WO2023082845A1 - 起机系统及控制方法 - Google Patents

起机系统及控制方法 Download PDF

Info

Publication number
WO2023082845A1
WO2023082845A1 PCT/CN2022/120271 CN2022120271W WO2023082845A1 WO 2023082845 A1 WO2023082845 A1 WO 2023082845A1 CN 2022120271 W CN2022120271 W CN 2022120271W WO 2023082845 A1 WO2023082845 A1 WO 2023082845A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
storage tank
engine
intake manifold
air
Prior art date
Application number
PCT/CN2022/120271
Other languages
English (en)
French (fr)
Inventor
祝浩
于长虹
刘元治
杨钫
赵东峰
盛振兴
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023082845A1 publication Critical patent/WO2023082845A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application belongs to the technical field of automobiles, and for example relates to a starting system and a control method.
  • the hybrid vehicle has a series configuration hybrid, and the engine and generator are directly connected together through torsional shock absorbers. During the starting process, the output torque of the generator drags the engine to a certain speed and then the engine ignites, then the torque of the generator turns from positive torque to negative torque for power generation, and the power output by the generator is transmitted to the drive motor to complete the drive of the vehicle .
  • the dragging resistance torque comes from the moment of inertia of the crankshaft, torsional shock absorber, reduction gear and generator rotor on the one hand, and from the compression reaction force of the piston in the engine on the other hand.
  • intake and exhaust variable valve timing and throttle valve Through the coordinated control of intake and exhaust variable valve timing and throttle valve, the actual intake air volume in the cylinder during the dragging process can be reduced to a certain extent, thereby reducing the compression reaction force of the piston.
  • the intake and exhaust variable valve timing of the current engine is mostly in the form of hydraulic drive, the variable valve timing can hardly be controlled during the starting process, so it is difficult to effectively reduce the actual progress in the cylinder during the dragging process only through throttle control. capacity.
  • the application provides a starting system to reduce the compression reaction force of the piston of the engine and the drag torque of the generator, and improve the starting speed and noise, vibration and harshness of the engine (Noise, Vibration, Harshness, NVH) performance.
  • a starting system comprising an engine, a generator and a control unit, the generator being configured to drive the engine to rotate;
  • the engine comprising a cylinder, a throttle valve and a piston, the piston being slidably disposed in the cylinder,
  • the cylinder has an intake manifold, and the throttle valve is arranged on the intake manifold;
  • the starting system also includes:
  • a suction pipeline the two ends of the suction pipeline communicate with the gas storage tank and the intake manifold respectively, and the throttle valve and the suction pipeline communicate with the gas in the intake manifold
  • the flow directions of are arranged in sequence;
  • a solenoid valve is arranged on the suction pipeline; the solenoid valve is configured to open when the engine is stopped and the throttle valve is closed, and when the opening time of the solenoid valve reaches a preset opening time or the engine or, when the engine starts and the pressure in the air storage tank is less than the maximum allowable pressure of the air storage tank, the throttle valve is closed and the speed of the engine reaches the first predetermined value. Open when the speed is set, and close when the control unit issues an injection command or the speed of the engine reaches the second preset speed; or, when the engine starts, the pressure in the air storage tank is greater than the Always keep the tank closed at the maximum allowable pressure.
  • the starting system further includes:
  • a rotational speed sensor is arranged on the cylinder, and the rotational speed sensor is configured to measure the rotational speed of the engine.
  • the starting system further includes:
  • the first pressure sensor is arranged on the intake manifold, and the throttle valve and the first pressure sensor are sequentially arranged along the gas flow direction in the intake manifold;
  • a second pressure sensor disposed on the air storage tank, configured to measure the pressure in the air storage tank
  • a third pressure sensor configured to measure atmospheric pressure external to the starter system.
  • twice the sum of the volume of the intake manifold between the throttle valve and the cylinder and the displacement of the engine is the volume of the air storage tank.
  • the pressure of the gas storage tank when the pressure of the gas storage tank is 1000hPa, the pressure at the end of the solenoid valve away from the gas storage tank is always maintained at 300hPa, and the suction pipeline is configured to , the pressure of the gas storage tank can drop from 1000hPa to 500hPa within 0.4s.
  • the first preset speed of the engine is 20r/min-50r/min
  • the second preset speed is 900r/min-1100r/min.
  • the present application provides a control method for a starting system, so as to reduce the compression reaction force of the piston of the engine and the drag torque of the generator, and improve the starting speed and NVH performance of the engine.
  • control method for a starting system applied to the above-mentioned starting system, the control method for the starting system comprising:
  • the generator starts and drives the engine to rotate, and at the same time, the control unit issues a fuel cut command, and the throttle valve is closed;
  • the solenoid valve In response to the rotational speed of the engine reaching the first preset rotational speed, the solenoid valve is opened, and the intake manifold communicates with the air storage tank so that the air storage tank and the piston jointly pump air within the intake manifold;
  • the solenoid valve is closed.
  • control method of the starting system further includes:
  • control unit When the engine is shut down, the control unit issues a fuel cut command, and the throttle valve is closed to reduce the pressure of the intake manifold;
  • the electromagnetic valve is opened, and the intake manifold communicates with the air storage tank, so that the intake manifold sucks the air in the air storage tank;
  • the solenoid valve In response to judging that the pressure in the air storage tank is less than the maximum allowable pressure of the air storage tank, the solenoid valve is closed;
  • the generator In response to the pressure in the intake manifold being greater than the pressure in the air storage tank, the generator is used to drive the engine to rotate at a real speed for a preset time, so that the pressure in the intake manifold is less than the pressure in the air storage tank the pressure in the tank;
  • the solenoid valve is controlled to close in response to the pressure in the intake manifold being not greater than the pressure in the air tank.
  • the method when the engine is shut down, after the control unit issues a fuel cut command and the throttle valve is closed, before the solenoid valve is opened, the method further includes:
  • the intake manifold blow-by is determined in response to a minimum pressure value within the intake manifold being not less than a pressure threshold of the intake manifold.
  • the first pressure value in the gas storage tank is obtained; before the engine is started, the second pressure value in the gas storage tank is obtained; the first pressure value in the gas storage tank is calculated. Whether the difference between the second pressure value and the first pressure value is greater than 50hPa;
  • Fig. 1 is a schematic structural diagram of a starting system provided by an embodiment of the present application.
  • Fig. 2 is a main flow chart of a control method of the start-up system during the shutdown process provided by the embodiment of the present application;
  • Fig. 3 is a main flow chart of a method for controlling the start-up system during the start-up process provided by the embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact. contact but through additional feature contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • this embodiment discloses a starting system, which includes an engine 1 , a generator and a control unit 5 .
  • the starting system is a starting system of a hybrid vehicle, for example, may be a starting system of a hybrid vehicle, or may be a starting system of a hybrid passenger vehicle.
  • the engine 1 includes a cylinder 11, a throttle valve 12, a piston 13, a crankshaft 14, and a flywheel 15.
  • the cylinder 11 has an intake manifold 111 and an exhaust manifold 112 communicating with the inner cavity of the cylinder 11.
  • the throttle valve 12 is mounted on the intake manifold. On the pipe 111 , it is configured to control the amount of air entering the intake manifold 111 .
  • the turbocharger 18 and the three-way catalytic converter 19 are sequentially installed on the outlet manifold 112 along the flow direction of the air in the outlet manifold 112 .
