WO2023077723A1 - 桥梁加固系统及动态加固方法 - Google Patents

桥梁加固系统及动态加固方法 Download PDF

Info

Publication number
WO2023077723A1
WO2023077723A1 PCT/CN2022/086307 CN2022086307W WO2023077723A1 WO 2023077723 A1 WO2023077723 A1 WO 2023077723A1 CN 2022086307 W CN2022086307 W CN 2022086307W WO 2023077723 A1 WO2023077723 A1 WO 2023077723A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
pressure
pier
value
deflection
Prior art date
Application number
PCT/CN2022/086307
Other languages
English (en)
French (fr)
Inventor
徐大为
潘峰
张志敏
Original Assignee
上海建工五建集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工五建集团有限公司 filed Critical 上海建工五建集团有限公司
Publication of WO2023077723A1 publication Critical patent/WO2023077723A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • E02D27/525Submerged foundations, i.e. submerged in open water using elements penetrating the underwater ground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • E02D5/285Prefabricated piles made of steel or other metals tubular, e.g. prefabricated from sheet pile elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/30Prefabricated piles made of concrete or reinforced concrete or made of steel and concrete
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/30Metal
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0018Cement used as binder
    • E02D2300/002Concrete
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0026Metals
    • E02D2300/0029Steel; Iron

Definitions

  • the invention relates to a bridge reinforcement system and a dynamic reinforcement method, belonging to the technical field of bridges.
  • bridges With the construction and development of my country's municipal and transportation industries, the number of bridges in my country has reached more than hundreds of thousands. During the years of operation, bridges may appear due to various reasons such as concrete corrosion and aging, stress deformation, and heavy-duty traffic. Structural damage, the bearing capacity of the bridge will drop sharply, and serious diseases will lead to traffic interruption.
  • the bridge body When some bridges need to temporarily pass vehicles that exceed the load-bearing capacity of the bridge, in order to ensure the safety of the vehicles and the bridge body, the bridge body needs to be reinforced.
  • the existing reinforcement measures are generally permanent bridge treatment measures, and the construction is relatively cumbersome. , and the cost is relatively high, which is not suitable for temporary traffic projects.
  • the present application provides a bridge reinforcement system and a dynamic reinforcement method, aiming at the problems in the prior art that the reinforcement measures are costly and the construction is cumbersome when vehicles exceeding the load-bearing capacity of the bridge pass.
  • the present invention includes the following technical solutions:
  • a bridge reinforcement system the bridge includes a bridge pier and a bridge deck, the reinforcement system includes:
  • top plate is arranged above the bridge deck for passage
  • a plurality of prefabricated piles are arranged under the roof, and the bottom ends of the prefabricated piles at the bridge deck pass through the bridge deck;
  • first crossbeam is arranged along the width direction of the bridge, and is fixed to the tops of at least two prefabricated piles;
  • the second beam, the second beam is arranged along the width direction of the bridge, fixed on the bridge deck, and positioned directly above the bridge pier;
  • the longitudinal beam is arranged along the length direction of the bridge, and spans the first beam and the second beam;
  • the top plate is arranged on the longitudinal beam;
  • the CNC jack is arranged between the first beam and the longitudinal beam, and between the second beam and the longitudinal beam; the CNC jack is provided with a pressure sensor for monitoring the pressure, and the pressure sensor is set to allow Pressure value;
  • the controller is used to control the telescopic operation of adjacent digital control jacks when the pressure of the pressure sensor of the digital control jack exceeds the allowable pressure value, so that the pressure of the pressure sensor is within the allowable pressure value.
  • a second prefabricated pile is also arranged at the pier along the width direction of the bridge, and the top of the second prefabricated pile is fixedly connected to the bottom of the second beam.
  • the first prefabricated pile is a steel pipe pile, and a first filler is arranged in the steel pipe pile.
  • first steel pipe piles are arranged in rows along the width direction of the bridge, and reinforcing pieces are arranged between adjacent steel pipe piles in each row.
  • a second filler is arranged in the gap between the top plate and the bridge deck.
  • the present application also provides a bridge dynamic reinforcement method, using the bridge reinforcement system, the bridge dynamic reinforcement method includes the following steps:
  • the vehicle runs on the roof
  • the pressure sensor monitors the pressure and transmits it to the controller
  • the controller controls the lifting operation of the adjacent CNC jack to make the pressure fall back to the allowable pressure value and ensure that the pressure monitored by the adjacent pressure sensor is within the allowable pressure value .
