术解决方案
因此,本申请提供一种量子点薄膜、量子点发光二极管及其制备方法。
本申请实施例提供的量子点薄膜,所述量子点薄膜中包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
可选的,在本申请的一些实施例中,单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率大于或等于10%,且所述第一量子点发光二极管的亮度在1000nit下的实测寿命小于或者等于1h;单独使用所述第二量子点制备的第二量子点发光二极管的亮度在1000nit下的实测寿命在1h至20h之间。
可选的,在本申请的一些实施例中,所述单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率在10%至22%之间。
可选的,在本申请的一些实施例中,所述单独使用所述第二量子点制备的第二量子点发光二极管的亮度在1000nit下的实测寿命在3h至10h之间。
可选的,在本申请的一些实施例中,所述第一配体选自激子离域配体。
可选的,在本申请的一些实施例中,所述激子离域配体选自苯基二硫代氨基甲酸酯以及1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾中的一种或多种。
可选的,在本申请的一些实施例中,所述第一配体占所述量子点薄膜的质量百分比范围为2%至15%。
可选的,在本申请的一些实施例中,所述第一配体占所述量子点薄膜的质量百分比范围为2%至8%。
可选的,在本申请的一些实施例中,所述第一量子点与所述第二量子点的质量比范围为1:1~1:10。
可选的,在本申请的一些实施例中,所述第一量子点与所述第二量子点的发光波长在同一个波段范围,且能带宽度相同;其中,所述能带宽度为能带中的最低能级到最高能级之间的能量范围。
可选的,在本申请的一些实施例中,所述第一量子点和所述第二量子点独立地选自核壳结构量子点。
可选的,在本申请的一些实施例中,所述第一量子点或者所述第二量子点分别独立地选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe以及SnPbSTe中的一种或多种;所述第一量子点的材料与所述第二量子点的材料不同。
相应的,本申请实施例还提供一种量子点发光二极管,所述量子点发光二极管包括第一电极和第二电极以及设置在所述第一电极与所述第二电极之间的量子点发光层,其中,所述量子点发光层由上述量子点薄膜制备的量子点发光层。
可选的,在本申请的一些实施例中,所述第一电极与所述第二电极中的一者为阳极,另一者为阴极;所述量子点发光二极管包括空穴注入层、空穴传输层和电子传输层;所述空穴注入层和所述空穴传输层设置在所述阳极与所述量子点发光层之间,所述空穴注入层靠近所述阳极一侧设置,所述空穴传输层靠近所述量子点发光层设置;所述电子传输层设置在所述阴极与所述量子点发光层之间;所述空穴注入层的材料包括聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺、4-双[N-(1-萘基)-N-苯基-氨基]联苯、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺、4,4',4”-三(N-咔唑基)-三苯基胺、1,1-双[(二-4-甲苯基氨基)苯基环己烷、掺杂有四氟-四氰基-醌二甲烷的4,4',4”-三(二苯基氨基)三苯胺、p-掺杂酞菁、掺杂有四氟-四氰基-醌二甲烷的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺以及六氮杂苯并菲-己腈 中的任意一种;所述空穴传输层的材料包括芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐及其衍生物;聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺以及螺NPB中的一种或多种;所述电子传输层的材料包括第一无机材料或者第一有机材料,所述第一无机材料包括未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的氧化物、未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的半导体颗粒、以及氮化物中的一种或多种;所述第一有机材料包括噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物以及铝络合物中的一种或多种;所述阳极的材料包括ITO、IZO、ITZO、ICO、SnO 2、In 2O 3、Cd:ZnO、F:SnO 2、In:SnO 2、Ga:SnO 2、AZO、Ni、Pt、Au、Ag、Ir以及CNT中的一种或多种;所述阴极的材料包括Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF 2/Al、CsF/Al、CaCO 3/Al、BaF 2/Ca/Al、Al、Mg、Au:Mg以及Ag:Mg中的一种或多种。
相应的,本申请实施例还提供一种量子点发光二极管的制备方法,包括如下步骤:提供第一电极;在所述第一电极上形成量子点薄膜,热退火处理,形成量子点发光层;在所述量子点发光层形成第二电极;其中,所述量子点薄膜中包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
可选的,在本申请的一些实施例中,所述在所述第一电极上形成量子点薄膜,包括:将量子点墨水设置在所述第一电极上形成湿膜,放置处理后,干燥形成所述量子点薄膜。
可选的,在本申请的一些实施例中,所述放置处理的压力为常压,时间为2min~10min。
可选的,在本申请的一些实施例中,所述放置处理的温度为10℃~35℃。
可选的,在本申请的一些实施例中,所述热退火处理的温度在50℃至120℃之间,时间在5min~30min之间。
可选的,在本申请的一些实施例中,所述第一电极与所述第二电极中的一者为阳极,另一者为阴极;所述制备方法包括:在所述阳极与所述量子点发光层之间形成空穴注入层和空穴传输层,所述空穴注入层靠近所述阳极一侧设置,所述空穴传输层靠近所述量子点发光层设置;以及在所述阴极与所述量子点发光层之间形成电子传输层;其中,所述空穴注入层的材料包括聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺、4-双[N-(1-萘基)-N-苯基-氨基]联苯、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺、4,4',4”-三(N-咔唑基)-三苯基胺、1,1-双[(二-4-甲苯基氨基)苯基环己烷、掺杂有四氟-四氰基-醌二甲烷的4,4',4”-三(二苯基氨基)三苯胺、p-掺杂酞菁、掺杂有四氟-四氰基-醌二甲烷的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺以及六氮杂苯并菲-己腈中的任意一种;所述空穴传输层的材料包括芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐及其衍生物;聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺以及螺NPB中的一种或多种;所述电子传输层的材料包括第一无机材料或者第一有机材料,所述第一无机材料包括未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的氧化物、未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的半导体颗粒、以及氮化物中的一种或多种;所述第一有机材料包括噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物以及铝络合物中的一种或多种;所述阳极的材料包括ITO、IZO、ITZO、ICO、SnO 2、In 2O 3、Cd:ZnO、F:SnO 2、In:SnO 2、Ga:SnO 2、AZO、Ni、Pt、Au、Ag、Ir以及CNT中的一种或多种;所述阴极的材料包括Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF 2/Al、CsF/Al、CaCO 3/Al、BaF 2/Ca/Al、Al、Mg、Au:Mg以及Ag:Mg中的一种或多种。
