WO2023082175A1 - 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用 - Google Patents

一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用 Download PDF

Info

Publication number
WO2023082175A1
WO2023082175A1 PCT/CN2021/130300 CN2021130300W WO2023082175A1 WO 2023082175 A1 WO2023082175 A1 WO 2023082175A1 CN 2021130300 W CN2021130300 W CN 2021130300W WO 2023082175 A1 WO2023082175 A1 WO 2023082175A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
aromatic
side chain
room temperature
grams
Prior art date
Application number
PCT/CN2021/130300
Other languages
English (en)
French (fr)
Inventor
冉千平
黄振
杨勇
周栋梁
王涛
舒鑫
刘加平
洪锦祥
Original Assignee
江苏苏博特新材料股份有限公司
博特新材料泰州有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 博特新材料泰州有限公司 filed Critical 江苏苏博特新材料股份有限公司
Priority to CN202180034100.4A priority Critical patent/CN115605452B/zh
Priority to PCT/CN2021/130300 priority patent/WO2023082175A1/zh
Priority to US17/962,544 priority patent/US20230151140A1/en
Publication of WO2023082175A1 publication Critical patent/WO2023082175A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • C04B24/246Phosphorus-containing polymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/06Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton from hydroxy amines by reactions involving the etherification or esterification of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2612Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aromatic or arylaliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3314Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group cyclic
    • C08G65/3315Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/335Polymers modified by chemical after-treatment with organic compounds containing phosphorus
    • C08G65/3353Polymers modified by chemical after-treatment with organic compounds containing phosphorus containing oxygen in addition to phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/335Polymers modified by chemical after-treatment with organic compounds containing phosphorus
    • C08G65/3356Polymers modified by chemical after-treatment with organic compounds containing phosphorus having nitrogen in addition to phosphorus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1422Side-chains containing oxygen containing OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/147Side-chains with other heteroatoms in the side-chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene

Definitions

  • the invention belongs to the technical field of concrete admixtures, and in particular relates to a polyhydroxy aromatic intermediate, a preparation method thereof and its application in polycondensate water reducers containing branched side chains.
  • Concrete is generally composed of cementitious material (cement), coarse aggregate (stone), fine aggregate (sand), water and various chemical admixtures.
  • cementitious material cement
  • coarse aggregate stone
  • fine aggregate sand
  • water various chemical admixtures
  • cement water reducer also known as cement dispersant or superplasticizer
  • Adding it to concrete can significantly reduce the water consumption of concrete and improve its initial fluidity, so it can maintain the good quality of concrete. Improve the mechanical strength after hardening while improving the construction operability.
  • the development of concrete water reducers can be roughly divided into three stages, the first generation of ordinary water reducers represented by wood calcium, the second generation of high-efficiency water reducers represented by naphthalene sulfonate formaldehyde condensation polymers, and the stage of polymer water reducers.
  • the third-generation high-performance water reducer stage represented by carboxylic acid system.
  • the first and second generation water reducers are restricted due to problems such as large dosage, insufficient water reduction, poor cement adaptability, and large slump loss.
  • the polycarboxylate high-performance water reducer that appeared in the early 1980s is considered to be the third generation of water reducer. It has high water reducing rate, low dosage, and strong slump retention ability. It is the most widely used at home and abroad today. The latest generation of superplasticizers.
  • Patent CN200480011979.7 introduces hydrophobic long-chain alkyl acrylate copolymerization into the comb-shaped polymer structure, which can reduce the viscosity of concrete, but the introduction of hydrophobic units will cause a significant decline in dispersion performance, and this method has limited improvement in viscosity of.
  • Patent CN20091077550.2 Compounding polyethylene glycol in polycarboxylic acid mother liquor as a viscosity-reducing component can reduce concrete viscosity and improve workability, but additional polyethylene glycol will increase the new economic burden.
  • Patent CN201510919314.6 adjusts its conformation in the pore solution by introducing rigid functional groups into the main chain of polycarboxylic acid molecules, and improves its raw material adaptability.
  • this method must use RAFT reagents or pre-synthesize RAFT macromolecules, and the production cost and process requirements are high.
  • the block polycarboxylic acid still contains a large number of carboxylic acid groups and will still receive environmental ions. There is still room for improvement in adaptability.
  • Patent EP1203046 uses trialkoxysilane instead of carboxylic acid group to introduce on the carboxylic acid side chain.
  • Trialkoxysilane will not be affected by the charge of environmental ions, and can chemically react with cement hydrated CSH gel. Therefore, it can not only provide the force with cement particles, but also avoid the influence of environmental ions.
  • the preparation of this water reducer requires the use of isocyanate substances, which has high cost and low dispersion performance, so there is room for further improvement.
  • Patent CN201580070080.0 adopts terminal amino polyether and epoxy group-containing silane coupling agent to carry out ring-opening reaction to obtain cement dispersant containing 1-2 trialkoxysilane groups, but due to the number of anchor groups Too little, and there is still a big gap in dispersibility compared with conventional polycarboxylate superplasticizers.
  • the invention provides a polyhydroxy aromatic intermediate and its preparation method and its application in polycondensation water reducer containing branched side chains.
  • the polycondensation water reducer containing branched side chains has excellent dispersibility and viscosity reducing effect Obviously, the adaptability of raw materials is good. It is suitable for the preparation of high-strength concrete, self-compacting concrete and low-water-binder ratio high-volume mineral admixture concrete, especially for the preparation of concrete containing machine-made sand.
  • the structural formula (V) of the polyhydroxy aromatic intermediate F of the present invention is:
  • R is H, C1-C4 alkyl, C1-C4 alkoxy
  • the preparation method of the polyhydroxyaromatic intermediate of the present invention is to generate polyhydroxyaromatic intermediate F by reacting substance A with substance D in the presence of catalyst E;
  • R is H, C1-C4 alkyl, C1-C4 alkoxy
  • monomer A is selected from phenoxyethanol, 3-methylphenoxyethanol, 3-ethylphenoxyethanol, 4-methylphenoxyethanol, 3-methoxyphenoxyethanol, 3-ethoxyethanol Phenoxyethanol, 4-methoxyphenoxyethanol, phenyldiethanolamine.
  • the catalyst E is a substance capable of depriving active hydrogen, and is selected from metallic sodium, sodium hydride, and sodium methoxide.
  • the amount of catalyst E used should satisfy the molar ratio of E/monomer A of 0.2-0.5. If the amount of catalyst used is too low, the conversion rate will be unsatisfactory. If the amount of catalyst used is too high, the viscosity of the entire synthesis system will be too large and difficult to operate.
  • Substance D is glycidol.
  • the amount of D needs to meet the following conditions: when Y is O, the D/A molar ratio is 1 to 5; when Y is N, the D/A molar ratio is 0 to 2, and the molar ratio of D/A determines the amount of product Number of hydroxyl groups in hydroxyaromatic intermediate F.
  • the specific steps of the preparation method of the polyhydroxyaromatic intermediate are as follows: slowly add the catalyst E to the monomer A under the condition of room temperature and stirring, continue to stir at room temperature for 10-60 minutes, then raise the temperature to 80 ⁇ 120°C, then add substance D within 5 to 24 hours, and finally cool to room temperature to obtain the polyhydroxyaromatic intermediate F.
  • the application of the polyhydroxy aromatic intermediate F is to synthesize a polyether side chain aromatic intermediate, which is further synthesized into a polycondensate water reducer containing branched side chains.
  • the branched side chain-containing polycondensate water reducer of the present invention has three structural units in its molecular structure, polyether side chain aromatic structural unit I, phosphate-based aromatic structural unit II, and methylene structural unit III;
  • the polyether side chain aromatic structural unit I is an aromatic moiety with 2-4 polyether side chains; the aromatic moiety includes phenyl, methylphenyl or methoxyphenyl;
  • Phosphate-based aromatic structural unit II is an aromatic moiety with 1-2 phosphonic acid monoester groups; the aromatic moiety includes phenyl, methylphenyl or methoxyphenyl, and the rest belong to side chains;
  • the methylene structural unit III connects the polyether side chain aromatic structural unit and the phosphate-based aromatic structural unit, and the connected structural units are the same or different, which is to connect the polyether side chain aromatic structural unit Any two of the structures in I and phosphoaromatic structural unit II.
  • Polyether side chain aromatic structural unit I is obtained by addition reaction of polyhydroxy aromatic intermediate F and ethylene oxide:
  • the polyether side chain aromatic structural unit I is any one of the general formula (Ia) or (Ib);
  • R 1 and R 2 are independently the same or different H, C1-C4 alkyl, C1-C4 alkoxy.
  • a represents an integer of 1-5
  • m represents an integer of 10-50.
  • b represents an integer of 0-2
  • n represents an integer of 10-50.
  • a and b determine the number of side chains on a single aromatic compound or the degree of branching is a+1, 2b+2 respectively, too many side chains will increase the number of monomers (Ia) and monomers (Ib) However, excessive steric hindrance will also affect its polycondensation activity with the monomer (II). If the number of side chains is too small, it will not be possible to form a branched structure. If the steric hindrance effect is too low, the thickness of the water film layer is not enough, and the dispersed Performance and viscosity reduction are both affected.
  • n and n independently represent integers ranging from 10 to 50, m and n are the number of polyoxyethylene repeating units in a single side chain, which determines the length of a single side chain, if the length is too short, the steric hindrance effect is too low, and if the length is too long, the same will affect the polycondensation activity.
  • the phosphate-based aromatic structural unit two (II) conforms to the general formula (II):
  • R 3 is H, C1-C4 alkyl, C1-C4 alkoxy
  • a methylene structural unit III which links two aromatic structural units which are identical or different independently of each other and which represents structural unit (Ia) or structural unit (Ib) of the polycondensate, Structural unit (II).
  • the weight-average molecular weight of the polycondensate water reducer containing branched side chains in the present invention is 10,000-80,000.
  • the preparation method of the polycondensate water reducer containing branched side chains of the present invention is prepared by polycondensation reaction of polyether side chain aromatic monomers, phosphate-based aromatic monomers and condensation reagents under acid-catalyzed conditions .
  • the polyether side chain aromatic monomer is the source monomer of the polyether side chain aromatic structural unit (Ia) or (Ib), which is a methyl or methoxy group containing multiple branched polyether side chains or unsubstituted aromatic ring.
  • the phosphoric acid-based aromatic monomer that is, the source monomer of the phosphoric acid-based aromatic structural unit II, is a methyl or methoxy-substituted or unsubstituted aromatic ring containing a phosphonic acid monoester adsorption group.
  • Phosphate-based aromatic structural unit II mainly provides adsorption groups to generate electrostatic adsorption with positively charged cement particles.
  • the polyether side chain aromatic structural unit contains multiple branched side chains, and the polyoxyethylene chain on the side chain
  • the segment can hydrogen bond with water to form a hydration film, which in turn provides steric hindrance dispersion effect, prevents the aggregation of cement particles, and provides dispersibility.
  • the water film layer can also have a lubricating effect and weaken the cement particles. Friction reduces the viscosity of the entire dispersion system.
  • the molar ratio of the phosphoric acid-based aromatic structural unit (II) is too low, there will be too few adsorption groups, and the charge density will be low, making it difficult to generate sufficient adsorption capacity to provide dispersion efficiency; if the molar ratio of the phosphoric acid-based aromatic structural unit (II) is too high
  • the conversion rate of the polyether side chain aromatic structural unit (Ia) or (Ib) is low, and too high an adsorption ratio affects the dispersion retention capacity. It is also disadvantageous.
  • polyether side-chain aromatic monomer is obtained by the addition reaction of polyhydroxy aromatic intermediates and ethylene oxide, specifically, polyhydroxy aromatic intermediate F is reacted with ethylene oxide in the presence of catalyst E Alkanes react to form polyether side chain aromatic monomers.
  • the number of the hydroxyl groups of the polyhydroxy aromatic intermediate F determines the number of side chains on the monomer (Ia) and the monomer (Ib) or is called the degree of branching, that is, in the above-mentioned general formula (Ia) and (Ib) a and b values.
  • Catalyst E is a substance capable of depriving active hydrogen, selected from metallic sodium, sodium hydride, and sodium methoxide.
  • the amount of catalyst E should satisfy the E/F molar ratio of 0.02 to 0.1. If the amount of catalyst is too low, the reaction will be difficult to initiate effectively. If the amount of catalyst is too high, the reaction speed will be too fast, and the heat release will be too intense, resulting in too high pressure of ethylene oxide and affecting production safety.
  • the amount of ethylene oxide (EO) needs to meet the following conditions: when Y is O, the molar ratio of EO/F is 10(a+1) ⁇ 50(a+1); when Y is N, the molar ratio of EO/F The ratio is 10(2b+2) ⁇ 50(2b+2), and the molar ratio of EO/F determines the number of polyoxyethylene repeating units on a single side chain on the monomer (Ia) and monomer (Ib), that is, the above-mentioned general m and n values in formulas (Ia) and (Ib).