  • the piston 13 is slidably arranged in the cylinder 11, and the piston 13 performs work through the compressed air, thereby driving the crankshaft 14 and the flywheel 15 to rotate.
  • the control unit 5 of this embodiment includes an engine controller 51 and a vehicle controller 52, and the vehicle controller 52 is connected to the engine controller 51 through a controller area network (ontroller Area Network, CAN) bus.
  • the engine controller 51 can send the speed signal of the engine 1 , the pressure signal of the intake manifold 111 , the opening degree signal of the throttle valve 12 and the like to the vehicle controller 52 through the CAN bus.
  • the vehicle controller 52 can transmit the fuel injection enabling signal of the engine 1 , the generator output torque signal, etc. to the engine controller 51 through the CAN bus.
  • the starting system further includes a rotational speed sensor 16 and a pressure sensor, and the rotational speed sensor 16 is arranged on the cylinder 11 .
  • the rotational speed sensor 16 is configured to measure the rotational speed of the engine 1 .
  • the rotational speed of the crankshaft 14 of the engine 1 is the rotational speed of the engine 1 .
  • the pressure sensor in this embodiment includes a first pressure sensor 171, a second pressure sensor 172 and a third pressure sensor 173.
  • the first pressure sensor 171 is arranged on the intake manifold 111 to measure the pressure of the intake manifold after the throttle valve 12 is closed. Pressure value within 111.
  • the throttle valve 12 and the first pressure sensor 171 are sequentially arranged along the gas flow direction in the intake manifold 111 .
  • the second pressure sensor 172 is disposed on the gas storage tank 2 and is configured to measure the pressure in the gas storage tank 2 .
  • the third pressure sensor 173 is installed on the engine controller 51 and is configured to measure the atmospheric pressure outside the starting system.
  • the rotational speed sensor 16, the first pressure sensor 171 and the third pressure sensor 173 are all in communication connection with the engine controller 51, so as to transmit the rotational speed of the engine 1, the pressure value in the intake manifold 111 and the external atmospheric pressure of the starting system to the engine controller.
  • the second pressure sensor 172 is connected in communication with the vehicle controller 52, so as to transmit the pressure value in the air tank 2 to the vehicle controller 52.
  • the opening and closing of the throttle valve 12 is controlled by the control unit 5 .
  • the engine controller 51 controls the opening degree of the throttle valve 12 and can transmit the opening degree signal of the throttle valve 12 to the vehicle controller 52 .
  • the vehicle controller 52 can send a fuel injection enabling signal to the engine controller 51 .
  • the fuel injection enable signal is 0, it means a fuel cut command.
  • the fuel injection enable signal is 1, it means a fuel injection command.
  • the normal starting process of the engine is as follows: the vehicle controller 52 controls the generator to output positive torque to drive the crankshaft 14 of the engine 1 to rotate. When the engine 1 reaches a certain speed, the torque of the generator changes from positive torque to negative torque. Power generation, the power output by the generator is transmitted to the drive motor to complete the drive of the vehicle.
  • the throttle valve 12 in the engine 1 is opened, and the piston 13 sucks the air in the intake manifold 111 and compresses it in the cylinder 11 to do work to drive the crankshaft 14 and the flywheel 15 to rotate. Then the exhaust gas is discharged into the exhaust manifold 112 , and after passing through the turbocharger 18 , the exhaust gas is finally purified by the three-way catalytic converter 19 and discharged to the outside of the engine 1 .
  • the drag torque of the engine 1 comes from the moment of inertia of the crankshaft 14 and other related structures on the one hand, and from the compression reaction force of the piston 13 on the other hand.
  • the actual intake air volume of the cylinder 11 during the dragging process can be reduced to a certain extent through the coordinated control of the intake and exhaust variable valve timing and the throttle valve 12, thereby reducing the compression reaction force of the piston 13.
  • the intake and exhaust variable valve timing of the engine 1 is mostly driven by hydraulic pressure, and effective control cannot be realized during the starting process. Therefore, it is difficult to effectively reduce the actual intake air volume in the cylinder 11 during dragging only by controlling the throttle valve 12 .
  • the compression reaction force of the piston 13 is the main cause of vibration and noise of the engine 1 , and excessive compression reaction force also affects the NVH performance of the engine 1 .
  • the starting system of this embodiment further includes an air storage tank 2 , a suction pipeline 3 and a solenoid valve 4 .
  • Both ends of the suction pipeline 3 can communicate with the gas storage tank 2 and the intake manifold 111 respectively, and the throttle valve 12 and the suction pipeline 3 are sequentially arranged along the flow direction of the gas in the intake manifold 111 .
  • the solenoid valve 4 is arranged on the suction pipeline 3 to control the on-off of the suction pipeline 3 .
  • the vehicle controller 52 controls the opening and closing of the solenoid valve 4 .
  • the solenoid valve 4 When the solenoid valve 4 is opened, the intake manifold 111 communicates with the air storage tank 2 through the suction line 3 .
  • the solenoid valve 4 is closed, the intake manifold 111 is disconnected from the gas storage tank 2 .
  • This embodiment also discloses a control method for the start-up system.
  • the control method for the start-up system can enable the air storage tank 2 to extract air from the intake manifold 111 to reduce the pressure of the piston 13. The air extraction amount is reduced, thereby reducing the compression reaction force of the piston 13 and improving the NVH performance of the engine 1 .
  • the control unit 5 issues a fuel cut command, and the throttle valve 12 is closed, so that the pressure of the intake manifold 111 drops.
  • the electromagnetic valve 4 is opened, and the intake manifold 111 communicates with the air storage tank 2 , so that the intake manifold 111 sucks the air in the air storage tank 2 .
  • the generator drives the engine 1 to rotate at a real-time speed for a preset time, so that the pressure in the intake manifold 111 is lower than the pressure in the air storage tank 2 .
  • the solenoid valve 4 is closed.
  • the generator starts and drives the engine 1 to rotate, and at the same time the control unit 5 issues a fuel cut command, and the throttle valve 12 is closed.
  • the solenoid valve 4 remains closed all the time, and the starting of the engine 1 is realized by increasing the output power of the generator.
  • the solenoid valve 4 is opened, and the intake manifold 111 communicates with the air storage tank 2 , so that the air storage tank 2 and the piston 13 suck air in the intake manifold 111 together.
  • control unit 5 issues an oil injection command, and/or whether the rotational speed of the engine 1 reaches the second preset rotational speed.
  • the solenoid valve 4 is closed.
  • the calculation method of the maximum allowable pressure (threshold value) of the gas storage tank 2 is: under the current atmospheric pressure, the maximum pressure value of the gas storage tank 2 is set as the current atmospheric pressure value, and the pressure of the gas storage tank 2 decreases from large to small. Step length 50hPa decreases successively. For example, if the current atmospheric pressure is 1000hPa, set the maximum pressure value of the air storage tank 2 to 1000hPa, then decrease the pressure value of the air storage tank 2 from 1000hPa to 950hPa, 900hPa, 850hPa... The maximum pressure value of the gas storage tank 2 that satisfies the NVH performance of the engine 1 during the engine process is taken as the maximum allowable pressure of the gas storage tank 2 under the current atmospheric pressure.
  • the maximum allowable pressure of the gas storage tank 2 under multiple different atmospheric pressure environments can be obtained by performing the above tests under different atmospheric pressures. And the maximum allowable pressure of the corresponding air storage tank 2 under different atmospheric pressure environments is entered into the table for preservation. When using the starting system, it is convenient and quick to directly refer to the table according to the current atmospheric pressure value.
  • the fuel injection enabling signal sent by the vehicle controller 52 to the engine controller 51 is set to 0, that is, a fuel cut-off command.
  • the engine controller 51 controls the throttle valve 12 to close. Since the engine 1 is still rotating, the piston 13 will draw air from the intake manifold 111 , and the pressure in the intake manifold 111 will drop rapidly.
  • the vehicle controller 52 controls the electromagnetic valve 4 to open, the gas storage tank 2 communicates with the intake manifold 111, and the piston 13 passes through the intake manifold 111.