有益效果
本申请的量子点薄膜包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠;上述量子点薄膜通过在所述第一量子点与所述第二量子点之间添加所述第一配体,所述第一配体能够将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠,激子间的堆叠作用使得一部分所述第一激子跟随与其堆叠的所述第二激子辐射复合输出至所述第二量子点的核壳中,同时使得一部分所述第二激子跟随与其堆叠的所述第一激子辐射复合输出至所述第一量子点的核壳中,从而使得所述第一量子点和/或者所述第二量子点同时具备所述第一激子以及所述第二激子,进而使得整个混合体系的量子点兼具两种不同类型的量子点的优势,从而使得上述量子点薄膜制备的量子点发光二极管兼具单独采用所述第一量子点制备的第一量子点发光二极管的特性以及单独采用所述第二量子点制备的第二量子点发光二极管的特性,进一步提升了量子点发光二极管的发光性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的量子点发光二极管的截面结构示意图;
图2是本申请实施例所提供的一种量子点发光器件的制备方法流程示意图;
图3是本申请实施例所提供的另一种量子点发光器件的制备方法流程示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
针对现有的量子点薄膜材料制备的QLED器件在具有高外量子点效率特性的同时,难以具有高实测寿命的特性的技术问题,本申请实施例可以改善上述技术问题。
本申请实施例提供一种量子点薄膜,所述量子点薄膜中包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
具体的,本申请实施例提供一种量子点薄膜,包括第一量子点、第二量子 点、以及结合在所述第一量子点和/或者所述第二量子点表面的第一配体;
其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
可以理解,所述量子点薄膜中,可以仅第一量子点的表面连接有第一配体,也可以仅第二量子点的表面连接有第一配体,还可以第一量子点和第二量子点的表面均连接有第一配体。优选的,所述第一量子点的表面和所述第二量子点的表面均连接有第一配体。
本申请实施例提供的一种量子点薄膜通过在所述第一量子点与所述第二量子点之间添加所述第一配体,所述第一配体能够将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠,激子间的堆叠作用使得整个混合体系的量子点兼具两种不同类型的量子点的优势,从而使得上述量子点薄膜制备的量子点发光二极管兼具高效率与高实测寿命的特点,从而在一定程度上解决了常规量子点发光二极管表现的高效率与高实测寿命相矛盾的问题,进一步提升了量子点发光二极管的性能。
现结合具体实施例对本申请的技术方案进行描述。
本申请实施例首先提供一种量子点薄膜,包括第一量子点、第二量子点、以及结合在所述第一量子点和/或者所述第二量子点表面的第一配体;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
在本申请实施例中,单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率在至少大于或等于10%,优选在10%至22%之间,且所述第一量子点发光二极管的亮度在1000nit下的实测寿命小于或者等于1h;单独使用所述第二量子点制备的第二量子点发光二极管在1000nit下的实测寿命在1h至20h之间,优选为3h至10h之间。
其中,外量子点效率是注入到量子点中的电子-空穴对数转化为出射的光子数的比值,单位是%,是衡量电致发光器件优劣的一个重要参数,采用外量子光学测试仪器测定即可得到。其测试条件在室温下进行,空气湿度为30~60%。
进一步地,QLED器件寿命是在恒定电流或电压驱动下,亮度减少至最高 亮度的一定比例时所需的时间,亮度下降至最高亮度的95%的时间定义为T95,该寿命为实测寿命。其测试条件是在室温下采用寿命测试系统对相应QLED器件进行寿命测试,空气湿度为30~60%。
在本申请实施例中,所述第一配体包括苯基二硫代氨基甲酸酯以及1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾中的至少一种。
在本申请实施例中,所述第一配体占所述量子点薄膜的质量百分比范围为2%至15%。
在本申请实施例中,所述第一量子点或者所述第二量子点包括CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe以及SnPbSTe中的至少一种形成的组合。
在本申请实施例中,所述第一量子点与所述第二量子点的质量比范围为1:1~1:10。
相应地,本申请实施例还提供一种使用所述量子点薄膜制备的量子点发光二极管。所述量子点发光二极管包括第一电极和第二电极以及设置在所述第一电极与所述第二电极之间的量子点发光层,其中,所述量子点发光层由本申请提供的所述量子点薄膜制备的量子点发光层。
所述量子点发光层由本申请提供的所述量子点薄膜制备得到。所述量子点发光层包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠中的包括至少部分所述 量子点的表面连接有第一配体。
具体的,所述量子点发光层包括第一量子点、第二量子点、以及结合在所述第一量子点和/或者所述第二量子点表面的第一配体。
其中,所述第一电极与所述第二电极中的一者为阳极,另一者为阴极。
如图1所示,为本申请实施例提供的一种量子点发光二极管的截面结构示意图;所述量子点发光二极管10包括衬底11、设置于所述衬底11上的阳极12、设置于所述阳极12上的空穴注入层13、设置于所述空穴注入层13上的空穴传输层14、设置于所述空穴传输层14上的电子传输层16以及设置于所述电子传输层16上的阴极17;
其中,所述量子点发光层15设置于所述空穴传输层14与所述电子传输层16之间;所述量子点发光层15包括第一量子点、第二量子点、以及结合在所述第一量子点和/或者所述第二量子点表面的第一配体;
其中,单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率大于或等于10%且小于或等于22%,单独使用所述第二量子点制备的第二量子点发光二极管在1000nit下的实测寿命在1h至20h之间,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子耦合。
具体地,所述衬底11包括钢性、柔性衬底,具体包括玻璃、硅晶片、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜、或其组合。
具体地,所述阳极12由具有相对高功函数的导电材料组成,可以由掺杂或未掺杂的金属氧化物组成,如ITO、IZO、ITZO、ICO、SnO 2、In 2O 3、Cd:ZnO、F:SnO 2、In:SnO 2、Ga:SnO 2或AZO等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成。
具体地,所述空穴注入层13的材料包括聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、 1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、以及六氮杂苯并菲-己腈(HAT-CN)中的至少一种。