  • the specific steps of the preparation method of the polyether side chain aromatic monomer slowly add the catalyst E to the polyhydroxy aromatic intermediate F under room temperature and stirring conditions, and continue to stir at room temperature for 10-60 minutes , raise the temperature to 100-150°C, and after reaching the set temperature, slowly feed ethylene oxide EO into the system to react to obtain polyether side-chain aromatic monomers.
  • Phosphate-based aromatic monomers can be described in more detail by the general formula (III)
  • R 3 is H, C1-C4 alkyl, C1-C4 alkoxy
  • the phosphate-based aromatic monomer is obtained through the esterification reaction of monomer J and phosphonating reagent B;
  • the general formula of the monomer J is shown in (IV), the monomer J and the aforementioned monomer A conform to the same general formula, and the monomer J and the monomer A are the same or different.
  • R 3 is C1-C4 alkyl, C1-C4 alkoxy
  • the phosphonating agent B is selected from orthophosphoric acid, phosphorus pentoxide or polyphosphoric acid.
  • the number of phosphorus atoms in the phosphonating agent and the number of hydroxyl groups in the monomer A need to satisfy a molar ratio of 1.2 to 3. If the ratio is too low, the efficiency of the esterification reaction will be affected, and if the ratio is too high, the phosphonic acid diester will be easily formed.
  • the embodiment of the esterification reaction between monomer J and phosphonating reagent B is to slowly add phosphonating reagent B to monomer A under room temperature and stirring conditions, continue to stir at room temperature for 30 minutes, and then raise the temperature to 80 ⁇ 120°C, after reaching the set temperature, continue the heat preservation reaction for 2 ⁇ 10h, and finally cool down to room temperature to obtain the phosphoric acid-based aromatic monomer.
  • the phosphate-based aromatic monomer, the polyether side-chain aromatic monomer and the condensation reagent H undergo a polycondensation reaction under acid-catalyzed conditions to obtain the water-reducing polycondensate containing branched side chains described in the present invention. agent.
  • the condensation reagent H includes formaldehyde, paraformaldehyde, glyoxylic acid and benzaldehyde, and the molar ratio of the condensation reagent to the total amount of phosphoric acid-based aromatic monomer plus the polyether side chain aromatic monomer needs to satisfy 1.0 ⁇ 1.5. If the ratio is too low, it will affect the conversion rate of polycondensation reaction and the molecular weight of the product. If it is too high, the crosslinking will be too high, resulting in too high molecular weight or even gel.
  • the acid I that plays a catalytic and dehydrating role in the polycondensation reaction includes inorganic acids or organic acids, including sulfuric acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxybenzenesulfonic acid, 3-hydroxybenzenesulfonic acid, 4-hydroxybenzene sulfonic acid.
  • the molar ratio of the acid I to the total amount of the phosphoric acid-based aromatic monomer plus the polyether side chain aromatic monomer needs to be 0.25 to 0.65. If the ratio is too low, it will affect the rate of polycondensation reaction. If it is too high, the reaction will be extremely violent and extremely May cause gelation.
  • the present invention has the following advantages: the branched side chain-containing polycondensate water reducer of the present invention has a branched side chain structure, and its steric hindrance effect is stronger, and the branched side chain and aromatic
  • the synergistic effect of the ring rigid skeleton greatly improves the water-reducing capacity, especially under the condition of low water-cement ratio, the water-reducing improvement is more obvious; the branched polyether side chain is more conducive to the formation of a thicker water film layer and has a certain viscosity-reducing effect , it is not easy to intercalate and adsorb with clay, and the adaptability of raw materials is stronger.
  • Phenoxyethanol shopping A2 3-Methylphenoxyethanol shopping A3 3-Ethylphenoxyethanol shopping A4
  • 4-Methylphenoxyethanol shopping A5 3-Methoxyphenoxyethanol shopping A6
  • 3-Ethoxyphenoxyethanol shopping A7 4-Methoxyphenoxyethanol shopping A8 Phenyldiethanolamine shopping B1 phosphoric acid shopping B2 Phosphorus pentoxide shopping B3 polyphosphoric acid shopping D.
  • Synthesis Examples 1-9 and Comparative Synthesis Examples 1-6 are the synthesis methods of the monomer (II) used in the present invention.
  • reaction conversion rate and the content of phosphonic acid monoester are measured by Shimadzu 2030 high performance liquid chromatography system, and the experimental conditions are as follows:
  • Comparative synthesis example 3 is compared with synthesis embodiment 9, and the temperature of phosphonation reaction is on the low side, causes the conversion rate of esterification reaction to be on the low side.
  • Synthesis Examples 10-27 and Comparative Synthesis Examples 7-14 are the synthesis methods of the monomer (I) used in the present invention.
  • Synthetic Examples 10-18 and Comparative Synthetic Examples 7-9 are the first step reaction that is to prepare the method of polyhydroxy aromatic intermediate F
  • Synthesis Examples 19-27 and Comparative Synthesis Examples 10-13 are the second-step reaction, ie, the method for preparing aromatic compound G with multiple polyether side chains.
  • Comparative Synthesis Example 12 also contains 3 side chains on the same aryl structural unit, but the EO throughput is lower, resulting in shorter side chain lengths.
  • Embodiment 1 (synthesis of polycondensate water reducer MSSP-1)
  • Embodiment 2 (synthesis of polycondensate water reducer MSSP-2)
  • Embodiment 3 (synthesis of polycondensate water reducer MSSP-3)
  • Embodiment 4 (synthesis of polycondensate water reducer MSSP-4)
  • Embodiment 5 (synthesis of polycondensate water reducer MSSP-5)
  • Embodiment 6 (synthesis of polycondensate water reducer MSSP-6)
  • Embodiment 7 (synthesis of polycondensate water reducer MSSP-7)
  • Embodiment 8 (synthesis of polycondensate water reducer MSSP-8)
  • Embodiment 9 (synthesis of polycondensate water reducer MSSP-9)
  • Embodiment 10 (synthesis of polycondensate water reducer MSSP-10)
  • Embodiment 11 (synthesis of polycondensate water reducer MSSP-11)
  • Embodiment 12 (synthesis of polycondensate water reducer MSSP-12)
  • the polycondensate water reducer MSSP-13 synthesized in Comparative Example 1 contained 8 side chains on a single aryl unit, while the polycondensate water reducer MSSP-9 synthesized in Example 9 contained 3 side chains on a single aryl unit.
  • the polycondensate water reducer MSSP-14 synthesized in Comparative Example 2 contained one side chain on a single aryl unit, while the polycondensate water reducer MSSP-9 synthesized in Example 9 contained three side chains on a single aryl unit.
  • the side chain of the polycondensate water reducer MSSP-15 synthesized in Comparative Example 3 contained 5 polyoxyethylene units, and the length of the side chain was relatively short, while the side chain of the polycondensate water reducer MSSP-9 synthesized in Example 9 contained 13 polyoxyethylene units. ethylene unit.
  • the side chain of the polycondensate water reducer MSSP-16 synthesized in Comparative Example 4 contains 55 polyoxyethylene units, and the length of the side chain is relatively long, while the side chain of the polycondensate water reducer MSSP-9 synthesized in Example 9 contains 13 polyoxyethylene units. ethylene unit.
  • the molar ratio of the monomer (II) to the monomer (I) in the polycondensate water reducer MSSP-17 synthesized in Comparative Example 5 was 0.25, while the monomer (II) in the polycondensate water reducer MSSP-9 synthesized in Example 9 ) to the monomer (I) in a molar ratio of 2.00.
  • the molar ratio of the monomer (II) to the monomer (I) in the polycondensate water reducer MSSP-18 synthesized in Comparative Example 6 was 10.00, while the monomer (II) in the polycondensate water reducer MSSP-9 synthesized in Example 9 ) to the monomer (I) in a molar ratio of 2.00.
  • the molecular weight and conversion rate of all polymers are measured using Agilent GPC1260, and the experimental conditions are as follows:
  • the mol ratio of monomer (II) to monomer (I) is too low (MSSP-17, comparative example 5) or too high (MSSP-18, comparative example 6), condensation reagent H and monomer
  • the molar ratio of body (II) plus monomer (I) is too low (MSSP-19, comparative example 7)
  • the molar ratio of catalyst acid I to monomer (II) plus monomer (I) is too low (MSSP- 21, Comparative Example 9)
  • MSSP-21 Comparative Example 9
  • the molar ratio of the condensation reagent H to the monomer (II) plus the sum of the monomer (I) is too high (MSSP-20, comparative example 8), and the molar ratio of the catalyst acid I to the monomer (II) plus the sum of the monomer (I) If the molar ratio is too high (MSSP-22, Comparative Example 10), the molecular weight of the product will be significantly higher than expected, which will not only affect its performance, but also easily cause production accidents.
  • the polycondensate water reducer prepared by the present invention has good dispersibility to cement particles under the conventional water-cement ratio (0.29), and in the case of 0.19% dosage, the initial slurry fluidity can It can reach more than 250mm, and after 120 minutes, the fluidity of the net pulp can reach more than 170mm. Too many side chains (MSSP-13, Comparative Example 1) and too few side chains (MSSP-14, Comparative Example 1) will degrade the dispersion performance to a certain extent.
  • the molar ratio of monomer (II) to monomer (I) is too low (MSSP-17, comparative example 5) or too high (MSSP-18, comparative example 6), condensation reagent H and monomer (II) plus monomer (I) the molar ratio of total is too low (MSSP-19, comparative example 7) or too high (MSSP-20, comparative example 8), the molar ratio of catalyst acid I and monomer (II) plus monomer (I) total Too low (MSSP-21, comparative example 9) or too high (MSSP-22, comparative example 10) will lead to low conversion rate, molecular weight greatly deviates from expectations, and thus the dispersion performance will be greatly reduced.
  • the polycondensate water reducer prepared by the present invention has good dispersibility to cement particles at an extremely low water-cement ratio (0.23), and the initial slurry fluidity is It can reach more than 250mm, and the net pulp fluidity can reach more than 180mm after 120 minutes.
  • commercially available polycarboxylate water-reducer PCE-1 although under conventional water-cement ratio (0.29) has more excellent dispersibility than polycondensate water-reducer prepared by the present invention, but under very low water-cement ratio , even if the dosage is 10% higher, its dispersibility still cannot reach the level of the polycondensate water reducer prepared by the present invention.
  • the polycondensate water reducer prepared by the present invention greatly improves the water reducing capacity due to the synergistic effect of the branched side chain and the rigid aromatic ring skeleton, especially under the condition of low water-cement ratio, the water reducing improvement is more obvious.
  • the apparent viscosity of the cement mortar mixed with the polycondensate water reducing agent prepared by the present invention was tested by a Brookfield viscometer.
  • the mortar mix ratio is: 650 grams of conch PO42.5 cement, 1350 grams of standard sand, and 200 grams of water. The results are shown in Table 6 below.
  • the polycondensate water reducer prepared by the present invention has good dispersion performance and viscosity reduction effect in cement mortar.
  • the initial mortar fluidity can reach more than 280mm.
  • the mortar viscosity is only 200-300mPa ⁇ S, the fluidity of the mortar can reach more than 200mm after 60 minutes. At this time, the mortar viscosity is 2000-3000mPa ⁇ S.
  • the commercially available polycarboxylate superplasticizer PCE-1 in the case of 0.19% dosage, the initial mortar fluidity can reach more than 280mm.
  • the mortar viscosity is about 800mPa ⁇ S
  • the mortar fluidity after 60 minutes is 214mm
  • the mortar viscosity is about 4400mPa ⁇ S.
  • the polycondensate water reducer prepared by the present invention has a branched polyether side chain structure, which is more conducive to the formation of a thicker water film layer and has an obvious viscosity-reducing effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了提供一种多羟基芳族中间体及其制备方法和其在含枝化侧链缩聚减水剂中的应用,所述含有枝化侧链的缩聚物减水剂,具有支化侧链结构,空间位阻作用更强,支化侧链与芳环刚性骨架的协同作用使得减水能力大幅提升,尤其在低水灰比条件下,减水提升更加明显;支化聚醚侧链更有利于形成较厚的水膜层,具有显著的降黏效果;支化聚醚侧链构象受水泥孔溶液中不同离子环境影响小,因而对各种原材料适应性更强,其适用于配制高强混凝土、自密实混凝土以及低水胶比高掺量矿物掺合料混凝土,尤其适用于配制含有机制砂的混凝土。