  • the pipe 111 extracts the air in the air storage tank 2, so that the pressure of the air storage tank 2 drops rapidly and has a certain degree of vacuum.
  • the vehicle controller 52 controls the solenoid valve 4 to close.
  • the pressure in the air storage tank 2 is greater than or equal to the maximum allowable pressure of the air storage tank 2
  • the vehicle controller 52 controls the solenoid valve 4 to close.
  • the generator when it is determined that the pumping time of the air storage tank 2 is insufficient, the generator outputs positive torque to drive the engine 1 to rotate at the current real-time speed for a preset time, and the preset time is the speed maintenance time. Since the throttle valve 12 is completely closed, the longer the speed of the engine 1 is maintained, the longer the time for the piston 13 to extract the air in the air storage tank 2 through the intake manifold 111, so that the pressure in the air storage tank 2 continues to decrease until The pressure in the intake manifold 111 is greater than the pressure in the gas storage tank 2 , the vehicle controller 52 controls the solenoid valve 4 to close, and the gas storage tank 2 maintains a low pressure state to prepare for the next start of the engine 1 .
  • the control unit 5 sends a fuel cut command.
  • the throttle valve 12 is not completely closed at this time or there is a certain air leakage in the intake manifold 111, the sealing effect will be reduced. Poor, so that the minimum pressure value of the intake manifold 111 will increase during the fuel cut-off process, when the solenoid valve 4 is opened, the intake manifold 111 will not extract or reduce the intake of the air in the air storage tank 2, so that the air storage It is difficult for the tank 2 to establish a pressure environment lower than that of the intake manifold 111 . Therefore, during the shutdown process of the engine 1 , it is also necessary to detect whether the airtightness of the intake manifold 111 is good.
  • the control unit 5 issues the fuel cut command and the throttle valve 12 is closed, before the solenoid valve 4 is opened, it is determined whether the minimum pressure value in the intake manifold 111 is less than the pressure threshold value of the intake manifold 111 . If the minimum pressure value in the intake manifold 111 is less than the pressure threshold value of the intake manifold 111, it means that the intake manifold 111 has no air leakage and has good sealing performance. If the minimum pressure value in the intake manifold 111 is greater than or equal to the pressure threshold value of the intake manifold 111, it indicates that the intake manifold 111 is leaking and the sealing performance is poor.
  • the pressure threshold of the intake manifold 111 is related to the atmospheric pressure of the environment where the engine 1 is located. Those skilled in the art can obtain the pressure threshold value of the intake manifold 111 through experiments.
  • the method for obtaining the pressure threshold value of the intake manifold 111 is: select the throttle valve 12 and the intake manifold 111 of qualified quality, so that the throttle valve 12 can be completely closed and the intake manifold 111 is well sealed. Next, a shutdown test is carried out to obtain the minimum pressure value of the intake manifold 111 during the shutdown process under different ambient atmospheric pressures, and the minimum pressure value plus 50hPa is used as the pressure threshold value of the intake manifold 111.
  • the first pressure value in the gas storage tank 2 is obtained.
  • the second pressure value in the gas storage tank 2 is obtained. Calculate whether the difference between the second pressure value and the first pressure value is greater than 50hPa. If the difference between the two is greater than 50hPa, it means that the gas storage tank 2 is leaking and the sealing performance is poor. The vehicle controller 52 records and stores this fault. If the difference between the two is less than 50 hPa, it means that the gas storage tank 2 has no air leakage and has good sealing performance.
  • the vehicle controller 52 controls the generator to start, and drives the engine 1 to rotate. At the same time, the vehicle controller 52 sends a fuel injection enable signal 0 to the engine controller 51, that is, a fuel cut-off command. The engine controller 51 closes the throttle valve 12 after receiving the fuel cut command. Judging whether the pressure in the gas storage tank 2 is less than the maximum allowable pressure of the gas storage tank 2, if the pressure in the gas storage tank 2 is less than the maximum allowable pressure of the gas storage tank 2, when the speed of the engine 1 reaches the first preset speed , the piston 13 begins to draw air from the intake manifold 111.
  • the electromagnetic valve 4 is opened, and the pressure in the air storage tank 2 is relatively low at this moment, so that the air storage tank 2 and the piston 13 jointly extract the air of the intake manifold 111 , reducing the amount of air drawn by the piston 13 .
  • the vehicle controller 52 sends the fuel injection enable signal 1 (fuel injection command) to the engine controller 51 or the speed of the engine 1 reaches the second preset speed, the engine 1 is started and the solenoid valve 4 is closed. If the pressure in the gas tank 2 is greater than the maximum allowable pressure of the gas tank 2, the solenoid valve 4 remains closed, and the starting of the engine 1 is completed by increasing the output power of the generator.
  • the first preset speed of the engine 1 is 20r/min ⁇ 50r/m/in
  • the second preset speed is 900r/min ⁇ 1100r/min.
  • the first preset rotation speed may be 20r/min, 30r/min, 40r/min or 50r/min and so on.
  • the second preset rotation speed may be 900r/min, 1000r/min or 1100r/min, etc.
  • the first preset rotation speed is 20r/min
  • the second preset rotation speed is 1000r/min.
  • the throttle valve 12 When the engine 1 is stopped, the throttle valve 12 is closed, and the piston 13 draws air from the intake manifold 111 , so that the pressure of the intake manifold 111 decreases. Electromagnetic valve 4 is opened, so that gas storage tank 2 communicates with intake manifold 111, piston 13 sucks the air of gas storage tank 2 through intake manifold 111, and the pressure of gas storage tank 2 decreases, so that gas storage tank 2 has a certain of vacuum.
  • the throttle valve 12 When the throttle valve 12 is closed, and when the rotational speed of the engine 1 reaches the first preset rotational speed, the electromagnetic valve 4 is opened, so that the gas storage tank 2 is communicated with the intake manifold 111, and the gas storage tank 2 is connected with the piston. 13 jointly extract the air of the intake manifold 111, which reduces the amount of air drawn by the piston 13, thereby reducing the compression reaction force of the piston 13, which is conducive to reducing the drag torque of the generator and improving the starting efficiency of the engine 1.
  • the starting vibration of the engine 1 can be reduced, and the NVH performance of the engine 1 can be improved.
  • each start must be successful, before the start is successful, stop control is not allowed during the start process.
  • the air storage tank 2 can draw air in the intake manifold 111 .
  • the air storage tank 2 may also extract a part of the air in the cylinder 11 . Therefore, the volume of the air storage tank 2 is related to the volume of the intake manifold 111 and the displacement of the engine 1 .
  • the volume of the air storage tank 2 is twice the sum of the volume of the intake manifold 111 between the throttle valve 12 and the cylinder 11 and the displacement of the engine 1 .
  • the displacement of the engine 1 refers to the sum of the volumes of all the cylinders 11 .
  • the intake manifold 111 of the present embodiment has a volume of 3L between the throttle valve 12 and the intake valve of the cylinder 11, the engine 1 has four cylinders 11, and the volume of each cylinder 11 is 0.5L.
  • the displacement of 1 is 2L, and the volume of the gas storage tank 2 is 10L.
  • the selection principle is: after the volume of the gas storage tank 2 is determined, the pressure of the gas storage tank 2 is set to 1000hPa, and the pressure at the end of the solenoid valve 4 away from the gas storage tank 2 is always kept at 300hPa.
  • the electromagnetic valve 4 When the electromagnetic valve 4 is opened, the air in the air storage tank 2 can flow out through the electromagnetic valve 4 and the suction pipeline 3, so that the pressure of the air storage tank 2 can drop from 1000hPa to 500hPa within 0.4s.
  • the minimum pipeline cross-sectional area that satisfies the pumping speed is taken as the flow cross-sectional area of the suction pipeline 3 and the solenoid valve 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种起机系统及控制方法,起机系统包括发动机(1)、发电机、控制单元(5)、储气罐(2)、抽吸管路(3)以及电磁阀(4);发电机驱动发动机(1)转动,抽吸管路(3)的两端分别与储气罐(2)和进气歧管(111)连通,节气门(12)与抽吸管路(3)沿进气歧管(111)内的气体的流动方向依次布置,电磁阀(4)设置于抽吸管路(3)上。在停机过程中,活塞(13)通过进气歧管(111)抽取储气罐(2)内的空气使得储气罐(2)具有一定的真空度;在起机过程中,当发动机(1)的转速达到第一预设转速时,活塞(13)开始从进气歧管(111)内抽取空气,电磁阀(4)打开,储气罐(2)与活塞(13)共同抽取进气歧管(111)的空气;发动机(1)的转速达到第二预设转速时完成起机,电磁阀(4)关闭。该起机系统及控制方法用于降低发动机起动时活塞的压缩反力和发电机的拖动扭矩,提高发动机的起机速度和噪声、振动与声振粗糙度性能。