具体地,所述空穴传输层14包括有机材料时,包括芳基胺,例如4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺(α-NPD)、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺(TPD)、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺(DNTPD)、4,4',4'-三(N-咔唑基)-三苯胺(TCTA)、三(3-甲基苯基苯基氨基)-三苯胺(m-MTDATA)、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))](TFB)和聚(4-丁基苯基-二苯基胺)(聚-TPD);聚苯胺;聚吡咯;聚(对)亚苯基亚乙烯基及其衍生物,例如聚(亚苯基亚乙烯基)(PPV)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV)和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基](MOMO-PPV);铜酞菁;芳香族叔胺或多核芳香叔胺;4,4'-双(对咔唑基)-1,1'-联苯化合物;N,N,N',N'-四芳基联苯胺;PEDOT:PSS及其衍生物;聚(N-乙烯基咔唑)(PVK)及其衍生物;聚甲基丙烯酸酯及其衍生物;聚(9,9-辛基芴)及其衍生物;聚(螺芴)及其衍生物;N,N'-二(萘-1-基)-N,N'-二苯基联苯胺(NPB);螺NPB;以及它们的组合。
具体地,所述电子传输层16可以由无机材料和/或有机材料组成。当为无机材料时,可以由选自由以下物质组成的组中的无机材料组成:未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的金属/非金属氧化物(例如,TiO 2、ZnO、ZrO、SnO 2、WO 3、Ta 2O 3、HfO 3、Al 2O 3、ZrSiO 4、BaTiO 3和BaZrO 3);未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的半导体颗粒(例如,CdS、ZnSe和ZnS);氮化物,例如Si 3N 4;以及它们的组合。当为有机材料时,可以由诸如噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物或铝络合物等有机材料形成。
具体地,所述阴极17具有相对低功函数的导电材料组成,可以为Ca、Ba、 Ca/Al、LiF/Ca、LiF/Al、BaF 2/Al、CsF/Al、CaCO 3/Al、BaF 2/Ca/Al、Al、Mg、Au:Mg或Ag:Mg。
在本申请实施例中,所述阳极12的厚度为20~200nm;所述空穴注入层13的厚度为20~200nm;所述空穴传输层14的厚度为30~180nm;所述量子点发光层15的总厚度为30~180nm。所述电子传输层16的厚度为10~180nm;所述阴极17的厚度为40~190nm。
在本申请实施例中,单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率在10~22%之间,亮度在1000nit下的实测寿命为0~1h;单独使用所述第二量子点制备的第二量子点发光二极管在1000nit下的实测寿命为1~20h,优选为3~10h。
具体地,所述量子点发光层15中的所述第一量子点或者所述第二量子点分别独立地选自II-VI族的CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe,或者III-V族的GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb,或者IV-VI族的SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、以及SnPbSTe中的至少一种;所述第一量子点的材料与所述第二量子点的材料不同。
进一步地,所述第一量子点发光二极管具有较高的外量子效率,外量子点效率是衡量器件发光性能的一个重要指标,该指标反映的是量子点发光二极管10工作过程中电荷注入量子点层并形成激子的过程。由于影响外量子点效率的因素较多,比如:量子点质量优劣、电荷传输层与量子点层的能级势垒大小、各功能层膜厚、功能层材料降解等。针对文中列举的量子点种类,理论上只要 合成的量子点的质量足够高,且与电荷传输层能级相匹配,器件的外量子点效率都可以达到理论极限值25%。但是,由于电荷材料选择有限,且有部分难以实现高质量量子点的制备,故在此不具体明确,只需要满足该量子点在单独制备器件时器件EQE达到10~22%即可为高效率量子点选择。理论上文中列举的量子点种类都可以。
进一步地,所述第二量子点发光二极管具有较高的寿命,寿命作为衡量量子点发光二极管10是否能实现产业化应用的关键性能指标。现阶段,量子点发光二极管10的发展也正处于提升寿命的关键阶段,但由于对器件老化衰减的机理并未有统一的认识,因此,量子点发光二极管10的寿命的发展仍旧任道重远。影响量子点发光二极管10的寿命的因素也是多重的,不但与量子点自身稳定性有关、也与功能层材料降解、电荷注入不平衡导致的电荷积累/泄露和焦耳热等具有重要关系。因此,对不同的量子点材料在理论上搭配合适种类的功能层时都可以实现较高的寿命。但是,由于量子点自身质量及功能层的选择存在诸多问题,器件的寿命尤其是蓝色量子点发光二极管10的寿命仍旧得不到有效解决。理论上文中列举的量子点种类都可以选择。
在本申请实施例中,所述第一量子点与所述第二量子点的发光波长在一个波段,且能带宽度相同。其中,能带宽度是指能带中的最低能级到最高能级之间的能量范围。
进一步地,将所述第一量子点与所述第二量子点的发光波长设置在同一个波段,可以使混合上述两种量子点后制备的量子点薄膜发射的光的发光波长在一个波段范围内;将所述第一量子点与所述第二量子点的能带宽度设置成相同是为了使所述第一配体更容易地将所述第一量子点产出的第一激子与所述第二量子点产出的第二激子堆叠(激子移动的能量范围在能带宽度内)。
进一步地,所述第一量子点与所述第二量子点的质量比范围在1:10至1:1之间;其中,所述第一量子点与所述第二量子点通过混合的方式成膜,成膜方式包括涂布、喷涂、喷墨打印等技术。
在本申请实施例中,所述第一配体为激子离域配体;所述激子离域配体是一类具有与量子点带边缘态强烈接合的前沿分子轨道的配体。所述激子离域配体能够促进载流子波函数扩散至量子点之外,使量子点内部的激子辐射至量子 点带边缘态,从而增强量子点激子与邻近分子之间的耦合作用。所述激子离域配体用于将具有高外量子效率的所述第一量子点表面发射的第一激子与具有高实测寿命的所述第二量子点表面发射的第二激子发生耦合作用,使得所述第一激子与所述第二激子堆叠,激子间的堆叠作用使得整个混合体系的量子点的器件兼具两种不同类型的量子点的优势,从而使得最终混合的所述量子点发光层15制备的量子点发光二极管10器件具备高效率和高寿命的指标。
进一步地,所述量子点发光层15中的量子点配体的质量通常占所述量子点发光层15总质量的20%左右,其中,所述第一配体为所述量子点配体中的一种,所述第一配体占所述量子点发光层15的质量百分比在2%~15%左右,其余配体为常规配体。所述常规配体包括C 5至C 30饱和或不饱和脂肪酸、C 5至C 30线性或支链烷基硫醇、C 1至C 20线性或支链烷基胺以及C 1至C 20线性或支链烷基膦中的至少一种。
在本申请实施例中,所述常规配体一方面具有使所述量子点薄膜的核与壳变得稳定的作用,另一方面具有提高所述量子点薄膜的核与壳溶解或者分散于有机溶剂中的能力的作用。优选地,所述第一配体占所述量子点发光层15的质量百分比范围优选为2%至8%之间;其中,所述第一配体的数量可以通过控制所述第一配体交换时的用量得到,具体的配体含量可对每次交换后的量子点进行热重分析测试并结合红外即可得到配体含量。更进一步地,所述第一配体占所述量子点发光层15的质量百分比不大于8%,若述第一配体占所述量子点发光层15的质量百分比大于8%,则可能造成量子点自身的激子程度太高,造成激子的离域幅度太大,不仅量子点自身的光学带隙红移幅度太大,同时也可能造成离域的激子容易受外界环境影响产生猝灭的风险;同时,所述第一配体占所述量子点发光层15的质量百分比不小于2%,若所述第一配体占所述量子点发光层15的质量百分比小于2%,则造成量子点自身激子离域程度太小,不同类型的量子点间的激子不容易发生堆叠,从而很难起到平衡器件高效率和高实测寿命的矛盾问题。