  • the bridge deck is provided with a deflection sensor in the middle of two adjacent piers for monitoring the deflection of the bridge deck, and the deflection sensor is provided with a deflection allowable value.
  • the deflection sensor feedback value is greater than the safe deflection value, adjust the numerical control jack above the nearest first prefabricated pile below the vehicle to lift to a certain extent, and increase the force of the two first prefabricated piles , to reduce the stress on the middle bridge deck, and ensure that the deflection of the bridge deck at this place is within the safe value.
  • a second prefabricated pile is also arranged at the bridge pier along the width direction of the bridge, and the top of the second prefabricated pile is fixedly connected to the bottom of the second beam;
  • the bridge deck is provided with a deflection sensor in the middle of two adjacent piers for monitoring the deflection of the bridge deck, and the deflection sensor is provided with a deflection allowable value;
  • the present invention has the following advantages and positive effects compared with the prior art: the application can share the load transmitted by the roof through the first prefabricated pile and the pier, and the load of the first prefabricated pile is less than It is transmitted to the bridge deck to avoid large vertical loads on the bridge deck and bridge; at the same time, by setting the pressure sensor, the force acting on the first beam and the second beam can be monitored in real time.
  • the pressure value of a certain or a certain area When the allowable value is exceeded, the pressure value can be reduced to within the allowable value by adjusting the adjacent CNC jack or the CNC jack in the adjacent area. By dynamically adjusting the CNC jack, the overweight-loaded vehicle can safely pass through the bridge and avoid damage to the bridge deck.
  • bridge reinforcement system performs dynamic reinforcement of bridges, and is especially suitable for temporary reinforcement of bridges. It is convenient for construction, short construction period, quick recovery and removal, and all components can be recycled and repeated. Take advantage of other advantages.
  • Fig. 1 is the structural representation of the reinforcement system of single-span bridge in an embodiment of the present invention
  • Fig. 2 is a sectional view along A-A in Fig. 1;
  • Fig. 3 is a sectional view along B-B among Fig. 1;
  • Fig. 4 is the structural representation of the reinforcement system of multi-span bridge in an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the bridge reinforcement system when vehicles pass.
  • the present embodiment provides a bridge reinforcement system
  • the bridge includes a bridge pier 1 and a bridge deck 2
  • the reinforcement system includes a roof 10, a first prefabricated pile 20, a first beam 31, The second beam 32 , the longitudinal beam 40 , the numerical control jack 50 and the controller 60 .
  • the top plate 10 is arranged above the bridge deck 2 for passage.
  • the top plate 10 can be a steel plate, and of course the top plate 10 can also be made of other materials, as long as the force transmission structure can be satisfied.
  • the first prefabricated piles 20 are arranged below the top plate 10, and the first prefabricated piles 20 are arranged in several rows along the length direction of the bridge. As shown in Figures 1 to 3, this embodiment provides a single-span bridge. There are 4 rows, wherein, two rows are arranged in the middle of the two piers 1, and 1 row is arranged on the other side of the pier. Further, a second prefabricated pile 21 is also arranged at the bridge pier 1 along the width direction of the bridge, and the second prefabricated pile 21 is distinguished from the first prefabricated pile 20 due to the difference in location. As shown in FIG. 2 , six first prefabricated piles 20 are provided in each row; as shown in FIG. 3 , four second prefabricated piles 21 are provided in each row.
  • the first prefabricated pile 20 and the second prefabricated pile 21 may be prefabricated concrete pipe piles, steel pipe piles or other forms of prefabricated piles.
  • the first prefabricated pile 20 and the second prefabricated pile 21 are steel pipe piles, and a first filler 22 is arranged inside the steel pipe pile, and the first filler 22 can be sand, gravel, etc.
  • the first filler 22 can also be provided.
  • reinforcements 23 are set between each row of steel pipe piles and between the steel pipe piles and the bridge section to improve the overall stability of the steel pipe piles, improve the bending resistance and the overall bearing capacity, and the reinforcements can be steel Components, such as angle steel, channel steel.
  • the width of the top plate 10 can exceed the width of the bridge deck 2 , and steel pipe piles for supporting the top plate 10 can be arranged on both sides of the bridge deck 2 .
  • a first crossbeam 31 is arranged on each row of first prefabricated piles 20
  • a second crossbeam 32 is arranged on the bridge deck 2 above the pier 1 .