Description

起机系统及控制方法
本申请要求在2021年11月15日提交中国专利局、申请号为202111345381.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于汽车技术领域,例如涉及一种起机系统及控制方法。
背景技术
混合动力车辆具有串联构型混合动力,发动机与发电机通过扭转减震器直接连接在一起。在起机过程中,发电机输出扭矩将发动机拖动至一定的转速后发动机点火,随后发电机扭矩从正扭矩转为负扭矩进行发电,发电机输出的电力传输至驱动电机完成整车的驱动。
在起机拖动过程中,拖动阻力矩一方面来自曲轴、扭转减震器、减速齿轮以及发电机转子的转动惯量,另一方面则来自发动机内活塞的压缩反力。通过进排气可变气门正时和节气门配合控制,可在一定程度上降低拖动过程中的汽缸内的实际进气量,进而降低活塞的压缩反力。由于当前发动机的进排气可变气门正时多为液压驱动形式,起动过程中可变气门正时几乎无法实现控制,因此仅仅通过节气门控制难以有效降低拖动过程中的汽缸内的实际进气量。
发明内容
本申请提供一种起机系统,以降低发动机的活塞的压缩反力和发电机的拖动扭矩,提高发动机的起机速度和噪声、振动与声振粗糙度(Noise、Vibration、Harshness,NVH)性能。
一种起机系统,包括发动机、发电机和控制单元,所述发电机被配置为驱动所述发动机转动;所述发动机包括汽缸、节气门和活塞,所述活塞滑动设置于所述汽缸内,所述汽缸具有进气歧管,所述节气门设置于所述进气歧管上;所述起机系统还包括:
储气罐;
抽吸管路,所述抽吸管路的两端分别与所述储气罐和所述进气歧管连通,所述节气门与所述抽吸管路沿所述进气歧管内的气体的流动方向依次布置;以及
电磁阀,设置于所述抽吸管路上;所述电磁阀被配置为在所述发动机停机 且所述节气门关闭时打开,在所述电磁阀的打开时间达到预设开启时间或者所述发动机的转速为零时关闭;或者,在所述发动机起机,所述储气罐内的压力小于所述储气罐的最大允许压力,所述节气门关闭且所述发动机的转速达到第一预设转速时打开,在所述控制单元发出喷油指令或所述发动机的转速达到第二预设转速时关闭;或者,在所述发动机起机,所述储气罐内的压力大于所述储气罐的最大允许压力时始终保持关闭。
一实施例中,所述起机系统还包括:
转速传感器,设置于所述汽缸上,所述转速传感器被配置为测量所述发动机的转速。
一实施例中,所述起机系统还包括:
第一压力传感器,设置于所述进气歧管上,所述节气门与所述第一压力传感器沿所述进气歧管内的气体的流动方向依次布置;
第二压力传感器,设置于所述储气罐上,被配置为测量所述储气罐内的压力;以及
第三压力传感器,被配置为测量所述起机系统外部的大气压力。
一实施例中,所述进气歧管在所述节气门与所述汽缸之间的容积和所述发动机的排量之和的两倍为所述储气罐的容积。
一实施例中,当所述储气罐的压力为1000hPa,所述电磁阀远离所述储气罐的一端的压力始终保持300hPa,所述抽吸管路被配置为当所述电磁阀打开时,所述储气罐的压力能够在0.4s内从1000hPa降至500hPa。
一实施例中,所述发动机的所述第一预设转速为20r/min~50r/min,所述第二预设转速为900r/min~1100r/min。
本申请提供一种起机系统的控制方法,以降低发动机的活塞的压缩反力和发电机的拖动扭矩,提高发动机的起机速度和NVH性能。
一种起机系统的控制方法,应用于上述的起机系统,所述起机系统的控制方法包括:
当所述发动机起机时,所述发电机启动并驱动所述发动机转动,同时所述控制单元发出断油指令,所述节气门关闭;
判断所述储气罐内的压力是否小于所述储气罐的最大允许压力;
响应于所述储气罐内的压力小于所述储气罐的最大允许压力,继续判断所述发动机的转速是否达到所述第一预设转速;
响应于所述发动机的转速达到所述第一预设转速,所述电磁阀打开,所述进气歧管与所述储气罐连通,以使所述储气罐与所述活塞共同抽吸所述进气歧管内的空气;
判断所述控制单元是否发出喷油指令;和/或,判断所述发动机的转速是否达到所述第二预设转速;
若所述控制单元发出喷油指令和/或所述发动机的转速达到所述第二预设转速,所述电磁阀关闭。
一实施例中,所述起机系统的控制方法还包括:
当所述发动机停机时,所述控制单元发出断油指令,所述节气门关闭,以使所述进气歧管的压力下降;
所述电磁阀打开,所述进气歧管与所述储气罐连通,以使所述进气歧管抽吸所述储气罐内的空气;
判断所述储气罐内的压力是否小于所述储气罐的最大允许压力;
响应于判断所述储气罐内的压力小于所述储气罐的最大允许压力,所述电磁阀关闭;
响应于判断所述储气罐内的压力不小于所述储气罐的最大允许压力,继续判断所述进气歧管内的压力是否大于所述储气罐内的压力;
响应于所述进气歧管内的压力大于所述储气罐内的压力,通过所述发电机驱动所述发动机以实时转速转动预设时间,以使所述进气歧管内的压力小于所述储气罐内的压力;
响应于所述进气歧管内的压力不大于所述储气罐内的压力,控制所述电磁阀关闭。
一实施例中,当所述发动机停机时,在所述控制单元发出断油指令且所述节气门关闭之后,所述电磁阀打开之前,还包括:
判断所述进气歧管内的最小压力值是否小于所述进气歧管的压力门限值;
响应于所述进气歧管内的最小压力值小于所述进气歧管的压力门限值,确定所述进气歧管不漏气;
响应于所述进气歧管内的最小压力值不小于所述进气歧管的压力门限值,确定所述进气歧管漏气。
一实施例中,在所述发动机停机后,获取所述储气罐内的第一压力值;在所述发动机起机前,获取所述储气罐内的第二压力值;计算所述第二压力值减 去所述第一压力值的差值是否大于50hPa;
响应于差值大于50hPa,确定所述储气罐漏气;
响应于差值不大于50hPa,确定所述储气罐不漏气。
附图说明
图1是本申请实施例提供的一种起机系统的结构示意图;
图2是本申请实施例提供的一种在停机过程中的起机系统的控制方法的主要流程图;
图3是本申请实施例提供的一种在起机过程中的起机系统的控制方法的主要流程图。
图中:
1、发动机;11、汽缸;111、进气歧管;112、出气歧管;12、节气门;13、活塞;14、曲轴;15、飞轮;16、转速传感器;171、第一压力传感器;172、第二压力传感器;173、第三压力传感器;18、涡轮增压器;19、三元催化器;
2、储气罐;3、抽吸管路;4、电磁阀;5、控制单元;51、发动机控制器;52、整车控制器。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在本申请的描述中,除非另有规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
在本申请中,除非另有规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
下面结合附图并通过具体实施方式来说明本申请的技术方案。
如图1所示,本实施例公开了一种起机系统,该起机系统包括发动机1、发电机和控制单元5。该起机系统为混合动力车辆的起机系统,例如可以为混动汽车的起机系统,或者,可以为混动客车的起机系统等。
