WO2023082739A1 - 高镍三元正极材料的制备方法 - Google Patents

高镍三元正极材料的制备方法 Download PDF

Info

Publication number
WO2023082739A1
WO2023082739A1 PCT/CN2022/111811 CN2022111811W WO2023082739A1 WO 2023082739 A1 WO2023082739 A1 WO 2023082739A1 CN 2022111811 W CN2022111811 W CN 2022111811W WO 2023082739 A1 WO2023082739 A1 WO 2023082739A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
preparation
nickel ternary
positive electrode
boric acid
Prior art date
Application number
PCT/CN2022/111811
Other languages
English (en)
French (fr)
Inventor
林波
李长东
阮丁山
蔡勇
刘伟健
许帅军
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023082739A1 publication Critical patent/WO2023082739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to a preparation method of a high-nickel ternary positive electrode material.
  • High-nickel ternary cathode materials mainly refer to NCM ternary materials with Ni content greater than 60%. As the Ni content increases, the specific capacity of NCM ternary materials will also increase. High nickel ternary is one of the future development directions of cathode materials. Although the high-nickel ternary material has a high specific capacity, it also has some disadvantages during use. For example, it is easy to produce microcracks due to volume changes during the cycle, and there may be large pores between the primary particles that lead to mass transfer. Difficulties and material degradation caused by electrolyte intrusion, etc., will lead to poor cycle performance of high-nickel ternary materials.
  • the base material sintering and coating modification of commercial high-nickel ternary materials generally adopt the method of solid phase mixing-high temperature sintering. Although this method is simple and feasible, it also has the following disadvantages: 1) For substrate sintering, it is difficult to ensure that the precursor and lithium source are fully mixed, resulting in uneven growth of primary particles; 2) For coating modification, It is difficult to ensure the uniformity of the coating layer, and it is easy to have a local coating that is too thick or no coating, and the coating layer basically only exists on the surface of the secondary ball material.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a method for preparing a high-nickel ternary positive electrode material.
  • a method for preparing a high-nickel ternary positive electrode material comprising the following steps:
  • LiOH powder and high-nickel ternary precursor at a molar ratio (0.6-0.95): 1, and perform the first sintering under an oxygen atmosphere to obtain a primary sintered material;
  • the high-nickel ternary precursor is composed of primary particles Secondary spherical shape.
  • the metal oxide being at least one of the oxides of Mo, W or Sn;
  • the mixed solution being Li 2 MoO 4 , Li 2 WO 4 or Li 2 SnO 3 Mixed solution with LiOH;
  • the mixed solution is mixed with the primary sintered material to obtain a mixed material, the mixed material is dried and pulverized to obtain a powder material, and the powder material is subjected to a second sintering to obtain a secondary sintered material ;
  • the atomized boric acid alcohol solution is sprayed onto the secondary sintered material, and then tempered to obtain the high-nickel ternary positive electrode material.
  • the temperature of the first sintering is 500-650°C; the time of the first sintering is 2-8h.
  • the concentration of Li in the mixed solution is 10-37 g/L.
  • the liquid-solid ratio of the mixed solution to the primary sintered material is 0.25-1 mL/g.
  • the stirring time is 3-120 min.
  • the drying method is vacuum drying.
  • the mixing method is mechanical stirring, ultrasonic vibration or a combination of both.
  • the temperature of the second sintering is 700-1000° C.; the time of the second sintering is 8-24 hours; the second sintering is performed under an oxygen atmosphere.