Description

一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用 技术领域
本发明属于混凝土外加剂技术领域,具体涉及一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用。
背景技术
混凝土一般由胶凝材料(水泥)、粗骨料(石子)、细骨料(砂)、水和各种化学外加剂组成。化学外加剂作为混凝土的第五组分,对其新拌工作性能和硬化后的力学性能具有举足轻重的作用。各种化学外加剂中,混凝土减水剂,又称水泥分散剂或超塑化剂,应用最为广泛,其加入混凝土中,可以显著降低混凝土用水量,改善其初始流动性,因而能够维持混凝土良好的施工操作性的同时,提高其硬化后的力学强度。
混凝土减水剂的发展可以大致分为三个阶段,以木钙为代表的第一代普通减水剂、以萘磺酸盐甲醛缩聚物为代表的第二代高效减水剂阶段以及以聚羧酸系为代表的第三代高性能减水剂阶段。
第一、二代减水剂由于掺量大,减水不够,水泥适应性不广,坍落度损失大等问题而受到制约。20世纪80年代初期出现的聚羧酸系高性能减水剂被认为是第三代减水剂,它减水率高、掺量低、坍落度保持能力强,是当今国内外应用最为广泛的最新一代减水剂。
随着聚羧酸减水剂应用的深入,也发现一些问题。一是,现代建筑呈现出高层化、轻量化趋势,为提高混凝土强度等级,必须加大胶凝材料用量、大幅降低用水量,这极易造成新拌混凝土粘度大,施工难的问题。二是聚羧酸减水剂与混凝土原材料相容性欠佳,尤其是不同地域水泥矿相组成差异较大,造成孔溶液的离子环境差异显著,聚羧酸的梳型构象受到影响,随着机制砂的应用越来越广,这种现象更加突出。
专利CN200480011979.7在梳型聚合物结构中引入疏水的丙烯酸长链烷基酯共聚,可以降低混凝土粘度,但疏水单元的引入会造成分散性能的明显下降,而且这种方法对粘度的改善是有限的。专利CN20091077550.2在聚羧酸母液里复配 聚乙二醇作为降粘组分,可以降低混凝土粘度,提高工作性,但额外加入的聚乙二醇会增加新的经济负担。
专利CN201510919314.6通过在聚羧酸分子的主链上引入刚性的官能团调节其在孔溶液中的构象,提高其原材料适应性。但这种方法必须使用RAFT试剂或预先合成RAFT大分子,生产成本和工艺要求均较高,同时制得的嵌段聚羧酸中仍含有大量的羧酸基团,仍会收到环境离子的影响,适应性仍存在提升空间。
专利EP1203046采用三烷氧基硅烷代替羧酸基团引入到羧酸侧链上,三烷氧基硅烷不会受到环境离子的电荷影响,同时可以与水泥水化的CSH凝胶能发生化学反应,因而既能够提供与水泥粒子的作用力的同时避免环境离子的影响。但这种减水剂的制备要用到异氰酸酯类物质,成本较高,而且分散性能不高,有进一步提升空间。专利CN201580070080.0采用末端氨基聚醚与含环氧基团的硅烷偶联剂进行开环反应,得到含有1-2个三烷氧基硅烷基团的水泥分散剂,但由于其锚固基团数目太少,分散能力相对常规的聚羧酸减水剂仍存在较大差距。
发明内容
本发明提供一种多羟基芳族中间体及其制备方法和其在含枝化侧链缩聚减水剂中的应用,所述含枝化侧链缩聚减水剂的分散性能优异、降黏效果明显、原材料适应性好,其适用于配制高强混凝土、自密实混凝土以及低水胶比高掺量矿物掺合料混凝土,尤其适用于配制含有机制砂的混凝土。
本发明所述的多羟基芳族中间体F的结构式(V)为:
Figure PCTCN2021130300-appb-000001
其中R 4为H、C1-C4的烷基、C1-C4的烷氧基;
其中Y代表O或者N,当Y代表O时,d=1,e代表1~5的整数;当Y代表N时,d=2,e代表0~2的整数。
本发明所述的多羟基芳族中间体的制备方法,是由A物质在催化剂E的存在下,与物质D反应生成多羟基芳族中间体F;
A物质的通式如下(VI)式所示
Figure PCTCN2021130300-appb-000002
其中R 4为H、C1-C4的烷基、C1-C4的烷氧基;
其中Y代表O或者N,当Y代表O时,d=1,当Y代表N时,d=2。
进一步的,单体A选自苯氧乙醇、3-甲基苯氧乙醇、3-乙基苯氧乙醇、4-甲 基苯氧乙醇、3-甲氧基苯氧乙醇、3-乙氧基苯氧乙醇、4-甲氧基苯氧乙醇、苯基二乙醇胺。
所述催化剂E为可以夺取活泼氢的物质,选自金属钠、氢化钠、甲醇钠。
催化剂E的用量满足E/单体A的摩尔比为0.2~0.5,催化剂用量太低转化率难以令人满意,催化剂用量过高会导致整个合成体系的粘稠度太大而难以操作。
物质D为缩水甘油。D的用量需满足如下条件:当Y为O时,D/A摩尔比为1~5,当Y为N时,D/A摩尔比为0~2,D/A的摩尔比例决定了产物多羟基芳族中间体F中的羟基数目。
所述多羟基芳族中间体的制备方法的具体步骤如下:在室温和搅拌的条件下,缓慢将催化剂E加入单体A中,继续室温搅拌10-60分钟后,将温度升高到80~120℃,之后在5~24h内加入物质D,最后冷却到室温,得到所述多羟基芳族中间体F。
所述多羟基芳族中间体F的应用,是用于合成多聚醚侧链芳族中间体,其进一步合成含有枝化侧链的缩聚物减水剂。
本发明所述含枝化侧链的缩聚物减水剂,其分子结构包括三种结构单元,多聚醚侧链芳族结构单元I、磷酸基芳族结构单元II、和亚甲基结构单元III;
多聚醚侧链芳族结构单元I为带有2-4个聚醚侧链的芳族部分;所述芳族部分包括苯基、甲基苯基或甲氧基苯基;
磷酸基芳族结构单元II为带有1-2个膦酸单酯基团的芳族部分;所述芳族部分包括苯基、甲基苯基或甲氧基苯基,其余属于侧链;
亚甲基结构单元III连接所述多聚醚侧链芳族结构单元和所述磷酸基芳族结构单元,其连接的结构单元相同或不同,为连接所述多聚醚侧链芳族结构单元I和磷酸基芳族结构单元II中的结构中的任意两个。
多聚醚侧链芳族结构单元I是由多羟基芳族中间体F与环氧乙烷进行加成反应得到:
所述多聚醚侧链芳族结构单元I为通式(Ia)或(Ib)中的任意一种;
Figure PCTCN2021130300-appb-000003
其中R 1、R 2彼此独立地为相同或者不同的H、C1-C4的烷基、C1-C4的烷氧基。
其中a代表1~5的整数,m代表10~50的整数。
其中b代表0~2的整数,n代表10~50的整数。
a、b决定了单个芳族化合物上侧链的条数或称为枝化度分别为a+1、2b+2,侧链个数太多会增加单体(Ia)和单体(Ib)的位阻效应,但位阻过大也会影响其与单体(II)缩聚的活性,侧链个数太少则无法形成枝化结构,位阻效应太低,水膜层厚度不够,分散性能和降黏性能均受到影响。
m、n分别独立地代表10~50的整数,m、n为单条侧链中聚氧乙烯重复单元 的数目,决定了单条侧链的长度,长度太短位阻效应太低,长度太长同样会影响缩聚活性。
所述磷酸基芳族结构单元二(II)符合通式(II):
Figure PCTCN2021130300-appb-000004
其中R 3为H、C1-C4的烷基、C1-C4的烷氧基;
其中X代表O或者N,当X代表O时,c=1,当X代表N时,c=2。
亚甲基结构单元III,其连接两个芳族结构单元,两个芳族结构单元彼此独立地为相同或不同的,并且代表所述缩聚物的结构单元(Ia)或结构单元(Ib)、结构单元(II)。
本发明涉及缩聚物减水剂的结构单元(Ia)、结构单元(Ib)、结构单元(II)的摩尔比应满足(II)/(Ia)=0.5~8,(II)/(Ib)=0.5~8。
本发明所述含枝化侧链的缩聚物减水剂的重均分子量为10000~80000。
本发明所述含枝化侧链的缩聚物减水剂的制备方法,通过多聚醚侧链芳族单体、磷酸基芳族单体与缩合试剂,在酸催化条件下的缩聚反应来制备。
多聚醚侧链芳族单体即多聚醚侧链芳族结构单元(Ia)或(Ib)的来源单体,为含多条枝化聚醚侧链的甲基或甲氧基取代或未取代的芳环。
磷酸基芳族单体即磷酸基芳族结构单元II的来源单体,为含膦酸单酯吸附基团的甲基或甲氧基取代或未取代的芳环。
磷酸基芳族结构单元II主要提供吸附基团,与带正电的水泥粒子产生静电吸附作用,多聚醚侧链芳族结构单元含多条枝化侧链,侧链上的聚氧乙烯链段可以与水发生氢键作用,形成一层水化膜,进而提供空间位阻分散效力,阻止水泥 粒子的聚集,提供分散性,同时水膜层也能具有润滑作用,削弱水泥粒子之间的摩擦力,降低整个分散体系的黏度。
磷酸基芳族结构单元II与多聚醚侧链芳族结构单元(Ia)或(Ib)的摩尔比应满足(II)/(Ia)=0.5~8,(II)/(Ib)=0.5~8。若磷酸基芳族结构单元(II)摩尔比偏少则吸附基团偏少,电荷密度偏低,难以产生足够的吸附量提供分散效能;若磷酸基芳族结构单元(II)摩尔比太高,一方面会由于磷酸基芳族结构单元(II)强烈的自聚倾向导致多聚醚侧链芳族结构单元(Ia)或(Ib)转化率偏低,太高的吸附比例对分散保持能力也是不利的。
多聚醚侧链芳族单体由多羟基芳族中间体与环氧乙烷的加成反应获得,具体的,是由多羟基芳族中间体F在催化剂E的存在下,与环氧乙烷反应生成多聚醚侧链芳族单体。
多羟基芳族中间体F的羟基的个数决定了单体(Ia)和单体(Ib)上侧链的条数或称为枝化度,即上述通式(Ia)和(Ib)中的a和b值。
催化剂E为可以夺取活泼氢的物质,选自金属钠、氢化钠、甲醇钠。
催化剂E的用量满足E/F摩尔比为0.02~0.1,催化剂用量太低反应难以有效引发,催化剂用量太高反应速度太快,放热过于剧烈,导致环氧乙烷压力太高影响生产安全。
环氧乙烷(EO)的用量需满足如下条件:当Y为O时,EO/F摩尔比为10(a+1)~50(a+1),当Y为N时,EO/F摩尔比为10(2b+2)~50(2b+2),EO/F的摩尔比例决定了单体(Ia)和单体(Ib)上单条侧链上聚氧乙烯重复单元数目,即上述通式(Ia)和(Ib)中的m和n值。
所述多聚醚侧链芳族单体的制备方法的具体步骤:在室温和搅拌的条件下,缓慢将催化剂E加入所述多羟基芳族中间体F中,继续室温搅拌10-60分钟后,将温度升高到100~150℃,达到设定温度后,缓慢向体系中通入环氧乙烷EO,反应得到多聚醚侧链芳族单体。
磷酸基芳族单体可通过通式(III)更详细地描述
Figure PCTCN2021130300-appb-000005
其中R 3为H、C1-C4的烷基、C1-C4的烷氧基;
其中X代表O或者N,当X代表O时,c=1,当X代表N时,c=2。
所述磷酸基芳族单体通过单体J与膦酸化试剂B的酯化反应得到;
单体J的通式如(IV)所示,所述单体J与前述单体A符合同一通式,单体J与单体A相同或不同。
Figure PCTCN2021130300-appb-000006
其中R 3为C1-C4的烷基、C1-C4的烷氧基;
其中X代表O或者N,当X代表O时,c=1,当X代表N时,c=2。
膦酸化试剂B选自正磷酸、五氧化二磷或多聚磷酸。膦酸化试剂中的磷原子数目与单体A中的羟基数目需满足摩尔比为1.2~3,该比例过低会影响酯化反应效率,太高则易生成膦酸双酯。
单体J与膦酸化试剂B的酯化反应的实施方式为,在室温和搅拌的条件下, 缓慢将膦酸化试剂B加入单体A中,继续室温搅拌30分钟后,将温度升高到80~120℃,达到设定温度后,继续保温反应2~10h,最后冷却到室温,得到磷酸基芳族单体。
所述磷酸基芳族单体和所述多聚醚侧链芳族单体与缩合试剂H,在酸催化条件下的发生缩聚反应得到本发明所述的含有枝化侧链的缩聚物减水剂。
所述缩合试剂H包括甲醛、多聚甲醛、乙醛酸及苯甲醛,缩合试剂与磷酸基芳族单体加所述多聚醚侧链芳族单体的总量的摩尔比需满足1.0~1.5,该比例过低会影响缩聚反应转化率和产物分子量,太高则交联度过高,造成分子量过高甚至导致凝胶。
所述缩聚反应中起催化和脱水作用的酸I包括无机酸或有机酸,包括硫酸、甲烷磺酸、乙烷磺酸、2-羟基苯磺酸、3-羟基苯磺酸、4-羟基苯磺酸。酸I与所述磷酸基芳族单体加多聚醚侧链芳族单体总量的摩尔比需满足0.25~0.65,该比例过低会影响缩聚反应速率,太高则反应极为剧烈,极易导致凝胶。
所述含枝化侧链的缩聚物减水剂的制备方法的具体步骤:将磷酸基芳族单体、多聚醚侧链芳族单体、缩合试剂H、催化酸I混合搅拌均匀,升高温度到100~150℃,保温反应2~10h,最后冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明所述的含有枝化侧链的缩聚物减水剂。
本发明与现有技术相比,具有以下优点:本发明所述含枝化侧链的缩聚物减水剂,具有支化侧链结构,其空间位阻效应更强,支化侧链与芳环刚性骨架的协同作用使得减水能力大幅提升,尤其在低水灰比条件下,减水提升更加明显;支化聚醚侧链更有利于形成较厚的水膜层具有一定的降黏效果,不容易与黏土发生插层吸附,原材料适应性更强。
具体实施方式
以下实施例更详细地描述了根据本发明的方法制备聚合产物的过程,并且这些实施例以说明的方式给出,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,但这些实施例绝不限制本发明的范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
在合成实施例和对比合成例中用到原料的代号如表1:
表1合成实施例和对比合成例原料代号
代号 单体名称 来源
A1 苯氧基乙醇 商购
A2 3-甲基苯氧基乙醇 商购
A3 3-乙基苯氧基乙醇 商购
A4 4-甲基苯氧基乙醇 商购
A5 3-甲氧基苯氧基乙醇 商购
A6 3-乙氧基苯氧基乙醇 商购
A7 4-甲氧基苯氧基乙醇 商购
A8 苯基二乙醇胺 商购
B1 磷酸 商购
B2 五氧化二磷 商购
B3 多聚磷酸 商购
D 缩水甘油 商购
E1 金属钠 商购
E2 氢化钠 商购
E3 甲醇钠 商购
合成实施例1-9和对比合成例1-6为本发明所使用的单体(II)的合成方法。
本发明合成实施例中,反应转化率和膦酸单酯含量测定采用Shimadzu 2030高效液相色谱系统测定,实验条件如下:
色谱柱:C18色谱柱
流动相:甲醇/水(体积比4:1)溶液
流动相速度:0.8ml/min
检测器:示差折光检测器
柱温:30℃
合成实施例1(单体(II)C1的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将125.17克B1加入反应器内,继续室温搅拌30分钟后,将温度升高到90℃,在此温度下继续保温反应7小时,冷却到室温,得到棕红色固体C1,液相色谱测试其转化率为97.2%,单酯含量为96.1%。
合成实施例2(单体(II)C2的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A2,室 温条件下,一边搅拌一边将60.63克B2加入反应器内,继续室温搅拌30分钟后,将温度升高到85℃,在此温度下继续保温反应10小时,冷却到室温,得到棕红色固体C2,液相色谱测试其转化率为93.4%,单酯含量为95.9%。
合成实施例3(单体(II)C3的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A3,室温条件下,一边搅拌一边将125.62克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C3,液相色谱测试其转化率为94.8%,单酯含量为95.1%。
合成实施例4(单体(II)C4的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A4,室温条件下,一边搅拌一边将164.62克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到105℃,在此温度下继续保温反应3小时,冷却到室温,得到棕红色固体C4,液相色谱测试其转化率为97.3%,单酯含量为95.7%。
合成实施例5(单体(II)C5的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A5,室温条件下,一边搅拌一边将99.30克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到115℃,在此温度下继续保温反应2小时,冷却到室温,得到棕红色固体C5,液相色谱测试其转化率为93.9%,单酯含量为95.9%。
合成实施例6(单体(II)C6的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A6,室温条件下,一边搅拌一边将91.67克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到110℃,在此温度下继续保温反应3小时,冷却到室温,得到棕红色固体C6,液相色谱测试其转化率为97.5%,单酯含量为96.3%。
合成实施例7(单体(II)C7的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A7,室温条件下,一边搅拌一边将74.48克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C7,液相色谱测试其转化率为94.0%,单酯含量为96.6%。
合成实施例8(单体(II)C8的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A8,室温条件下,一边搅拌一边将182.59克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C7,液相色谱测试其转化率为95.7%,单酯含量为96.5%。
合成实施例9(单体(II)C9的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将90.65克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C9,液相色谱测试其转化率为94.2%,单酯含量为95.3%。
对比合成例1
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将60.43克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C10,液相色谱测试其转化率为58.8%,单酯含量为94.9%。
对比合成例1与合成实施例9相比,膦酸化试剂用量偏少,造成酯化反应转化率非常低。
对比合成例2
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将302.16克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C11,液相色谱测试其转化率为97.8%,单酯含量为75.8%。