发动机1包括的汽缸11、节气门12、活塞13、曲轴14与飞轮15,汽缸11上具有与汽缸11内腔连通的进气歧管111和出气歧管112,节气门12安装于进气歧管111上,被配置为控制进入进气歧管111的空气量。涡轮增压器18与三元催化器19沿出气歧管112内空气的流动方向依次安装于出气歧管112上。活塞13滑动设置于汽缸11内,活塞13通过压缩空气做功,从而带动曲轴14与飞轮15转动。
本实施例的控制单元5包括发动机控制器51和整车控制器52,整车控制器52通过控制器域网(ontroller Area Network,CAN)总线与发动机控制器51连接。发动机控制器51能够将发动机1的转速信号、进气歧管111的压力信号、节气门12的开度信号等通过CAN总线发送给整车控制器52。整车控制器52能够将发动机1的喷油使能信号、发电机输出扭矩信号等通过CAN总线传输给发动机控制器51。
如图1所示,起机系统还包括转速传感器16和压力传感器,转速传感器16设置于汽缸11上。转速传感器16被配置为测量发动机1的转速。发动机1的曲轴14的转速即为发动机1的转速。
本实施例的压力传感器包括第一压力传感器171、第二压力传感器172和第三压力传感器173,第一压力传感器171设置于进气歧管111上,以测量节气门12关闭后进气歧管111内的压力值。节气门12与第一压力传感器171沿进气歧管111内的气体的流动方向依次布置。第二压力传感器172设置于储气罐2上,被配置为测量储气罐2内的压力。第三压力传感器173安装于发动机控制器51上,被配置为测量起机系统外部的大气压力。
转速传感器16、第一压力传感器171和第三压力传感器173均与发动机控制器51通讯连接,以将发动机1的转速、进气歧管111内的压力值以及起机系统外部大气压传输至发动机控制器51。第二压力传感器172与整车控制器52通 讯连接,以将储气罐2内的压力值传输至整车控制器52。
在本实施例中,通过控制单元5控制节气门12的开闭。发动机控制器51控制节气门12的开度,并能够将节气门12的开度信号传输至整车控制器52。
此外,整车控制器52能够向发动机控制器51发送喷油使能信号。当喷油使能信号为0时,表示断油指令。当喷油使能信号为1时,表示喷油指令。
发动机的常规起机过程为:整车控制器52控制发电机输出正扭矩,以拖动发动机1的曲轴14转动,当发动机1达到一定转速后,发电机的扭矩从正扭矩转为负扭矩进行发电,发电机输出的电力传输至驱动电机完成整车的驱动。发动机1中的节气门12开启,活塞13抽吸进气歧管111内的空气,并在汽缸11内压缩做功,以带动曲轴14和飞轮15转动。然后将废气排入出气歧管112,废气经过涡轮增压器18后,最终经过三元催化器19的净化后排至发动机1的外部。
发动机1的拖动阻力矩一方面来自曲轴14等相关结构的转动惯量,另一方面则来自活塞13的压缩反力。虽然,通过进排气可变气门正时和节气门12配合控制,可在一定程度上降低拖动过程中的汽缸11的实际进气量,进而降低活塞13的压缩反力。但是,发动机1的进排气可变气门正时多为液压驱动,起动过程中无法实现有效控制。因此,仅仅通过控制节气门12难以有效降低拖动过程中汽缸11内的实际进气量。
此外,活塞13的压缩反力是发动机1的振动和噪音的主要原因,过大的压缩反力也影响发动机1的NVH性能。
如图1所示,本实施例的起机系统还包括储气罐2、抽吸管路3和电磁阀4。抽吸管路3的两端分别能够与储气罐2和进气歧管111连通,节气门12与抽吸管路3沿进气歧管111内的气体的流动方向依次布置。电磁阀4设置于抽吸管路3上,以控制抽吸管路3的通断。整车控制器52控制电磁阀4的开闭。当电磁阀4打开时,进气歧管111通过抽吸管路3与储气罐2连通。当电磁阀4关闭时,进气歧管111与储气罐2断开连接。
本实施例还公开了一种起机系统的控制方法,在发动机1起机过程中,该起机系统的控制方法能够使储气罐2抽取进气歧管111的空气,以减少活塞13的空气抽取量,从而降低活塞13的压缩反力,并改善发动机1的NVH性能。
如图2所示,该起机系统的控制方法在停机过程中的步骤如下:
当发动机1停机时,控制单元5发出断油指令,节气门12关闭,以使进气歧管111的压力下降。电磁阀4打开,进气歧管111与储气罐2连通,以使进气歧管111抽吸储气罐2内的空气。
判断储气罐2内的压力是否小于储气罐2的最大允许压力。
若储气罐2内的压力小于储气罐2的最大允许压力,电磁阀4关闭。
若储气罐2内的压力大于或等于储气罐2的最大允许压力,继续判断进气歧管111内的压力是否大于储气罐2内的压力。
若进气歧管111内的压力大于储气罐2内的压力,通过发电机驱动发动机1以实时转速转动预设时间,以使进气歧管111内的压力小于储气罐2内的压力。
若进气歧管111内的压力小于或等于储气罐2内的压力,电磁阀4关闭。
如图3所示,该起机系统的控制方法在起机过程中的步骤如下:
当发动机1起机时,发电机启动并驱动发动机1转动,同时控制单元5发出断油指令,节气门12关闭。
判断储气罐2内的压力是否小于储气罐2的最大允许压力。
若储气罐2内的压力大于储气罐2的最大允许压力,电磁阀4始终保持关闭,通过增加发电机的输出功率实现发动机1的起机。
若储气罐2内的压力小于储气罐2的最大允许压力,继续判断发动机1的转速是否达到第一预设转速。
若发动机1的转速达到第一预设转速,电磁阀4打开,进气歧管111与储气罐2连通,以使储气罐2与活塞13共同抽吸进气歧管111内的空气。
判断控制单元5是否发出喷油指令,和/或,判断发动机1的转速是否达到第二预设转速。
若控制单元5发出喷油指令和/或发动机1转速的达到第二预设转速,电磁阀4关闭。
储气罐2的最大允许压力(门限值)的计算方法为:在当前大气压下,将储气罐2的最大压力值设置为当前大气压力值,储气罐2的压力从大到小以步长50hPa依次降低。例如,当前大气压为1000hPa,将储气罐2的最大压力值设置为1000hPa,然后将储气罐2的压力值从1000hPa开始依次降为950hPa、900hPa、850hPa……并进行起机试验,将起机过程中满足发动机1的NVH性能的最大的储气罐2的压力值作为当前大气压下的储气罐2的最大允许压力。
本领域的技术人员可以根据设计需求对发动机1的NVH性能进行适应性地量化设定,在此不作限定。
可以通过在不同的大气压下进行上述试验,获取多个不同的大气压环境下的储气罐2的最大允许压力。并且将不同的大气压环境下对应的储气罐2的最 大允许压力录入表格进行保存。当使用起机系统时,根据当前的大气压力值直接查阅表格获取,方便快捷。
本实施例的起机系统的控制方法如下:
在发动机1停机过程,整车控制器52向发动机控制器51发送的喷油使能信号置0,即断油指令。发动机控制器51控制节气门12关闭,由于发动机1依然在转动,使得活塞13会从进气歧管111内抽取空气,进气歧管111内的压力快速下降。当从发动机控制器51向整车控制器52发送节气门12的关闭信号后,整车控制器52控制电磁阀4打开,储气罐2与进气歧管111连通,活塞13通过进气歧管111抽取储气罐2内的空气,使得储气罐2压力快速降低,并具有一定的真空度。