  • the protective atmosphere is nitrogen, oxygen, argon or compressed air with CO 2 removed.
  • the secondary sintered material is a positive electrode material with primary particles coated with an ion conductor, and the ion conductor is at least one of Li 2 MoO 4 , Li 2 WO 4 or Li 2 SnO 3 , so The coating amount of the ion conductor is: based on the total amount of Mo, W and Sn in the ion conductor, it is 0.05-0.8wt% of the secondary sintered material.
  • the preparation process of the boric acid alcohol solution is as follows: adding boric acid into the alcohol solution and heating in a water bath to obtain the boric acid ethanol solution; the temperature of the water bath heating is 50-70°C.
  • the alcohol solution is absolute ethanol.
  • the concentration of B in the boric acid alcohol solution is 15-25 g/L.
  • the content of boron in the high-nickel ternary positive electrode material is 0.02-0.5 wt%.
  • the tempering treatment is performed under an oxygen atmosphere; the temperature of the tempering treatment is 200-350° C.; the time of the tempering treatment is 4-12 hours.
  • the first sintering of the present invention is sintering at a lower temperature due to the lack of lithium.
  • the primary particles are initially formed but the growth is not complete, forming a primary sintered material with incomplete growth of the primary particles and porous, which is used for the subsequent liquid phase secondary replenishment. Lithium and primary particle coating provide good conditions.
  • the primary sintered material is placed in a LiOH solution containing one or more components of Li 2 MoO 4 , Li 2 WO 4 or Li 2 SnO 3 for liquid phase lithium supplementation and primary particle coating and evaporated to dryness Moisture, on the one hand, can dissolve the residual lithium non-uniformly distributed on the surface of the primary sintered material and make it enter the solution; on the other hand, LiOH and Li 2 MoO 4 , Li 2 WO 4 or Li 2 SnO 3 will enter the primary sintered material In the pores, and deposited during the evaporation process, so as to achieve uniform lithium supplementation and primary particle surface coating one or more of the ion conductor Li 2 MoO 4 , Li 2 WO 4 or Li 2 SnO 3 .
  • the second-sintered sintered material is sprayed and coated with boric acid and then tempered.
  • H 3 BO 3 will be decomposed into B 2 O 3 .
  • B 2 O 3 is an acidic oxide and will react with LiOH and Li 2 CO 3 Li 3 BO 3 is generated; the excess lithium source is due to the sum of the lithium source added in the primary lithium + secondary lithium supplement and the molar ratio of the transition metal element Li/Me>1, and the high-nickel ternary positive electrode material itself will also have The residual lithium on the surface is generated, so that the residual lithium on the surface can react with H 3 BO 3 to obtain the finished product of the ion conductor Li 3 BO 3 coated on the surface of the secondary sphere, so as to obtain the finished product with both the surface of the primary particle and the surface of the secondary sphere coated.
  • the primary particle size of the high-nickel ternary positive electrode material prepared by the present invention is relatively uniform, and they are closely bonded to each other, and the surface of the primary particle forms a coating layer of Li 2 MoO 4 , Li 2 WO 4 or Li 2 SnO 3 plasma conductor, It can protect the material, and even if the material forms microcracks or cracks along the gap between the primary particles during the cycle, the coating layer on the surface of the primary particle can continue to protect the material, thereby improving the cycle of the material performance; at the same time, the surface of the secondary ball of the material also has an ion conductor Li 3 BO 3 coating layer, and the protective layer also protects the material, that is, the primary particle and the secondary ball of the material have a coating layer, and the coating material Both are ionic conductors, which can greatly enhance the electrical conductivity of the material, thereby improving the capacity, cycle and rate performance of the material.