对比合成例2与合成实施例9相比,膦酸化试剂用量偏多,造成膦酸单酯含量偏低。
对比合成例3
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将90.65克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到70℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C12,液相色谱测试其转化率为69.2%,单酯含量为91.5%。
对比合成例3与合成实施例9相比,膦酸化反应温度偏低,造成酯化反应转 化率偏低。
对比合成例4
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将90.65克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到140℃,在此温度下继续保温反应5小时,冷却到室温,得到棕红色固体C13,液相色谱测试其转化率为95.0%,单酯含量为56.0%。
对比合成例4与合成实施例9相比,膦酸化反应温度偏高,造成膦酸单酯含量非常低。
对比合成例5
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将90.65克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应1小时,冷却到室温,得到棕红色固体C14,液相色谱测试其转化率为68.9%,单酯含量为96.3%。
对比合成例5与合成实施例9相比,膦酸化反应时间太短,造成酯化反应转化率偏低。
对比合成例6
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将90.65克B3加入反应器内,继续室温搅拌30分钟后,将温度升高到100℃,在此温度下继续保温反应20小时,冷却到室温,得到棕红色固体C14,液相色谱测试其转化率为96.9%,单酯含量为67.3%。
对比合成例6与合成实施例9相比,膦酸化反应时间偏长,造成膦酸单酯含量偏低。
合成实施例10-27和对比合成例7-14为本发明所使用的单体(I)的合成方法。
其中合成实施例10-18和对比合成例7-9为第一步反应即制备多羟基芳族中间体F的方法
合成实施例10(多羟基芳族中间体F1的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将4.16克E1加入反应器内,继续室温搅拌30 分钟,将温度升高到85℃,在此温度下于24小时内将107.24克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F1。
合成实施例11(多羟基芳族中间体F2的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A2,室温条件下,一边搅拌一边将3.63克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将97.37克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F2。
合成实施例12(多羟基芳族中间体F3的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A3,室温条件下,一边搅拌一边将8.12克E3加入反应器内,继续室温搅拌30分钟,将温度升高到110℃,在此温度下于8小时内将133.75克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F3。
合成实施例13(多羟基芳族中间体F4的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A4,室温条件下,一边搅拌一边将4.73克E2加入反应器内,继续室温搅拌30分钟,将温度升高到90℃,在此温度下于20小时内将146.06克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F4。
合成实施例14(多羟基芳族中间体F5的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A5,室温条件下,一边搅拌一边将5.00克E2加入反应器内,继续室温搅拌30分钟,将温度升高到100℃,在此温度下于10小时内将176.21克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F5。
合成实施例15(多羟基芳族中间体F6的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A6,室温条件下,一边搅拌一边将4.22克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将203.34克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F6。
合成实施例16(多羟基芳族中间体F7的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100 克A7,室温条件下,一边搅拌一边将3.14克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将44.05克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F7。
合成实施例17(多羟基芳族中间体F8的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A8,室温条件下,一边搅拌一边将7.87克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将108.00克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F8。
合成实施例18(多羟基芳族中间体F9的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将4.34克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将107.24克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F9。
对比合成例7(多羟基芳族中间体F10的合成)
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将4.34克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将375.33克D加入到反应体系中,然后冷却到室温,得到淡黄色液体,即为多羟基芳族中间体F10。
对比合成例7与合成实施例18相比,D用量偏高,得到的多羟基芳族中间体羟基数偏多,后续单个结构单元上的侧链数目也偏多。
对比合成例8
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100克A1,室温条件下,一边搅拌一边将1.74克E2加入反应器内,继续室温搅拌30分钟,将温度升高到105℃,在此温度下于10小时内将107.24克D加入到反应体系中,然后冷却到室温,得到无色液体。
对比合成例8与合成实施例18相比,催化剂E用量偏低,物质A与D的反应难以进行。
对比合成例9
在装有温度计、搅拌器、滴液漏斗和回流冷凝器的玻璃反应器中,加入100 克A1,室温条件下,一边搅拌一边将13.90克E2加入反应器内,继续室温搅拌30分钟后体系粘稠度逐渐增大,最终形成难以搅拌的棕色固体。
对比合成例9与合成实施例18相比,催化剂E用量过高,导致整个合成体系的粘稠度太大而难以操作。
合成实施例19-27和对比合成例10-13为第二步反应即制备带有多条聚醚侧链的芳族化合物G的方法。
合成实施例19(含多条聚醚侧链的芳族化合物G1的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F1,在室温和搅拌的条件下,将0.19克E1加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到110℃,在此温度下缓慢向体系中通入环氧乙烷(EO)1162克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G1。
合成实施例20(含多条聚醚侧链的芳族化合物G2的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F2,在室温和搅拌的条件下,将0.48克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到120℃,在此温度下缓慢向体系中通入环氧乙烷(EO)1108克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G2。
合成实施例21(含多条聚醚侧链的芳族化合物G3的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F3,在室温和搅拌的条件下,将1.33克E3加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到140℃,在此温度下缓慢向体系中通入环氧乙烷(EO)816克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G3。
合成实施例22(含多条聚醚侧链的芳族化合物G4的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F4,在室温和搅拌的条件下,将0.77克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到145℃,在此温度下缓慢向体系中通入环氧乙烷(EO)846克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得 到白色或淡黄色固体,即为化合物G4。
合成实施例23(含多条聚醚侧链的芳族化合物G5的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F5,在室温和搅拌的条件下,将0.31克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到130℃,在此温度下缓慢向体系中通入环氧乙烷(EO)909克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G5。
合成实施例24(含多条聚醚侧链的芳族化合物G6的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F6,在室温和搅拌的条件下,将0.26克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到130℃,在此温度下缓慢向体系中通入环氧乙烷(EO)573克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G6。
合成实施例25(含多条聚醚侧链的芳族化合物G7的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F7,在室温和搅拌的条件下,将0.59克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到130℃,在此温度下缓慢向体系中通入环氧乙烷(EO)1962克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G7。
合成实施例26(含多条聚醚侧链的芳族化合物G8的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F8,在室温和搅拌的条件下,将0.50克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到140℃,在此温度下缓慢向体系中通入环氧乙烷(EO)1110克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到白色或淡黄色固体,即为化合物G8。
合成实施例27(含多条聚醚侧链的芳族化合物G9的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F9,在室温和搅拌的条件下,将0.50克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到120℃,在此温度下缓慢向体系中通入环 氧乙烷(EO)719克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到淡黄色固体,即为化合物G9。
对比合成例10(含多条聚醚侧链的芳族化合物G10的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F10,在室温和搅拌的条件下,将0.22克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到120℃,在此温度下缓慢向体系中通入环氧乙烷(EO)836克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到淡黄色固体,即为化合物G10。
对比合成例10与合成实施例27相比,采用含有更多羟基数目的多羟基芳族中间体F10作为起始剂,制得的化合物G10同一个芳基结构单元上含8条侧链。
对比合成例11(含单根聚醚侧链的芳族化合物G11的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克A1,在室温和搅拌的条件下,将1.04克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到120℃,在此温度下缓慢向体系中通入环氧乙烷(EO)497克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到淡黄色固体,即为化合物G11。
对比合成例11与合成实施例27相比,采用仅1个羟基的A1作为起始剂,制得的化合物G11同一个芳基结构单元上仅含1条侧链。
对比合成例12(含多条聚醚侧链的芳族化合物G12的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F9,在室温和搅拌的条件下,将0.50克E2加入反应器内,继续室温搅拌30分钟,体系进行3次氮气置换后抽成真空,将温度升高到120℃,在此温度下缓慢向体系中通入环氧乙烷(EO)277克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到淡黄色固体,即为化合物G12。
对比合成例12与合成实施例27相比,同一个芳基结构单元上同样含3条侧链,但EO通料量更低,导致侧链的长度偏短。
对比合成例13(含多条聚醚侧链的芳族化合物G13的合成)
在装有温度计、搅拌器、和通料管的不锈钢反应釜中,加入120克F9,在室温和搅拌的条件下,将0.50克E2加入反应器内,继续室温搅拌30分钟,体系进行 3次氮气置换后抽成真空,将温度升高到120℃,在此温度下缓慢向体系中通入环氧乙烷(EO)3043克,通料过程中维持压力不高于0.4MPa,然后冷却到室温,得到淡黄色固体,即为化合物G13。
对比合成例13与合成实施例27相比,同一个芳基结构单元上同样含3条侧链,但EO通料量更多,导致侧链的长度偏长。
在实施例和对比例中用到原料或中间体的代号如表2:
表2实施例及比较例原料或中间体代号
Figure PCTCN2021130300-appb-000007
Figure PCTCN2021130300-appb-000008
实施例1(缩聚物减水剂MSSP-1的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C1,室温条件下,一边搅拌一边将1168克G1、91.15克H1、29.95克I1加入反应器内,混合均匀后,将温度升高到110℃,在此温度下继续保温反应4.5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含 有枝化侧链的缩聚物减水剂MSSP-1。
实施例2(缩聚物减水剂MSSP-2的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C2,室温条件下,一边搅拌一边将794克G2、29.88克H2、30.43克I2加入反应器内,混合均匀后,将温度升高到115℃,在此温度下继续保温反应3.5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-2。
实施例3(缩聚物减水剂MSSP-3的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C3,室温条件下,一边搅拌一边将615克G3、84.22克H3、34.00克I3加入反应器内,混合均匀后,将温度升高到120℃,在此温度下继续保温反应3小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-3。
实施例4(缩聚物减水剂MSSP-4的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C4,室温条件下,一边搅拌一边将974克G4、133.70克H4、42.64克I1加入反应器内,混合均匀后,将温度升高到140℃,在此温度下继续保温反应2小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-4。
实施例5(缩聚物减水剂MSSP-5的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C5,室温条件下,一边搅拌一边将301克G5、66.23克H1、31.37克I2加入反应器内,混合均匀后,将温度升高到120℃,在此温度下继续保温反应3小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-5。