在本申请实施例中,所述第一配体包括但不限于苯基二硫代氨基甲酸酯(PDTC)、1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾(NHC)等。所述第一配体的制备采用现有技术进行配体交换即可,此处对其交换方法不做赘述。
进一步地,上述混合后形成的所述量子点发光层15具有以下有益效果:所述第一配体具有与量子点带边缘态强烈结合的前沿分子轨道,促进载流子波函数扩散到量子点之外,增强量子点激子与邻近分子的耦合作用。当将高外量子效率的第一量子点材料、高实测寿命的第二量子点材料以及所述第一配体进行混合时,两种不同类型的量子点离域至表面的激子在所述第一配体的作用下会发生一定程度的堆叠,激子间的堆叠作用使得整个混合体系的量子点的器件兼具两种不同类型的量子点的优势,表现为器件兼具高效率与高实测寿命,一定程度上解决了常规器件表现的高效率与高实测寿命相矛盾的问题,从而提升器件的性能。
相应的,本申请实施例还提供一种上述量子点发光二极管10的制备方法,请参阅图2,图2是本申请实施例所提供的一种量子点发光器件的制备方法流程示意图;具体地,所述方法包括:
步骤S11:提供第一电极;
步骤S12:在所述第一电极上形成量子点薄膜,热退火处理,形成量子点发光层;
步骤S13:在所述量子点发光层形成第二电极;
其中,所述量子点薄膜中包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠
在一实施例中,量子点发光二极管10的制备方法,包括:
在衬底11上制备阳极12;
在所述阳极12上制备空穴注入层13;
在所述空穴注入层13上制备空穴传输层14;
在所述空穴传输层14上制备量子点发光层15;
在所述量子点发光层15上制备电子传输层16;
在所述电子传输层16上制备阴极17;
其中,所述量子点发光层15包括第一量子点、第二量子点、以及结合在所述第一量子点和/或者所述第二量子点表面的第一配体;
其中,单独使用所述第一量子点制备的第一量子点发光二极管的外量子效 率大于或等于10%且小于或等于22%,单独使用所述第二量子点制备的第二量子点发光二极管在1000nit下的实测寿命在1h至20h之间,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
请参阅图3,图3是本申请实施例所提供的另一种量子点发光器件的制备方法流程示意图;具体地,所述方法包括:
S201,在衬底11上制备阳极12。
具体地,所述S201还包括:
在一衬底11上沉积一层金属层,所述金属层经图案化后形成阳极12,所述阳极12的沉积方式可以选自真空蒸镀法或溅射法;其中,所述衬底11包括钢性、柔性衬底,具体包括玻璃、硅晶片、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜、或其组合;进一步地,所述阳极12具有相对高功函数的导电材料组成,可以由掺杂或未掺杂的金属氧化物组成,如ITO、IZO、ITZO、ICO、SnO 2、In 2O 3、Cd:ZnO、F:SnO 2、In:SnO 2、Ga:SnO 2或AZO等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成。
S202,在所述阳极12上制备空穴注入层13。
具体地,所述S202还包括:
在所述阳极12上制备空穴注入层13,所述空穴注入层13的沉积方式可以分别选自溶液法或真空蒸镀法;所述空穴注入层13包括聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN)。
S203,在所述空穴注入层13上制备空穴传输层14。
具体地,所述S203还包括:
在所述空穴注入层13上制备空穴传输层14;所述空穴传输层14的沉积方式可以分别选自溶液法或真空蒸镀法;其中,所述空穴传输层14包括有机材料组成时,包括芳基胺,例如4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺(α-NPD)、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺(TPD)、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺(DNTPD)、4,4',4'-三(N-咔唑基)-三苯胺(TCTA)、三(3-甲基苯基苯基氨基)-三苯胺(m-MTDATA)、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))](TFB)和聚(4-丁基苯基-二苯基胺)(聚-TPD);聚苯胺;聚吡咯;聚(对)亚苯基亚乙烯基及其衍生物,例如聚(亚苯基亚乙烯基)(PPV)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV)和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基](MOMO-PPV);铜酞菁;芳香族叔胺或多核芳香叔胺;4,4'-双(对咔唑基)-1,1'-联苯化合物;N,N,N',N'-四芳基联苯胺;PEDOT:PSS及其衍生物;聚(N-乙烯基咔唑)(PVK)及其衍生物;聚甲基丙烯酸酯及其衍生物;聚(9,9-辛基芴)及其衍生物;聚(螺芴)及其衍生物;N,N'-二(萘-1-基)-N,N'-二苯基联苯胺(NPB);螺NPB;以及它们的组合。
S204,在所述空穴传输层14上制备量子点发光层15。
具体地,所述S204还包括:
首先,在所述空穴传输层14上表面涂布量子点墨水,所述涂布方式包括旋涂、刮涂或喷墨打印等;其中,所述量子点墨水包括第一类量子点墨水、第二类量子点墨水以及第一配体,所述第一类量子点墨水用于形成第一量子点,所述第二类量子点墨水用于形成第二量子点。
其次,将所述量子点墨水放置一段时间后干燥,形成量子点薄膜。具体包括:将所述量子点墨水形成的湿膜在常压环境下放置2min~10min,然后转移至真空舱室,在减压环境下使其干燥,形成所述量子点薄膜;其中,上述量子点薄膜在常压放置的过程中,可以对其在10℃~35℃之间进行温度控制。
最后,对所述量子点薄膜进行热退火处理,形成量子点发光层15;其中,所述量子点薄膜的热退火温度在50℃至120℃之间,时间在5min~30min之间。
S205,在所述量子点发光层15上制备电子传输层16。
具体地,所述S205还包括:
首先,在所述量子点发光层15上,利用溶液法形成电子传输层16,其中,所述溶液法形成所述电子传输层16的过程可以包括溶液的涂布、干燥以及对干燥后的薄膜进行退火处理等操作。上述溶液法的涂布方式包括旋涂、刮涂或喷墨打印等。具体地,所述电子传输层16可以由无机材料和/或有机材料组成。当为无机材料时,可以由选自由以下物质组成的组中的无机材料组成:未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的金属/非金属氧化物(例如,TiO 2、ZnO、ZrO、SnO 2、WO 3、Ta 2O 3、HfO 3、Al 2O 3、ZrSiO 4、BaTiO 3和BaZrO 3);未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的半导体颗粒(例如,CdS、ZnSe和ZnS);氮化物,例如Si 3N 4;以及它们的组合。当为有机材料时,可以由诸如噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物或铝络合物等有机材料形成。
S206,在所述电子传输层16上制备阴极17。
具体地,所述S206还包括:
在所述电子传输层16上制备阴极17,所述阴极17的沉积方式可以选自真空蒸镀法或溅射法;其中,所述阴极17具有相对低功函数的导电材料组成,可以为Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF 2/Al、CsF/Al、CaCO 3/Al、BaF 2/Ca/Al、Al、Mg、Au:Mg或Ag:Mg。
具体地,根据上述量子点发光二极管10的制备方法制备出12种不同的量子点发光二极管10,待上述量子点发光二极管10器件制备完成后,将上述量子点发光二极管10器件置于120℃下热处理15min。然后在对完成热处理后的量子点发光二极管10器件进行后续性能表征。
进一步地,上述12种不同的量子点发光二极管10的膜层结构从所述衬底11至所述阴极17的结构依次如下所示:
实施例1:
本申请第一实施例提供的量子点发光二极管10(QLED1)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为80nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为TFB和PVK,厚度为60nm;
所述量子点发光层15为:
Cd xZn 1-xS/Cd yZn 1-yS/ZnS和Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,厚度为30nm,两者间的制备比为1:1;
两种量子点表面的第一配体为苯基二硫代氨基甲酸酯(PDTC),所述第一配体含量为5%;
电子传输层16为ZnO,厚度为70nm;以及
顶电极为Ag,厚度为50nm。
对比例1-1:
与本申请第一实施例对比的第一对比实施例制备的量子点发光二极管10(QLED1-1)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为90nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为PVK,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xS/Cd yZn 1-yS/ZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为471nm,厚度为20nm,峰宽为22nm;
电子传输层16为ZnO,厚度为80nm;以及
顶电极为Ag,厚度为50nm。
对比例1-2:
与本申请第一实施例对比的第二对比实施例制备的量子点发光二极管10(QLED1-2)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为90nm;
所述空穴注入层13为PEDOT:PSS,厚度为60nm;
所述空穴传输层14为TFB,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为471nm,厚度为20nm,峰宽为20nm;
电子传输层16为ZnO,厚度为60nm;以及
顶电极为Ag,厚度为50nm。
实施例2:
本申请第二实施例提供的量子点发光二极管10(QLED2)包括:所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为80nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为TFB和PVK,厚度为60nm;
所述量子点发光层15为:
Cd xZn 1-xS/Cd yZn 1-yS/ZnS和Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,厚度为30nm,两者间的制备比为2:1;
两种量子点表面的第一配体为苯基二硫代氨基甲酸酯(PDTC),所述第一配体含量为5%;
电子传输层16为ZnO,厚度为70nm;以及
顶电极为Ag,厚度为50nm。
对比例2-1:
与本申请第二实施例对比的第一对比实施例制备的量子点发光二极管10(QLED2-1)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为90nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为PVK,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xS/Cd yZn 1-yS/ZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为475nm,厚度为20nm,峰宽为19nm;
电子传输层16为ZnO,厚度为80nm;以及
顶电极为Ag,厚度为50nm。
对比例2-2:
与本申请第二实施例对比的第二对比实施例制备的量子点发光二极管10(QLED2-2)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为80nm;
所述空穴注入层13为PEDOT:PSS,厚度为70nm;
所述空穴传输层14为TFB,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为475nm,厚度为20nm,峰宽为23nm;
电子传输层16为ZnO,厚度为50nm;以及
顶电极为Ag,厚度为50nm。
实施例3:
本申请第三实施例提供的量子点发光二极管10(QLED3)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为80nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为TFB和PVK,厚度为70nm;
所述量子点发光层15为:
Cd xZn 1-xS/Cd yZn 1-yS/ZnS和Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,厚度为30nm,两者间的制备比为1:1;
两种量子点表面的第一配体为1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾(NHC),所述第一配体含量为3%;
电子传输层16为ZnO和ZnMgO(Mg含量为15%)的混合层,厚度为50nm;
以及顶电极为Ag,厚度为50nm。
对比例3-1:
与本申请第三实施例对比的第一对比实施例制备的量子点发光二极管10(QLED3-1)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为90nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为PVK,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xS/Cd yZn 1-yS/ZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为465nm,厚度为20nm,峰宽为22nm;
电子传输层16为ZnO,厚度为60nm;以及
顶电极为Ag,厚度为60nm。
对比例3-2:
与本申请第三实施例对比的第二对比实施例制备的量子点发光二极管10(QLED3-2)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为70nm;
所述空穴注入层13为PEDOT:PSS,厚度为60nm;
所述空穴传输层14为TFB,厚度为60nm;
所述量子点发光层15为Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为465nm,厚度为20nm,峰宽为20nm;
电子传输层16为ZnMgO(Mg含量为15%),厚度为60nm;以及顶电极为Ag,厚度为50nm。
实施例4:
本申请第四实施例提供的量子点发光二极管10(QLED4)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为80nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为TFB和PVK,厚度为60nm;
所述量子点发光层15为:
Cd xZn 1-xS/Cd yZn 1-yS/ZnS和Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,厚度为30nm,两者间的制备比为2:1;
两种量子点表面的第一配体为1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾(NHC),所述第一配体含量为5%;
电子传输层16为ZnO和ZnMgO(Mg含量为15%)的混合层,厚度为60nm;
顶电极为Ag,厚度为50nm。
对比例4-1:
与本申请第四实施例对比的第一对比实施例制备的量子点发光二极管10(QLED4-1)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为90nm;
所述空穴注入层13为PEDOT:PSS,厚度为40nm;
所述空穴传输层14为PVK,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xS/Cd yZn 1-yS/ZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为468nm,厚度为20nm,峰宽为18nm;
电子传输层16为ZnO,厚度为80nm;以及
顶电极为Ag,厚度为50nm。
对比例4-2:
与本申请第四实施例对比的第一对比实施例制备的量子点发光二极管10(QLED4-2)包括:
所述衬底11为玻璃基底;
所述阳极12为ITO,厚度为80nm;
所述空穴注入层13为PEDOT:PSS,厚度为70nm;
所述空穴传输层14为TFB,厚度为50nm;
所述量子点发光层15为Cd xZn 1-xSe/Cd yZn 1-ySe/CdZnS(其中0<x<1,0<y<1,x>y)的混合层,发光波长为468nm,厚度为20nm,峰宽为20nm;
电子传输层16为ZnMgO(Mg含量为10%),厚度为50nm;以及
顶电极为Ag,厚度为50nm。
最后,分别对上述十二种量子点发光二极管10器件的最大外量子效率以及实测寿命进行测试,量子点发光二极管10器件性能结果参见表1所示:
表1
Figure PCTCN2022126607-appb-000001
表1中EQE max为量子点发光二极管10的最大外量子效率,T95 1000nit为在1000nit亮度下,亮度下降至最高亮度的95%的时间;以上对比例1~4与实施例1~4中制备的量子点发光二极管10进行性能测试,测试方法如下:
(1)外量子点效率:注入到量子点中的电子-空穴对数转化为出射的光子数的比值,单位是%,是衡量电致发光器件优劣的一个重要参数,采用EQE光学测试仪器测定即可得到。具体计算公式如下:
EQE=ηeηrχ*KR/(KR+KNR);
式中ηe为光输出耦合效率,ηr为复合的载流子数与注入载流子数的比值,χ为产生光子的激子数与总激子数的比值,KR为辐射过程速率,KNR为非辐射过程速率。
测试条件:在室温下进行,空气湿度为30~60%。
(2)量子点发光二级管器件寿命:器件在恒定电流或电压驱动下,亮度减少至最高亮度的一定比例时所需的时间,亮度下降至最高亮度的95%的时间定义为T95,该寿命为实测寿命。为缩短测试周期,器件寿命测试通常是参考有机发光二极管器件测试在高亮度下通过加速器件老化进行,并通过延伸型指数 衰减亮度衰减拟合公式拟合得到高亮度下的寿命,比如:1000nit下的寿命计为T951000nit。具体计算公式如下:
T95 L=T95 H*(L H/L L) A
式中T95 L为低亮度下的寿命,T95 H为高亮度下的实测寿命,L H为器件加速至最高亮度,L L为1000nit,A为加速因子,对OLED而言,该取值通常为1.6~2,本实验通过测得若干组绿色QLED器件在额定亮度下的寿命得出A值为1.7。
采用寿命测试系统对相应器件进行寿命测试的测试条件为:在室温下进行,空气湿度为30~60%。
由上表1可知,将实施例1与对比例1-1、对比例1-2进行对比可知,对比例1-1提供的量子点发光二极管具有相对高的最大外量子效率以及相对短的实测寿命特性,对比例1-2提供的量子点发光二极管具有相对长的实测寿命以及相对低的最大外量子效率特性,实施例1提供的量子点发光二极管的最大外量子效率介于对比文件1-1与对比文件1-2最大外量子效率之间,实施例1提供的量子点发光二极管的实测寿命介于对比文件1-1与对比文件1-2的实测寿命之间;因此,实施例1提供的量子点发光二极管因为加入所述第一配体,使得其兼具高效率与高实测寿命的特点。同理,实施例2、实施例3以及实施例4提供的量子点发光二极管均是如此,在此不再赘述。
进一步地,将实施例1与实施例2进行对比可知,在所述第一配体的材料和含量相同且其他膜层大致相同的情况下,增加所述量子点发光层15中具有相对高的最大外量子效率的第一量子点中占所述量子点发光层15的总质量的质量百分比时,此时制备的量子点发光二极管的最大外量子效率变小,且实测寿命的时间变长。
进一步地,将实施例2与实施例4进行对比可知,在实施例2中的所述第一配体的含量与实施例4中的所述第一配体的含量相同,且其他膜层大致相同的情况下,所述第一配体的材料为苯基二硫代氨基甲酸酯时制备的量子点发光二极管的最大外量子效率大于所述第一配体的材料为1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾时制备的量子点发光二极管的最大外量子效率;所述第一配体的材料为苯基二硫代氨基甲酸酯时制备的量子点发光二极管的实测寿 命高于所述第一配体的材料为1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾时制备的量子点发光二极管的实测寿命。
进一步地,将实施例3与实施例4进行对比可知,在实施例3中的所述第一配体的材料与实施例4中的所述第一配体的材料相同,且其他膜层大致相同的情况下,所述第一配体的占所述量子点发光层15的质量百分比在一定范围内增加,此时制备的量子点发光二极管的最大外量子效率以及实测寿命均增加。
进一步地,将对比例1-1与对比例3-1对比可知,在其他膜层相同的情况下,第一量子点的发光波长越大,其最大外量子效率越大,且实测寿命越高。
相应地,本申请实施例还提供一种显示装置,包括如上任一项所述的量子点发光二极管10。
综上所述,本申请实施例提供一种量子点薄膜、量子点发光二极管及其制备方法、显示装置;所述量子点薄膜包括第一量子点、第二量子点、以及结合在所述第一量子点和/或者所述第二量子点表面的第一配体,其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠;上述量子点薄膜通过在所述第一量子点与所述第二量子点之间添加所述第一配体,所述第一配体能够将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠,激子间的堆叠作用使得一部分所述第一激子跟随与其堆叠的所述第二激子辐射复合输出至所述第二量子点的核壳中,同时使得一部分所述第二激子跟随与其堆叠的所述第一激子辐射复合输出至所述第一量子点的核壳中,从而使得所述第一量子点和/或者所述第二量子点同时具备所述第一激子以及所述第二激子,进而使得整个混合体系的量子点兼具两种不同类型的量子点的优势,从而使得上述量子点薄膜制备的量子点发光二极管兼具单独采用所述第一量子点制备的第一量子点发光二极管的特性以及单独采用所述第二量子点制备的第二量子点发光二极管的特性,进一步提升了量子点发光二极管的发光性能。
以上对本申请实施例所提供的一种量子点发光二极管及其制备方法、显示装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同 时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种量子点薄膜,其中,所述量子点薄膜中包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;