  • Fig. 1 is the SEM picture of primary sintering material of embodiment 1 of the present invention
  • Fig. 2 is the SEM picture of the secondary sintered material of Example 1 of the present invention.
  • Fig. 3 is the SEM figure of the finished product of high-nickel ternary positive electrode material of embodiment 1 of the present invention.
  • Fig. 4 is the 0.5C cycle comparison chart of different scheme materials of the present invention.
  • Fig. 5 is a comparison chart of the rate performance of materials in different schemes of the present invention.
  • a high-nickel ternary positive electrode material is prepared, and the specific process is as follows:
  • Figure 1 is the SEM image of the primary sintered material in this example. It can be clearly seen from the figure that the growth of the primary particles of the primary sintered material is not full, there are large pores between the primary particles, and the surface of the entire secondary spherical particle is uneven of.
  • Figure 2 is the SEM image of the secondary sintered material in this example. It can be seen from the figure that after secondary lithium supplementation and sintering in the liquid phase, the primary particles of the obtained secondary sintered material grow significantly, and the pores between the primary particles The surface roughness of the entire secondary spherical particles has been greatly improved.
  • Figure 3 is the SEM image of the finished product of the high-nickel ternary positive electrode material in this example. It can be seen from the figure that the finished product coated with H 3 BO 3 and sintered, the primary particles are closely bonded, and the surface of the entire secondary spherical particle is compared smooth.
  • a high-nickel ternary positive electrode material is prepared, and the specific process is as follows:
  • a high-nickel ternary positive electrode material is prepared, and the specific process is as follows:
  • LiOH and high-nickel ternary precursor Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 evenly with a molar ratio of Li:Me 1.03, and then keep it at 550°C for 6h under an oxygen atmosphere, then raise the temperature to 810°C for 16h, that is An uncoated high-nickel ternary cathode material LiNi 0.8 Co 0.1 Mn 0.1 O 2 can be obtained.
  • a high-nickel ternary positive electrode material is prepared, and the specific process is as follows:
  • LiOH and high-nickel ternary precursor Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 evenly with a molar ratio of Li:Me 1.03, and then keep it at 550°C for 6h under an oxygen atmosphere, then raise the temperature to 810°C for 16h, that is High-nickel ternary cathode material LiNi 0.8 Co 0.1 Mn 0.1 O 2 can be obtained; then LiNi 0.8 Co 0.1 Mn 0.1 O 2 and H 3 BO 3 are thoroughly mixed according to the B coating amount of 0.1wt%, and then under an oxygen atmosphere After holding at 325°C for 6 hours, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , a high-nickel ternary cathode material whose surface of the secondary ball is coated with H 3 BO 3 , can be obtained.
  • Example 1-3 and Comparative Example 1-2 were made into button batteries, and the first-time cycle specific capacity, first-efficiency and 100-week cycle retention rate were tested at 25°C.
  • the test conditions are: 2.8 ⁇ 4.25V, using 0.5C charge and discharge, using LAND charge and discharge instrument, the test results are shown in Table 1 and Figure 4 and Figure 5.