实施例6(缩聚物减水剂MSSP-6的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C6,室温条件下,一边搅拌一边将609克G6、25.20克H2、42.01克I3加入反应器内,混合均匀后,将温度升高到115℃,在此温度下继续保温反应5小时,冷却到室温,用 氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-6。
实施例7(缩聚物减水剂MSSP-7的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C7,室温条件下,一边搅拌一边将318克G7、71.75克H1、27.45克I2加入反应器内,混合均匀后,将温度升高到100℃,在此温度下继续保温反应8小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-7。
实施例8(缩聚物减水剂MSSP-8的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C8,室温条件下,一边搅拌一边将369克G8、22.74克H2、36.38克I2加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应3小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-8。
实施例9(缩聚物减水剂MSSP-9的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将688克G9、108.82克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-9。
实施例10(缩聚物减水剂MSSP-10的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将459克G9、89.29克H1、76.64克I4加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应7小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-10。
实施例11(缩聚物减水剂MSSP-11的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将918克G9、97.66克H1、75.84克I5加入反应器内,混合 均匀后,将温度升高到105℃,在此温度下继续保温反应4小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-11。
实施例12(缩聚物减水剂MSSP-12的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将1721克G9、156.95克H1、99.70克I6加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应10小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-12。
对比例1(缩聚物减水剂MSSP-13的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将1799克G10、108.82克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-13。
对比例1合成的缩聚物减水剂MSSP-13单个芳基单元上含有8条侧链,而实施例9合成的缩聚物减水剂MSSP-9单个芳基单元上含有3条侧链。
对比例2(缩聚物减水剂MSSP-14的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将244克G11、108.82克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-14。
对比例2合成的缩聚物减水剂MSSP-14单个芳基单元上含有1条侧链,而实施例9合成的缩聚物减水剂MSSP-9单个芳基单元上含有3条侧链。
对比例3(缩聚物减水剂MSSP-15的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将325克G12、108.82克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温, 用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-15。
对比例3合成的缩聚物减水剂MSSP-15侧链含有5个聚氧乙烯单元,侧链长度偏短,而实施例9合成的缩聚物减水剂MSSP-9侧链含有13个聚氧乙烯单元。
对比例4(缩聚物减水剂MSSP-16的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将2594克G13、108.82克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-16。
对比例4合成的缩聚物减水剂MSSP-16侧链含有55个聚氧乙烯单元,侧链长度偏长,而实施例9合成的缩聚物减水剂MSSP-9侧链含有13个聚氧乙烯单元。
对比例5(缩聚物减水剂MSSP-17的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将5507克G9、362.73克H1、171.89克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-17。
对比例5合成的缩聚物减水剂MSSP-17中单体(II)与单体(I)的摩尔比为0.25,而实施例9合成的缩聚物减水剂MSSP-9中单体(II)与单体(I)的摩尔比为2.00。
对比例6(缩聚物减水剂MSSP-18的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将138克G9、79.80克H1、37.82克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-18。
对比例6合成的缩聚物减水剂MSSP-18中单体(II)与单体(I)的摩尔比为10.00,而实施例9合成的缩聚物减水剂MSSP-9中单体(II)与单体(I)的摩尔 比为2.00。
对比例7(缩聚物减水剂MSSP-19的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将688克G9、75.54克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-19。
对比例7合成的缩聚物减水剂MSSP-19中单体H与单体(II)加单体(I)总和的摩尔比为0.90,而实施例9合成的缩聚物减水剂MSSP-9中单体H与单体(II)加单体(I)总和的摩尔比为1.30。
对比例8(缩聚物减水剂MSSP-20的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将688克G9、133.93克H1、51.57克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-20。
对比例8合成的缩聚物减水剂MSSP-20中单体H与单体(II)加单体(I)总和的摩尔比为1.60,而实施例9合成的缩聚物减水剂MSSP-9中单体H与单体(II)加单体(I)总和的摩尔比为1.30。
对比例9(缩聚物减水剂MSSP-21的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将688克G9、108.82克H1、15.47克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-21。
对比例9合成的缩聚物减水剂MSSP-21中催化剂酸I与单体(II)加单体(I)总和的摩尔比为0.15,而实施例9合成的缩聚物减水剂MSSP-9中催化剂酸I与单体(II)加单体(I)总和的摩尔比为0.50。
对比例10(缩聚物减水剂MSSP-22的合成)
在装有温度计、搅拌器和回流冷凝器的玻璃反应器中,加入150克C9,室温条件下,一边搅拌一边将688克G9、108.82克H1、77.35克I1加入反应器内,混合均匀后,将温度升高到105℃,在此温度下继续保温反应5小时,冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到本发明的含有枝化侧链的缩聚物减水剂MSSP-22。
对比例9合成的缩聚物减水剂MSSP-22中催化剂酸I与单体(II)加单体(I)总和的摩尔比为0.75,而实施例9合成的缩聚物减水剂MSSP-9中催化剂酸I与单体(II)加单体(I)总和的摩尔比为0.50。
应用实施例
应用实施例1(分子量与转化率)
本发明实施例中,所有聚合物的分子量和转化率测定采用安捷伦GPC1260测定,实验条件如下:
凝胶柱:保护柱TSKguard Column PWXL+TSKgel G3000PWXL+混合床柱子TSKgel GMPWXL三根色谱柱串联
流动相:0.1M NaNO3溶液
流动相速度:1ml/min
注射:20μl 0.5%水溶液
检测器:安捷伦示差折光检测器
标准物:聚乙二醇GPC标样(Sigma-Aldrich,分子量1010000,478000,263000,118000,44700,18600,6690,1960,628,232)
所有实施例及对比例的分子量及转化率如下表3
表3实施例及对比例的分子量及转化率
Figure PCTCN2021130300-appb-000009
Figure PCTCN2021130300-appb-000010
由上表可以看到,单体(II)与单体(I)的摩尔比太低(MSSP-17,对比例5)或太高(MSSP-18,对比例6)、缩合试剂H与单体(II)加单体(I)总和的摩尔比太低(MSSP-19,对比例7)、催化剂酸I与单体(II)加单体(I)总和的摩尔比太低(MSSP-21,对比例9)均会使得缩聚反应效率降低,反应转化率难以令人满意,催化剂酸I与单体(II)加单体(I)总和的摩尔比太低(MSSP-21,对比例9)还会造成分子量低于预期。
同时,缩合试剂H与单体(II)加单体(I)总和的摩尔比太高(MSSP-20,对比例8)、催化剂酸I与单体(II)加单体(I)总和的摩尔比太高(MSSP-22,对比例10)均会使得产物分子量大幅高于预期,不但影响其使用性能,也极易造成生产事故。
应用实施例2(净浆与低水灰比净浆)
为对比本发明制备的缩聚物减水剂的分散性能和分散保持性能,参照GB/T8077-2012标准进行了水泥净浆流动度测试,水泥300g,加水量为87g,搅拌4分钟后在平板玻璃上测定水泥净浆流动度,并测试不同时间后的净浆流动度,实验结果见下表4。下表中的PCE-1为江苏苏博特新材料股份有限公司市售的聚羧酸减水剂。
表4缩聚物减水剂的水泥净浆分散性能和分散保持性能(水灰比0.29)
样品编号 掺量(%) 4min 30min 60min 120min
MSSP-1 0.19 254 246 221 173
MSSP-2 0.19 266 261 237 195
MSSP-3 0.19 252 245 228 181
MSSP-4 0.19 256 250 234 190
MSSP-5 0.19 255 248 223 175
MSSP-6 0.19 265 260 235 185
MSSP-7 0.19 255 248 223 175
MSSP-8 0.19 262 253 231 184
MSSP-9 0.19 270 262 243 203
MSSP-10 0.19 255 250 226 185
MSSP-11 0.19 251 242 225 180
MSSP-12 0.19 242 237 214 168
MSSP-13 0.19 188 177 162 113
MSSP-14 0.19 223 210 193 151
MSSP-15 0.19 167 138 /  
MSSP-16 0.19 218 129 /  
MSSP-17 0.19 /      
MSSP-18 0.19 237 122 /  
MSSP-19 0.19 158 /    
MSSP-20 0.19 /      
MSSP-21 0.19 147 /    
MSSP-22 0.19 /      
PCE-1 0.15 268 243 202 145
注:“/”表示从此时刻及以后已经观察不到浆体的流动性
从上表可以看出,本发明制得的缩聚物减水剂在常规水灰比(0.29)下对水泥粒子具有良好的分散性能,在0.19%掺量的情况下,初始净浆流动度能达到250mm以上,120分钟后净浆流动度能达到170mm以上。侧链数目过多(MSSP-13,对比例1)和侧链数目过少(MSSP-14,对比例1)会使得分散性能有一定劣化。
单体(II)与单体(I)的摩尔比太低(MSSP-17,对比例5)或太高(MSSP-18,对比例6)、缩合试剂H与单体(II)加单体(I)总和的摩尔比太低(MSSP-19,对比例7)或太高(MSSP-20,对比例8)、催化剂酸I与单体(II)加单体(I)总和的摩尔比太低(MSSP-21,对比例9)或太高(MSSP-22,对比例10)会导致 转化率偏低、分子量大幅偏离预期,因而分散性能有非常大的下降。
为对比本发明制备的缩聚物减水剂的在低水灰比下分散性能和分散保持性能,维持水泥仍为300g,将加水量降为66g,搅拌4分钟后在平板玻璃上测定水泥净浆流动度,并测试不同时间后的净浆流动度,实验结果见下表5。下表中的PCE-1为江苏苏博特新材料股份有限公司市售的聚羧酸减水剂。
表5缩聚物减水剂的水泥净浆分散性能和分散保持性能(水灰比0.23)
样品编号 掺量(%) 4min 30min 60min 120min
MSSP-1 0.28 250 241 223 179
MSSP-2 0.28 256 246 222 174
MSSP-3 0.28 262 252 233 187
MSSP-4 0.28 257 251 228 178
MSSP-5 0.28 268 261 239 199
MSSP-6 0.28 266 258 234 192
MSSP-7 0.28 257 252 228 186
MSSP-8 0.28 258 253 236 195
MSSP-9 0.28 263 255 238 196
MSSP-10 0.28 270 264 239 190
MSSP-11 0.28 253 248 227 179
MSSP-12 0.28 254 244 228 185
PCE-1 0.308 222 203 172 /
从上表可以看出,本发明制得的缩聚物减水剂在极低水灰比(0.23)下对水泥粒子具有良好的分散性能,在0.28%掺量的情况下,初始净浆流动度能达到250mm以上,120分钟后净浆流动度能达到180mm以上。而市售的聚羧酸减水剂PCE-1,虽然在常规水灰比(0.29)下比本发明制得的缩聚物减水剂具有更加优异的分散性能,但在极低水灰比下,即使掺量高出10%,其分散性能仍然无法达到本发明制得的缩聚物减水剂水平。
可见,本发明制得的缩聚物减水剂由于支化侧链与芳环刚性骨架的协同作用使得减水能力大幅提升,尤其在低水灰比条件下,减水提升更加明显。
应用实施例3(砂浆黏度)
采用布氏粘度计测试了掺有本发明制得的缩聚物减水剂的水泥砂浆的表观黏度,砂浆配合比为:海螺PO42.5水泥650克,标准砂1350克,水200克,测试结果如下表6。
表6水泥砂浆表观黏度
Figure PCTCN2021130300-appb-000011
从上表可以看出,本发明制得的缩聚物减水剂在水泥砂浆中具有良好的分散性能和降黏效果,在0.24%掺量的情况下,初始砂浆流动度能达到280mm以上,此时砂浆黏度仅为200~300mPa·S,60分钟后砂浆流动度能达到200mm以上,此时砂浆黏度为2000~3000mPa·S。作为对比,市售的聚羧酸减水剂PCE-1,在0.19%掺量的情况下,初始砂浆流动度能达到280mm以上,此时砂浆黏度约为800mPa·S,60分钟后砂浆流动度为214mm,砂浆黏度约为4400mPa·S。可见,本发明制得的缩聚物减水剂由于具有支化聚醚侧链结构,更有利于形成较厚的水膜层,具有明显的降黏效果。
应用实施例4(适应性)
为表征本发明制得的缩聚物减水剂的适应性,对比测试了MSSP-9和PCA-I在三种不同水泥中的减水保坍性能,结果如下表7。(水泥:小野田水泥/海螺水泥/鹤林水泥;砂:细度模数Mx=2.6的河砂;石子:玄武岩,粒径为5~20mm连续级配的碎石。混凝土的配合比:水泥:480kg/m3,砂:722.4kg/m3,石子:1083.6kg/m3,水:144kg/m3。MSSP-9减水剂掺量均为0.23%,PCA-I减水剂掺量均为0.19%)
表7 MSSP-9和PCA-I在三种不同水泥中的减水保坍性能(河砂)
Figure PCTCN2021130300-appb-000012
从上表可见,采用MSSP-9配制的三种不同混凝土的初始和后期坍落度/流动度差异均不大,说明其在三种不同水泥中具有接近的减水保坍性能,对原材料的适应性好;PCA-I在小野田水泥中初始分散能力明显不足,到1小时后才能释放出分散能力,而在鹤林水泥中则表现出初始分散能力过强,后期分散不足的特点,这说明PCA-I在三种不同水泥中减水保坍性能差异较大,对原材料的适应性一般。
将河砂替换成机制砂,对比测试了MSSP-9和PCA-I在三种不同水泥中的减水保坍性能,结果如下表8。
表8 MSSP-9和PCA-I在三种不同水泥中的减水保坍性能(机制砂)
Figure PCTCN2021130300-appb-000013
从上表可见,采用MSSP-9配制的混凝土将河砂替换为机制砂后,其初始和后期坍落度/流动度差异均不大,说明机制砂对其减水保坍性能几乎没有影响,适应性好;PCA-I配制的混凝土将河砂替换为机制砂后,减水保坍性能均有不同程度的劣化,这说明PCA-I减水保坍性能受机制砂影响较大,适应性一般。