    其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
  2. 根据权利要求1所述的量子点薄膜,其中,单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率大于或等于10%,且所述第一量子点发光二极管的亮度在1000nit下的实测寿命小于或者等于1h;单独使用所述第二量子点制备的第二量子点发光二极管的亮度在1000nit下的实测寿命在1h至20h之间。
  3. 根据权利要求2所述的量子点薄膜,其中,所述单独使用所述第一量子点制备的第一量子点发光二极管的外量子效率在10%至22%之间。
  4. 根据权利要求2所述的量子点薄膜,其中,所述单独使用所述第二量子点制备的第二量子点发光二极管的亮度在1000nit下的实测寿命在3h至10h之间。
  5. 根据权利要求1所述的量子点薄膜,其中,所述第一配体选自激子离域配体。
  6. 根据权利要求5所述的量子点薄膜,其中,所述激子离域配体选自苯基二硫代氨基甲酸酯以及1,3-二甲基-4,5-二取代咪唑亚基N-杂环卡宾中的一种或多种。
  7. 根据权利要求1所述的量子点薄膜,其中,所述第一配体占所述量子点薄膜的质量百分比范围为2%至15%。
  8. 根据权利要求7所述的量子点薄膜,其中,所述第一配体占所述量子点薄膜的质量百分比范围为2%至8%。
  9. 根据权利要求1所述的量子点薄膜,其中,所述第一量子点与所述第二量子点的质量比范围为1:1~1:10。
  10. 根据权利要求1所述的量子点薄膜,其中,所述第一量子点与所述第二量子点的发光波长在同一个波段范围,且能带宽度相同;其中,所述能带宽 度为能带中的最低能级到最高能级之间的能量范围。
  11. 根据权利要求1所述的量子点薄膜,其中,所述第一量子点和所述第二量子点独立地选自核壳结构量子点。
  12. 根据权利要求1所述的量子点薄膜,其中,所述第一量子点和所述第二量子点独立地选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe以及SnPbSTe中的一种或多种;所述第一量子点的材料与所述第二量子点的材料不同。
  13. 一种量子点发光二极管,其中,所述量子点发光二极管包括第一电极和第二电极以及设置在所述第一电极与所述第二电极之间的量子点发光层,其中,所述量子点发光层由权利要求1至12任一项所述量子点薄膜制备的量子点发光层。
  14. 根据权利要求13所述的量子点发光二极管,其中,所述第一电极与所述第二电极中的一者为阳极,另一者为阴极;
    所述量子点发光二极管包括空穴注入层、空穴传输层和电子传输层;所述空穴注入层和所述空穴传输层设置在所述阳极与所述量子点发光层之间,所述空穴注入层靠近所述阳极一侧设置,所述空穴传输层靠近所述量子点发光层设置;
    所述电子传输层设置在所述阴极与所述量子点发光层之间;
    所述空穴注入层的材料包括聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)、多芳基胺、聚(N-乙烯基咔唑)、聚苯 胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺、4-双[N-(1-萘基)-N-苯基-氨基]联苯、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺、4,4',4”-三(N-咔唑基)-三苯基胺、1,1-双[(二-4-甲苯基氨基)苯基环己烷、掺杂有四氟-四氰基-醌二甲烷的4,4',4”-三(二苯基氨基)三苯胺、p-掺杂酞菁、掺杂有四氟-四氰基-醌二甲烷的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺以及六氮杂苯并菲-己腈中的任意一种;
    所述空穴传输层的材料包括芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐及其衍生物;聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺以及螺NPB中的一种或多种;
    所述电子传输层的材料包括第一无机材料或者第一有机材料,所述第一无机材料包括未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的氧化物、未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的半导体颗粒、以及氮化物中的一种或多种;所述第一有机材料包括噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物以及铝络合物中的一种或多种;所述阳极的材料包括ITO、IZO、ITZO、ICO、SnO 2、In 2O 3、Cd:ZnO、F:SnO 2、In:SnO 2、Ga:SnO 2、AZO、Ni、Pt、Au、Ag、Ir以及CNT中的一种或多种;
    所述阴极的材料包括Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF 2/Al、CsF/Al、CaCO 3/Al、BaF 2/Ca/Al、Al、Mg、Au:Mg以及Ag:Mg中的一种或多种。
  15. 一种量子点发光二极管的制备方法,其中,包括如下步骤:
    提供第一电极;
    在所述第一电极上形成量子点薄膜,热退火处理,形成量子点发光层;
    在所述量子点发光层形成第二电极;
    其中,所述量子点薄膜中包含量子点,至少部分所述量子点的表面连接有第一配体,所述量子点包括第一量子点和第二量子点;其中,所述第一配体用于将所述第一量子点产生的第一激子与所述第二量子点产生的第二激子堆叠。
  16. 根据权利要求15所述的制备方法,其中,所述在所述第一电极上形成量子点薄膜,包括:将量子点墨水设置在所述第一电极上形成湿膜,放置处理后,干燥形成所述量子点薄膜。
  17. 根据权利要求16所述的制备方法,其中,所述放置处理的压力为常压,时间为2min~10min。
  18. 根据权利要求17所述的制备方法,其中,所述放置处理的温度为10℃~35℃。
  19. 根据权利要求15所述的制备方法,其中,所述热退火处理的温度在50℃至120℃之间,时间在5min~30min之间。
  20. 根据权利要求15所述的制备方法,其中,
    所述第一电极与所述第二电极中的一者为阳极,另一者为阴极;
    所述制备方法包括:在所述阳极与所述量子点发光层之间形成空穴注入层和空穴传输层,所述空穴注入层靠近所述阳极一侧设置,所述空穴传输层靠近所述量子点发光层设置;以及在所述阴极与所述量子点发光层之间形成电子传输层;
    其中,所述空穴注入层的材料包括聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺、4-双[N-(1-萘基)-N-苯基-氨基]联苯、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺、4,4',4”-三(N-咔唑基)-三苯基胺、1,1-双[(二-4-甲苯基氨基)苯基环己烷、掺杂有四氟-四氰基-醌二甲烷的4,4',4”-三(二苯基氨基)三苯胺、p-掺杂酞菁、掺杂有四氟-四氰基-醌二甲烷的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺以及六氮杂苯并菲-己腈中的任意一种;
    所述空穴传输层的材料包括芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐及其衍生物;聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺以及螺NPB中的一种或多种;