在上述储气罐2抽气的过程中,判断储气罐2内的压力是否小于储气罐2的最大允许压力。当储气罐2内的压力小于储气罐2的最大允许压力时,整车控制器52控制电磁阀4关闭。当储气罐2内的压力大于或等于储气罐2的最大允许压力时,则判断进气歧管111内的压力是否大于储气罐2内的压力。当进气歧管111内的压力小于或等于储气罐2内的压力时,整车控制器52控制电磁阀4关闭。当进气歧管111内的压力大于储气罐2内的压力时,则判定储气罐2的抽气时间不足,需要延长储气罐2的抽气时间。
当发动机1的转速低于700r/min时,储气罐2内的压力大于储气罐2的最大允许压力,并计算两者的压力差值,通过压力差值获取转速维持时间。压力差值与转速维持时间一一对应且呈线性关系,压力差值越大,对应的转速维持时间越长。本领域的技术人员可以通过多次停机试验获取不同的压力差下需要的转速维持时间,在此不再进行赘述。
在本实施例中,当判定储气罐2的抽气时间不足时,则通过发电机输出正扭矩驱动发动机1以当前的实时转速旋转预设时间,该预设时间即为转速维持时间。由于节气门12完全关闭,使得发动机1的转速维持时间越长,活塞13通过进气歧管111抽取储气罐2内空气的时间就越长,使得储气罐2内的压力持续降低,直至进气歧管111内的压力大于储气罐2内的压力,整车控制器52控制电磁阀4关闭,储气罐2维持低压状态,为下一次发动机1的起机作准备。
在发动机1的停机过程中,控制单元5发出断油指令,发动机1收到断油指令后,如果此时节气门12未完全关闭或者进气歧管111存在一定的漏气,使其密封效果变差,使得进气歧管111在断油过程中的最小压力值会升高,当电磁阀4打开后,进气歧管111不会抽取或减少抽取储气罐2内的空气,使得储气罐2难以建立低于进气歧管111的压力环境。因此,在发动机1的停机过程中,还需要检测进气歧管111的密封性是否良好。
在控制单元5发出断油指令且节气门12关闭之后,电磁阀4打开之前,判断进气歧管111内的最小压力值是否小于进气歧管111的压力门限值。若进气歧管111内的最小压力值小于进气歧管111的压力门限值,则说明进气歧管111不漏气,具有良好的密封性。若进气歧管111内的最小压力值大于或等于进气歧管111的压力门限值,则说明进气歧管111漏气,密封性较差。
进气歧管111的压力门限值与发动机1所处的环境大气压有关。本领域的技术人员可以通过实验获取进气歧管111的压力门限值。
获取进气歧管111的压力门限值的方法为:选用质量合格的节气门12和进气歧管111,使得节气门12能够完全关闭且进气歧管111密封良好,在不同的环境大气压下,进行停机试验,从而获取不同环境大气压下进气歧管111在停机过程中的最小压力值,并将最小压力值加上50hPa作为进气歧管111的压力门限值。
为了保证发动机1能够顺利起机,在使用起机系统进行起机前还需要检测储气罐2的密封性是否良好。
如图2所示,在发动机1停机后,获取储气罐2内的第一压力值。在发动机1起机前,获取储气罐2内的第二压力值。计算第二压力值减去第一压力值的差值是否大于50hPa。若两者的差值大于50hPa,则说明储气罐2漏气,密封性较差。整车控制器52记录并存储此故障。若两者的差值小于50hPa,则说明储气罐2不漏气,具有良好的密封性。
由于储气罐2的漏气程度不同,当发电机在驱动发动机1转动时,储气罐2内的压力大于储气罐2的最大允许压力,则电磁阀4保持关闭,通过提高发电机的输出功率完成发动机1的起机。当发电机在驱动发动机1转动时,储气罐2内的压力依然小于储气罐2的最大允许压力,则电磁阀4打开,通过储气罐2辅助发动机1完成起机,提高发动机1的NVH性能。
在发动机1起机过程,整车控制器52控制发电机启动,并拖动发动机1转动。同时,整车控制器52向发动机控制器51发送喷油使能信号0,即断油指令。发动机控制器51接收到断油指令后关闭节气门12。判断储气罐2内的压力是否小于储气罐2的最大允许压力,若储气罐2内的压力小于储气罐2的最大允许压力,则当发动机1的转速达到第一预设转速时,活塞13开始从进气歧管111内抽取空气。电磁阀4打开,此时储气罐2内的压力较低,使得储气罐2与活塞13共同抽取进气歧管111的空气,减少了活塞13的空气抽取量。当整车控制器52向发动机控制器51发送喷油使能信号1(喷油指令)或发动机1的转速达到第二预设转速时,发动机1完成起机,电磁阀4关闭。若储气罐2内的压力大于储气罐2的最大允许压力,则电磁阀4保持关闭,通过提高发电机的输 出功率完成发动机1的起机。
发动机1的第一预设转速为20r/min~50r/m/in,第二预设转速为900r/min~1100r/min。例如,第一预设转速可以为20r/min、30r/min、40r/min或50r/min等。第二预设转速可以为900r/min、1000r/min或1100r/min等。本实施例的第一预设转速为20r/min,第二预设转速为1000r/min。
在发动机1停机过程中,节气门12关闭,活塞13抽取进气歧管111的空气,使得进气歧管111的压力降低。电磁阀4打开,以使储气罐2与进气歧管111连通,活塞13通过进气歧管111抽吸储气罐2的空气,储气罐2压力降低,使得储气罐2具有一定的真空度。当发动机1起机过程中,节气门12关闭,发动机1的转速达到第一预设转速时,电磁阀4打开,以使储气罐2与进气歧管111连通,储气罐2与活塞13共同抽取进气歧管111的空气,减少了活塞13的空气抽取量,从而降低了活塞13的压缩反力,有利于降低发电机的拖动扭矩,提高了发动机1的起机效率。
同时,通过降低活塞13的压缩反力,能够减少发动机1的起机振动,改善发动机1的NVH性能。
在每次起机过程中,储气罐2内的压力会升高,在停机过程中,储气罐2的压力才会降低,以在下一次起机过程中抽吸进气歧管111内空气,从而实现降低活塞13的压缩反力的目的。因此,每次起机必须起动成功,在起机成功前,不允许在起机过程中进行停机控制。
在发动机1的起机过程中,储气罐2能够抽取进气歧管111内的空气。同时,由于发动机1的进气门开启,储气罐2还可能会抽取一部分汽缸11内的空气。因此,储气罐2的容积与进气歧管111的容积以及发动机1的排量有关。
进气歧管111在节气门12与汽缸11之间的容积和发动机1的排量之和的两倍为储气罐2的容积。发动机1的排量指所有汽缸11的容积之和。例如,本实施例的进气歧管111在节气门12与汽缸11的进气门之间的部分的容积为3L,发动机1具有四个汽缸11,每个汽缸11的容积为0.5L,发动机1的排量为2L,则储气罐2的容积为10L。
为了提高起机效率,在发动机1的起机过程中,电磁阀4打开后,需要尽快将进气歧管111内的空气抽吸至储气罐2中。因此,需要选取特定规格的电磁阀4和抽吸管路3,以使两者的流通截面积能够满足使用要求。
选取原则为:当储气罐2的容积确定以后,将储气罐2的压力设定为1000hPa,电磁阀4远离储气罐2的一端的压力始终保持在300hPa。当电磁阀4打开时,储气罐2内的空气能够通过电磁阀4和抽吸管路3流出,使得储气罐2 的压力能够在0.4s内从1000hPa降至500hPa。将满足此抽气速度的最小管路截面面积作为抽吸管路3和电磁阀4的流通截面面积。