Abstract

本发明公开了一种高镍三元正极材料的制备方法,包括将LiOH粉末与高镍三元前驱体按摩尔比(0.6-0.95):1混合,在氧气气氛下进行第一次烧结,将金属氧化物加入到LiOH溶液中得到混合溶液,在保护气氛下,将混合溶液与一次烧结材料混合,将混合物料进行干燥、粉碎,将粉末物料进行第二次烧结,将雾化的硼酸醇溶液喷到二次烧结材料上,再进行回火处理,即得高镍三元正极材料。本发明材料的一次颗粒尺寸较为均匀,一次颗粒表面形成Li 2MoO 4、Li 2WO 4或Li 2SnO 3等离子导体包覆层,可以对材料形成保护作用,同时该材料二次球表面也有离子导体Li 3BO 3包覆层,也对材料起到了保护作用,即该材料一次颗粒与二次球均有包覆层,极大的增强材料的电导率,提升了材料的容量、循环与倍率性能。

Description

高镍三元正极材料的制备方法 技术领域
本发明属于锂离子电池技术领域,具体涉及一种高镍三元正极材料的制备方法。
背景技术
高镍三元正极材料主要是指Ni含量大于60%的NCM三元材料,随着Ni含量的升高,NCM三元材料的比容量也会随之提升。高镍三元是正极材料未来发展方向之一。高镍三元材料虽然拥有高的比容量,但是其在使用过程中也存在一些缺点,比如循环过程中容易因为体积变化导致产生微裂纹,而且一次颗粒之间可能存在较大的孔隙导致传质困难以及电解液入侵引起材料退化等,这些都会导致高镍三元材料的循环性能变差。
目前商业化的高镍三元材料的基材烧结以及包覆改性一般采用固相混合-高温烧结的方法。该方法虽然简单易行,但是也存在以下缺点:1)对于基材烧结来说,难以保证前驱体与锂源充分混合,从而导致一次颗粒生长不均匀;2)对于包覆改性来说,难以保证包覆层的均匀性,容易产生局部包覆过厚或者无包覆的情况,而且包覆层基本只存在于二次球材料表面。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高镍三元正极材料的制备方法。
根据本发明的一个方面,提出了一种高镍三元正极材料的制备方法,包括以下步骤:
将LiOH粉末与高镍三元前驱体按摩尔比(0.6-0.95):1混合,在氧气气氛下进行第一次烧结,得到一次烧结材料;所述高镍三元前驱体为一次颗粒组成的二次球形貌。
将金属氧化物加入到LiOH溶液中得到混合溶液,所述金属氧化物为Mo、W或Sn的氧化物中的至少一种;混合溶液为Li 2MoO 4、Li 2WO 4或Li 2SnO 3与LiOH的混合溶液;
在保护气氛下,将所述混合溶液与一次烧结材料混合,得到混合物料,将所述混合物料进行干燥、粉碎,得到粉末物料,将所述粉末物料进行第二次烧结,得到二次烧结材料;
将雾化的硼酸醇溶液喷到所述二次烧结材料上,再进行回火处理,即得所述高镍三元正极材料。
在本发明的一些实施方式中,所述第一次烧结的温度为500-650℃;所述第一次烧结的时间为2-8h。
在本发明的一些实施方式中,所述混合溶液中Li的浓度为10-37g/L。
在本发明的一些实施方式中,所述混合溶液与一次烧结材料的液固比为0.25-1mL/g。
在本发明的一些实施方式中,所述搅拌的时间为3-120min。
在本发明的一些实施方式中,所述干燥的方式为真空干燥。
在本发明的一些实施方式中,所述混合的方式为机械搅拌、超声震荡或者二者的结合。
在本发明的一些实施方式中,所述第二次烧结的温度为700-1000℃;所述第二次烧结的时间为8-24h;所述第二次烧结在氧气气氛下进行。
在本发明的一些实施方式中,所述保护气氛下为氮气、氧气、氩气或去除CO 2的压缩空气。
在本发明的一些实施方式中,所述二次烧结材料为一次颗粒包覆离子导体的正极材料,离子导体为Li 2MoO 4、Li 2WO 4或Li 2SnO 3中的至少一种,所述离子导体的包覆量为:以所述离子导体中Mo、W、Sn的总量计,为所述二次烧结材料的0.05-0.8wt%。
在本发明的一些实施方式中,所述硼酸醇溶液的配制过程为:将硼酸加入醇溶液中并进行水浴加热得到所述硼酸乙醇溶液;所述水浴加热的温度为50-70℃。优选的,所述醇溶液为无水乙醇。
在本发明的一些实施方式中,所述硼酸醇溶液中B的浓度为15-25g/L。
在本发明的一些实施方式中,所述高镍三元正极材料中硼的含量为0.02-0.5wt%。
