WO2023078191A1 - 一种基于喷墨印刷技术的光电组件一体化制造方法 - Google Patents

一种基于喷墨印刷技术的光电组件一体化制造方法 Download PDF

Info

Publication number
WO2023078191A1
WO2023078191A1 PCT/CN2022/128492 CN2022128492W WO2023078191A1 WO 2023078191 A1 WO2023078191 A1 WO 2023078191A1 CN 2022128492 W CN2022128492 W CN 2022128492W WO 2023078191 A1 WO2023078191 A1 WO 2023078191A1
Authority
WO
WIPO (PCT)
Prior art keywords
inkjet printing
ink
optoelectronic components
printing technology
integrated manufacturing
Prior art date
Application number
PCT/CN2022/128492
Other languages
English (en)
French (fr)
Inventor
刘长升
黄苑
Original Assignee
刘长升
黄苑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘长升, 黄苑 filed Critical 刘长升
Publication of WO2023078191A1 publication Critical patent/WO2023078191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the invention relates to the field of industrial preparation of optoelectronic components, in particular to an integrated manufacturing method of optoelectronic components based on inkjet printing technology.
  • Photoelectric components have broad application prospects in information, energy, medical, national defense and other fields.
  • the solution method is still one of the most effective methods for large-area and low-cost fabrication of optoelectronic components.
  • spin coating and inkjet printing are typical solution film-forming methods.
  • Spin coating is a method of dripping the solution onto the target substrate, and using the centrifugal force of the homogenizer to shake off the solution to quickly spread it into a film. This method has the characteristics of high efficiency, low cost, and easy operation, but the solution utilization rate is low. , Poor coating film uniformity and other deficiencies affect the industrial preparation of high-performance optoelectronic components.
  • Inkjet printing technology is a method of spraying the target solution onto the surface of the substrate through a micron aperture nozzle to form a film. It has the characteristics of high solution utilization, precise controllable and patterned preparation, and high film quality.
  • inkjet printing technology is only used for the preparation of some structures in optoelectronic components, and there is no method of integrated manufacturing of optoelectronic components based on inkjet printing technology.
  • the present invention provides an integrated manufacturing method of optoelectronic components based on inkjet printing technology.
  • the present invention provides the following scheme:
  • An integrated manufacturing method of photoelectric components based on inkjet printing technology comprising:
  • Inkjet printing parameters are set; the inkjet printing parameters include: nozzle temperature, nozzle height, printing frequency and the size of printing ink droplets;
  • the functional layer structure of the component includes: a light absorbing layer, a light emitting layer, an electron transport layer, a hole transport layer, an interface modification layer and an electrode layer;
  • the photoelectric component includes: an organic photovoltaic solar cell, a perovskite solar energy Batteries, organic light-emitting diodes, perovskite light-emitting diodes, photodetectors, tandem solar cells;
  • Encapsulation and testing operations are performed on the prepared optoelectronic components to complete the integrated preparation of large-area optoelectronic components.
  • the pulse width of the laser is a preset pulse width, and the single pulse energy and peak power of the laser are higher than the destruction threshold of the conductive film.
  • the nozzle temperature is 20-80°C.
  • the nozzle height is 0.5mm-10mm.
  • the printing frequency is 100HZ-100kHz.
  • the size of the printing ink droplet is 24pl-40pl.
  • the concentration of the configured solution ink is determined based on the selected solvent and the density of the selected solution ink.
  • the configured solution ink has a density of 0.1 g/ml-2 g/ml.
  • the configured solution ink has a viscosity of 4cp-15cp.
  • the configured solution ink has a surface tension of 10mN/m-80mN/m.
  • the invention discloses the following technical effects:
  • the conductive substrate is cleaned, and then each functional layer of the photoelectric component is prepared on the conductive substrate by means of inkjet printing wet film, and finally anneal the wet film of each functional layer to obtain the functional layer structure.
  • inkjet printing using the set inkjet printing parameters and the configured solution ink for printing can make the process of preparing photoelectric components have the characteristics of high precision, patterning, high efficiency and low cost. Realize the integrated manufacturing of optoelectronic components based on inkjet printing technology, and ultimately promote the industrial development of high-performance optoelectronic components.
  • FIG. 1 is a flow chart corresponding to the integrated manufacturing method of optoelectronic components based on inkjet printing technology provided by the present invention.
  • Solution ink includes water-based ink and non-aqueous ink.
  • Inkjet printing technology Based on the principle of inkjet, including but not limited to piezoelectric, thermal bubble, etc., the solution ink is ejected to form a preset graphic pattern on the substrate.
  • Substrate Conductive substrate.
  • ETL Electronic transport layer
  • HTL hole transport layer
  • AL active layer: Active layer refers to the light-absorbing layer in solar cells, the light-emitting layer in light-emitting diodes, and the light-absorbing layer in photodetectors.
  • Electrode layer conductive electrode layer.
  • ML modification layer
  • Functional layer including ETL, AL, HTL, EL, ML layers.
  • the purpose of the present invention is to provide an integrated manufacturing method of optoelectronic components based on inkjet printing technology, which can improve the applicability of inkjet to prepare optoelectronic components, and has the characteristics of high precision, patternable, high-speed printing and low cost. In turn, the industrialization of optoelectronic components can be promoted.
  • the integrated manufacturing method of photoelectric components based on inkjet printing technology includes:
  • Step 100 Prepare a patterned conductive substrate.
  • laser lithography may be used to form a patterned conductive substrate.
  • the specific implementation process of forming a patterned conductive substrate by laser etching can be: after designing the conductive pattern, control the laser to etch away the conductive oxide film on the conductive substrate such as ITO glass to form a patterned conductive substrate, It is convenient to extract the electrode formed by inkjet to test the performance of the photoelectric component in the later stage. If the electrode pattern has been etched on the substrate, this process can be omitted.
  • Step 101 cleaning the prepared patterned conductive substrate.
  • ultraviolet ozone is used to clean conductive substrates.
  • the specific implementation process may be: the transfer device transfers the patterned conductive substrate to the ultraviolet ozone device for surface treatment. Residual organic pollutants on the surface of the patterned conductive substrate were removed with a UV-ozone device. If the conductive substrate has been cleaned, this process can be omitted.
  • the transfer device transfers the surface-cleaned patterned conductive substrate to the inkjet printing module area of the functional layer.
  • the cleaning time is preferably 30min-50min, and the specific cleaning time needs to be selected according to the actual situation.
  • Step 102 Setting inkjet printing parameters.
  • Inkjet printing parameters include: nozzle temperature, nozzle height, printing frequency and size of printed ink droplets.
  • the solution ink supplied to the nozzle is first adjusted to meet the requirements of dynamic printing of the nozzle.
  • the surface tension, density, and viscosity of the configured solution ink need to meet the requirements of the normal printing of the nozzle, and the stable temperature range of the solution ink can meet the temperature requirements of the normal operation of the nozzle.
  • the configured solution ink has a density of 0.1 g/ml-2 g/ml.
  • the viscosity of the solution ink is 4cp-15cp.
  • the surface tension of the solution ink is 10mN/m-80mN/m.
  • the nozzle temperature is set between 20-80°C
  • the nozzle height is set between 0.5mm-10mm
  • the printing frequency is set between 100HZ-100kHz
  • the size of the ink droplet is set between 24pl-40pl.
  • Step 103 Print the prepared solution ink on the patterned conductive substrate based on the inkjet printing parameters obtained by setting to obtain a wet film of the functional layer, and perform annealing treatment on the wet film of the functional layer.
  • Step 104 Repeat the step of "printing the configured solution ink based on the inkjet printing parameters obtained by setting to obtain a wet film of the functional layer, and annealing the wet film of the functional layer" to prepare the functional layer structure of the photoelectric module.
  • the functional layer structure includes: a light absorbing layer, an electron transport layer, a hole transport layer, an interface modification layer and an electrode layer.
  • Optoelectronic components include but are not limited to organic photovoltaic solar cells, perovskite solar cells, perovskite solar cells, organic light emitting diodes, perovskite light emitting diodes, photodetectors, stacked solar cells Battery tandem solar cell (perovskite-silicon, perovskite-CIGS (copper indium gallium selenide), organic-perovskite, perovskite-perovskite) and other components.
  • Perovskite materials include three-dimensional perovskite materials and quasi-two-dimensional perovskite materials.