Claims (15)

  1. 一种多羟基芳族中间体,其特征在于,其结构式(V)为:
    Figure PCTCN2021130300-appb-100001
    其中R 4为H、C1-C4的烷基、C1-C4的烷氧基;
    其中Y代表O或者N,当Y代表O时,d=1,e代表1~5的整数;当Y代表N时,d=2,e代表0~2的整数。
  2. 权利要求1所述多羟基芳族中间体的制备方法,其特征在于,是由A物质在催化剂E的存在下,与物质D反应生成所述多羟基芳族中间体;
    A物质的通式如下(VI)式所示
    Figure PCTCN2021130300-appb-100002
    其中R 4为H、C1-C4的烷基、C1-C4的烷氧基;
    其中Y代表O或者N,当Y代表O时,d=1,当Y代表N时,d=2;
    所述催化剂E为可以夺取活泼氢的物质,催化剂E的用量满足E/单体A的摩尔比为0.2~0.5;
    物质D为缩水甘油;D的用量需满足如下条件:当Y为O时,D/A摩尔比为1~5,当Y为N时,D/A摩尔比为0~2。
  3. 根据权利要求2所述的方法,其特征在于,单体A选自苯氧乙醇、3-甲基苯氧乙醇、3-乙基苯氧乙醇、4-甲基苯氧乙醇、3-甲氧基苯氧乙醇、3-乙氧基苯氧乙醇、4-甲氧基苯氧乙醇、苯基二乙醇胺。
  4. 根据权利要求2所述的方法,其特征在于,所述催化剂E选自金属钠、氢化钠、甲醇钠。
  5. 根据权利要求2所述的方法,其特征在于,所述多羟基芳族中间体的制备方法的具体步骤如下:在室温和搅拌的条件下,缓慢将催化剂E加入单体A中,继续室温搅拌10-60分钟后,将温度升高到80~120℃,之后在5~24h内加入物质D,最后冷却到室温,得到所述多羟基芳族中间体。
  6. 权利要求1所述多羟基芳族中间体F的应用,其特征在于,是用于合成多聚醚侧链芳族中间体,其进一步合成含枝化侧链的缩聚物减水剂。
  7. 一种含枝化侧链的缩聚物减水剂,其特征在于,其分子结构包括三种结构单元,多聚醚侧链芳族结构单元I、磷酸基芳族结构单元II、和亚甲基结构单元III;
    多聚醚侧链芳族结构单元I为带有2-4个聚醚侧链的芳族部分;所述芳族部分包括苯基、甲基苯基或甲氧基苯基;
    磷酸基芳族结构单元II为带有1-2个膦酸单酯基团的芳族部分;所述芳族部分包括苯基、甲基苯基或甲氧基苯基,其余属于侧链;
    亚甲基结构单元III连接所述多聚醚侧链芳族结构单元和所述磷酸基芳族结构单元,其连接的结构单元相同或不同,为连接所述多聚醚侧链芳族结构单元I和磷酸基芳族结构单元II中的结构中的任意两个;
    多聚醚侧链芳族结构单元I是由所述多羟基芳族中间体F与环氧乙烷进行加成反应得到,
    所述多聚醚侧链芳族结构单元I为通式(Ia)或(Ib)中的任意一种;
    Figure PCTCN2021130300-appb-100003
    其中R 1、R 2彼此独立地为相同或者不同的H、C1-C4的烷基、C1-C4的烷氧基;
    其中a代表1~5的整数,m代表10~50的整数;
    其中b代表0~2的整数,n代表10~50的整数;
    所述磷酸基芳族结构单元二(II)符合通式(II):
    Figure PCTCN2021130300-appb-100004
    其中R 3为H、C1-C4的烷基、C1-C4的烷氧基;
    其中X代表O或者N,当X代表O时,c=1,当X代表N时,c=2;
    亚甲基结构单元III,其连接两个芳族结构单元,两个芳族结构单元彼此独立地为相同或不同的;
    结构单元(Ia)、结构单元(Ib)、结构单元(II)的摩尔比应满足(II)/(Ia)=0.5~8,(II)/(Ib)=0.5~8。
  8. 根据权利要求7所述的含枝化侧链的缩聚物减水剂,其特征在于,其重均分子量为10000~80000。
  9. 权利要求7所述的含枝化侧链的缩聚物减水剂的制备方法,其特征在于,通过多聚醚侧链芳族单体、磷酸基芳族单体与缩合试剂H,在酸催化条件下的缩聚反应来制备;
    多聚醚侧链芳族单体即多聚醚侧链芳族结构单元(Ia)或(Ib)的来源单体,由多羟基芳族中间体与环氧乙烷的加成反应获得;
    磷酸基芳族单体即磷酸基芳族结构单元II的来源单体,为含膦酸单酯吸附基团的甲基或甲氧基取代或未取代的芳环;
    所述缩合试剂H包括甲醛、多聚甲醛、乙醛酸及苯甲醛,缩合试剂与磷酸基芳族单体加所述多聚醚侧链芳族单体的总量的摩尔比需满足1.0~1.5;
    所述缩聚反应中起催化的酸包括无机酸或有机酸,包括硫酸、甲烷磺酸、乙烷磺酸、2-羟基苯磺酸、3-羟基苯磺酸、4-羟基苯磺酸;酸与所述磷酸基芳族单体加多聚醚侧链芳族单体总量的摩尔比需满足0.25~0.65。
  10. 根据权利要求9所述方法,其特征在于,所述多聚醚侧链芳族单体是由多羟基芳族中间体F在催化剂E的存在下,与环氧乙烷反应获得;
    所述催化剂E为可以夺取活泼氢的物质,选自金属钠、氢化钠、甲醇钠;
    催化剂E的用量满足E/F摩尔比为0.02~0.1;
    环氧乙烷(EO)的用量需满足如下条件:当Y为O时,EO/F摩尔比为10(a+1)~50(a+1),当Y为N时,EO/F摩尔比为10(2b+2)~50(2b+2)。
  11. 根据权利要求10所述方法,其特征在于,所述多聚醚侧链芳族单体的制备方法的具体步骤:在室温和搅拌的条件下,缓慢将催化剂E加入所述多羟基芳族中间体F中,继续室温搅拌10-60分钟后,将温度升高到100~150℃,缓慢向体系中通入环氧乙烷EO,反应得到所述多聚醚侧链芳族单体。
  12. 根据权利要求9所述方法,其特征在于,所述磷酸基芳族单体符合通式(III):
    Figure PCTCN2021130300-appb-100005
    其中R 3为H、C1-C4的烷基、C1-C4的烷氧基;
    其中X代表O或者N,当X代表O时,c=1,当X代表N时,c=2。
  13. 根据权利要求12所述方法,其特征在于,所述磷酸基芳族单体通过单体J与膦酸化试剂B的酯化反应得到;
    单体J的通式如(IV)所示,所述单体J与前述单体A符合同一通式,单体J与单体A相同或不同;
    Figure PCTCN2021130300-appb-100006
    其中R 3为C1-C4的烷基、C1-C4的烷氧基;
    其中X代表O或者N,当X代表O时,c=1,当X代表N时,c=2;
    膦酸化试剂B选自正磷酸、五氧化二磷或多聚磷酸。
  14. 根据权利要求13所述方法,其特征在于,单体J与膦酸化试剂B的酯化反应的实施方式为,在室温和搅拌的条件下,缓慢将膦酸化试剂B加入单体A中,继续室温搅拌10-60分钟后,将温度升高到80~120℃,达到设定温度后,继续保温反应2~10h,最后冷却到室温,得到磷酸基芳族单体。
  15. 根据权利要求9所述方法,其特征在于,所述含枝化侧链的缩聚物减水剂的制备方法的具体步骤:将磷酸基芳族单体、多聚醚侧链芳族单体、缩合试剂H、催化酸I混合搅拌均匀,升高温度到100~150℃,保温反应2~10h,最后冷却到室温,用氢氧化钠和水将产物配置成pH=7,固含量30%的水溶液,即得到所述的含有枝化侧链的缩聚物减水剂。
PCT/CN2021/130300 2021-11-12 2021-11-12 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用 WO2023082175A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180034100.4A CN115605452B (zh) 2021-11-12 2021-11-12 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用
PCT/CN2021/130300 WO2023082175A1 (zh) 2021-11-12 2021-11-12 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用
US17/962,544 US20230151140A1 (en) 2021-11-12 2022-10-09 Polyhydroxy aromatic intermediate, preparation thereof and use thereof in polycondensate water-reducer with branched side chains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130300 WO2023082175A1 (zh) 2021-11-12 2021-11-12 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/962,544 Continuation US20230151140A1 (en) 2021-11-12 2022-10-09 Polyhydroxy aromatic intermediate, preparation thereof and use thereof in polycondensate water-reducer with branched side chains