在本发明的一些实施方式中,所述回火处理在氧气气氛下进行;所述回火处理的温度为200-350℃;所述回火处理的时间为4-12h。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明第一次烧结是在缺锂且较低温度下烧结,一次颗粒初步成型但生长并不彻 底,形成一次颗粒生长不完全且多孔的一次烧结材料,为后续的液相二次补锂以及一次颗粒包覆提供了良好的条件。
2、本发明将一次烧结材料置于含有Li 2MoO 4、Li 2WO 4或Li 2SnO 3中的一种或多种成分的LiOH溶液中进行液相补锂与一次颗粒包覆并蒸干水分,一方面可以将一次烧结材料表面非均匀分布的残锂溶解,使之进入溶液中;另一方面LiOH以及Li 2MoO 4、Li 2WO 4或Li 2SnO 3等会进入到一次烧结材料的孔隙中,并在蒸发过程中沉积出来,从而实现均匀补锂与一次颗粒表面包覆离子导体Li 2MoO 4、Li 2WO 4或Li 2SnO 3中的一种或多种。
3、本发明将二烧烧结材料经喷雾包覆硼酸再进行回火处理,H 3BO 3会分解成B 2O 3,B 2O 3是酸性氧化物,会跟LiOH以及Li 2CO 3反应生成Li 3BO 3;其中多余的锂源是由于一次配锂+二次补锂所加的锂源总和与过渡金属元素摩尔比Li/Me>1,而且高镍三元正极材料本身也会有表面残锂产生,使得表面残锂能与H 3BO 3反应,得到二次球表面包覆离子导体Li 3BO 3的成品,从而获得一次颗粒表面和二次球表面均有包覆的成品。
4、本发明制备的高镍三元正极材料的一次颗粒尺寸较为均匀,而且相互之间结合紧密,一次颗粒表面形成Li 2MoO 4、Li 2WO 4或Li 2SnO 3等离子导体包覆层,可以对材料形成保护作用,而且即使材料在循环过程沿着一次颗粒之间的间隙形成微裂纹或者开裂,一次颗粒表面的包覆层也能继续对材料起到保护作用,从而可以提高材料的循环性能;同时该材料二次球表面也有离子导体Li 3BO 3包覆层,该保护层也对材料起到了保护作用,即该材料一次颗粒与二次球均有包覆层,而且包覆物质均为离子导体,可以极大的增强材料的电导率,从而提升材料的容量、循环与倍率性能。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1一次烧结材料的SEM图;
图2为本发明实施例1二次烧结材料的SEM图;
图3为本发明实施例1高镍三元正极材料成品的SEM图;
图4为本发明不同方案材料的0.5C循环对比图;
图5为本发明不同方案材料的倍率性能对比图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种高镍三元正极材料,具体过程为:
(1)将LiOH与高镍三元前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2按摩尔比Li:Me=0.8混合均匀;
(2)将上述混合料置于氧气气氛下,在500℃下进行第一次烧结,保温时间6h,得到一次颗粒生长不完全且多孔的一次烧结材料;
(3)将一定量的LiOH溶解于纯水中,配制成LiOH溶液,然后加入一定量的SnO 2,充分搅拌,配制成混合溶液A,混合溶液A的Li浓度为32g/L,Sn浓度为7.62g/L;
(4)将一次烧结材料置于密闭的通有氮气的容器内;
(5)按液固比0.5mL/g将混合溶液A倒入一次烧结材料中,采用超声震荡60min,得到混合物料B;
(6)将混合物料B放在70℃的真空干燥箱内蒸干;
(7)将上述蒸干后的物料进行破碎过筛,得到粉末物料C;
(8)将粉末物料C进行第二次烧结,烧结气氛为氧气,烧结温度为800℃,保温时间16h,得到一次颗粒被Li 2SnO 3包覆的二次烧结材料,Li 2SnO 3的包覆量以Sn来计算为二次烧结材料的0.38wt%;
(9)将一定量的硼酸加入无水乙醇中,70℃水浴加热,使硼酸彻底溶解,配制成硼酸乙醇溶液,溶液中B含量为20g/L;
(10)将二次烧结材料置于高效混合机中进行混合,然后通过雾化器将硼酸乙醇溶液均匀喷到二次烧结材料上,硼酸乙醇溶液与二次烧结材料的液固比为0.05mL/g,喷雾时间20min;
(11)将喷雾包覆后的二次烧结材料进行回火处理,气氛为氧气,回火温度为250℃,保温时间10h,得到高镍三元正极材料成品,成品的Li 3BO 3包覆量以B来计算为高镍三元正极材料的0.1wt%。
图1为本实施例一次烧结材料的SEM图,从图中明显可以看出该一次烧结材料的一次颗粒生长不饱满,一次颗粒之间有较大的孔隙,整个二次球颗粒表面是凹凸不平的。