Claims (10)

  1. 一种起机系统,包括发动机(1)、发电机和控制单元(5),所述发电机被配置为驱动所述发动机(1)转动;所述发动机(1)包括汽缸(11)、节气门(12)和活塞(13),所述活塞(13)滑动设置于所述汽缸(11)内,所述汽缸(11)具有进气歧管(111),所述节气门(12)设置于所述进气歧管(111)上;所述起机系统还包括:
    储气罐(2);
    抽吸管路(3),所述抽吸管路(3)的两端分别与所述储气罐(2)和所述进气歧管(111)连通,所述节气门(12)与所述抽吸管路(3)沿所述进气歧管(111)内的气体的流动方向依次布置;以及
    电磁阀(4),设置于所述抽吸管路(3)上;所述电磁阀(4)被配置为在所述发动机(1)停机且所述节气门(12)关闭的情况下打开,在所述电磁阀(4)的打开时间达到预设开启时间或者所述发动机(1)的转速为零的情况下关闭;或者,在所述发动机(1)起机,所述储气罐(2)内的压力小于所述储气罐(2)的最大允许压力,所述节气门(12)关闭且所述发动机(1)的转速达到第一预设转速的情况下打开,在所述控制单元(5)发出喷油指令或所述发动机(1)的转速达到第二预设转速的情况下关闭;或者,在所述发动机(1)起机,所述储气罐(2)内的压力大于所述储气罐(2)的最大允许压力的情况下始终保持关闭。
  2. 根据权利要求1所述的起机系统,其中,所述起机系统还包括:
    转速传感器(16),设置于所述汽缸(11)上,所述转速传感器(16)被配置为测量所述发动机(1)的转速。
  3. 根据权利要求1所述的起机系统,其中,所述起机系统还包括:
    第一压力传感器(171),设置于所述进气歧管(111)上,所述节气门(12)与所述第一压力传感器(171)沿所述进气歧管(111)内的气体的流动方向依次布置;
    第二压力传感器(172),设置于所述储气罐(2)上,被配置为测量所述储气罐(2)内的压力;以及
    第三压力传感器(173),被配置为测量所述起机系统外部的大气压力。
  4. 根据权利要求1所述的起机系统,其中,所述进气歧管(111)在所述节气门(12)与所述汽缸(11)之间的容积和所述发动机(1)的排量之和的两倍为所述储气罐(2)的容积。
  5. 根据权利要求4所述的起机系统,其中,在所述储气罐(2)的压力为 1000hPa的情况下,所述电磁阀(4)远离所述储气罐(2)的一端的压力始终保持300hPa,所述抽吸管路(3)被配置为在所述电磁阀(4)打开的情况下,使得所述储气罐(2)的压力能够在0.4s内从1000hPa降至500hPa。
  6. 根据权利要求1所述的起机系统,其中,所述发动机(1)的所述第一预设转速为20r/min~50r/min,所述第二预设转速为900r/min~1100r/min。
  7. 一种起机系统的控制方法,应用于权利要求1-6中任一项所述的起机系统,包括:
    在所述发动机起机的情况下,所述发电机启动并驱动所述发动机转动,同时所述控制单元发出断油指令,所述节气门关闭;
    判断所述储气罐内的压力是否小于所述储气罐的最大允许压力;
    响应于所述储气罐内的压力小于所述储气罐的最大允许压力,继续判断所述发动机的转速是否达到所述第一预设转速;
    响应于所述发动机的转速达到所述第一预设转速,所述电磁阀打开,所述进气歧管与所述储气罐连通,以使所述储气罐与所述活塞共同抽吸所述进气歧管内的空气;
    判断以下至少之一:所述控制单元是否发出喷油指令;判断所述发动机的转速是否达到所述第二预设转速;
    响应于以下至少之一,所述电磁阀关闭:所述控制单元发出所述喷油指令;所述发动机的转速达到所述第二预设转速。
  8. 根据权利要求7所述的起机系统的控制方法,还包括:
    在所述发动机停机的情况下,所述控制单元发出断油指令,所述节气门关闭,以使所述进气歧管的压力下降;
    所述电磁阀打开,所述进气歧管与所述储气罐连通,以使所述进气歧管抽吸所述储气罐内的空气;
    判断所述储气罐内的压力是否小于所述储气罐的最大允许压力;
    响应于所述储气罐内的压力小于所述储气罐的最大允许压力,所述电磁阀关闭;
    响应于所述储气罐内的压力不小于所述储气罐的最大允许压力,继续判断所述进气歧管内的压力是否大于所述储气罐内的压力;
    响应于所述进气歧管内的压力大于所述储气罐内的压力,通过所述发电机驱动所述发动机以实时转速转动预设时间,以使所述进气歧管内的压力小于所 述储气罐内的压力;
    响应于所述进气歧管内的压力不大于所述储气罐内的压力,控制所述电磁阀关闭。
  9. 根据权利要求8所述的起机系统的控制方法,其中,在所述发动机停机的情况下,在所述控制单元发出所述断油指令且所述节气门关闭之后,所述电磁阀打开之前,还包括:
    判断所述进气歧管内的最小压力值是否小于所述进气歧管的压力门限值;
    响应于所述进气歧管内的最小压力值小于所述进气歧管的压力门限值,确定所述进气歧管不漏气;
    响应于所述进气歧管内的最小压力值不小于所述进气歧管的压力门限值,确定所述进气歧管漏气。
  10. 根据权利要求8所述的起机系统的控制方法,还包括:在所述发动机停机后,获取所述储气罐内的第一压力值;
    在所述发动机起机前,获取所述储气罐内的第二压力值;
    计算所述第二压力值减去所述第一压力值的差值是否大于50hPa;
    响应于所述差值大于50hPa,确定所述储气罐漏气;
    响应于所述差值不大于50hPa,确定所述储气罐不漏气。
PCT/CN2022/120271 2021-11-15 2022-09-21 起机系统及控制方法 WO2023082845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111345381.3 2021-11-15
CN202111345381.3A CN113982805B (zh) 2021-11-15 2021-11-15 一种起机系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023082845A1 true WO2023082845A1 (zh) 2023-05-19