    所述电子传输层的材料包括第一无机材料或者第一有机材料,所述第一无机材料包括未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的氧化物、未掺杂或用Al、Mg、In、Li、Ga、Cd、Cs或Cu掺杂的半导体颗粒、以及氮化物中的一种或多种;所述第一有机材料包括噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物以及铝络合物中的一种或多种;所述阳极的材料包括ITO、IZO、ITZO、ICO、SnO 2、In 2O 3、Cd:ZnO、F:SnO 2、In:SnO 2、Ga:SnO 2、AZO、Ni、Pt、Au、Ag、Ir以及CNT中的一种或多种;
    所述阴极的材料包括Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF 2/Al、CsF/Al、CaCO 3/Al、BaF 2/Ca/Al、Al、Mg、Au:Mg以及Ag:Mg中的一种或多种。
PCT/CN2022/126607 2021-11-09 2022-10-21 一种量子点薄膜、量子点发光二极管及其制备方法 WO2023082967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111322270.0A CN116103046A (zh) 2021-11-09 2021-11-09 量子点薄膜、量子点发光二极管及其制备方法、显示装置
CN202111322270.0 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023082967A1 true WO2023082967A1 (zh) 2023-05-19

Family

ID=86258406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126607 WO2023082967A1 (zh) 2021-11-09 2022-10-21 一种量子点薄膜、量子点发光二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN116103046A (zh)
WO (1) WO2023082967A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992807A (zh) * 2014-02-07 2016-10-05 纳米技术有限公司 具有增强的稳定性和发光效率的量子点纳米粒子
CN109868132A (zh) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 一种颗粒及其制备方法
CN111224018A (zh) * 2018-11-26 2020-06-02 Tcl集团股份有限公司 一种量子点发光二极管的制备方法
CN112331778A (zh) * 2019-11-20 2021-02-05 广东聚华印刷显示技术有限公司 量子点发光器件及其制备方法、发光装置
CN113122258A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 量子点及其制备方法、量子点发光二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992807A (zh) * 2014-02-07 2016-10-05 纳米技术有限公司 具有增强的稳定性和发光效率的量子点纳米粒子
CN109868132A (zh) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 一种颗粒及其制备方法
CN111224018A (zh) * 2018-11-26 2020-06-02 Tcl集团股份有限公司 一种量子点发光二极管的制备方法
CN112331778A (zh) * 2019-11-20 2021-02-05 广东聚华印刷显示技术有限公司 量子点发光器件及其制备方法、发光装置
CN113122258A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 量子点及其制备方法、量子点发光二极管

Also Published As

Publication number Publication date
CN116103046A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN110289360B (zh) 电致发光器件、包括其的显示设备、及其形成方法
KR102673644B1 (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR100789559B1 (ko) 절연층을 포함하는 무기 전계발광 소자, 그의 제조방법 및이를 포함하는 전자소자
US20080238299A1 (en) Nanodot electroluminescent diode of tandem structure and method for fabricating the same
CN110828681B (zh) 量子点发光器件及包括其的显示设备
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
US20230121473A1 (en) Electroluminescent device, and display device comprising thereof
KR20200028657A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
WO2023082967A1 (zh) 一种量子点薄膜、量子点发光二极管及其制备方法
CN113809246B (zh) 复合材料及其制备方法和量子点发光二极管
CN116234345A (zh) 电致发光器件及其制备方法、显示装置
CN219938867U (zh) 发光器件及显示装置
WO2024139692A1 (zh) 发光器件、其制造方法以及显示装置
KR102533541B1 (ko) 양자점 발광 다이오드용 정공전달체 및 이를 포함하는 양자점 발광 다이오드
WO2024109334A1 (zh) 复合材料、组合物及发光器件
US11569471B2 (en) Light emitting device (LED) and multi-stacked LED including charge generation junction (CGJ) layer, and manufacturing method thereof
CN113130788B (zh) 复合材料、薄膜、量子点发光二极管
US20230023840A1 (en) Quantum dot film, method for preparing the same, and quantum dot light emitting diode
CN116133451A (zh) 量子点发光二极管及其制备方法、光电装置
CN115867064A (zh) 量子点发光二极管及其制备方法、光电装置
CN118042905A (zh) 复合材料、组合物及其制备方法、发光器件及显示装置
CN117153452A (zh) 复合材料及其制备方法、发光二极管及显示装置
CN115703648A (zh) 改性氧化锌及制备方法和发光二极管
KR20210112939A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
CN113130785A (zh) 量子点薄膜、量子点发光二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891764

Country of ref document: EP

Kind code of ref document: A1