图2为本实施例二次烧结材料的SEM图,从图中可以看出经过液相二次补锂并烧结后,所得的二次烧结材料的一次颗粒明显长大,一次颗粒之间的孔隙明显减少,整个二次球颗粒表面平整度有了较大提升。
图3为本实施例高镍三元正极材料成品的SEM图,从图中可以看出经过H 3BO 3包覆并烧结后的成品,一次颗粒之间结合紧密,整个二次球颗粒表面比较平整。
实施例2
本实施例制备了一种高镍三元正极材料,具体过程为:
(1)将LiOH与高镍三元前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2按摩尔比Li:Me=0.9混合均匀;
(2)将上述混合料置于氧气气氛下,在550℃下进行第一次烧结,保温时间4h,得到一次颗粒生长不完全且多孔的一次烧结材料;
(3)将一定量的LiOH溶解于纯水中,配制成LiOH溶液,然后加入一定量的MoO 3,充分搅拌,配制成混合溶液A,混合溶液A的Li浓度为30g/L,Mo浓度为15g/L;
(4)将一次烧结材料置于密闭的通有氮气的容器内;
(5)按液固比0.3mL/g将混合溶液A倒入一次烧结材料中,采用机械搅拌方式搅拌30min,得到混合物料B;
(6)将混合物料B放在90℃的真空干燥箱内蒸干;
(7)将上述蒸干后的物料进行破碎过筛,得到粉末物料C;
(8)将粉末物料C进行第二次烧结,烧结气氛为氧气,烧结温度为830℃,保温时间14h,得到一次颗粒被Li 2MoO 3包覆的二次烧结材料,Li 2MoO 3的包覆量以Mo来计算为二次烧结材料的0.45wt%;
(9)将一定量的硼酸加入无水乙醇中,70℃水浴加热,使硼酸彻底溶解,配制成硼酸乙醇溶液,溶液中B含量为20g/L;
(10)将二次烧结材料置于高效混合机中进行混合,然后通过雾化器将硼酸乙醇溶液均匀喷到二次烧结材料上,硼酸乙醇溶液与二次烧结材料的液固比为0.04mL/g,喷雾时间15min;
(11)将喷雾包覆后的二次烧结材料进行回火处理,气氛为氧气,回火温度为275℃,保温时间8h,得到高镍三元正极材料成品,成品的Li 3BO 3包覆量以B来计算为高镍三元正极材料的0.1wt%。
实施例3
本实施例制备了一种高镍三元正极材料,具体过程为:
(1)将LiOH与高镍三元前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2按摩尔比Li:Me=0.95混合均匀;
(2)将上述混合料置于氧气气氛下,在600℃下进行第一次烧结,保温时间3h,得到一次颗粒生长不完全且多孔的一次烧结材料;
(3)将一定量的LiOH溶解于纯水中,配制成LiOH溶液,然后加入一定量的WO 3,充分搅拌,配制成混合溶液A,混合溶液A的Li浓度为21g/L,W浓度为6.31g/L;
(4)将一次烧结材料置于密闭的通有氮气的容器内;
(5)按液固比0.6mL/g将混合溶液A倒入一次烧结材料中,采用机械搅拌+超声震荡的方式搅拌10min,得到混合物料B;
(6)将混合物料B放在110℃的真空干燥箱内蒸干;
(7)将上述蒸干后的物料进行破碎过筛,得到粉末物料C;
(8)将粉末物料C进行第二次烧结,烧结气氛为氧气,烧结温度为850℃,保温时间12h,得到一次颗粒被Li 2WO 3包覆的二次烧结材料,Li 2WO 3的包覆量以W来计算为二次烧结材料的0.38wt%;
(9)将一定量的硼酸加入无水乙醇中,70℃水浴加热,使硼酸彻底溶解,配制成硼酸乙醇溶液,溶液中B含量为20g/L;
(10)将二次烧结材料置于高效混合机中进行混合,然后通过雾化器将硼酸乙醇溶液均匀喷到二次烧结材料上,硼酸乙醇溶液与二次烧结材料的液固比为0.05mL/g,喷雾时间30min;
(11)将喷雾包覆后的二次烧结材料进行回火处理,气氛为氧气,回火温度为325℃,保温时间6h,得到高镍三元正极材料成品,成品的Li 3BO 3包覆量以B来计算为高镍三元正极材料的0.1wt%。
对比例1
本对比例制备了一种高镍三元正极材料,具体过程为:
将LiOH与高镍三元前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2按摩尔比Li:Me=1.03混合均匀,然后在氧气气氛下先550℃保温6h,然后升温至810℃保温16h,即可得到不包覆的高镍三元正极材料LiNi 0.8Co 0.1Mn 0.1O 2