Family

ID=79748422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120271 WO2023082845A1 (zh) 2021-11-15 2022-09-21 起机系统及控制方法

Country Status (2)

Country Link
CN (1) CN113982805B (zh)
WO (1) WO2023082845A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982805B (zh) * 2021-11-15 2023-04-25 中国第一汽车股份有限公司 一种起机系统及控制方法
CN115217656B (zh) * 2022-07-26 2024-05-03 中国第一汽车股份有限公司 一种混动车辆提升起机nvh的控制方法、装置、vcu及介质
CN115306616A (zh) * 2022-08-12 2022-11-08 上海新动力汽车科技股份有限公司 一种提升发动机冷启动性能与改善发动机磨损的控制方法
CN115324754B (zh) * 2022-08-17 2024-05-14 义乌吉利动力总成有限公司 发动机节气门的控制方法及装置
CN115506905B (zh) * 2022-09-22 2024-06-14 中国第一汽车股份有限公司 混合动力车辆及发动机起机辅助方法、系统、装置、介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012091014A1 (ja) * 2010-12-27 2014-06-05 日産自動車株式会社 内燃エンジンの始動制御方法及び始動制御装置
US20160169139A1 (en) * 2014-12-15 2016-06-16 Toyota Jidosha Kabushiki Kaisha Negative pressure abnormality detection apparatus, and control apparatus for internal combustion engine
CN113389645A (zh) * 2021-07-20 2021-09-14 中国第一汽车股份有限公司 一种混合动力汽车及消除起机抖动的控制方法
CN113982805A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 一种起机系统及控制方法
CN113982804A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 一种起机系统及控制方法
CN114352423A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 发动机起机噪声控制方法、装置、设备和存储介质
CN114922761A (zh) * 2022-05-27 2022-08-19 中国第一汽车股份有限公司 一种起机辅助系统的控制方法和起机辅助系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19627422A1 (de) * 1996-07-08 1998-01-15 Bayer Ag Verfahren zur adsorptiven Trennung von Luft
WO2001086128A2 (en) * 2000-05-08 2001-11-15 Cummins, Inc. Internal combustion engine operable in pcci mode with early control injection and method of operation
JP2010242727A (ja) * 2009-04-10 2010-10-28 Honda Motor Co Ltd 内燃機関の制御装置
JP2013501187A (ja) * 2009-08-03 2013-01-10 イーティーエイチ・チューリッヒ ターボラグを回避するための接続圧力タンクを有するターボチャージャ付き往復ピストンエンジン、およびその作動方法
CN103382929A (zh) * 2013-07-31 2013-11-06 博浪柯(浙江)机电制造有限公司 汽油动力空压机
US9714030B2 (en) * 2015-05-11 2017-07-25 Ford Global Technologies, Llc Method for detecting leaks in an intake manifold
CN206221062U (zh) * 2016-08-05 2017-06-06 雷艺 一种汽油发动机进气瞬间增压系统
JP2018053772A (ja) * 2016-09-28 2018-04-05 ヤマハ発動機株式会社 エンジンユニット及び鞍乗型車両
US10239516B2 (en) * 2016-12-14 2019-03-26 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
JP2019100186A (ja) * 2017-11-29 2019-06-24 株式会社豊田中央研究所 内燃機関及び内燃機関への燃料供給方法
CN112459901A (zh) * 2020-12-01 2021-03-09 夏焕琦 一种载货汽车性能优化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012091014A1 (ja) * 2010-12-27 2014-06-05 日産自動車株式会社 内燃エンジンの始動制御方法及び始動制御装置
US20160169139A1 (en) * 2014-12-15 2016-06-16 Toyota Jidosha Kabushiki Kaisha Negative pressure abnormality detection apparatus, and control apparatus for internal combustion engine
CN113389645A (zh) * 2021-07-20 2021-09-14 中国第一汽车股份有限公司 一种混合动力汽车及消除起机抖动的控制方法
CN113982805A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 一种起机系统及控制方法
CN113982804A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 一种起机系统及控制方法
CN114352423A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 发动机起机噪声控制方法、装置、设备和存储介质
CN114922761A (zh) * 2022-05-27 2022-08-19 中国第一汽车股份有限公司 一种起机辅助系统的控制方法和起机辅助系统

Also Published As

Publication number Publication date
CN113982805A (zh) 2022-01-28
CN113982805B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2023082845A1 (zh) 起机系统及控制方法
WO2023082848A1 (zh) 起机系统及控制方法
WO2012057189A1 (ja) 内燃機関の排気ブレーキ制御方法及び装置
CN113389645B (zh) 一种混合动力汽车及消除起机抖动的控制方法
CN108825391B (zh) 提高天然气发动机瞬态响应的装置及其响应方法
CN114922761A (zh) 一种起机辅助系统的控制方法和起机辅助系统
CN104018961A (zh) 一种增压发动机的进气管路系统及进气旁通阀
CN110410220B (zh) 排气制动阀与空压机联合辅助制动系统及方法
CN104675512A (zh) 相继增压柴油机切换稳定装置及控制方法
JP2004143939A (ja) エンジンの制御装置
CN103291442A (zh) 一种两级增压发动机的进气系统
CN103266948B (zh) 一种废气涡轮增压器及方法
CN105715386A (zh) 一种电控发动机利用排气蝶阀辅助冷启动的方法
CN104847481A (zh) 气压储能式涡轮增压装置
CN101586490A (zh) 发动机增压装置
CN109184922B (zh) 发动机停机控制系统、控制方法及汽车
CN101021185A (zh) 操作用于瞬态扭矩管理的脉冲进气器的方法和设备
CN103244259B (zh) 连通缸四冲程发动机及相应的汽车
CN208650972U (zh) 一种新型涡轮增压摩托车引擎
CN202100326U (zh) 气动内燃混合动力发动机
CN112196681A (zh) 一种发动机运行控制方法及装置
CN110925117A (zh) 一种旁通式egr冷却系统以及安装该系统的发动机
CN110761905A (zh) 通过节气门控制降低发动机熄火过程抖动的控制系统及其控制方法
CN221074533U (zh) 一种柴油机真空机组
CN105736197B (zh) 内燃式发动机进气系统及其控制装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891648

Country of ref document: EP

Kind code of ref document: A1