Publications (1)

Publication Number Publication Date
WO2023082175A1 true WO2023082175A1 (zh) 2023-05-19

Family

ID=84842019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130300 WO2023082175A1 (zh) 2021-11-12 2021-11-12 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用

Country Status (3)

Country Link
US (1) US20230151140A1 (zh)
CN (1) CN115605452B (zh)
WO (1) WO2023082175A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049077A2 (en) * 2010-10-11 2012-04-19 Basf Construction Polymers Gmbh Dispersant containing gypsum slurry
CN108699233A (zh) * 2015-12-17 2018-10-23 建筑研究和技术有限公司 基于缩聚物的减水剂
CN109957103A (zh) * 2017-12-25 2019-07-02 江苏苏博特新材料股份有限公司 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法
WO2019189922A1 (ja) * 2018-03-30 2019-10-03 東邦化学工業株式会社 消泡剤組成物およびそれを含有する水硬性組成物用混和剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471171B (zh) * 2019-01-24 2023-07-18 江苏苏博特新材料股份有限公司 一种芳基磺酸中间体及其制备方法,和其用于合成混凝土用低温度敏感性外加剂的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049077A2 (en) * 2010-10-11 2012-04-19 Basf Construction Polymers Gmbh Dispersant containing gypsum slurry
CN108699233A (zh) * 2015-12-17 2018-10-23 建筑研究和技术有限公司 基于缩聚物的减水剂
CN109957103A (zh) * 2017-12-25 2019-07-02 江苏苏博特新材料股份有限公司 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法
WO2019189922A1 (ja) * 2018-03-30 2019-10-03 東邦化学工業株式会社 消泡剤組成物およびそれを含有する水硬性組成物用混和剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG JIANGHONG, SHEN YUQUAN, ZHOU JIAYUN, ZHAO YUXIA: "Synthesis and film-forming properties of several diglycidyl ether cladding materials", HUA HSUEH TUNG PAO - CHEMICAL BULLETIN, ZHONGGUO KEXUEYUAN HUAXUE YANJIUSUO, CN, no. 4, 1 April 2000 (2000-04-01), CN , pages 35 - 38,43, XP009546225, ISSN: 0441-3776, DOI: 10.14159/j.cnki.0441-3776.2000.04.013 *

Also Published As

Publication number Publication date
CN115605452B (zh) 2024-06-11
US20230151140A1 (en) 2023-05-18
CN115605452A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
EP3398916B1 (en) Phosphorylated polycondensate as high efficiency water reducing agent and preparation method thereof
CN107337765B (zh) 具有强适应性和保坍性能的膦酸基聚合物及其制备方法和应用
KR100247526B1 (ko) 시멘트분산제와그제조방법및이를이용한시멘트조성물
EP2291336B1 (en) Copolymer admixture system for workability retention of cementitious compositions
WO2022000306A1 (zh) 超高性能混凝土用多官能团超塑化剂及其制备方法
EP3398979A1 (en) Method for preparing concrete superplasticizer having phosphorous acid group and use thereof
CN109957103B (zh) 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法
CN107043227B (zh) 一种抗粘土型聚合物分散剂及其制备方法
CN110759663A (zh) 一种抗泥型聚羧酸减水剂的制备方法及应用
JP2017186232A (ja) 水硬性材料用減水剤の製造方法
CN108264620B (zh) 一种膦酸基嵌段聚合物、其制备方法及应用
WO2023184785A1 (zh) 一种交联型聚羧酸减水剂及其制备方法
CN109704619B (zh) 一种氨基磺酸盐高效减水剂及其制备工艺
CN109320714B (zh) 一种中低坍落度混凝土专用小分子超塑化剂及其制备方法
CN102731730A (zh) 一种双氧水辅助引发羧酸类减水剂及其制备方法
US8907016B2 (en) Dispersing agent containing copolymer mixture
KR102027818B1 (ko) 재료분리 저항성이 향상된 고성능 혼화제
CN108129053B (zh) 一种具有改善的粘土适应性的混凝土塑化剂的制备方法及其应用
WO2023082175A1 (zh) 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用
CN115197378A (zh) 一种水溶性聚合物及其碱激发磷渣材料体系减水剂的应用
CN115926066A (zh) 一种聚羧酸减水剂及其制备方法
CN111378111B (zh) 一种不含卤素离子的膦酸盐减水剂及其制备方法和应用
CN116265500A (zh) 一种降粘型聚羧酸减水剂及其制备方法
JP2017186233A (ja) 水硬性材料用分散保持剤の製造方法
CN114085336A (zh) 一种抗泥降粘型聚羧酸减水剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE