WO2023077788A1 - 一种锂离子电池正极材料中锂的回收方法 - Google Patents

一种锂离子电池正极材料中锂的回收方法 Download PDF

Info

Publication number
WO2023077788A1
WO2023077788A1 PCT/CN2022/096106 CN2022096106W WO2023077788A1 WO 2023077788 A1 WO2023077788 A1 WO 2023077788A1 CN 2022096106 W CN2022096106 W CN 2022096106W WO 2023077788 A1 WO2023077788 A1 WO 2023077788A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cobalt
temperature
nickel
manganese
Prior art date
Application number
PCT/CN2022/096106
Other languages
English (en)
French (fr)
Inventor
徐建兵
陈东英
李忠岐
赖耀斌
梁鑫
赖兰萍
郭家旺
张选旭
张积锴
陈后兴
王明
伍莺
胡小洣
曾鹏
Original Assignee
赣州有色冶金研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赣州有色冶金研究所有限公司 filed Critical 赣州有色冶金研究所有限公司
Publication of WO2023077788A1 publication Critical patent/WO2023077788A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the technical field of metallurgy, in particular to a method for recovering lithium in positive electrode materials of lithium ion batteries.
  • Lithium-ion batteries have the advantages of high specific energy, small size and wide temperature range, and are widely used in digital products (such as mobile phones, notebooks) and new energy vehicles, resulting in a large number of waste lithium-ion batteries.
  • Waste lithium-ion batteries contain valence elements, of which Li accounts for 5-7%, which is an important secondary resource.
  • valence elements of which Li accounts for 5-7%, which is an important secondary resource.
  • my country's lithium resources are in short supply, and the demand for resources is large, so it is heavily dependent on imports. Therefore, recycling the valuable element lithium in waste lithium-ion batteries can realize the recycling of resources, which has significant economic benefits and is of great significance.
  • the recovery of the valuable element lithium in the lithium-ion positive electrode material mainly adopts the process of acid leaching-extraction-precipitation.
  • the valuable elements lithium, cobalt, nickel, and manganese are simultaneously dissolved into the leaching solution through acid leaching, and the leaching solution is extracted to separate cobalt, nickel, and After the manganese is removed, the obtained raffinate is lithium-precipitated.
  • the patent with the publication number CN107267759A discloses a comprehensive recovery method for the positive electrode material of lithium ion battery.
  • the positive electrode material is added with concentrated sulfuric acid and hydrogen peroxide for acid leaching. , Mn element organic phase and lithium-containing raffinate, organic phase extraction to obtain Ni, Co, Mn solution.
  • the patent with the publication number CN112062143A discloses a method for preparing lithium carbonate using waste lithium-ion batteries as raw materials without acid.
  • the positive electrode material is roasted with calcium chloride, lithium is extracted by water immersion and filtration, and lithium sulfate is added to convert the calcium ions in the filtrate into sulfuric acid. Calcium precipitation is removed, and then lithium is precipitated with sodium carbonate.
  • This process introduces other chemical reagents, calcium sulfate is slightly soluble, calcium removal in the form of calcium sulfate precipitation is not complete, and other impurity elements are inevitably introduced, resulting in low purity of recovered lithium products.
  • the object of the present invention is to provide a method for recovering lithium in the positive electrode material of a lithium ion battery.
  • the recovery method of the present invention has high recovery rate and high purity of lithium.
  • the invention provides a method for recovering lithium in a positive electrode material of a lithium ion battery, comprising the following steps:
  • the reduced roasted material is subjected to water leaching to extract lithium, and the obtained lithium-containing leachate is subjected to negative pressure evaporation and crystallization to obtain lithium hydroxide.
  • the solid carbon reducing agent includes one or more of carbon black, coke powder and graphite powder.
  • the positive electrode material of the lithium ion battery includes one or more of lithium nickel cobalt manganese oxide, lithium nickel oxide and lithium cobalt oxide.
  • the mass ratio of the positive electrode material of the lithium ion battery to the solid carbon reducing agent is 100:(8-20).
  • the compacted density of the molded body is 2.5-3.5 g/cm 3 .
  • drying the obtained molded body is also included; the drying temperature is 100-110° C., and the drying time is 6-10 hours.
  • the reduction roasting includes low-temperature reduction roasting and high-temperature reduction roasting in sequence; the temperature of the low-temperature reduction roasting is 350-450°C, the vacuum degree is 15-100Pa, and the holding time is 2-5h; the high-temperature reduction roasting The temperature is 750-950°C, the vacuum degree is 1-10Pa, and the holding time is 1-3h.
  • the heating rate to the low-temperature reduction roasting temperature is 7-9 °C/min, and the heating rate from the low-temperature reduction roasting temperature to the high-temperature reduction roasting temperature is 3-5 °C/min.
  • the conditions for extracting lithium by water leaching include: a solid-to-liquid ratio of 50g/L-200g/L, a temperature of 25-95°C, and a time of 0.5h-3.5h.
  • the vacuum degree of the negative pressure evaporation crystallization is 0.01-0.05MPa, and the temperature is 60-90°C;
  • the negative pressure evaporation crystallization is carried out under the condition of stirring, and the stirring speed is 250-450 r/min.
  • the invention provides a method for recovering lithium in a positive electrode material of a lithium ion battery, comprising the following steps: forming after mixing the positive electrode material of a lithium ion battery and a solid carbon reducing agent, reducing and roasting the obtained molded body to obtain a reduced roasting material; The reduced roasted material is subjected to water leaching to extract lithium, and the obtained lithium-containing leachate is subjected to negative pressure evaporation and crystallization to obtain lithium hydroxide.
  • the invention uses solid carbon as a reducing agent without adding other chemical reagents, avoids the introduction of other impurities, shortens the lithium extraction procedure, and improves the recovery rate of lithium and the purity of lithium.
  • Lithium is directly extracted by water leaching from the reduced and roasted material, so as to avoid loss of lithium in the process of recovering nickel, cobalt, and manganese, and improve the recovery rate of lithium.
  • negative pressure evaporation and crystallization can quickly remove the moisture in the lithium-containing leaching solution, improve the crystallization efficiency of lithium, avoid the reaction of carbon dioxide in the air with lithium hydroxide, and ensure the purity of subsequent lithium products.
  • water leaching and extracting lithium from the reduced and roasted material can effectively avoid the leaching of other elements such as nickel, cobalt and manganese, and ensure the purity of subsequent lithium products. Therefore, the recovery method of the present invention has high recovery rate and high purity to lithium hydroxide.
  • the water extraction of lithium in the recovery method of the present invention avoids the consumption of acid and alkali, and can effectively reduce the cost.
  • the invention provides a method for recovering lithium in a positive electrode material of a lithium ion battery, comprising the following steps:
  • the reduced roasted material is subjected to water leaching to extract lithium, and the obtained lithium-containing leachate is subjected to negative pressure evaporation and crystallization to obtain lithium hydroxide.
  • the raw materials used in the present invention are preferably commercially available products.
  • the invention mixes the cathode material of the lithium ion battery with a solid carbon reducing agent and then forms it, and reduces and roasts the obtained molded body to obtain a reduced and roasted material.
  • the positive electrode material of the lithium ion battery preferably includes one or more of lithium nickel cobalt manganese oxide, lithium nickel oxide and lithium cobalt oxide.
  • the particle size of the positive electrode material of the lithium ion battery is preferably ⁇ 100 ⁇ m.
  • the positive electrode material of the lithium ion battery is preferably obtained by disassembling the lithium ion battery. The present invention does not specifically limit the dismantling operation, and the dismantling means known to those skilled in the art can be used.
  • the solid carbon reducing agent preferably includes one or more of carbon black, coke powder and graphite powder, more preferably carbon black; the carbon black is preferably metallurgical carbon black.
  • the particle size of the solid carbon reducing agent is preferably ⁇ 100 ⁇ m.
  • the mass ratio of the positive electrode material of the lithium ion battery to the solid carbon reducing agent is preferably 100:(8-20), more preferably 100:(9-18), more preferably 100:(10 ⁇ 15).
  • the present invention controls the mass ratio of the positive electrode material of the lithium ion battery to the solid carbon reducing agent to be 100: (8-20), which can effectively reduce the positive electrode material of the lithium ion battery, and the lithium in the positive electrode material of the lithium ion battery forms an oxidized carbon dioxide which is easily soluble in water. lithium. If too little solid carbon reducing agent is added, the positive electrode material of the lithium-ion battery cannot be effectively reduced, and at the same time, part of the lithium that is reduced forms lithium carbonate with low solubility. It cannot be decomposed by carbon into lithium oxide under vacuum conditions.
  • the mixing method is preferably ball milling, and the ball milling is preferably dry ball milling; the rotation speed of the dry ball milling is preferably 200-400r/min, and the time is preferably 10-60min.
  • the compacted density of the molded body is preferably 2.5 to 3.5 g/cm 3 .
  • the molding preferably includes compression molding; the pressure and time of the molding are not specifically limited in the present invention, as long as the compacted density of the molded body obtained by molding can be 2.5 to 3.5 g/cm .
  • the present invention controls the compaction density of the molded body to 2.5-3.5g/ cm3 , which can help increase the contact area between the positive electrode material of the lithium ion battery and the solid carbon reducing agent, improve the product diffusion process, and promote the reaction. Under vacuum conditions, the material is pumped to the condenser by the vacuum pump to prevent material loss and improve the recovery rate of lithium.
  • the present invention preferably further includes drying the obtained molded body; the drying temperature is preferably 100-110° C., and the drying time is preferably 6-10 hours.
  • the moisture in the molded body can be removed by drying the molded body, so as to prevent the water from affecting the vacuum degree in the reduction roasting process.
  • the reduction calcination preferably includes performing low-temperature reduction calcination and high-temperature reduction calcination in sequence.
  • the temperature of the low-temperature reduction roasting is preferably 350-450°C, more preferably 375-425°C, more preferably 400°C;
  • the degree of vacuum is preferably 15-100Pa, more preferably 30-80Pa, more preferably 50-60Pa;
  • the holding time is preferably 2-5h, more preferably 3-4h;
  • the rate of heating to the temperature of the low-temperature reduction roasting is preferably 7-9°C/min, more preferably 8°C/min.
  • the temperature of the high-temperature reduction roasting is preferably 750-950°C, more preferably 800-900°C, more preferably 850°C;
  • the degree of vacuum is preferably 1-10Pa, more preferably 2-8Pa, more preferably It is 4 ⁇ 6Pa;
  • the holding time is preferably 1 ⁇ 3h, more preferably 1.5 ⁇ 2.5h, more preferably 2h;
  • the rate of temperature rising from the temperature of low-temperature reduction roasting to the temperature of said high-temperature reduction roasting is preferably 3 ⁇ 5°C/ min, more preferably 4°C/min.
  • the reduction roasting is set as low-temperature reduction roasting and high-temperature reduction roasting in sequence, and the low-temperature reduction roasting can effectively reduce the positive electrode material of the lithium ion battery, so that a part of lithium in the positive electrode material of the lithium ion battery forms an oxide easily soluble in water, A part forms lithium carbonate which is slightly soluble in water; during the high-temperature reduction roasting process, the solid carbon reducing agent can decompose the formed lithium carbonate into lithium oxide which is easily soluble in water; at the same time, the sequential low-temperature reduction roasting and high-temperature reduction roasting can avoid high temperature The violent reaction produces a large amount of gas, so that the material is pumped to the condensation tube by the vacuum pump under vacuum conditions, preventing the loss of a part of the material and improving the recovery rate of lithium.
  • the present invention carries out water leaching and extraction of lithium from the reduction and roasting material, and carries out negative pressure evaporation and crystallization of the obtained lithium-containing leachate to obtain lithium hydroxide.
  • the conditions for extracting lithium by water leaching include: the solid-to-liquid ratio is preferably 50g/L-200g/L, more preferably 100g/L-150g/L; the temperature is preferably 25-95°C, more preferably 50-90°C, more preferably 60-80°C; the time is preferably 0.5h-3.5h, more preferably 1h-3h, more preferably 1.5h-2.5h.
  • the parameter solid-liquid ratio of water leaching lithium refers to the ratio of the amount of reducing roasted material and water leaching lithium reagent water.
  • the obtained lithium extraction system by water leaching is preferably filtered to obtain the lithium-containing leaching solution.
  • the solid-liquid ratio of lithium extracted by water leaching is set to 50g/L-200g/L, and the temperature is set to 25-95°C, which can effectively leach and reduce the lithium in the roasted material, and the lithium oxide reacts with water to form lithium hydroxide.
  • Lithium hydroxide has high solubility, and the solubility increases with the increase of temperature.
  • the vacuum degree of the negative pressure evaporation crystallization is preferably 0.01-0.05MPa, more preferably 0.02-0.04MPa, more preferably 0.03MPa; the temperature is preferably 60-90°C, more preferably 70-80°C .
  • the negative pressure evaporation crystallization is preferably carried out under the condition of stirring, and the stirring speed is preferably 250-450 r/min.
  • the negative pressure evaporation and crystallization can quickly remove the moisture in the lithium-containing leaching solution, improve the crystallization efficiency of lithium, avoid the reaction of carbon dioxide in the air with lithium hydroxide, ensure the purity of lithium oxide, and improve the recovery rate of lithium.
  • a filter residue is preferably obtained after the water leaching lithium extraction system is filtered.
  • the filter residue is post-treated, taking nickel cobalt lithium manganese oxide as an example, to recover nickel sulfate, cobalt sulfate and manganese sulfate.
  • the post-treatment preferably includes the following steps:
  • the filter residue is mixed with sulfuric acid, dissolved, and the obtained acid solution is subjected to P204 fractional distillation extraction to obtain an organic phase containing manganese and an aqueous phase containing cobalt and nickel;
  • the manganese-containing organic phase and the cobalt-containing organic phase are respectively back-extracted with sulfuric acid to obtain a manganese-containing aqueous phase and a cobalt-containing aqueous phase;
  • the manganese-containing aqueous phase, the cobalt-containing aqueous phase and the nickel-containing aqueous phase are respectively subjected to degreasing, evaporative crystallization, and nickel sulfate, cobalt sulfate and manganese sulfate are recovered.
  • the dosage of the filter residue, sulfuric acid and the concentration of sulfuric acid are not specifically limited, as long as the filter residue can be dissolved.
  • the present invention does not specifically limit the parameters of the P204 fractionation extraction, and the parameters of the P204 fractionation extraction well-known to those skilled in the art can be used.
  • the present invention does not specifically limit the parameters of the P507 fractionation extraction, and the P507 fractionation extraction well-known to those skilled in the art can be used.
  • the present invention does not specifically limit the parameters of oil removal and evaporative crystallization, as long as the oil can be removed and evaporative crystallization can be realized.
  • the dried material is first heated to 400°C at 8°C/min, and reduced and roasted at a vacuum degree of 50Pa for 3 hours; then at 4°C/min Continue to heat up from 400°C to 800°C, reduce and roast for 2 hours at a vacuum of 5Pa; extract lithium from the reduced and roasted material and water at a solid-to-liquid ratio of 100g/L and a temperature of 60°C for 2 hours; then filter and separate, The filtrate was crystallized under the conditions of a vacuum of 0.03MPa, a temperature of 70°C, and a stirring speed of 500r/min to obtain a lithium hydroxide product. The total recovery rate of lithium was 95.2%, and the purity of the obtained lithium hydroxide was 98.3%.
  • the post-treatment includes the following steps: mixing the filter residue with sulfuric acid and dissolving, and performing P204 fractional distillation and extraction on the obtained acid solution to obtain an organic phase containing manganese and an organic phase containing Cobalt-nickel aqueous phase;
  • the conditions of the P204 fractionation extraction include: the composition of the organic phase is 25% P204+75% sulfonated kerosene, the saponification rate is 60%, the solution pH is 3.2, and the O/A ratio is 1/2, 7-stage extraction and 5-stage washing;
  • the cobalt-nickel-containing aqueous phase is subjected to P507 extraction to obtain a cobalt-containing organic phase and a nickel-containing aqueous phase;
  • the conditions for the P507 extraction include: the composition of the organic phase is 25% 507+75% sulfonic acid kerosene, the saponification rate is 65%, the pH of the solution
  • nickel-cobalt lithium manganese oxide positive electrode material 20 parts by weight of carbon powder (particle diameter ⁇ 100 ⁇ m) is ball milled at 350r/min for 50min, and the material after mixing is molded to obtain a molded body (compaction density is 2.8g/ cm 3 ); the molded body was placed in an oven at a temperature of 105°C and kept at a constant temperature for 10 hours. The dried material was first heated to 450°C at a rate of 7°C/min, and reduced and roasted at a vacuum degree of 15Pa for 5 hours, and then baked at a temperature of 3°C/min.
  • Min continues to heat up from 450°C to 900°C, and reduce and roast for 3 hours at a vacuum of 1 Pa; extract lithium from the reduced roasted material and water at a solid-to-liquid ratio of 50g/L and a temperature of 80°C for 3 hours; then filter After separation, the filtrate was crystallized under the conditions of a vacuum of 0.05MPa, a temperature of 90°C, and a stirring speed of 450r/min to obtain a lithium hydroxide product.
  • the total recovery rate of lithium was 97.3%, and the purity of the obtained lithium hydroxide was 98.7%.
  • the post-treatment includes the following steps: mixing the filter residue with sulfuric acid and dissolving, and performing P204 fractional distillation and extraction on the obtained acid solution to obtain an organic phase containing manganese and an organic phase containing Cobalt-nickel aqueous phase;
  • the conditions of the P204 fractionation extraction include: the composition of the organic phase is 25% P204+75% sulfonated kerosene, the saponification rate is 60%, the solution pH is 3.2, and the O/A ratio is 1/2, 7-stage extraction and 5-stage washing;
  • the cobalt-nickel-containing aqueous phase is subjected to P507 fractional extraction to obtain a cobalt-containing organic phase and a nickel-containing aqueous phase;
  • the conditions for the P507 fractional extraction include: the composition of the organic phase is 25%507+75 % sulfonated kerosene, the saponification rate is 65%,
  • the dried material is first heated to 350°C at a rate of 9°C/min, and reduced to calcination for 2 hours at a vacuum of 100Pa; Continue to heat up from 350°C to 750°C, reduce and roast for 1 hour at a vacuum of 10 Pa; extract lithium from the reduced and roasted material and water at a solid-to-liquid ratio of 200g/L and a temperature of 60°C for 2 hours; then filter and separate, and the filtrate
  • the lithium hydroxide product was crystallized under the conditions of a vacuum degree of 0.01 MPa, a temperature of 60°C, and a stirring speed of 300 r/min. The total recovery rate of lithium was 91.4%, and the purity of the obtained lithium hydroxide was 98.4%.
  • the post-treatment includes the following steps: mixing the filter residue with sulfuric acid and dissolving, and performing P204 fractional distillation and extraction on the obtained acid solution to obtain an organic phase containing manganese and an organic phase containing Cobalt-nickel aqueous phase;
  • the conditions of the P204 fractionation extraction include: the composition of the organic phase is 25% P204+75% sulfonated kerosene, the saponification rate is 60%, the solution pH is 3.2, and the O/A ratio is 1/2, 7-stage extraction and 5-stage washing;
  • the cobalt-nickel-containing aqueous phase is subjected to P507 fractional extraction to obtain a cobalt-containing organic phase and a nickel-containing aqueous phase;
  • the conditions for the P507 fractional extraction include: the composition of the organic phase is 25% P507+75 % sulfonated kerosene, the saponification rate is 65%
  • the post-treatment includes the following steps: mixing the filter residue with sulfuric acid and dissolving, and performing fractional distillation and extraction of the obtained acid solution to obtain a cobalt-containing organic phase and solution; the P507
  • the conditions of fractional distillation extraction include: the composition of the organic phase is 25% P507+75% sulfonated kerosene, the saponification rate is 65%, the solution pH is 4.1, the O/A ratio is 1/3, 4 stages of extraction and 3 stages of washing;
  • the cobalt-containing organic phase is back-extracted with sulfuric acid to obtain a cobalt-containing aqueous phase; after degreasing, the cobalt-containing aqueous phase is evaporated and crystallized to recover cobalt sulfate.
  • the cobalt recovery rate was 98.3%.
  • the dried material is directly heated up to 800°C at a rate of 4°C/min, and reduced and roasted for 2 hours at a vacuum degree of 5Pa.
  • the overall lithium recovery was 81.6%; the nickel, cobalt and manganese recoveries were 95.8%, 96.1% and 96.7%, respectively.
  • Example 1 The difference from Example 1 is that the compacted density of the molded body is 4.0 g/cm 3 .
  • the overall recovery of lithium was 90.7%; the recoveries of nickel, cobalt and manganese were 96.5%, 97.2% and 97.3%, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明属于冶金技术领域,提供了一种锂离子电池正极材料中锂的回收方法。本发明以固体碳为还原剂,不添加其他化学试剂,避免其他杂质引入,缩短了提锂程序,提高了锂的回收率和纯度。对所述还原焙烧物料直接进行水浸提锂,避免锂在回收镍、钴、锰的工序损失,提高了锂的回收率。同时,负压蒸发结晶能快速脱除含锂浸出液中的水分,提高锂的结晶效率,避免空气中的二氧化碳与氢氧化锂反应,保证后续锂产品的纯度。另外,对所述还原焙烧物料进行水浸提锂,能够有效避免其他元素比如镍、钴和锰等元素的浸出,保证后续锂产品的纯度。因此,本发明的方法对锂的回收率高、纯度高。除此之外,本发明的回收方法中水浸提锂避免了酸碱消耗,可有效降低成本。

Description

一种锂离子电池正极材料中锂的回收方法
本申请要求于2021年11月02日提交中国专利局、申请号为202111287547.0、发明名称为“一种锂离子电池正极材料中锂的回收方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冶金技术领域,尤其涉及一种锂离子电池正极材料中锂的回收方法。
背景技术
锂离子电池具有比能量高、体积小和温度范围广的优势,被广泛应用于数码产品(比如手机、笔记本)和新能源汽车领域,随之产生了大量废旧锂离子电池。废旧锂离子电池含有价元素,其中Li占5~7%,是重要的二次资源。而我国锂资源紧缺,资源需求量大,严重依赖进口。因此,回收废旧锂离子电池中有价元素锂可实现资源的循环利用,经济效益显著,意义重大。
目前回收锂离子正极材料中的有价元素锂主要是采用酸浸-萃取-沉淀的工艺,有价元素锂、钴、镍、锰经过酸浸同时溶出进入浸出液,浸出液经萃取分离钴、镍、锰后,获得的萃余液沉锂。公开号为CN107267759A的专利公开了一种锂离子电池正极材料的综合回收方法,正极材料加入浓硫酸和双氧水进行酸浸,所得浸出液经萃取剂P204、P507多级串联逆流萃取,获得含Ni、Co、Mn元素的有机相和含锂萃余液,有机相反萃得到Ni、Co、Mn溶液。该工艺萃取分离钴、镍、锰时,锂同时被萃入有机相,锂逐级分散流失,损失严重,导致锂回收率低,为70~80%。公开号为CN112062143A的专利公开了一种以废旧锂离子电池为原料的无酸制备碳酸锂的方法,正极材料与氯化钙焙烧,水浸过滤提锂,加入硫酸锂将滤液中钙离子形成硫酸钙沉淀去除,再用碳酸钠沉锂。该工艺引入其他化学试剂,硫酸钙微溶,以硫酸钙沉淀的形式除钙不彻底,不可避免的引 入了其他杂质元素,导致回收的锂产品纯度低。
发明内容
有鉴于此,本发明的目的在于提供一种锂离子电池正极材料中锂的回收方法。本发明的回收方法使锂的回收率高和纯度高。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种锂离子电池正极材料中锂的回收方法,包括以下步骤:
将锂离子电池正极材料和固体碳还原剂混合后成型,将得到的成型体还原焙烧,得到还原焙烧物料;
将所述还原焙烧物料进行水浸提锂,所得含锂浸出液进行负压蒸发结晶,得到氢氧化锂。
优选地,所述固体碳还原剂包括炭黑、焦炭粉和石墨粉中的一种或多种。
优选地,所述锂离子电池正极材料包括镍钴锰酸锂、镍酸锂和钴酸锂中的一种或多种。
优选地,所述锂离子电池正极材料和固体碳还原剂的质量比为100:(8~20)。
优选地,所述成型体的压实密度为2.5~3.5g/cm 3
优选地,所述成型后,还包括将所得成型体进行烘干;所述烘干的温度为100~110℃,时间为6~10h。
优选地,所述还原焙烧包括依次进行低温还原焙烧和高温还原焙烧;所述低温还原焙烧的温度为350~450℃,真空度为15~100Pa,保温时间为2~5h;所述高温还原焙烧的温度为750~950℃,真空度为1~10Pa,保温时间为1~3h。
优选地,升温至所述低温还原焙烧的温度的速率为7~9℃/min,由低温还原焙烧温度升温至所述高温还原焙烧的温度的速率为3~5℃/min。
优选地,所述水浸提锂的条件包括:固液比为50g/L~200g/L,温度为25~95℃,时间为0.5h~3.5h。
优选地,所述负压蒸发结晶的真空度为0.01~0.05MPa,温度为 60~90℃;
所述负压蒸发结晶在搅拌的条件下进行,所述搅拌的速度为250~450r/min。
本发明提供了一种锂离子电池正极材料中锂的回收方法,包括以下步骤:将锂离子电池正极材料和固体碳还原剂混合后成型,将得到的成型体还原焙烧,得到还原焙烧物料;将所述还原焙烧物料进行水浸提锂,所得含锂浸出液进行负压蒸发结晶,得到氢氧化锂。本发明以固体碳为还原剂,不添加其他化学试剂,避免其他杂质引入,缩短了提锂程序,提高了锂的回收率和锂的纯度。对所述还原焙烧物料直接进行水浸提锂,避免锂在回收镍、钴、锰的工序损失,提升了锂的回收率。同时,负压蒸发结晶能快速脱除含锂浸出液中的水分,提高锂的结晶效率,避免空气中的二氧化碳与氢氧化锂反应,保证后续锂产品的纯度。另外,对所述还原焙烧物料进行水浸提锂,能够有效避免其他元素比如镍、钴和锰等元素的浸出,保证后续锂产品的纯度。因此,本发明的回收方法对氢氧化锂的回收率高、纯度高。除此之外,本发明的回收方法中水浸提锂避免了酸碱消耗,可有效降低成本。
具体实施方式
本发明提供了一种锂离子电池正极材料中锂的回收方法,包括以下步骤:
将锂离子电池正极材料和固体碳还原剂混合后成型,将得到的成型体还原焙烧,得到还原焙烧物料;
将所述还原焙烧物料进行水浸提锂,所得含锂浸出液进行负压蒸发结晶,得到氢氧化锂。
在本发明中,如无特殊说明,本发明所用原料均优选为市售产品。
本发明将锂离子电池正极材料和固体碳还原剂混合后成型,将得到的成型体还原焙烧,得到还原焙烧物料。
在本发明中,所述锂离子电池正极材料优选包括镍钴锰酸锂、镍酸锂和钴酸锂中的一种或多种。在本发明中,所述锂离子电池正极材料的粒径优选为≤100μm。在本发明中,所述锂离子电池正极材料优选通过将锂离 子电池进行拆解得到。本发明对所述拆解的操作不做具体限定,采用本领域技术人员熟知的拆解手段即可。
在本发明中,所述固体碳还原剂优选包括炭黑、焦炭粉和石墨粉中的一种或多种,进一步优选为炭黑;所述炭黑优选为冶金炭黑。在本发明中,所述固体碳还原剂的粒径优选≤100μm。
在本发明中,所述所述锂离子电池正极材料和固体碳还原剂的质量比优选为100:(8~20),进一步优选为100:(9~18),更优选为100:(10~15)。本发明将锂离子电池正极材料和固体碳还原剂的质量比控制为100:(8~20)能够有效地还原锂离子电池正极材料,锂离子电池正极材料中的锂形成易溶于水的氧化锂。加入的固体碳还原剂过少,锂离电子池正极材料不能有效地被还原,同时被还原出的部分锂形成溶解度较低的碳酸锂,由于固体碳还原剂过少,形成的碳酸锂在高温真空条件下不能被碳分解成氧化锂。
在本发明中,所述混合的方式优选为球磨混合,所述球磨混合优选为干法球磨混合;所述干法球磨混合的转速优选为200~400r/min,时间优选为10~60min。
在本发明中,所述成型体的压实密度优选为2.5~3.5g/cm 3。在本发明中,所述成型优选包括压制成型;本发明对所述成型的压力和时间不做具体限定,只要能够使成型得到的成型体的压实密度为2.5~3.5g/cm 3即可。本发明将成型体的压实密度控制为2.5~3.5g/cm 3能够有利于增大锂离子电池正极材料和固体碳还原剂接触面积,改善产物扩散过程,促进反应,同时成型压实可减少真空条件下物料被真空泵抽至冷凝管,防止物料损失,提高了锂的回收率。
所述成型后,本发明优选还包括将得到的成型体进行烘干;所述烘干的温度优选为100~110℃,时间优选为6~10h。本发明将成型得到的成型体进行烘干能够除去成型体中的水分,避免水分影响还原焙烧过程的真空度。
在本发明中,所述还原焙烧优选包括依次进行低温还原焙烧和高温还原焙烧。在本发明中,所述低温还原焙烧的温度优选为350~450℃,进一 步优选为375~425℃,更优选为400℃;真空度优选为15~100Pa,进一步优选为30~80Pa,更优选为50~60Pa;保温时间优选为2~5h,进一步优选为3~4h;升温至所述低温还原焙烧的温度的速率优选为7~9℃/min,进一步优选为8℃/min。在本发明中,所述高温还原焙烧的温度优选为750~950℃,进一步优选为800~900℃,更优选为850℃;真空度优选为1~10Pa,进一步优选为2~8Pa,更优选为4~6Pa;保温时间优选为1~3h,进一步优选为1.5~2.5h,更优选为2h;由低温还原焙烧的温度升温至所述高温还原焙烧的温度的速率优选为3~5℃/min,进一步优选为4℃/min。
本发明将还原焙烧设置为依次进行的低温还原焙烧和高温还原焙烧,低温还原焙烧能够有效地还原锂离子电池正极材料,使锂离子电池正极材料中的一部分锂形成易溶于水的氧化物,一部分形成微溶于水的碳酸锂;高温还原焙烧过程中,固体碳还原剂能够将形成碳酸锂分解成易溶于水的氧化锂;同时,依次进行的低温还原焙烧和高温还原焙烧能够避免高温剧烈反应,产生大量气体,致使真空条件下物料被真空泵抽至冷凝管,防止一部分物料损失,提高了锂的回收率。
得到还原焙烧物料后,本发明将所述还原焙烧物料进行水浸提锂,所得含锂浸出液进行负压蒸发结晶,得到氢氧化锂。
在本发明中,所述水浸提锂的条件包括:固液比优选为50g/L~200g/L,进一步优选为100g/L~150g/L;温度优选为25~95℃,进一步优选为50~90℃,更优选为60~80℃;时间优选为0.5h~3.5h,进一步优选为1h~3h,更优选为1.5h~2.5h。本发明中,水浸提锂的参数固液比指的是还原焙烧物料和水浸提锂的试剂水的用量比。
在本发明中,所述水浸提锂后,优选将所得水浸提锂体系进行过滤,得到所述含锂浸出液。
本发明将水浸提锂的固液比设置为50g/L~200g/L,温度设置为25~95℃能够有效地浸出还原焙烧物料中的锂,锂氧化物与水反应生成氢氧化锂,氢氧化锂溶解度大,且溶解度随温度的升高而增大。
在本发明中,所述负压蒸发结晶的真空度优选为0.01~0.05MPa,进一步优选为0.02~0.04MPa,更优选为0.03MPa;温度优选为60~90℃, 进一步优选为70~80℃。在本发明中,所述负压蒸发结晶优选在搅拌的条件下进行,所述搅拌的速度优选为250~450r/min。本发明中,负压蒸发结晶能快速脱除含锂浸出液中的水分,提高锂的结晶效率,避免空气中的二氧化碳与氢氧化锂反应,保证了氧化锂的纯度,提高了锂的回收率。
在本发明中,对所述水浸提锂体系过滤后,优选还得到滤渣。
在本发明中,所述滤渣进行后处理,以镍钴锰酸锂为例,回收得到硫酸镍、硫酸钴和硫酸锰。
在本发明中,以镍钴锰酸锂为例,所述后处理优选包括以下步骤:
将所述滤渣和硫酸混合,进行溶解,得到的酸溶液进行P204分馏萃取,得到含锰有机相和含钴镍水相;
将所述含钴镍水相进行P507分馏萃取,得到含钴有机相和含镍水相;
对所述含锰有机相和含钴有机相分别利用硫酸进行反萃,得到含锰水相和含钴水相;
将所述含锰水相、含钴水相和含镍水相分别进行除油、蒸发结晶,回收得到硫酸镍、硫酸钴和硫酸锰。
本发明对所述滤渣和硫酸的用量、硫酸的浓度不做具体限定,只要能够将滤渣溶解即可。
本发明对所述P204分馏萃取的参数不做具体限定,采用本领域技术人员熟知的P204分馏萃取的参数即可。
本发明对所述P507分馏萃取的参数不做具体限定,采用本领域技术人员熟知的P507分馏萃取即可。
本发明对所述含锰有机相和含钴有机相分别利用硫酸进行反萃的操作不做具体限定,采用本领域技术人员熟知的反萃参数即可。
本发明对所述除油、蒸发结晶的参数不做具体限定,只要能够将油除去、实现蒸发结晶即可。
下面结合实施例对本发明提供的锂离子电池正极材料中锂的回收方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
向100重量份镍钴锰酸锂正极材料配入15重量份碳粉(粒径≤100 μm)于300r/min球磨25min,将混匀后的物料成型,得到成型体(压实密度为2.9g/cm 3);将成型体置于烘箱中在温度为105℃,恒温8h,烘干的物料首先以8℃/min升温至400℃,在真空度50Pa还原焙烧3h;然后以4℃/min由400℃继续升温至800℃,在真空度5Pa,还原焙烧2h;将还原焙烧物料与水在固液比为100g/L,温度为60℃的条件下水浸提锂2h;再进行过滤分离,滤液在真空度为0.03MPa,温度为70℃,搅拌速度为500r/min的条件下结晶获得氢氧化锂产品,锂总回收率为95.2%,所得氢氧化锂的纯度为98.3%。
过滤分离所得滤渣进行后处理,回收镍、钴和锰;所述后处理包括以下步骤:将所述滤渣和硫酸混合,进行溶解,得到的酸溶液进行P204分馏萃取,得到含锰有机相和含钴镍水相;所述P204分馏萃取的条件包括:有机相的组成为25%P204+75%磺化煤油,皂化率为60%,溶液pH为3.2,O/A相比为1/2,7级萃取5级洗涤;将所述含钴镍水相进行P507萃取,得到含钴有机相和含镍水相;所述P507萃取的条件包括:有机相的组成为25%507+75%磺化煤油,皂化率为65%,溶液pH为4.1,O/A相比为1/3,6级萃取5级洗涤;将所述含锰有机相和含钴有机相分别采用硫酸进行反萃,分别得到含锰水相和含钴水相;所述含锰水相、含钴水相和含镍水相分别除油后,进行蒸发结晶,回收得到硫酸镍、硫酸钴和硫酸锰。镍、钴和锰的回收率分别为96.8%、98.1%和98.3%。
实施例2
向100重量份镍钴锰酸锂正极材料配入20重量份碳粉(粒径≤100μm)于350r/min球磨50min,将混匀后的物料成型,得到成型体(压实密度为2.8g/cm 3);将得到成型体置于烘箱中在温度为105℃,恒温10h,烘干的物料首先以7℃/min升温至450℃,并于真空度15Pa还原焙烧5h,然后以3℃/min由450℃继续升温至900℃,并于真空度1Pa,还原焙烧3h;将还原焙烧物料与水在固液比为50g/L,温度为80℃的条件下水浸提锂3h;再进行过滤分离,滤液在真空度为0.05MPa,温度为90℃,搅拌速度为450r/min的条件下结晶获得氢氧化锂产品,锂总回收率为97.3%,所得氢氧化锂的纯度为98.7%。
过滤分离所得滤渣进行后处理,回收镍、钴和锰;所述后处理包括以下步骤:将所述滤渣和硫酸混合,进行溶解,得到的酸溶液进行P204分馏萃取,得到含锰有机相和含钴镍水相;所述P204分馏萃取的条件包括:有机相的组成为25%P204+75%磺化煤油,皂化率为60%,溶液pH为3.2,O/A相比为1/2,7级萃取5级洗涤;将所述含钴镍水相进行P507分馏萃取,得到含钴有机相和含镍水相;所述P507分馏萃取的条件包括:有机相的组成为25%507+75%磺化煤油,皂化率为65%,溶液pH为4.1,O/A相比为1/3,6级萃取5级洗涤;将所述含锰有机相和含钴有机相分别采用硫酸进行反萃,分别得到含锰水相和含钴水相;所述含锰水相、含钴水相和含镍水相分别除油后,进行蒸发结晶,回收得到硫酸镍、硫酸钴和硫酸锰。镍、钴和锰的回收率分别为97.2%、98.3%和98.5%。
实施例3
向100重量份镍钴锰酸锂正极材料配入9重量份碳粉(粒径≤100μm)于200r/min球磨20min将混匀后的物料成型,得到成型体(压实密度为3.2g/cm 3),将成型体置于烘箱中在温度为100℃,恒温6h,烘干的物料首先以9℃/min升温至350℃,于真空度100Pa,还原焙烧2h;然后以5℃/min由350℃继续升温至750℃,于真空度10Pa,还原焙烧1h;将还原焙烧物料和水在固液比为200g/L,温度为60℃的条件下水浸提锂2h;再进行过滤分离,滤液在真空度为0.01MPa,温度为60℃,搅拌速度为300r/min的条件下结晶获得氢氧化锂产品,锂总回收率为91.4%,所得氢氧化锂的纯度为98.4%。
过滤分离所得滤渣进行后处理,回收镍、钴和锰;所述后处理包括以下步骤:将所述滤渣和硫酸混合,进行溶解,得到的酸溶液进行P204分馏萃取,得到含锰有机相和含钴镍水相;所述P204分馏萃取的条件包括:有机相的组成为25%P204+75%磺化煤油,皂化率为60%,溶液pH为3.2,O/A相比为1/2,7级萃取5级洗涤;将所述含钴镍水相进行P507分馏萃取,得到含钴有机相和含镍水相;所述P507分馏萃取的条件包括:有机相的组成为25%P507+75%磺化煤油,皂化率为65%,溶液pH为4.1,O/A相比为1/3,6级萃取5级洗涤;将所述含锰有机相和含钴有机相分 别采用硫酸进行反萃,分别得到含锰水相和含钴水相;所述含锰水相、含钴水相和含镍水相分别除油后,进行蒸发结晶,回收得到硫酸镍、硫酸钴和硫酸锰。镍、钴和锰的回收率分别为96.4%、97.6%和98.1%。
实施例4
向100重量份钴酸锂正极材料配入20重量份碳粉(粒径≤100μm)于300r/min球磨40min将混匀后的物料成型,得到成型体(压实密度为3.0g/cm 3),将成型体置于烘箱中在温度为105℃,恒温8h,烘干的物料首先以4℃/min升温至400℃,于真空度50Pa,还原焙烧3h;然后以7℃/min升温至900℃,于真空度1Pa,还原焙烧2h;将还原焙烧物料和水在固液比为150g/L,温度为50℃的条件下水浸提锂3h;再进行过滤分离,滤液在真空度为0.05MPa,温度为90℃,搅拌速度为300r/min的条件下结晶获得氢氧化锂产品,锂总回收率为97.1%,所得氢氧化锂的纯度为98.5%。
过滤分离所得滤渣进行后处理,回收钴;所述后处理包括以下步骤:将所述滤渣和硫酸混合,进行溶解,得到的酸溶液进行P507分馏萃取,得到含钴有机相和溶液;所述P507分馏萃取的条件包括:有机相的组成为25%P507+75%磺化煤油,皂化率为65%,溶液pH为4.1,O/A相比为1/3,4级萃取3级洗涤;将所述含钴有机相采用硫酸进行反萃,得到含钴水相;所述含钴水相除油后,进行蒸发结晶,回收得到硫酸钴。钴的回收率为98.3%。
对比例1
与实施例1的区别为还原焙烧的过程为:
烘干的物料直接以4℃/min升温至800℃,在真空度5Pa,还原焙烧2h。
锂总回收率为81.6%;镍、钴和锰的回收率分别为95.8%、96.1%和96.7%。
对比例2
与实施例1的区别为:成型体的压实密度为4.0g/cm 3
锂总回收率为90.7%;镍、钴和锰的回收率分别为96.5%、97.2%和 97.3%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种锂离子电池正极材料中锂的回收方法,其特征在于,包括以下步骤:
    将锂离子电池正极材料和固体碳还原剂混合后成型,将得到的成型体还原焙烧,得到还原焙烧物料;
    将所述还原焙烧物料进行水浸提锂,所得含锂浸出液进行负压蒸发结晶,得到氢氧化锂。
  2. 根据权利要求1所述的回收方法,其特征在于,所述固体碳还原剂包括炭黑、焦炭粉和石墨粉中的一种或多种。
  3. 根据权利要求1所述的回收方法,其特征在于,所述锂离子电池正极材料包括镍钴锰酸锂、镍酸锂和钴酸锂中的一种或多种。
  4. 根据权利要求1或2或3所述的回收方法,其特征在于,所述锂离子电池正极材料和固体碳还原剂的质量比为100:(8~20)。
  5. 根据权利要求1所述的回收方法,其特征在于,所述成型体的压实密度为2.5~3.5g/cm 3
  6. 根据权利要求1或5所述的回收方法,其特征在于,所述成型后,还包括将所得成型体进行烘干;所述烘干的温度为100~110℃,时间为6~10h。
  7. 根据权利要求1所述的回收方法,其特征在于,所述还原焙烧包括依次进行低温还原焙烧和高温还原焙烧;所述低温还原焙烧的温度为350~450℃,真空度为15~100Pa,保温时间为2~5h;所述高温还原焙烧的温度为750~950℃,真空度为1~10Pa,保温时间为1~3h。
  8. 根据权利要求7所述的回收方法,其特征在于,升温至所述低温还原焙烧的温度的速率为7~9℃/min,由低温还原焙烧温度升温至所述高温还原焙烧的温度的速率为3~5℃/min。
  9. 根据权利要求1所述的回收方法,其特征在于,所述水浸提锂的条件包括:固液比为50g/L~200g/L,温度为25~95℃,时间为0.5h~3.5h。
  10. 根据权利要求1所述的回收方法,其特征在于,所述负压蒸发结晶的真空度为0.01~0.05MPa,温度为60~90℃;
    所述负压蒸发结晶在搅拌的条件下进行,所述搅拌的速度为250~450r/min。
  11. 根据权利要求1所述的回收方法,其特征在于,所述水浸提锂后,将所得水浸提锂体系进行过滤,还得到滤渣;对所述滤渣进行后处理;
    当所述锂离子电池正极材料为镍钴锰酸锂时,所述后处理包括以下步骤:
    将所述滤渣和硫酸混合,进行溶解,得到的酸溶液进行P204分馏萃取,得到含锰有机相和含钴镍水相;
    将所述含钴镍水相进行P507分馏萃取,得到含钴有机相和含镍水相;
    对所述含锰有机相和含钴有机相分别利用硫酸进行反萃,得到含锰水相和含钴水相;
    将所述含锰水相、含钴水相和含镍水相分别进行除油、蒸发结晶,回收得到硫酸镍、硫酸钴和硫酸锰。
PCT/CN2022/096106 2021-11-02 2022-05-31 一种锂离子电池正极材料中锂的回收方法 WO2023077788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111287547.0A CN113999967A (zh) 2021-11-02 2021-11-02 一种锂离子电池正极材料中锂的回收方法
CN202111287547.0 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023077788A1 true WO2023077788A1 (zh) 2023-05-11

Family

ID=79926633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096106 WO2023077788A1 (zh) 2021-11-02 2022-05-31 一种锂离子电池正极材料中锂的回收方法

Country Status (2)

Country Link
CN (1) CN113999967A (zh)
WO (1) WO2023077788A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999967A (zh) * 2021-11-02 2022-02-01 赣州有色冶金研究所有限公司 一种锂离子电池正极材料中锂的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
CN108091956A (zh) * 2016-11-23 2018-05-29 江苏凯力克钴业股份有限公司 一种报废钴酸锂电池正极材料的循环再生方法
CN111430829A (zh) * 2020-03-11 2020-07-17 中南大学 一种生物质废料协助下的废旧锂电池正极材料回收再生方法
CN111733326A (zh) * 2020-07-03 2020-10-02 昆明理工大学 一种高效回收废旧锂离子电池三元正极材料的方法
CN113999967A (zh) * 2021-11-02 2022-02-01 赣州有色冶金研究所有限公司 一种锂离子电池正极材料中锂的回收方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079285B2 (ja) * 1996-09-02 2000-08-21 日鉱金属株式会社 使用済みリチウム電池からの有価物回収方法
CN102364726B (zh) * 2011-10-21 2013-06-12 济宁市无界科技有限公司 碳还原制备锂离子电池用磷酸锰铁锂复合正极材料的方法
CN107017443B (zh) * 2017-03-28 2019-04-09 北京科技大学 一种从废旧锂离子电池中综合回收有价金属的方法
CN110013822B (zh) * 2018-01-07 2020-02-14 中南大学 一种废旧锂离子电池回收并联产锂吸附剂的方法
CN108220607A (zh) * 2018-02-23 2018-06-29 中国科学院过程工程研究所 一种从含锂电极废料中回收锂的方法
CN109881008A (zh) * 2019-02-27 2019-06-14 广西银亿新材料有限公司 一种还原焙烧-水淬法回收废旧锂离子电池中锂的方法
CN111733328B (zh) * 2020-07-17 2021-04-27 中南大学 一种回收废旧锂离子电池中有价金属的方法
CN113186410A (zh) * 2021-04-27 2021-07-30 中国恩菲工程技术有限公司 从废旧锂离子电池正极材料中回收有价金属锂的方法
CN113444885B (zh) * 2021-06-07 2022-10-11 浙江工业大学 一种从废旧三元锂离子电池中优先提取金属锂以及同时得到电池级金属盐的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
CN108091956A (zh) * 2016-11-23 2018-05-29 江苏凯力克钴业股份有限公司 一种报废钴酸锂电池正极材料的循环再生方法
CN111430829A (zh) * 2020-03-11 2020-07-17 中南大学 一种生物质废料协助下的废旧锂电池正极材料回收再生方法
CN111733326A (zh) * 2020-07-03 2020-10-02 昆明理工大学 一种高效回收废旧锂离子电池三元正极材料的方法
CN113999967A (zh) * 2021-11-02 2022-02-01 赣州有色冶金研究所有限公司 一种锂离子电池正极材料中锂的回收方法

Also Published As

Publication number Publication date
CN113999967A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN111206148B (zh) 一种利用废旧三元锂电池回收制备三元正极材料的方法
CN109935922B (zh) 一种从废旧锂离子电池材料中回收有价金属的方法
CN109449523B (zh) 一种废旧锂离子电池综合回收方法
CN108878866B (zh) 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN111430829B (zh) 一种生物质废料协助下的废旧锂电池正极材料回收再生方法
CN110668506B (zh) 一种废旧锂离子电池回收再生钴酸锂的方法
CN112375913B (zh) 一种废旧锂离子电池回收方法
WO2018192121A1 (zh) 一种从锂离子电池正极废料中高效回收正极材料前驱体和碳酸锂的方法
CN111463475B (zh) 一种选择性回收废旧动力锂电池正极材料的方法
CN112158894A (zh) 一种废旧锂电池正极材料的回收方法
CN110013822B (zh) 一种废旧锂离子电池回收并联产锂吸附剂的方法
CN106319228A (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
CN113444885B (zh) 一种从废旧三元锂离子电池中优先提取金属锂以及同时得到电池级金属盐的方法
CN108110358A (zh) 废旧锂离子电池粘结剂的回收方法
WO2023045331A1 (zh) 一种选择性回收废旧锂电池中有价金属的方法
CN113415813A (zh) 废旧三元电池材料锂镍钴锰的回收方法
CN114085997A (zh) 一种废旧锂离子电池回收方法
CN109167118A (zh) 磷酸铁锂电池电极材料的综合利用方法
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
JP2024514966A (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN114249313A (zh) 一种从废磷酸铁锂粉末中回收电池级磷酸铁的方法
CN115621597A (zh) 一种热解回收锂离子电池正极材料中稀贵金属的方法
CN113122725A (zh) 一种提升废旧锂电池金属回收率及纯度的方法
CN112063847A (zh) 一种三元锂电池正极材料的回收方法
WO2021134515A1 (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888824

Country of ref document: EP

Kind code of ref document: A1