  • the first beam 31 and the second beam 32 are arranged along the width direction of the bridge, wherein the bottom of the first beam 31 is fixedly connected to the top of the first prefabricated pile, and the connection method is not limited.
  • the second beam 32 may be directly fixed on the bridge deck 2 , or a backing plate may be provided between the second beam 32 and the bridge deck 2 .
  • the top of the second prefabricated pile is fixedly connected to the bottom of the second beam 32 .
  • the heights of the tops of the first prefabricated beams and the second beams 32 match.
  • both the first beam 31 and the second beam 32 are I-beams.
  • the longitudinal beam 40 is arranged along the length direction of the bridge, and spans the first beam 31 and the second beam 32 .
  • the bending resistance performance of the longitudinal beam 40 is mainly used to avoid the defect of deformation caused by insufficient bending rigidity of the roof 10 when the roof 10 is directly laid.
  • a second filler 24 is arranged in the gap between the roof 10 and the bridge deck 2, and the second filler 24 can be sand and gravel, etc., and is arranged between the first beam 31 and the second beam 32, and related Between adjacent longitudinal beams 40 , the second filler 24 is used for the smooth transmission of force, and improves the bearing capacity and deformation resistance of the roof 10 .
  • the controller 60 is used for controlling the telescopic operation of adjacent digital control jacks 50 when the pressure of the pressure sensor 51 of the digital control jack 50 exceeds the allowable pressure value, so that the pressure of the pressure sensor 51 is within the allowable pressure value.
  • the bridge reinforcement system provided in this embodiment can also be applied to a bridge with a multi-span structure, as shown in FIG. 4 , the principle is the same as that of a single-span structure, and will not be repeated here.
  • the present application can share the load transmitted by the roof 10 through the first prefabricated pile and the pier 1, and the load of the first prefabricated pile is not transmitted to the bridge deck 2, so as to avoid the bridge deck 2 and the bridge from bearing a large vertical load; at the same time, through Setting the pressure sensor 51 can monitor the active force acting on the first crossbeam 31 and the second crossbeam 32 in real time.
  • the pressure value of a certain or a certain area exceeds the allowable value
  • the numerically controlled jack 50 can reduce the pressure value to the allowable value.
  • the bridge reinforcement system provided by this application performs dynamic reinforcement of bridges, and is especially suitable for temporary reinforcement of bridges. It is convenient for construction, short construction period, quick recovery and removal, and all components can be recycled and repeated. Take advantage of other advantages.
  • This embodiment provides an installation method of a bridge reinforcement system, which will be further described below in conjunction with FIGS. 1 to 4 .
  • Described installation method comprises the steps:
  • Longitudinal beams 40 are installed along the length of the bridge, spanning the first crossbeam 31 and the second crossbeam 32, and contacting the top of the digitally controlled jack 50;
  • the controller 60 is set, and the controller 60 is connected with the numerical control jack 50 to ensure that each numerical control jack 50 can be controlled; the controller 60 is connected with the pressure sensor 51 for receiving the measurement data of the data sensor.
  • a second prefabricated pile is arranged at the bridge pier 1 along the width direction of the bridge to increase the bearing capacity of the top surface and share the bearing capacity of the bridge deck 2 and the bridge pier 1 .
  • reinforcements are set between the first prefabricated piles of the same row, between the second prefabricated piles of the same row, and between the second prefabricated piles and the pier 1, so as to improve the first prefabricated piles and the first prefabricated piles of each row. 2.
  • the integral formation of prefabricated piles improves the bending resistance and the overall bearing capacity.
  • the first prefabricated pile is provided with a first filler
  • the first filler is also provided in the second prefabricated pile to improve the bending resistance of the steel pipe pile.
  • a second filler is arranged in the gap between the top plate 10 and the bridge deck 2, and the second filler is arranged between the first beam 31, the second beam 32, and between the longitudinal beams 40, and the second filler It is used for the smooth transmission of force, and improves the bearing capacity and deformation resistance of the top plate 10 .
  • the first filler and the second filler can be sand, gravel and the like.
  • This embodiment provides a bridge dynamic reinforcement method.
  • the specific structure of the bridge reinforcement system refer to Embodiment 1, which will not be repeated here.
  • the usage method will be further described below in conjunction with FIG. 1 to FIG. 5 .
  • Described bridge dynamic reinforcement method comprises the steps:
  • the vehicle runs on the roof 10;
  • the pressure sensor 51 monitors the pressure and transmits it to the controller 60;
  • the controller 60 controls the operation of the adjacent digital control jack 50 to make the pressure fall back to the allowable pressure value, and ensure that the pressure monitored by the adjacent pressure sensor 51 is within the allowable pressure. within the value.
  • the feedback value of the deflection sensor 52 is greater than the safe deflection value, then adjust the numerical control jack 50 above the nearest first prefabricated pile below the vehicle. Carry out a certain degree of jacking, increase the force of the first prefabricated piles at two places, reduce the force of the bridge deck 2 in the middle, and ensure that the deflection of the bridge deck 2 at this place is within the safe value.
  • the pressure monitored by the pressure sensor 51 at the pier 1 exceeds the allowable value, and the deflection of the bridge deck 2 in the middle also exceeds the allowable value, first determine the ratio of the two exceeding the allowable value, and first pass Adjust the smaller ratio, and then adjust the larger ratio, so that both are within a safe range.

Abstract

一种桥梁加固系统及动态加固方法。桥梁包括桥墩(1)和桥面板(2),加固系统包括顶板(10)、第一预制桩(20)、第一横梁(31)、第二横梁(32)、纵梁(40)、数控千斤顶(50)和控制器(60)。桥梁加固系统能够通过第一预制桩(20)和桥墩(1)共同承担顶板(10)传递的荷载,避免桥面板(2)和桥梁承受较大的竖向荷载;同时,当某个或某区域的压力值超过容许值时,通过调节相邻的数控千斤顶(50)或相邻区域的数控千斤顶(50),可使压力值降至容许值以内,使超重荷载的车辆能够安全通过桥梁,避免对桥面板(2)和桥墩(1)直接承受过大荷载而导致损坏。该桥梁加固系统对桥梁进行动态加固,尤其适用于临时通行超重荷载的车辆的情形,具有施工方便、工期短、回收拆除快速、所有构件均可回收重复利用等优点。

Description

桥梁加固系统及动态加固方法 技术领域
本发明涉及一种桥梁加固系统及动态加固方法,属于桥梁技术领域。
背景技术
随着我国市政、交通行业的建设发展,我国桥梁拥有量已达数十万余座,在多年的运营过程中,由于混凝土腐蚀老化、受力变形、重载交通等多方面原因可能导致桥梁出现结构性损伤,桥梁承载能力急剧下降,病害严重的会导致交通中断。
当某些桥梁需要临时通行超出桥梁承重能力的车辆时,为保证车辆和桥体的安全,需要对桥体进行加固处理,而目前存在的加固措施一般为永久性的桥梁处理措施,施工比较繁琐,成本也比较高对临时通行的工程来说不太适用。
发明内容
本申请提供了一种桥梁加固系统及动态加固方法,针对现有技术中超出桥梁承重能力的车辆通行时,加固措施成本高且施工繁琐的问题。
为解决以上技术问题,本发明包括如下技术方案:
一种桥梁加固系统,所述桥梁包括桥墩和桥面板,所述加固系统包括:
顶板,所述顶板设置于桥面板上方,用于通行;
若干预制桩,所述预制桩设置于顶板下方,位于所述桥面板处的预制桩的底端穿过所述桥面板;
第一横梁,所述第一横梁沿桥梁宽度方向设置,并与至少两个预制桩的顶部固定;
第二横梁,所述第二横梁沿桥梁宽度方向设置,固定于桥面板上,且位于 桥墩的正上方;
纵梁,所述纵梁沿所述桥梁长度方向设置,且横跨第一横梁和第二横梁;所述顶板设置于所述纵梁上;
数控千斤顶,所述数控千斤顶设置于第一横梁与纵梁之间,及第二横梁与纵梁之间;所述数控千斤顶设置有压力传感器,用于监测压力,所述压力传感器设定有容许压力值;
控制器,用于在所述数控千斤顶的压力传感器的压力超过容许压力值时,控制相邻的数控千斤顶伸缩操作,使所述压力传感器的压力处于容许压力值以内。
进一步,在桥墩处沿桥梁宽度方向还设置有第二预制桩,第二预制桩的顶部与第二横梁底部固定连接。
进一步,所述第一预制桩为钢管桩,所述钢管桩内设置有第一填充物。
进一步,第一钢管桩沿桥梁宽度方向成排设置,每一排的相邻钢管桩之间设置有加固件。
进一步,在顶板和桥面板之间的缝隙中设置有第二填充物。
本申请还提供了一种桥梁动态加固方法,采用所述的桥梁加固系统,所述桥梁动态加固方法包括如下步骤:
车辆在顶板上运行;
压力传感器监测压力并传递至控制器;
当压力传感器监测压力超过预设的压力容许值时,控制器控制相邻的数控千斤顶升操作,使所述压力回落至压力容许值内,并保证相邻的压力传感器监测压力在压力容许值内。
进一步,所述桥面板位于两个相邻桥墩的中间位置设置有挠度传感度,用于监测桥面板的挠度,挠度传感器设置有挠度容许值。
进一步,当车辆运行到桥梁中间位置时,若挠度传感器反馈数值大于安全挠度值,则调节车辆下方最近的第一预制桩上方的数控千斤顶进行一定程度顶升,增加两处第一预制桩受力,减少中间桥面板受力,保证该处桥面板挠度处 于安全值内。
进一步,在桥墩处沿桥梁宽度方向还设置有第二预制桩,第二预制桩的顶部与第二横梁底部固定连接;
当车辆行驶至桥墩正上方时,该处桥墩所受压力将会大幅度增加,此时若该桥墩处压力传感器反馈的压力大于压力容许值,则调节桥墩处的第二预制桩上方的数控千斤顶进行顶升操作、并控制相邻的第一预制桩上方的数控千斤顶进行一定程度顶升操作,减少桥墩受力,保证该桥墩处压力处于安全值内。
进一步,所述桥面板位于两个相邻桥墩的中间位置设置有挠度传感度,用于监测桥面板的挠度,挠度传感器设置有挠度容许值;
车辆行进至某一位置时,若桥墩处的压力传感器监测的压力超过容许值,且中间处的桥面板的挠度亦超过容许值时,首先判定两者超过容许值的比例,先使比例较小的调至容许值内,然后再使比例较大的调至容许值内。
本发明由于采用以上技术方案,使之与现有技术相比,具有以下的优点和积极效果:本申请能够通过第一预制桩和桥墩共同承担顶板传递的荷载,且第一预制桩的荷载不传递至桥面板,避免桥面板和桥梁承受较大的竖向荷载;同时,通过设置压力传感器能够实时监测作用于第一横梁和第二横梁处的作用力,当某个或某区域的压力值超过容许值时,通过调节相邻的数控千斤顶或相邻区域的数控千斤顶,可使压力值降至容许值以内,通过动态调整数控千斤顶,使超重荷载的车辆能够安全通过桥梁,避免对桥面板和桥墩直接承受过大荷载而导致损坏。本申请提供的桥梁加固系统对桥梁进行动态加固,尤其适用于桥梁的临时加固,一段时间内需要通行超重荷载的车辆的情形,具有施工方便、工期短、回收拆除快速、所有构件均可回收重复利用等优点。
附图说明
图1为本发明一实施例中的单跨桥梁的加固系统的结构示意图;
图2为图1中沿A-A的剖视图;
图3为图1中沿B-B的剖视图;
图4为本发明一实施例中的多跨桥梁的加固系统的结构示意图;
图5为车辆通行时的桥梁加固系统的示意图。
图中标号如下:
1-桥墩;2-桥面板;
10-顶板;
20-第一预制桩;21-第二预制桩;22-第一填充物;23-加固件;24-第二填充物;
31-第一横梁;32-第二横梁;
40-纵梁;
50-数控千斤顶;51-压力传感器;52-挠度传感器;
60-控制器。
具体实施方式
以下结合附图和具体实施例对本发明提供的桥梁加固系统及动态加固方法进一步详细说明。结合下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