对比例2
本实施例制备了一种高镍三元正极材料,具体过程为:
将LiOH与高镍三元前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2按摩尔比Li:Me=1.03混合均匀,然后在氧气气氛下先550℃保温6h,然后升温至810℃保温16h,即可得到高镍三元正极材料LiNi 0.8Co 0.1Mn 0.1O 2;然后按B包覆量为0.1wt%将LiNi 0.8Co 0.1Mn 0.1O 2与H 3BO 3充分混合均匀,然后在氧气气氛下325℃保温6h,即可得到二次球表面被H 3BO 3包覆的高镍三元正极材料LiNi 0.8Co 0.1Mn 0.1O 2
试验例
将实施例1-3和对比例1-2制成扣式电池,在25℃下测试首次循环比容量、首效以及100周循环保持率。测试条件为:2.8~4.25V,采用0.5C充放电,采用LAND充放电仪,测试结果如表1及图4和图5所示。
表1不同方案的电化学性能对比
Figure PCTCN2022111811-appb-000001
Figure PCTCN2022111811-appb-000002
由表1及图4和图5可知,实施例中制备得到的一次颗粒与二次球双包覆的高镍三元正极材料的电化学性能明显比对比例1、2要好。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种高镍三元正极材料的制备方法,其特征在于,包括以下步骤:
    将LiOH粉末与高镍三元前驱体按摩尔比(0.6-0.95):1混合,在氧气气氛下进行第一次烧结,得到一次烧结材料;
    将金属氧化物加入到LiOH溶液中得到混合溶液,所述金属氧化物为Mo、W或Sn的氧化物中的至少一种;
    在保护气氛下,将所述混合溶液与一次烧结材料混合,得到混合物料,将所述混合物料进行干燥、粉碎,得到粉末物料,将所述粉末物料进行第二次烧结,得到二次烧结材料;
    将雾化的硼酸醇溶液喷到所述二次烧结材料上,再进行回火处理,即得所述高镍三元正极材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述第一次烧结的温度为500-650℃。
  3. 根据权利要求1所述的制备方法,其特征在于,所述混合溶液中Li的浓度为10-37g/L;所述混合溶液与一次烧结材料的液固比为0.25-1mL/g。
  4. 根据权利要求1所述的制备方法,其特征在于,所述第二次烧结的温度为700-1000℃;所述第二次烧结在氧气气氛下进行。
  5. 根据权利要求1所述的制备方法,其特征在于,所述保护气氛下为氮气、氧气、氩气或去除CO 2的压缩空气。
  6. 根据权利要求1所述的制备方法,其特征在于,所述二次烧结材料为一次颗粒包覆离子导体的正极材料,离子导体为Li 2MoO 4、Li 2WO 4或Li 2SnO 3中的至少一种,所述离子导体的包覆量为:以所述离子导体中Mo、W、Sn的总量计,为所述二次烧结材料的0.05-0.8wt%。
  7. 根据权利要求1所述的制备方法,其特征在于,所述硼酸醇溶液的配制过程为:将硼酸加入醇溶液中并进行水浴加热得到所述硼酸醇溶液;所述水浴加热的温度为50-70℃。
  8. 根据权利要求1所述的制备方法,其特征在于,所述硼酸醇溶液中B的浓度为15-25g/L。
  9. 根据权利要求1所述的制备方法,其特征在于,所述高镍三元正极材料中硼的含量为0.02-0.5wt%。
  10. 根据权利要求1所述的制备方法,其特征在于,所述回火处理在氧气气氛下进行;所述回火处理的温度为200-350℃。
PCT/CN2022/111811 2021-11-09 2022-08-11 高镍三元正极材料的制备方法 WO2023082739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111317910.9 2021-11-09
CN202111317910.9A CN114220965A (zh) 2021-11-09 2021-11-09 高镍三元正极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2023082739A1 true WO2023082739A1 (zh) 2023-05-19

