WO2023078058A1 - 功率放大器和射频芯片 - Google Patents

功率放大器和射频芯片 Download PDF

Info

Publication number
WO2023078058A1
WO2023078058A1 PCT/CN2022/125273 CN2022125273W WO2023078058A1 WO 2023078058 A1 WO2023078058 A1 WO 2023078058A1 CN 2022125273 W CN2022125273 W CN 2022125273W WO 2023078058 A1 WO2023078058 A1 WO 2023078058A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
power amplifier
capacitor
circuit
stage
Prior art date
Application number
PCT/CN2022/125273
Other languages
English (en)
French (fr)
Inventor
周佳辉
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023078058A1 publication Critical patent/WO2023078058A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the invention relates to the field of amplifier circuits, in particular to a power amplifier and a radio frequency chip.
  • the radio frequency power amplifier is one of the important components.
  • the power amplifier amplifies the power of the signal. After obtaining sufficient radio frequency power, the signal can be fed to the antenna for radiation. Among them, the gain of the power amplifier is an important performance index.
  • a power amplifier in the related art includes a DC blocking capacitor, a first transistor, a first-stage matching circuit, a second transistor, a second-stage matching circuit, a third transistor, and an output matching circuit connected in sequence.
  • the power amplifier shown in FIG. 1 is a commonly used power amplifier in the related art.
  • the power amplifier is a typical three-stage power amplifier.
  • the power amplifier includes a DC blocking capacitor CA3, a first transistor T1, a first stage matching circuit, a second transistor T2, a second stage matching circuit, a third transistor T3, an output matching circuit, a first stage negative feedback circuit and a second stage stage negative feedback circuit.
  • the DC blocking capacitor CA3 is a DC blocking capacitor of the input terminal INPUT of the power amplifier.
  • the first-stage negative feedback circuit includes a diode D1, a DC blocking capacitor CA1 and a resistor RA1 connected in series in sequence.
  • the first-stage negative feedback circuit is disposed between the power supply voltage VCC and the base of the first transistor T1.
  • the control voltage VC1 is input between the diode D1 and the DC blocking capacitor CA1, and the bias voltage VB1 is directly connected to the base of the first transistor T1.
  • the negative feedback circuit of the first stage forms the negative feedback circuit of the first transistor T1.
  • the second-stage negative feedback circuit includes a diode D2, a DC blocking capacitor CA2 and a resistor RA2 connected in series in sequence.
  • the second-stage negative feedback circuit is disposed between the power supply voltage VCC and the base of the second transistor T2.
  • the control voltage VC2 is input between the diode D2 and the DC blocking capacitor CA2, and the bias voltage VB2 is directly connected to the base of the second transistor T2.
  • the second-stage negative feedback circuit forms a negative feedback circuit for the
  • FIG. 2 is a schematic diagram of a gain-frequency curve of a power amplifier in the related art.
  • W1 is the gain-frequency curve of the power amplifier when the control voltage VC1 and the control voltage VC2 are at low levels at the same time.
  • W2 is the gain-frequency curve of the power amplifier when the control voltage VC1 and the control voltage VC2 are at high levels at the same time.
  • the present invention proposes a power amplifier and a radio frequency chip that can linearly and continuously adjust the gain of the power amplifier and suppress low and high frequencies outside the working frequency band.
  • an embodiment of the present invention provides a power amplifier, which includes a third capacitor, a first transistor, a first-stage matching circuit, a second transistor, and a second-stage matching circuit connected in sequence , the third transistor and the output matching circuit,
  • the positive terminal of the third capacitor serves as the signal input terminal of the power amplifier
  • the negative terminal of the third capacitor is connected to the base of the first transistor, and the base of the first transistor is also used to be connected to a first bias voltage;
  • the collector of the first transistor is respectively connected to the power supply voltage and the input end of the first stage matching circuit, and the emitter of the first transistor is connected to ground;
  • the output terminal of the first-stage matching circuit is connected to the base of the second transistor, and the base of the second transistor is also used to be connected to a second bias voltage;
  • the collector of the second transistor is respectively connected to the power supply voltage and the input terminal of the second-stage matching circuit, and the emitter of the second transistor is connected to ground;
  • the output terminal of the second stage matching circuit is connected to the base of the third transistor, and the base of the third transistor is also used to be connected to a third bias voltage;
  • the collector of the third transistor is respectively connected to the power supply voltage and the input terminal of the output matching circuit, and the emitter of the third transistor is connected to ground;
  • the output terminal of the output matching circuit is used as the signal output terminal of the power amplifier
  • the power amplifier also includes a first-stage series feedback network circuit connected between the base of the first transistor and the ground, and a second-stage series feedback network circuit connected between the base of the second transistor and the ground. Feedback network circuit;
  • the first-stage series feedback network circuit is used to adjust the circuit equivalent capacitance value of the first-stage series feedback network circuit according to the first control voltage input from the outside, so as to adjust the base feedback capacitance of the first transistor.
  • the gain of the first transistor; the second stage series feedback network circuit is used to adjust the circuit equivalent capacitance value of the second stage series feedback network circuit according to the second control voltage input from the outside, as the second transistor.
  • the base feedback capacitor adjusts the gain of the second transistor.
  • the first control voltage is inversely proportional to the circuit equivalent capacitance of the first stage series feedback network circuit.
  • the first-stage series feedback network circuit includes a first capacitor and a first varactor; the positive terminal of the first capacitor is connected to the output terminal of the first varactor, and the first capacitor The positive terminal of the first capacitor is also used to be connected to the first control voltage; the output terminal of the first varactor diode is connected to ground; the negative terminal of the first capacitor is connected to the base of the first transistor.
  • the second control voltage is inversely proportional to the circuit equivalent capacitance of the second stage series feedback network circuit.
  • the second stage series feedback network circuit includes a second capacitor and a second varactor; the positive end of the second capacitor is connected to the output terminal of the second varactor, and the second capacitor
  • the positive terminal of the second capacitor is also used to be connected to the second control voltage; the output terminal of the second varactor diode is connected to ground; the negative terminal of the second capacitor is used as the second bias voltage input terminal of the power amplifier , and the negative end of the second capacitor is connected to the base of the second transistor.
  • the power amplifier further includes a first inductor, a second inductor, a third inductor, a first resistor, a second resistor and a third resistor;
  • the emitter of the first transistor is connected to ground after being connected in series with the first inductor and the first resistor;
  • the emitter of the second transistor is connected to ground after being connected in series with the second inductor and the second resistor;
  • the emitter of the third transistor is connected to ground after being connected in series with the third inductor and the third resistor.
  • the first transistor, the second transistor and the third transistor are all BJT transistors.
  • both the first capacitor and the second capacitor are parameters adjustable capacitors.
  • both the first varactor and the second varactor are parameter adjustable varactors.
  • an embodiment of the present invention further provides a radio frequency chip, where the radio frequency chip includes the power amplifier described in any one of the above.
  • the power amplifier and the radio frequency chip of the present invention set the first-stage series feedback network circuit and the second-stage series feedback network circuit on the base of the first transistor and the base of the second transistor. And adjust the circuit equivalent capacitance value of the first stage series feedback network circuit according to the first control voltage input from the outside through the first stage series feedback network circuit, so as to realize the adjustment of the base feedback capacitance as the first transistor the gain of the first transistor. And adjust the circuit equivalent capacitance value of the second-stage series feedback network circuit according to the second control voltage input from the outside through the second-stage series feedback network circuit, so as to realize the adjustment of the base feedback capacitance of the second transistor. gain of the second transistor described above.
  • the circuit structure can linearly and continuously adjust the gain of the power amplifier through the first control voltage and the second control voltage.
  • the first-stage series feedback network and the second-stage series feedback network circuit are provided with varactor diodes, and utilize the characteristic that the capacitance of the varactor diode varies with the first control voltage and the second control voltage, thereby The feedback can be adjusted linearly and continuously.
  • the first-stage series feedback network and the second-stage series feedback network circuit form a band-pass matching structure on the circuit. This structure is essentially a band-pass filter, which has a certain suppression effect on low frequency and high frequency parts outside the working frequency band. Therefore, the use of the power amplifier and chip of the present invention has a good effect on suppressing low frequency and high frequency parts outside the working frequency band.
  • Fig. 1 is the circuit structure diagram of the power amplifier of related art
  • FIG. 2 is a schematic diagram of a gain-frequency curve of a power amplifier of the related art
  • Fig. 3 is a circuit structure diagram of a power amplifier according to an embodiment of the present invention.
  • the present invention provides a power amplifier 100 .
  • FIG. 3 is a circuit structure diagram of a power amplifier according to an embodiment of the present invention.
  • the power amplifier 100 includes a third capacitor C3, a first transistor Q1, a first-stage matching circuit M1, a second transistor Q2, a second-stage matching circuit M2, a third transistor Q3, an output matching circuit M3, and a first-stage series feedback The network circuit 1 and the second-stage series feedback network circuit 2 .
  • the third capacitor C3, the first transistor Q1, the first stage matching circuit M1, the second transistor Q2, the second stage matching circuit M2, the third transistor Q3 and the output matching circuit M3 Connect sequentially.
  • the first transistor Q1 , the second transistor Q2 and the third transistor Q3 are all BJT transistors.
  • the circuit connection relationship of the power amplifier 100 is:
  • the positive terminal of the third capacitor C3 serves as the signal input terminal INPUT of the power amplifier 100 .
  • the negative end of the third capacitor C3 is connected to the base of the first transistor Q1.
  • the base of the first transistor Q1 is also used to be connected to the first bias voltage VB1.
  • the collector of the first transistor Q1 is respectively connected to the power supply voltage VCC and the input terminal of the first stage matching circuit M1, and the emitter of the first transistor Q1 is connected to the ground GND.
  • the output end of the first stage matching circuit M1 is connected to the base of the second transistor Q2.
  • the base of the second transistor Q2 is also used to be connected to the second bias voltage VB2.
  • the collector of the second transistor Q2 is respectively connected to the power supply voltage VCC and the input terminal of the second stage matching circuit M2, and the emitter of the second transistor Q2 is connected to the ground GND.
  • the output end of the second stage matching circuit M2 is connected to the base of the third transistor Q3.
  • the base of the third transistor is also used to be connected to a third bias voltage VB3.
  • the collector of the third transistor Q3 is respectively connected to the power supply voltage VCC and the input terminal of the output matching circuit M3, and the emitter of the third transistor Q3 is connected to the ground GND.
  • the output terminal of the output matching circuit M3 is used as the signal output terminal OUTPUT of the power amplifier 100 .
  • the first stage series feedback network circuit 1 is connected between the base of the first transistor Q1 and the ground GND.
  • the second stage series feedback network circuit 2 is connected between the base of the second transistor Q2 and the ground GND.
  • the first-stage series feedback network circuit 1 is used to adjust the circuit equivalent capacitance value of the first-stage series feedback network circuit 1 according to the first control voltage VC1 input from the outside, as the first transistor Q1
  • the base feedback capacitor adjusts the gain of the first transistor Q1.
  • the first control voltage VC1 is inversely proportional to the circuit equivalent capacitance of the first stage series feedback network circuit 1 .
  • the first stage series feedback network circuit 1 includes a first capacitor C1 and a first varactor diode CD1.
  • the circuit structure of the first stage series feedback network circuit 1 is:
  • the positive terminal of the first capacitor C1 is connected to the output terminal of the first variable capacitance diode CD1, and the positive terminal of the first capacitor C1 is also used to be connected to the first control voltage VC1.
  • the output end of the first varactor diode CD1 is connected to the ground GND.
  • the negative end of the first capacitor C1 is connected to the base of the first transistor Q1.
  • the second-stage series feedback network circuit 2 is used to adjust the circuit equivalent capacitance value of the second-stage series feedback network circuit 2 according to the second control voltage VC2 input from the outside, so as to serve as the base of the second transistor Q2
  • the feedback capacitor adjusts the gain of the second transistor Q2.
  • the second control voltage VC2 is inversely proportional to the circuit equivalent capacitance of the second-stage series feedback network circuit 2 .
  • the second stage series feedback network circuit 2 includes a second capacitor C2 and a second varactor diode CD2.
  • the circuit structure of the second stage series feedback network circuit 2 is:
  • the positive terminal of the second capacitor C2 is connected to the output terminal of the second varactor diode CD2, and the positive terminal of the second capacitor C2 is also used to be connected to the second control voltage VC2.
  • the output terminal of the second varactor diode CD2 is connected to the ground GND.
  • the negative terminal of the second capacitor C2 is used as the second bias voltage input terminal of the power amplifier 100, and the negative terminal of the second capacitor C2 is connected to the base of the second transistor Q2.
  • the power amplifier 100 further includes a first inductor L1, a second inductor L2, a third inductor L3, a first resistor R1, a second resistor R2 and a third resistor R3.
  • the first inductance L1 and the first resistor R1 are equivalent impedances of the circuit board back hole.
  • the emitter of the first transistor Q1 is connected to the ground GND by connecting the first inductor L1 and the first resistor R1 in series.
  • the second inductance L2 and the second resistor R2 are the equivalent impedance of the back hole of the circuit board.
  • the emitter of the second transistor Q2 is connected to the ground GND by connecting the second inductor L2 and the second resistor R2 in series.
  • the third inductor L3 and the third resistor R3 are the equivalent impedance of the back hole of the circuit board.
  • the emitter of the third transistor Q3 is connected to the ground GND by connecting the third inductor L3 and the third resistor R3 in series.
  • the circuit working principle of the power amplifier 100 is as follows:
  • Both the first varactor CD1 and the second varactor CD2 are varactors.
  • the working characteristics of the varactor diode are: when the PN junction is reverse-biased, the junction capacitance of the varactor diode varies with the applied voltage. When the reverse bias voltage increases, the junction capacitance of the varactor diode decreases, and vice versa, the junction capacitance of the varactor diode increases.
  • the first control voltage VC1 is inversely proportional to the junction capacitance of the first varactor diode CD1.
  • the second control voltage VC2 is inversely proportional to the junction capacitance of the second varactor diode CD2.
  • the first capacitor C1 and the second capacitor C2 have larger capacitances in the circuit and are used as DC blocking capacitors in the circuit.
  • the first capacitor C1 is connected in series with the first varactor diode CD1 to form the base feedback of the first transistor Q1.
  • the first stage series feedback network circuit 1 is used as the base feedback capacitance of the first transistor Q1 to adjust the gain of the first transistor Q1.
  • the second capacitor C2 is connected in series with the second varactor diode CD2 to form the base feedback of the second transistor Q2. Therefore, the second stage series feedback network circuit 2 is used as the base feedback capacitance of the second transistor Q2 to adjust the gain of the second transistor Q2.
  • the size of the base feedback capacitance of the transistor in the power amplifier 100 will affect the size of its gain. The larger the feedback capacitor, the smaller its gain. The smaller the feedback capacitor, the larger its gain.
  • the size of the feedback capacitance of the first stage series feedback network circuit 1 is:
  • FC1*FCD1/(FC1+FCD1) FCD1/(1+FCD1/FC1);
  • FC1 is the capacitance value of the first capacitor C1.
  • FCD1 is the junction capacitance of the first varactor diode CD1.
  • FC1 is large enough, then the size of FC1 is close to the capacitance value of FCD1. Therefore, the size of the series capacitance between the first capacitor C1 and the first varactor diode CD1 is actually mainly affected by the junction capacitance of the first varactor diode CD1 control.
  • the first varactor diode CD1 is used as a varactor diode, and the voltage value of the first control voltage VC1 determines the junction capacitance of the first varactor diode CD1.
  • the size of the feedback capacitance of the second-stage series feedback network circuit 2 is:
  • FC2*FCD2/(FC2+FCD2) FCD2/(1+FCD2/FC2);
  • FC2 is the capacitance value of the second capacitor C2.
  • FCD2 is the junction capacitance of the second varactor diode CD2.
  • FC2 is large enough, then the size of FC2 is close to the capacitance value of FCD2. Therefore, the size of the series capacitance between the second capacitor C2 and the second varactor diode CD2 is actually mainly affected by the junction capacitance of the second varactor diode CD2 control.
  • the second varactor diode CD2 is used as a varactor diode, and the voltage value of the second control voltage VC2 determines the junction capacitance of the second varactor diode CD2.
  • adjusting the voltage value of the first control voltage VC1 and the voltage value of the second control voltage VC2 can control the feedback capacitance of the first transistor Q1 and the second transistor Q2. Since the first control voltage VC1 and the second control voltage VC2 can be adjusted continuously, the junction capacitance of the first varactor diode CD1 and the junction capacitance of the second varactor diode CD2 are also It is continuously variable with the voltage, thereby achieving the effect of continuously adjusting the gain of the power amplifier 100 . That is, the gain of the power amplifier can be adjusted linearly and continuously through the first control voltage VC1 and the second control voltage VC2 . In addition, the gain can be continuously adjustable through the first capacitor C1, the second capacitor C2, the first varactor CD1 and the second varactor CD2, and the circuit structure is simple and easy to implement.
  • the first-stage series feedback network 1 and the second-stage series feedback network circuit 2 form a band-pass matching structure on the circuit.
  • This structure is essentially a band-pass filter, which has a certain suppression effect on low-frequency and high-frequency parts outside the working frequency band. Therefore, the power amplifier 100 of the present invention has a good effect on suppressing low-frequency and high-frequency parts outside the working frequency band.
  • both the first capacitor C1 and the second capacitor C2 are parameter-adjustable capacitors. More preferably, both the first varactor CD1 and the second varactor CD2 are parameter adjustable varactors.
  • An embodiment of the present invention also provides a radio frequency chip, where the radio frequency chip includes the power amplifier 100 .
  • the power amplifier and the radio frequency chip of the present invention set the first-stage series feedback network circuit and the second-stage series feedback network circuit on the base of the first transistor and the base of the second transistor. And adjust the circuit equivalent capacitance value of the first stage series feedback network circuit according to the first control voltage input from the outside through the first stage series feedback network circuit, so as to realize the adjustment of the base feedback capacitance as the first transistor the gain of the first transistor. And adjust the circuit equivalent capacitance value of the second-stage series feedback network circuit according to the second control voltage input from the outside through the second-stage series feedback network circuit, so as to realize the adjustment of the base feedback capacitance of the second transistor. gain of the second transistor described above.
  • the circuit structure can linearly and continuously adjust the gain of the power amplifier through the first control voltage and the second control voltage.
  • the first-stage series feedback network and the second-stage series feedback network circuit are provided with varactor diodes, and utilize the characteristic that the capacitance of the varactor diode varies with the first control voltage and the second control voltage, thereby The feedback can be adjusted linearly and continuously.
  • the first-stage series feedback network and the second-stage series feedback network circuit form a band-pass matching structure on the circuit. This structure is essentially a band-pass filter, which has a certain suppression effect on low frequency and high frequency parts outside the working frequency band. Therefore, the use of the power amplifier and chip of the present invention has a good effect on suppressing low frequency and high frequency parts outside the working frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了一种功率放大器,包括第三电容、第一晶体管、第一级匹配电路、第二晶体管、第二级匹配电路、第三晶体管、输出匹配电路、跨接于第一晶体管的基极与地之间的第一级串联反馈网络电路以及跨接于第二晶体管的基极与地之间的第二级串联反馈网络电路;第一级串联反馈网络电路用于根据第一控制电压调整第一级串联反馈网络电路的电路等效电容值,以调整第一晶体管的增益;第二级串联反馈网络电路用于根据第二控制电压调整第二级串联反馈网络电路的电路等效电容值,以调整第二晶体管的增益。本发明还提供了一种射频芯片。采用本发明的技术方案,其可线性连续调整功率放大器的增益且抑制工作频段以外的低频和高频效果好。

Description

功率放大器和射频芯片 技术领域
本发明涉及放大器电路领域,尤其涉及一种功率放大器和射频芯片。
背景技术
目前,在无线收发系统中,射频的功率放大器是重要的组成部分之一,功率放大器将信号进行功率放大,获得足够的射频功率以后,信号才能馈送到天线上辐射出去。其中,功率放大器的增益为重要的性能指标。
相关技术的功率放大器包括依次连接的隔直电容、第一晶体管、第一级匹配电路、第二晶体管、第二级匹配电路、第三晶体管以及输出匹配电路。其中,如图1所示的功率放大器为相关技术中常用的一种功率放大器。功率放大器为典型的三级功率放大器。其中,功率放大器包括隔直电容CA3、第一晶体管T1、第一级匹配电路、第二晶体管T2、第二级匹配电路、第三晶体管T3、输出匹配电路、第一级负反馈电路以及第二级负反馈电路。具体的,隔直电容CA3为功率放大器的输入端INPUT的隔直电容。第一级负反馈电路包括依次串联的二极管D1、隔直电容CA1和电阻RA1。第一级负反馈电路设置于电源电压VCC与第一晶体管T1的基极之间。其中,控制电压VC1输入至二极管D1和隔直电容CA1之间,偏置电压VB1则直接连接至第一晶体管T1的基极。第一级负反馈电路形成第一晶体管T1的负反馈电路。第二级负反馈电路包括依次串联的二极管D2、隔直电容CA2和电阻RA2。第二级负反馈电路设置于电源电压VCC与第二晶体管T2的基极之间。其中,控制电压VC2输入至二极管D2和隔直电容CA2之间,偏置电压VB2则直接连接至第二晶体管T2的基极。第二级负反馈电路形成第二晶体管T2的负反馈电路。
然而,相关技术的功率放大器的控制电压VC1给二极管D1低电平,二极管D1导通,第一晶体管T1的集电极和基极形成负反馈。同时控制电压VC2给二极管D2低电平,二极管D2就导通,第一晶体管T1的集电极和基极形成负反馈。二极管D1和二极管D2同时导通,从而改变整个功率放大器的增益。但是这种传统的增益改变方式有一个很明显的缺点,就是增益变化比较跳跃。如图2所示,图2为相关技术的功率放大器的增益频率曲线示意图。其中,W1为控制电压VC1和控制电压VC2同时低电平时的功率放大器的增益频率曲线。W2为控制电压VC1和控制电压VC2同时高电平时的功率放大器的增益频率曲线。可以得出,相关技术的功率放大器的增益只会存在高和低两种方式,对于中间档位的增益是无法调节的。相关技术的功率放大器对其增益进行调节,采用办法就是增加一些反馈控制,但是这些反馈控制对增益的调节都不够线性。无法做到对增益的线性连续调节。如何对功率放大器的增益可以实现连续且动态调整在电路应用上具有重要的作用。
因此,实有必要提供一种新的功率放大器和芯片解决上述问题。
发明内容
针对以上现有技术的不足,本发明提出一种其可线性连续调整功率放大器的增益且抑制工作频段以外的低频和高频效果好的功率放大器和射频芯片。
为了解决上述技术问题,第一方面,本发明的实施例提供了一种功率放大器,其包括依次连接的第三电容、第一晶体管、第一级匹配电路、第二晶体管、第二级匹配电路、第三晶体管以及输出匹配电路,
所述第三电容的正极端作为所述功率放大器的信号输入端;
所述第三电容的负极端连接至所述第一晶体管的基极,且所述第一晶体管的基极还用于连接至第一偏置电压;
所述第一晶体管的集电极分别连接至电源电压和所述第一级 匹配电路的输入端,所述第一晶体管的发射极连接至接地;
所述第一级匹配电路的输出端连接至所述第二晶体管的基极,且所述第二晶体管的基极还用于连接至第二偏置电压;
所述第二晶体管的集电极分别连接至电源电压和所述第二级匹配电路的输入端,所述第二晶体管的发射极连接至接地;
所述第二级匹配电路的输出端连接至所述第三晶体管的基极,且所述第三晶体管的基极还用于连接至第三偏置电压;
所述第三晶体管的集电极分别连接至电源电压和所述输出匹配电路的输入端,所述第三晶体管的发射极连接至接地;
所述输出匹配电路的输出端作为所述功率放大器的信号输出端;
所述功率放大器还包括跨接于所述第一晶体管的基极与地之间的第一级串联反馈网络电路和跨接于所述第二晶体管的基极与地之间的第二级串联反馈网络电路;
所述第一级串联反馈网络电路用于根据外部输入的第一控制电压调整所述第一级串联反馈网络电路的电路等效电容值,以作为所述第一晶体管的基极反馈电容调整所述第一晶体管的增益;所述第二级串联反馈网络电路用于根据外部输入的第二控制电压调整所述第二级串联反馈网络电路的电路等效电容值,以作为所述第二晶体管的基极反馈电容调整所述第二晶体管的增益。
优选的,所述第一控制电压与所述第一级串联反馈网络电路的电路等效电容值呈反比例关系。
优选的,所述第一级串联反馈网络电路包括第一电容和第一变容二极管;所述第一电容的正极端连接至所述第一变容二极管的输出端,且所述第一电容的正极端还用于连接至所述第一控制电压;所述第一变容二极管的输出端连接至接地;所述第一电容的负极端连接至所述第一晶体管的基极。
优选的,所述第二控制电压与所述第二级串联反馈网络电路的电路等效电容值呈反比例关系。
优选的,所述第二级串联反馈网络电路包括第二电容和第二变 容二极管;所述第二电容的正极端连接至所述第二变容二极管的输出端,且所述第二电容的正极端还用于连接至所述第二控制电压;所述第二变容二极管的输出端连接至接地;所述第二电容的负极端作为所述功率放大器的第二偏置电压输入端,且所述第二电容的负极端连接至所述第二晶体管的基极。
优选的,所述功率放大器还包括第一电感、第二电感、第三电感、第一电阻、第二电阻以及第三电阻;
所述第一晶体管的发射极通过串联所述第一电感和所述第一电阻后连接至接地;
所述第二晶体管的发射极通过串联所述第二电感和所述第二电阻后连接至接地;
所述第三晶体管的发射极通过串联所述第三电感和所述第三电阻后连接至接地。
优选的,所述第一晶体管、所述第二晶体管以及所述第三晶体管均为BJT晶体管。
优选的,所述第一电容和所述第二电容均为参数可调电容。
优选的,所述第一变容二极管和所述第二变容二极管均为参数可调变容二极管。
第二方面,本发明的实施例还提供了一种射频芯片,所述射频芯片包括如上中任意一项所述的功率放大器。
与相关技术相比,本发明的功率放大器和射频芯片通过在第一晶体管的基极和第二晶体管的基极分布设置第一级串联反馈网络电路和第二级串联反馈网络电路。并通过所述第一级串联反馈网络电路根据外部输入的第一控制电压调整所述第一级串联反馈网络电路的电路等效电容值,从而实现作为所述第一晶体管的基极反馈电容调整所述第一晶体管的增益。并通过所述第二级串联反馈网络电路根据外部输入的第二控制电压调整所述第二级串联反馈网络电路的电路等效电容值,从而实现所述第二晶体管的基极反馈电容调整所述第二晶体管的增益。该电路结构通过第一控制电压和第二控制电压实现可线性连续调整功率放大器的增益。更优的,所述第 一级串联反馈网络和所述第二级串联反馈网络电路通过均设置变容二极管,利用变容二极管的电容随第一控制电压和第二控制电压变化的特性,从而实现反馈可线性连续调整。另外,所述第一级串联反馈网络和所述第二级串联反馈网络电路在电路上形成带通匹配结构。该结构实质上是一种带通滤波器,对于工作频段以外低频和高频部分都有一定的抑制效果,因此,采用本发明的功率放大器和芯片抑制工作频段以外的低频和高频效果好。
附图说明
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为相关技术的功率放大器的电路结构图;
图2为相关技术的功率放大器的增益频率曲线示意图;
图3为本发明实施例的功率放大器的电路结构图。
具体实施方式
下面结合附图详细说明本发明的具体实施方式。
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。
本发明提供一种功率放大器100。请同时参考图3所示,图3为本发明实施例的功率放大器的电路结构图。
所述功率放大器100包括第三电容C3、第一晶体管Q1、第一级匹配电路M1、第二晶体管Q2、第二级匹配电路M2、第三晶体管Q3、输出匹配电路M3、第一级串联反馈网络电路1以及第二级 串联反馈网络电路2。
从外部信号经过所述功率放大器100的方向,第三电容C3、第一晶体管Q1、第一级匹配电路M1、第二晶体管Q2、第二级匹配电路M2、第三晶体管Q3以及输出匹配电路M3依次连接。
本实施方式中,所述第一晶体管Q1、所述第二晶体管Q2以及所述第三晶体管Q3均为BJT晶体管。
具体的,所述功率放大器100的电路连接关系为:
所述第三电容C3的正极端作为所述功率放大器100的信号输入端INPUT。
所述第三电容C3的负极端连接至所述第一晶体管Q1的基极。
所述第一晶体管Q1的基极还用于连接至第一偏置电压VB1。
所述第一晶体管Q1的集电极分别连接至电源电压VCC和所述第一级匹配电路M1的输入端,所述第一晶体管Q1的发射极连接至接地GND。
所述第一级匹配电路M1的输出端连接至所述第二晶体管Q2的基极。
所述第二晶体管Q2的基极还用于连接至第二偏置电压VB2。
所述第二晶体管Q2的集电极分别连接至电源电压VCC和所述第二级匹配电路M2的输入端,所述第二晶体管Q2的发射极连接至接地GND。
所述第二级匹配电路M2的输出端连接至所述第三晶体管Q3的基极。
所述第三晶体管的基极还用于连接至第三偏置电压VB3。
所述第三晶体管Q3的集电极分别连接至电源电压VCC和所述输出匹配电路M3的输入端,所述第三晶体管Q3的发射极连接至接地GND。
所述输出匹配电路M3的输出端作为所述功率放大器100的信号输出端OUTPUT。
第一级串联反馈网络电路1跨接于所述第一晶体管Q1的基极与地GND之间。
第二级串联反馈网络电路2跨接于所述第二晶体管Q2的基极与地GND之间。
其中,所述第一级串联反馈网络电路1用于根据外部输入的第一控制电压VC1调整所述第一级串联反馈网络电路1的电路等效电容值,以作为所述第一晶体管Q1的基极反馈电容调整所述第一晶体管Q1的增益。
本实施方式中,所述第一控制电压VC1与所述第一级串联反馈网络电路1的电路等效电容值呈反比例关系。具体的,所述第一级串联反馈网络电路1包括第一电容C1和第一变容二极管CD1。
所述第一级串联反馈网络电路1的电路结构为:
所述第一电容C1的正极端连接至所述第一变容二极管CD1的输出端,且所述第一电容C1的正极端还用于连接至所述第一控制电压VC1。所述第一变容二极管CD1的输出端连接至接地GND。所述第一电容C1的负极端连接至所述第一晶体管Q1的基极。
所述第二级串联反馈网络电路2用于根据外部输入的第二控制电压VC2调整所述第二级串联反馈网络电路2的电路等效电容值,以作为所述第二晶体管Q2的基极反馈电容调整所述第二晶体管Q2的增益。
本实施方式中,所述第二控制电压VC2与所述第二级串联反馈网络电路2的电路等效电容值呈反比例关系。具体的,所述第二级串联反馈网络电路2包括第二电容C2和第二变容二极管CD2。
所述第二级串联反馈网络电路2的电路结构为:
所述第二电容C2的正极端连接至所述第二变容二极管CD2的输出端,且所述第二电容C2的正极端还用于连接至所述第二控制电压VC2。所述第二变容二极管CD2的输出端连接至接地GND。所述第二电容C2的负极端作为所述功率放大器100的第二偏置电压输入端,且所述第二电容C2的负极端连接至所述第二晶体管Q2的基极。
本实施方式中,所述功率放大器100还包括第一电感L1、第二电感L2、第三电感L3、第一电阻R1、第二电阻R2以及第三电 阻R3。
其中,所述第一电感L1和所述第一电阻R1为电路板背孔的等效阻抗。所述第一晶体管Q1的发射极通过串联所述第一电感L1和所述第一电阻R1后连接至接地GND。
所述第二电感L2和所述第二电阻R2为电路板背孔的等效阻抗。所述第二晶体管Q2的发射极通过串联所述第二电感L2和所述第二电阻R2后连接至接地GND。
所述第三电感L3和所述第三电阻R3为电路板背孔的等效阻抗。所述第三晶体管Q3的发射极通过串联所述第三电感L3和所述第三电阻R3后连接至接地GND。
所述功率放大器100的电路工作原理为:
所述第一变容二极管CD1和所述第二变容二极管CD2均为变容二极管。变容二极管具有的工作特性为:PN结反偏时,变容二极管的结电容大小随外加电压而变化的特性制成。反偏电压增大时,变容二极管的结电容减小,反之变容二极管的结电容增大。本实施方式中,所述第一控制电压VC1与所述第一变容二极管CD1的结电容呈反比例关系。所述第二控制电压VC2与所述第二变容二极管CD2的结电容呈反比例关系呈反比例关系。
所述第一电容C1和所述第二电容C2在电路中容值较大,在电路中作为隔直电容使用。所述第一电容C1和所述第一变容二极管CD1串联,形成所述第一晶体管Q1的基极反馈。从而使得所述第一级串联反馈网络电路1作为所述第一晶体管Q1的基极反馈电容调整所述第一晶体管Q1的增益。
所述第二电容C2和所述第二变容二极管CD2串联,形成所述第二晶体管Q2的基极反馈。从而使得所述第二级串联反馈网络电路2作为所述第二晶体管Q2的基极反馈电容调整所述第二晶体管Q2的增益。
功率放大器100中晶体管的基极反馈电容的大小会影响其增益的大小。反馈电容越大,其增益越小。反馈电容越小,其增益则变大。
所述第一级串联反馈网络电路1的反馈电容大小为:
FC1*FCD1/(FC1+FCD1)=FCD1/(1+FCD1/FC1);
其中,FC1为所述第一电容C1的电容值。FCD1为所述第一变容二极管CD1的结电容值。
假如FC1足够大,那么FC1的大小与FCD1电容值接近.因此所述第一电容C1与所述第一变容二极管CD1串联电容的大小实际主要受所述第一变容二极管CD1的结电容大小的控制。所述第一变容二极管CD1作为变容二极管,所述第一控制电压VC1的电压值决定所述第一变容二极管CD1的结电容大小。
同理,所述第二级串联反馈网络电路2的反馈电容大小为:
FC2*FCD2/(FC2+FCD2)=FCD2/(1+FCD2/FC2);
其中,FC2为所述第二电容C2的电容值。FCD2为所述第二变容二极管CD2的结电容值。
假如FC2足够大,那么FC2的大小与FCD2电容值接近.因此所述第二电容C2与所述第二变容二极管CD2串联电容的大小实际主要受所述第二变容二极管CD2的结电容大小的控制。所述第二变容二极管CD2作为变容二极管,所述第二控制电压VC2的电压值决定所述第二变容二极管CD2的结电容大小。
因此,调整所述第一控制电压VC1的电压值大小和所述第二控制电压VC2的电压值大小即可控制所述第一晶体管Q1和所述第二晶体管Q2的反馈电容大小。由于所述第一控制电压VC1和所述第二控制电压VC2可以进行连续变化调整,从而使得所述第一变容二极管CD1的结电容大小和所述第二变容二极管CD2的结电容大小也是随电压连续可变的,从而达到了将功率放大器100增益的连续可调的效果。即通过第一控制电压VC1和第二控制电压VC2实现可线性连续调整功率放大器的增益。另外,通过所述第一电容C1、所述第二电容C2、所述第一变容二极管CD1和所述第二变容二极管CD2即可实现增益连续可调,电路结构简单,易于实现。
另外,所述第一级串联反馈网络1和所述第二级串联反馈网络电路2在电路上形成带通匹配结构。该结构实质上是一种带通滤波 器,对于工作频段以外低频和高频部分都有一定的抑制效果,因此,采用本发明的功率放大器100抑制工作频段以外的低频和高频效果好。
为了更灵活实现电路的调整增益效果,本实施方式中,所述第一电容C1和所述第二电容C2均为参数可调电容。更优的,所述第一变容二极管CD1和所述第二变容二极管CD2均为参数可调变容二极管。
本发明的实施例还提供一种射频芯片,所述射频芯片包括所述功率放大器100。
需要指出的是,本发明采用的相关电路、电阻、电容、电感、变容二极管及晶体管均为本领域常用的电路、元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
与相关技术相比,本发明的功率放大器和射频芯片通过在第一晶体管的基极和第二晶体管的基极分布设置第一级串联反馈网络电路和第二级串联反馈网络电路。并通过所述第一级串联反馈网络电路根据外部输入的第一控制电压调整所述第一级串联反馈网络电路的电路等效电容值,从而实现作为所述第一晶体管的基极反馈电容调整所述第一晶体管的增益。并通过所述第二级串联反馈网络电路根据外部输入的第二控制电压调整所述第二级串联反馈网络电路的电路等效电容值,从而实现所述第二晶体管的基极反馈电容调整所述第二晶体管的增益。该电路结构通过第一控制电压和第二控制电压实现可线性连续调整功率放大器的增益。更优的,所述第一级串联反馈网络和所述第二级串联反馈网络电路通过均设置变容二极管,利用变容二极管的电容随第一控制电压和第二控制电压变化的特性,从而实现反馈可线性连续调整。另外,所述第一级串联反馈网络和所述第二级串联反馈网络电路在电路上形成带通匹配结构。该结构实质上是一种带通滤波器,对于工作频段以外低频和高频部分都有一定的抑制效果,因此,采用本发明的功率放大器和芯片抑制工作频段以外的低频和高频效果好。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明 本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种功率放大器,其包括依次连接的第三电容、第一晶体管、第一级匹配电路、第二晶体管、第二级匹配电路、第三晶体管以及输出匹配电路,
    所述第三电容的正极端作为所述功率放大器的信号输入端;
    所述第三电容的负极端连接至所述第一晶体管的基极,且所述第一晶体管的基极还用于连接至第一偏置电压;
    所述第一晶体管的集电极分别连接至电源电压和所述第一级匹配电路的输入端,所述第一晶体管的发射极连接至接地;
    所述第一级匹配电路的输出端连接至所述第二晶体管的基极,且所述第二晶体管的基极还用于连接至第二偏置电压;
    所述第二晶体管的集电极分别连接至电源电压和所述第二级匹配电路的输入端,所述第二晶体管的发射极连接至接地;
    所述第二级匹配电路的输出端连接至所述第三晶体管的基极,且所述第三晶体管的基极还用于连接至第三偏置电压;
    所述第三晶体管的集电极分别连接至电源电压和所述输出匹配电路的输入端,所述第三晶体管的发射极连接至接地;
    所述输出匹配电路的输出端作为所述功率放大器的信号输出端;
    其特征在于,所述功率放大器还包括跨接于所述第一晶体管的基极与地之间的第一级串联反馈网络电路和跨接于所述第二晶体管的基极与地之间的第二级串联反馈网络电路;
    所述第一级串联反馈网络电路用于根据外部输入的第一控制电压调整所述第一级串联反馈网络电路的电路等效电容值,以作为所述第一晶体管的基极反馈电容调整所述第一晶体管的增益;所述第二级串联反馈网络电路用于根据外部输入的第二控制电压调整所述第二级串联反馈网络电路的电路等效电容值,以作为所述第二晶体管的基极反馈电容调整所述第二晶体管的增益。
  2. 根据权利要求1所述的功率放大器,其特征在于,所述第一控制电压与所述第一级串联反馈网络电路的电路等效电容值呈 反比例关系。
  3. 根据权利要求2所述的功率放大器,其特征在于,所述第一级串联反馈网络电路包括第一电容和第一变容二极管;所述第一电容的正极端连接至所述第一变容二极管的输出端,且所述第一电容的正极端还用于连接至所述第一控制电压;所述第一变容二极管的输出端连接至接地;所述第一电容的负极端连接至所述第一晶体管的基极。
  4. 根据权利要求1所述的功率放大器,其特征在于,所述第二控制电压与所述第二级串联反馈网络电路的电路等效电容值呈反比例关系。
  5. 根据权利要求4所述的功率放大器,其特征在于,所述第二级串联反馈网络电路包括第二电容和第二变容二极管;所述第二电容的正极端连接至所述第二变容二极管的输出端,且所述第二电容的正极端还用于连接至所述第二控制电压;所述第二变容二极管的输出端连接至接地;所述第二电容的负极端作为所述功率放大器的第二偏置电压输入端,且所述第二电容的负极端连接至所述第二晶体管的基极。
  6. 根据权利要求1所述的功率放大器,其特征在于,所述功率放大器还包括第一电感、第二电感、第三电感、第一电阻、第二电阻以及第三电阻;
    所述第一晶体管的发射极通过串联所述第一电感和所述第一电阻后连接至接地;
    所述第二晶体管的发射极通过串联所述第二电感和所述第二电阻后连接至接地;
    所述第三晶体管的发射极通过串联所述第三电感和所述第三电阻后连接至接地。
  7. 根据权利要求1所述的功率放大器,其特征在于,所述第一晶体管、所述第二晶体管以及所述第三晶体管均为BJT晶体管。
  8. 根据权利要求1所述的功率放大器,其特征在于,所述第一电容和所述第二电容均为参数可调电容。
  9. 根据权利要求1所述的功率放大器,其特征在于,所述第一变容二极管和所述第二变容二极管均为参数可调变容二极管。
  10. 一种射频芯片,其特征在于,所述射频芯片包括如权利要求1-9中任意一项所述的功率放大器。
PCT/CN2022/125273 2021-11-03 2022-10-14 功率放大器和射频芯片 WO2023078058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111303080.4A CN114094953B (zh) 2021-11-03 2021-11-03 功率放大器和射频芯片
CN202111303080.4 2021-11-03

Publications (1)

Publication Number Publication Date
WO2023078058A1 true WO2023078058A1 (zh) 2023-05-11

Family

ID=80298954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125273 WO2023078058A1 (zh) 2021-11-03 2022-10-14 功率放大器和射频芯片

Country Status (2)

Country Link
CN (1) CN114094953B (zh)
WO (1) WO2023078058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961690A (zh) * 2023-09-19 2023-10-27 深圳飞骧科技股份有限公司 双模射频前端模组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094953B (zh) * 2021-11-03 2022-09-13 深圳飞骧科技股份有限公司 功率放大器和射频芯片
CN218124669U (zh) * 2022-07-06 2022-12-23 深圳飞骧科技股份有限公司 功率放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457550A (zh) * 2012-05-30 2013-12-18 上海无线通信研究中心 射频功率放大器及其移动终端
JP2015207977A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 電力増幅器
CN106169915A (zh) * 2016-06-30 2016-11-30 唯捷创芯(天津)电子技术股份有限公司 多增益模式功率放大器、芯片及通信终端
CN112543005A (zh) * 2021-02-18 2021-03-23 广州慧智微电子有限公司 幅度调制对相位调制的补偿电路、射频功率放大器及设备
CN114094953A (zh) * 2021-11-03 2022-02-25 深圳飞骧科技股份有限公司 功率放大器和射频芯片

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323944A (ja) * 1999-05-10 2000-11-24 Sharp Corp 高周波利得可変増幅器
US7495515B1 (en) * 2007-08-24 2009-02-24 Freescale Semiconductor, Inc. Low-noise amplifier
TWI344263B (en) * 2008-01-25 2011-06-21 Univ Nat Taiwan Low-noise amplifier
US9912301B2 (en) * 2016-04-12 2018-03-06 City University Of Hong Kong Facilitation of increased bandwidth for a low noise amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457550A (zh) * 2012-05-30 2013-12-18 上海无线通信研究中心 射频功率放大器及其移动终端
JP2015207977A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 電力増幅器
CN106169915A (zh) * 2016-06-30 2016-11-30 唯捷创芯(天津)电子技术股份有限公司 多增益模式功率放大器、芯片及通信终端
CN112543005A (zh) * 2021-02-18 2021-03-23 广州慧智微电子有限公司 幅度调制对相位调制的补偿电路、射频功率放大器及设备
CN114094953A (zh) * 2021-11-03 2022-02-25 深圳飞骧科技股份有限公司 功率放大器和射频芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961690A (zh) * 2023-09-19 2023-10-27 深圳飞骧科技股份有限公司 双模射频前端模组
CN116961690B (zh) * 2023-09-19 2023-11-28 深圳飞骧科技股份有限公司 双模射频前端模组

Also Published As

Publication number Publication date
CN114094953A (zh) 2022-02-25
CN114094953B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2023078058A1 (zh) 功率放大器和射频芯片
CN106877819B (zh) 基于复合型谐振器的压控振荡器
US7688133B2 (en) Power amplifier
TWI654831B (zh) 通訊模組
JP2009164908A (ja) 電力増幅器
US11616480B2 (en) Power amplifier circuit
TWI654830B (zh) 功率放大裝置
WO2023202309A1 (zh) 射频放大器电路和射频芯片
CN104980125A (zh) 采用负阻结构的宽频带、高q值、可调谐的有源电感
CN104898761A (zh) 晶体管合成电感
US20080157892A1 (en) Oscillator
KR100789918B1 (ko) 광대역 저잡음 증폭기의 입력 매칭 회로
US7564312B2 (en) Resonant amplifier
FI100751B (fi) Pienikohinainen vahvistin
WO2024007727A1 (zh) 功率放大器
WO2023082932A1 (zh) 低噪声放大器、相关设备及芯片
US7227421B2 (en) Crystal oscillator circuit
CN109474243B (zh) 一种超宽带低噪声放大器
WO2023093360A1 (zh) 功率放大器和射频芯片
CN114531121B (zh) 一种对温度不敏感的线性功率放大器
TWI676349B (zh) 放大電路
US7369007B2 (en) Oscillating circuit for suppressing second harmonic wave
JP2019201290A (ja) 電力増幅器
CN112187195B (zh) 一种低功耗的射频增益模块放大器芯片
CN109150117B (zh) 一种用于cmos pa的自适应偏置电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889083

Country of ref document: EP

Kind code of ref document: A1