  • Step 105 packaging and testing the prepared optoelectronic components, so as to complete the integrated preparation of large-area optoelectronic components.
  • Step 1 patterning the conductive substrate.
  • Step 2 Clean the substrate.
  • Step 3 preparation of electron transport layer (EL) TiO2 functional layer structure:
  • the titanium oxide nanoparticle solution ink needs to meet the requirements of the normal spraying of the nozzle, and the surface tension (10mN/m), density (0.1g/ml), and viscosity (4cp) of the formed titanium oxide nanoparticle solution ink.
  • the conveying device sends the electron transport layer TiO 2 to the area of the annealing module for annealing to remove the solvent in the wet film, and obtain a dense TiO 2 (thickness 20-100nm) functional layer structure.
  • transfer device transfers the ITO/ TiO2 structure to the photoactive layer (AL) inkjet printing area.
  • Step 4 Prepare the perovskite light-absorbing layer (AL) MAPbI 3 functional layer structure:
  • the MAPbI 3 solution ink needs to meet the requirements of the normal spraying of the nozzle, and the surface tension (10mN/m), density (2g/ml), and viscosity (15cp) of the formed MAPbI 3 solution ink.
  • the conveying device sends the wet film to the annealing module area for annealing to remove the solvent in the wet film to obtain a dense MAPbI 3 (preferably 200-1000nm) functional layer structure.
  • the transfer device transfers the ITO/TiO 2 /MAPbI 3 structure to the hole transport layer (HTL) inkjet printing area.
  • HTL hole transport layer
  • Step 5 preparation of hole transport layer (HTL) Spiro-OMeTAD functional layer structure:
  • the Spiro-OMeTAD solution ink needs to meet the requirements of the normal spraying of the nozzle, the density (0.1g/ml), surface tension (10mN/m), and viscosity (4cp) of the solution ink.
  • the transfer device transfers the ITO/TiO 2 /MAPbI 3 /Spiro-OMeTAD structure to the electrode layer (EL) inkjet printing area.
  • Step 6 preparing the electrode layer (EL) Ag functional layer structure:
  • the metal nanoparticle (such as silver Ag) conductive ink solution needs to meet the requirements of the normal spraying of the nozzle, the density (0.1g/ml), surface tension (10mN/m) and viscosity (4cp) of the solution ink.
  • the conveying device sends the wet film to the annealing module area for annealing to remove the solvent in the wet film, and obtain a dense Ag (thickness 50-200nm) functional layer structure.
  • the transfer device transfers the ITO/TiO 2 /MAPbI 3 /Spiro-OMeTAD/Ag structure to the packaging equipment for packaging.
  • Step 7. Encapsulate the solar cell module:
  • the transmission device transmits the packaged ITO/TiO 2 /MAPbI 3 /Spiro-OMeTAD/Ag solar cell module to the photoelectric performance testing equipment for testing.
  • Step 8 testing the photoelectric performance of the packaged solar cell module:
  • the transfer device transfers the tested ITO/TiO 2 /MAPbI 3 /Spiro-OMeTAD/Ag solar cell modules to the sorting equipment for sorting.
  • Step 9 Sorting qualified solar cell modules:
  • the components are divided into qualified and unqualified.
  • the viscosity, density, tension and other parameters of the solution ink As well as the specific values of the nozzle printing parameters It can be selected within the preset range according to the actual printing situation.
  • the structure of photoelectric components is different, which determines that the devices that can be used in the production process are different, but the principle of inkjet printing is the same.
  • the preparation process of the solar cell described in the above-mentioned embodiments is carried out according to the structure configuration as Substrate/ETL/AL/HTL/EL.
  • the rest of the layers are the precursors of the inkjet printing functional layer structure.
  • the component structure may only involve part of the functional layer structure, such as the simplest structure Substrate/AL/EL, which may include an interface modification layer (ML), such as the structure Substrate/ML/ETL/ML/HTL/ML/EL, As long as there is a functional layer in the photoelectric component that is prepared by printing solution ink based on inkjet printing technology, the above conditions all belong to the scope of protection of the present invention.
  • ML interface modification layer

Abstract

一种基于喷墨印刷技术的光电组件一体化制造方法。该基于喷墨印刷技术的光电组件一体化制造方法,在制备得到图案化的导电基底后,清洗导电基底,然后通过喷墨印刷的方式,在导电基底上制备得到功能层湿膜,并对功能层湿膜进行退火处理得到光电组件的功能层结构,能够提高一体化喷墨制备光电组件适用性以及效率。并且在进行喷墨印刷过程中,采用设置好的喷墨印刷参数和配置好的溶液墨水进行打印,能够使得制备光电组件的过程具有精度高、可图案化、效率高和成本低廉的特点。

Description

一种基于喷墨印刷技术的光电组件一体化制造方法
本申请要求于2021年11月2日提交中国专利局、申请号为202111289216.0、发明名称为“一种基于喷墨印刷技术的光电组件一体化制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光电组件产业化制备领域,特别是涉及一种基于喷墨印刷技术的光电组件一体化制造方法。
背景技术
光电组件,在信息、能源、医疗、国防等领域具有广阔的应用前景。目前,溶液法仍然是大面积、低成本制备光电组件的最有效方法之一。其中,旋涂和喷墨印刷是典型的溶液成膜方法。旋涂是将溶液滴加到目标基底上,利用匀胶机的离心力将溶液甩开,使其快速铺展成膜的方法,该方法具有高效、廉价、易操作的特点,但存在溶液利用率低,涂膜均匀性差等不足,影响高性能光电组件的产业化制备。喷墨印刷技术是将目标溶液通过微米孔径喷嘴喷射到基底表面成膜的方法,具有溶液利用率高、精确可控及图案化制备、成膜质量高等特点。目前,光电组件的现有制备技术中,喷墨印刷技术仅用于光电组件中部分结构的制备,并未出现基于喷墨印刷技术的光电组件一体化制造的方法。
发明内容
为实现光电组件的高效产业化制备,本发明提供了一种基于喷墨印刷技术的光电组件一体化制造方法。
为实现上述目的,本发明提供了如下方案:
一种基于喷墨印刷技术的光电组件一体化制造方法,包括:
进行图案化导电基底的制备;
清洗所述制备得到的所述图案化导电基底;
设置喷墨印刷参数;所述喷墨印刷参数包括:喷头温度、喷头高度、打印 频率及打印墨滴的大小;
基于设置得到的所述喷墨印刷参数在所述图案化导电基底上打印配置好的溶液墨水,得到功能层湿膜,对所述功能层湿膜进行退火处理;
重复步骤“基于设置得到的所述喷墨印刷参数在所述图案化导电基底上打印配置好的溶液墨水,得到功能层湿膜,对所述功能层湿膜进行退火处理”,以制备得到光电组件的功能层结构;所述功能层结构包括:吸光层、发光层、电子传输层、空穴传输层、界面修饰层和电极层;所述光电组件包括:有机光伏太阳能电池、钙钛矿太阳能电池、有机发光二极管、钙钛矿发光二极管、光电探测器、叠层太阳能电池;
对制备得到的光电组件进行封装和测试操作,以完成大面积光电组件的一体化制备。
优选地,采用激光刻蚀法形成图案化的导电基底时,激光器的脉宽为预设脉宽,激光器的单脉冲能量和峰值功率均高于导电薄膜的破坏阈值。
优选地,所述喷头温度为20-80℃。
优选地,所述喷头高度为0.5mm-10mm。
优选地,所述打印频率为100HZ-100kHz。
优选地,所述打印墨滴的大小为24pl-40pl。
优选地,所述配置好的溶液墨水的浓度基于选定的溶剂和选定的溶液墨水的密度进行确定。
优选地,所述配置好的溶液墨水的密度为0.1g/ml-2g/ml。
优选地,所述配置好的溶液墨水的粘度为4cp-15cp。
优选地,所述配置好的溶液墨水的表面张力为10mN/m-80mN/m。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供的基于喷墨印刷技术的光电组件一体化制造方法,在形成图案化的导电基底后,清洗导电基底,然后通过喷墨印刷的方式,在导电基底上制备得到光电组件的各功能层湿膜,最后对各功能层湿膜退火得到功能层结构。 在进行喷墨印刷过程中,采用设置好的喷墨印刷参数和配置好的溶液墨水进行打印,能够使得制备光电组件的过程具有精度高、可图案化、效率高和成本低廉等特点,同时能够实现基于喷墨印刷技术的光电组件一体化制造,最终促进高性能光电组件的产业化发展。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的基于喷墨印刷技术的光电组件一体化制造方法对应流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
专业术语解释:
溶液墨水:溶液墨水包括水性墨水、非水性墨水。
喷墨印刷技术:基于喷墨原理,包括但不限于压电式、热气泡式等方式,将溶液墨水喷出,于基底上形成预设图形图案的技术。
Substrate:导电基底。
ETL(electronic transport layer):电子传输层。
HTL(hole transport layer):空穴传输层。
AL(active layer):活性层,指太阳能电池中的吸光层、发光二极管中的发光层、光电探测器中的吸光层。
EL(electrode layer):导电电极层。
ML(modification layer):Substrate/ETL/AL/HTL/EL任意相邻两层之间的修饰层。
功能层:包括ETL、AL、HTL、EL、ML各层。
本发明的目的是提供一种基于喷墨印刷技术的光电组件一体化制造方法,能够在提高喷墨制备光电组件适用性的同时,具有高精度、可图案化、高速打印和成本低廉的特点,进而能够促进光电组件的产业化。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明提供的基于喷墨印刷技术的光电组件一体化制造方法,包括:
步骤100:进行图案化导电基底的制备。例如,可以采用激光刻蚀法形成图案化的导电基底。采用激光刻蚀法形成图案化的导电基底的具体实施过程可以是:设计好导电图案以后,控制激光刻蚀掉导电基底如ITO玻璃上部分的导电氧化物膜,以形成图案化的导电基底,便于后期将喷墨形成的电极引出以测试光电组件的性能。若基底已经刻蚀好电极的图案,此过程可以省略。
步骤101:清洗所述制备得到的图案化导电基底。例如,采用紫外臭氧清洗导电基底。具体实施过程可以是:传送装置将图案化的导电基底传送至紫外臭氧装置处作表面处理。用紫外臭氧装置除掉图案化的导电基底表面上残留的有机污染物。若导电基底已经清洁干净,此过程可以省略。传送装置将表面清洁的图案化导电基底传送至功能层喷墨印刷模块区域。其中,清洁时间优选在30min-50min,具体的清洁时间需要依据实际情况进行选择。
步骤102:设置喷墨印刷参数。喷墨印刷参数包括:喷头温度、喷头高度、打印频率及打印墨滴的大小。
例如,在喷墨印刷过程,需要设置调控喷头、溶液墨水和高速运动的导电基底三者之间的关系,以便得到合适厚度、致密的湿膜。为在高速打印下得到致密的湿膜,首先调控供应给喷头的溶液墨水满足喷头动态打印的要求。配置的溶液墨水的表面张力、密度、粘度均需要满足喷头正常打印的要求,溶液墨水稳定存在的温度范围能够满足喷头正常工作时的温度要求。例如,配置好的 溶液墨水的密度为0.1g/ml-2g/ml。溶液墨水的粘度为4cp-15cp。溶液墨水的表面张力为10mN/m-80mN/m。
然后需要调节喷头的打印频率、墨滴的大小、喷头的高度、喷头的温度。例如,喷头温度设置在20-80℃之间,喷头高度设置在0.5mm-10mm之间,打印频率设置在100HZ-100kHz之间,打印墨滴的大小设置在24pl-40pl之间。
步骤103:基于设置得到的喷墨印刷参数在图案化导电基底上打印配置好的溶液墨水,得到功能层湿膜,对功能层湿膜进行退火处理。
步骤104:重复步骤“基于设置得到的喷墨印刷参数打印配置好的溶液墨水,得到功能层湿膜,对功能层湿膜进行退火处理”,以制备得到光电组件的功能层结构。所述功能层结构包括:吸光层、电子传输层、空穴传输层、界面修饰层和电极层。光电组件包括但不限于有机光伏太阳能电池organic photovoltaic solar cell、钙钛矿太阳能电池perovskite solar cell、有机发光二极管organic light emitting diode、钙钛矿发光二极管perovskite light emitting diode、光电探测器photodetector、叠层太阳能电池tandem solar cell(钙钛矿-硅、钙钛矿-CIGS(铜铟镓硒)、有机-钙钛矿、钙钛矿-钙钛矿)等组件。钙钛矿材料包括三维的钙钛矿材料和准二维的钙钛矿材料。
步骤105、对制备得到的光电组件进行封装和测试,以完成大面积光电组件的一体化制备。
下面以基于喷墨印刷技术的一体化制造钙钛矿太阳能电池组件ITO/TiO 2/MAPbI 3/Spiro-OMeTAD/Ag为例,对本发明上述提供的基于喷墨印刷技术的光电组件一体化制造方法进行说明。
步骤1、图案化导电基底。
步骤2、清洁基底。
步骤3、制备电子传输层(EL)TiO 2功能层结构:
首先氧化钛纳米颗粒溶液墨水需要满足喷头正常喷射的要求,形成的氧化钛纳米颗粒溶液墨水的表面张力(10mN/m)、密度(0.1g/ml)、粘度(4cp)。
然后在喷墨印刷过程,需要调节喷头的打印频率(20kHZ)、墨滴的大小 (24pl)、喷头的高度(10mm)、喷头的温度(25℃)。
紧接着传送装置将电子传输层TiO 2送至退火模块区域退火除掉湿膜里的溶剂,得到致密的TiO 2(厚度为20-100nm)功能层结构。
最后传送装置将ITO/TiO 2结构传送至光活性层(AL)喷墨印刷区域。
步骤4、制备钙钛矿吸光层(AL)MAPbI 3功能层结构:
首先MAPbI 3溶液墨水需要满足喷头正常喷射的要求,形成的MAPbI 3溶液墨水的表面张力(10mN/m)、密度(2g/ml)、粘度(15cp)。
然后在喷墨印刷过程,需要调节喷头的打印频率(20KHZ)、墨滴的大小(24pl)、喷头的高度(10mm)、喷头的温度(25℃)。
紧接着传送装置将湿膜送至退火模块区域退火除掉湿膜里的溶剂,得到致密的MAPbI 3(优选200-1000nm)功能层结构。
最后传送装置将ITO/TiO 2/MAPbI 3结构传送至空穴传输层(HTL)喷墨印刷区域。
步骤5、制备空穴传输层(HTL)Spiro-OMeTAD功能层结构:
首先Spiro-OMeTAD溶液墨水需要满足喷头正常喷射的要求,溶液墨水的密度(0.1g/ml)、表面张力(10mN/m)、粘度(4cp)。
然后在喷墨印刷过程,需要调节喷头的打印频率(20KHZ)、墨滴的大小(24pl)、喷头的高度(5mm)、喷头的温度(25℃),得到致密的Spiro-OMeTAD(厚度为100-400nm)功能层结构。
最后传送装置将ITO/TiO 2/MAPbI 3/Spiro-OMeTAD结构传送至电极层(EL)喷墨印刷区域。
步骤6、制备电极层(EL)Ag功能层结构:
首先金属纳米颗粒(如银Ag)导电墨水溶液需要满足喷头正常喷射的要求,溶液墨水的密度(0.1g/ml)、表面张力(10mN/m)、粘度(4cp)。
然后在喷墨印刷过程,需要调节喷头的打印频率(20KHZ)、墨滴的大小(24pl)、喷头的高度(5mm)、喷头的温度(25℃)。
紧接着传送装置将湿膜送至退火模块区域退火除掉湿膜里的溶剂,得到致密的Ag(厚度为50-200nm)功能层结构。
最后传送装置将ITO/TiO 2/MAPbI 3/Spiro-OMeTAD/Ag结构传送至封装设备进行封装。
步骤7、封装太阳能电池组件:
采取相应的封装设施,完成太阳能电池组件ITO/TiO 2/MAPbI 3/Spiro-OMeTAD/Ag的封装,露出后续测试组件光电性能所需要的电极。传送装置将封装好的ITO/TiO 2/MAPbI 3/Spiro-OMeTAD/Ag太阳能电池组件传送至光电性能测试设备进行测试。
步骤8、测试封装后的太阳能电池组件的光电性能:
测试太阳能电池组件ITO/TiO 2/MAPbI 3/Spiro-OMeTAD/Ag的光电转换效率及稳定性等性能。传送装置将测试完后的ITO/TiO 2/MAPbI 3/Spiro-OMeTAD/Ag太阳能电池组件传送至分拣设备进行分拣。
步骤9、分拣合格的太阳能电池组件:
根据测试完的光电性能结果,将组件分为合格与不合格。
以上在制备电子传输层TiO 2、钙钛矿吸光层MAPbI 3、空穴传输层Spiro-OMeTAD和电极层Ag的过程中,溶液墨水的粘度、密度、张力等参数,以及喷头打印参数的具体数值可以依据实际打印情况在预设范围内进行选择。
光电组件结构不一样,决定了在制作过程中可以采取的装置不一样,但是采用的喷墨印刷原理相同。上述实施例描述的太阳能电池的制备工艺是按照结构配置为Substrate/ETL/AL/HTL/EL进行的,在这一结构中,除基底层,其余层都是通过喷墨印刷功能层结构的前驱体溶液形成的,除spiro-OMeTAD层,其余各层都配备退火模块除掉溶剂。实际情况,组件结构可能只涉及到部分功能层结构,如最简单的结构Substrate/AL/EL,可能包含界面修饰层(ML),如结构Substrate/ML/ETL/ML/HTL/ML/EL,只要光电组件中有一层功能层采用基于喷墨印刷技术打印溶液墨水制备功能层结构的方法,以上情况均属于本发明的保护范围。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,包括:
    进行图案化导电基底的制备;
    清洗所述制备得到的所述图案化导电基底;
    设置喷墨印刷参数;所述喷墨印刷参数包括:喷头温度、喷头高度、打印频率及打印墨滴的大小;
    基于设置得到的所述喷墨印刷参数在所述图案化导电基底上打印配置好的溶液墨水,得到各功能层湿膜,对所述各功能层湿膜进行退火处理;
    重复步骤“基于设置得到的所述喷墨印刷参数在所述图案化导电基底上打印配置好的溶液墨水,得到各功能层湿膜,对所述各功能层湿膜进行退火处理”,以制备得到光电组件的功能层结构;所述光电组件包括:有机光伏太阳能电池、钙钛矿太阳能电池、有机发光二极管、钙钛矿发光二极管、光电探测器、叠层太阳能电池;
    对制备得到的光电组件进行封装和测试,以完成大面积光电组件的一体化制备。
  2. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,采用激光刻蚀法进行图案化导电基底的制备时,激光器的脉宽为预设脉宽,激光器的单脉冲能量和峰值功率均高于导电薄膜的破坏阈值。
  3. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述喷头温度为20-80℃。
  4. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述喷头高度为0.5mm-10mm。
  5. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述打印频率为100HZ-100kHz。
  6. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述打印墨滴的大小为24pl-40pl。
  7. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述配置好的溶液墨水的浓度基于选定的溶剂和选定的溶液墨水的密度进行确定。
  8. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述配置好的溶液墨水的密度为0.1g/ml-2g/ml。
  9. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述配置好的溶液墨水的粘度为4cp-15cp。
  10. 根据权利要求1所述的基于喷墨印刷技术的光电组件一体化制造方法,其特征在于,所述配置好的溶液墨水的表面张力为10mN/m-80mN/m。
PCT/CN2022/128492 2021-11-02 2022-10-31 一种基于喷墨印刷技术的光电组件一体化制造方法 WO2023078191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111289216.0A CN114023888A (zh) 2021-11-02 2021-11-02 一种基于喷墨印刷技术的光电组件一体化制造方法
CN202111289216.0 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023078191A1 true WO2023078191A1 (zh) 2023-05-11

Family

ID=80059796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128492 WO2023078191A1 (zh) 2021-11-02 2022-10-31 一种基于喷墨印刷技术的光电组件一体化制造方法

Country Status (2)

Country Link
CN (1) CN114023888A (zh)
WO (1) WO2023078191A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023888A (zh) * 2021-11-02 2022-02-08 刘长升 一种基于喷墨印刷技术的光电组件一体化制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163300A1 (en) * 2001-04-26 2002-11-07 Duineveld Paulus Cornelis Organic electroluminescent device and a method of manufacturing thereof
US20050212841A1 (en) * 2004-03-23 2005-09-29 Sharp Kabushiki Kaisha Patterned substrate, and method and apparatus for manufacturing the same
CN103956407A (zh) * 2014-04-23 2014-07-30 中国科学院物理研究所 制备钙钛矿基薄膜太阳电池的方法及喷墨打印机
CN106374046A (zh) * 2016-09-12 2017-02-01 Tcl集团股份有限公司 一种正置结构的量子点发光二极管及制备方法
CN108032641A (zh) * 2017-12-07 2018-05-15 南京邮电大学 一种印刷制备大面积图案化有机发光薄膜的方法
CN108963046A (zh) * 2017-10-25 2018-12-07 广东聚华印刷显示技术有限公司 发光器件及其制作方法
CN109768173A (zh) * 2018-12-25 2019-05-17 武汉理工大学 一种全喷墨打印倒置结构量子点发光二极管制备方法
CN114023888A (zh) * 2021-11-02 2022-02-08 刘长升 一种基于喷墨印刷技术的光电组件一体化制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163300A1 (en) * 2001-04-26 2002-11-07 Duineveld Paulus Cornelis Organic electroluminescent device and a method of manufacturing thereof
US20050212841A1 (en) * 2004-03-23 2005-09-29 Sharp Kabushiki Kaisha Patterned substrate, and method and apparatus for manufacturing the same
CN103956407A (zh) * 2014-04-23 2014-07-30 中国科学院物理研究所 制备钙钛矿基薄膜太阳电池的方法及喷墨打印机
CN106374046A (zh) * 2016-09-12 2017-02-01 Tcl集团股份有限公司 一种正置结构的量子点发光二极管及制备方法
CN108963046A (zh) * 2017-10-25 2018-12-07 广东聚华印刷显示技术有限公司 发光器件及其制作方法
CN108032641A (zh) * 2017-12-07 2018-05-15 南京邮电大学 一种印刷制备大面积图案化有机发光薄膜的方法
CN109768173A (zh) * 2018-12-25 2019-05-17 武汉理工大学 一种全喷墨打印倒置结构量子点发光二极管制备方法
CN114023888A (zh) * 2021-11-02 2022-02-08 刘长升 一种基于喷墨印刷技术的光电组件一体化制造方法

Also Published As

Publication number Publication date
CN114023888A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
Karunakaran et al. Recent progress in inkjet-printed solar cells
Eggenhuisen et al. High efficiency, fully inkjet printed organic solar cells with freedom of design
KR101254318B1 (ko) 태양전지 및 태양전지의 제조방법
EP2647050B1 (en) Method for forming an electrical interconnection in an organic photovoltaic device and an organic photovoltaic device made by the same
WO2023078191A1 (zh) 一种基于喷墨印刷技术的光电组件一体化制造方法
TWI720959B (zh) 太陽能電池及其製造方法、用以形成太陽能電池的非導電性區域的漿料
US9142703B2 (en) Method of manufacturing photoelectric conversion device, and method of manufacturing image display
WO2016031294A1 (ja) 有機薄膜太陽電池モジュールおよびその製造方法、および電子機器
KR20110119391A (ko) 마이크로 렌즈의 제조방법 및 마이크로 렌즈를 구비한 태양전지
JP4345064B2 (ja) 光電変換素子の製造方法、および電子機器
CN114715958B (zh) 一种氧化镍的喷雾热解方法及钙钛矿太阳能电池
CN103403906A (zh) 光伏电池
JP2013115084A (ja) 有機薄膜太陽電池およびその製造方法
KR101399419B1 (ko) 태양전지의 전면전극 형성방법
Zhao et al. Printing photovoltaics by electrospray
Petsch et al. Laser processing of organic photovoltaic cells with a roll-to-roll manufacturing process
CN109273603B (zh) 有机光伏模组的制备方法
JP2005038997A (ja) 太陽電池の製造方法
JP2012094739A (ja) 製膜方法および半導体装置の製造方法
KR20120041394A (ko) 태양 전지의 제조 방법
WO2021176518A1 (ja) 透明電極および透明電極の製造方法、ならびに透明電極を具備した光電変換素子
JP2004228537A (ja) 光電変換素子の製造方法、光電変換素子および電子機器
Eswaramoorthy Fabrication and manufacturing process of perovskite solar cell
Hamjah et al. Aerosol jet printed AgNW electrode and PEDOT: PSS layers for organic light-emitting diode devices fabrication
CN114335360B (zh) 一种免划刻大面积钙钛矿太阳能电池的制备方法