Family

ID=80696727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111811 WO2023082739A1 (zh) 2021-11-09 2022-08-11 高镍三元正极材料的制备方法

Country Status (2)

Country Link
CN (1) CN114220965A (zh)
WO (1) WO2023082739A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914434A (zh) * 2022-06-30 2022-08-16 广州博粤新材料科技有限公司 一种含补锂剂的正极材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220965A (zh) * 2021-11-09 2022-03-22 广东邦普循环科技有限公司 高镍三元正极材料的制备方法
CN114784278A (zh) * 2022-04-22 2022-07-22 天津巴莫科技有限责任公司 高镍正极材料的表面改性方法
CN115092977B (zh) * 2022-07-07 2023-05-05 楚能新能源股份有限公司 一种三元正极材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247045A (zh) * 2019-07-15 2019-09-17 中南大学 一种镍钴锰三元正极材料及其制备方法与应用
CN112133904A (zh) * 2020-09-24 2020-12-25 江西普瑞美新材料科技有限公司 一种锂离子电池高镍三元正极材料及其制备方法
CN114220965A (zh) * 2021-11-09 2022-03-22 广东邦普循环科技有限公司 高镍三元正极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247045A (zh) * 2019-07-15 2019-09-17 中南大学 一种镍钴锰三元正极材料及其制备方法与应用
CN112133904A (zh) * 2020-09-24 2020-12-25 江西普瑞美新材料科技有限公司 一种锂离子电池高镍三元正极材料及其制备方法
CN114220965A (zh) * 2021-11-09 2022-03-22 广东邦普循环科技有限公司 高镍三元正极材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914434A (zh) * 2022-06-30 2022-08-16 广州博粤新材料科技有限公司 一种含补锂剂的正极材料及其制备方法

Also Published As

Publication number Publication date
CN114220965A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023082739A1 (zh) 高镍三元正极材料的制备方法
WO2020147671A1 (zh) 一种高镍三元正极材料表面改性的方法
EP4245721A1 (en) Lithium iron manganese phosphate precursor, lithium iron manganese phosphate positive electrode material and preparation method therefor, electrode material, electrode, and lithium-ion battery
CN103094520B (zh) 一种锂离子电池正极材料及其制备方法
CN1322610C (zh) 可充电锂电池的负极活性物质及其制备方法
CN111261851B (zh) 一种锂离子电池三元正极材料及其制备方法
US20230187616A1 (en) The usage of fatty acid in the preparation of lithium-ion batteries and the method for manufacturing electrode materials
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
CN106898775A (zh) 一种表面双包覆型富锂材料及其制备方法
CN110233249A (zh) 磷酸铁锂纳米粉末包覆高镍三元正极材料及其制备方法和应用
CN107666010A (zh) 一种锂离子电池固态电解质、其制备方法及锂离子电池
WO2023179048A1 (zh) 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
CN115000388B (zh) 一种钠离子正极材料及其制备方法和用途
CN108682833A (zh) 一种磷酸铁锂基改性正极材料制备方法
CN110148712A (zh) 一种复合包覆改性的富锂锰正极材料及其制备方法
CN108649179A (zh) 一种改性锂离子电池正极材料的方法
CN109192961B (zh) 正极材料的制备方法
CN110380006A (zh) 一种含ptc涂层的锂离子电池极片的制备方法
CN108807904A (zh) 一种锂电池用改性磷酸铁锂正极材料的制备方法
CN117476858A (zh) 一种改性硫酸铁钠正极材料及其制备方法和应用
CN108390030A (zh) 一种面向SiO2/C负极的表面修饰方法
JP7109334B2 (ja) 全固体リチウムイオン電池用正極の製造方法及び全固体リチウムイオン電池の製造方法
CN114267817B (zh) 一种正极材料及其制备方法和应用
WO2023231448A1 (zh) 一种正、负极材料的制备方法及锂离子电池
CN108574100B (zh) 一种三元正极材料及制备方法、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891547

Country of ref document: EP

Kind code of ref document: A1