如图1至图3所示,本实施例提供了一种桥梁加固系统,所述桥梁包括桥墩1和桥面板2,所述加固系统包括顶板10、第一预制桩20、第一横梁31、第二横梁32、纵梁40、数控千斤顶50和控制器60。
所述顶板10设置于桥面板2上方,用于通行。作为举例,顶板10可以为钢板,当然顶板10还可以选用其他材质,只要能满足传力结构即可。
所述第一预制桩20设置于顶板10下方,第一预制桩20沿桥梁长度方向设置为若干排,结合图1至图3所示,本实施例提供的为单跨桥梁,第一预制桩设置有4排,其中,两个桥墩1中间设置两排,桥墩另一侧各设置1排。进一步,在桥墩1处沿桥梁宽度方向还设置有第二预制桩21,第二预制桩21与 第一预制桩20因位置设置的不同而加以区别。如图2所示,每一排第一预制桩20设置6根;如图3所示,每一排第二预制桩21设置4根。第一预制桩20和第二预制桩21可以为预制混凝土管桩、钢管桩或其它形式的预制桩。优选为,第一预制桩20和第二预制桩21为钢管桩,且钢管桩内设置有第一填充物22,第一填充物22可以为砂土、砾石等,用以提高钢管桩抗弯折性能,当然,如果第一预制桩20为混凝土管桩时,同样也可以设置第一填充物22。进一步,每一排钢管桩之间、钢管桩与桥段之间设置加固件23,用以提高钢管桩的整体稳定性,提高抗弯折性能和整体承载能力,加固件可以为钢构件,比如角钢、槽钢。在第一预制桩设置于桥面板2处时,需要现在桥面板2上开孔,然后打入第一预制桩,使桩的底端穿过所述桥面板2并插入底部的土体中。顶板10的宽度可以超过桥面板2的宽度,在桥面板2的两侧设置用于支撑顶板10的钢管桩即可。
在每一排第一预制桩20上设置一个第一横梁31,在桥墩1上方的桥面板2上设置第二横梁32。所述第一横梁31和第二横梁32沿桥梁宽度方向设置,其中第一横梁31底部与第一预制桩顶部固定连接,连接方式不做限定。第二横梁32可以直接固定在桥面板2上,也可以在第二横梁32与桥面板2之间设置垫板。当桥墩1处设置第二预制桩时,第二预制桩的顶部与第二横梁32底部固定连接。第一预制梁和第二横梁32顶部高度相匹配。作为举例,第一横梁31和第二横梁32均为工字钢。
所述纵梁40沿所述桥梁长度方向设置,且横跨第一横梁31和第二横梁32。主要利用纵梁40的抗弯性能,避免了直接铺设顶板10时顶板10抗弯刚度不足而导致变形的缺点。进一步,在顶板10和桥面板2之间的缝隙中设置有第二填充物24,第二填充物24可以为沙土和砾石等,设置于第一横梁31、第二横梁32之间,以及相邻的纵梁40之间,第二填充物24用于力的平稳传递,且提高顶板10的承载力和抗变形能力。
所述数控千斤顶50设置于第一横梁31与纵梁40之间,及第二横梁32与纵梁40之间;所述数控千斤顶50设置有压力传感器51,用于监测压力, 所述压力传感器51设定有压力容许值。进一步,所述桥面板2位于两个相邻桥墩1的中间位置设置有挠度传感器52,用于监测桥面板2的挠度,挠度传感器52设置有挠度容许值。通车前对各个数控千斤顶50和挠度传感器52设置一个安全的压力容许值,此数值根据桥梁的设计承重能力以及通车车辆吨数来确定。进一步,数控千斤顶50顶部设置有承压板,用于与纵梁40连接。
控制器60用于在所述数控千斤顶50的压力传感器51的压力超过容许压力值时,控制相邻的数控千斤顶50伸缩操作,使所述压力传感器51的压力处于容许压力值以内。
本实施例提供的桥梁加固系统同样可应用于多跨结构的桥梁上,如图4所示,原理与单跨结构相同,此处不再赘述。
本申请能够通过第一预制桩和桥墩1共同承担顶板10传递的荷载,且第一预制桩的荷载不传递至桥面板2,避免桥面板2和桥梁承受较大的竖向荷载;同时,通过设置压力传感器51能够实时监测作用于第一横梁31和第二横梁32处的作用力,当某个或某区域的压力值超过容许值时,通过调节相邻的数控千斤顶50或相邻区域的数控千斤顶50,可使压力值降至容许值以内,通过动态调整数控千斤顶50,使超重荷载的车辆能够安全通过桥梁,避免对桥面板2和桥墩1直接承受过大荷载而导致损坏。本申请提供的桥梁加固系统对桥梁进行动态加固,尤其适用于桥梁的临时加固,一段时间内需要通行超重荷载的车辆的情形,具有施工方便、工期短、回收拆除快速、所有构件均可回收重复利用等优点。
实施例二
本实施例提供了一种桥梁加固系统的安装方法,下面结合图1至图4对所述安装方法作进一步描述。所述安装方法包括如下步骤:
根据桥梁的承载能力和桥梁待通行的最大荷载,计算第一预制桩的布设位置及数量;
施工第一预制桩;当第一预制桩位于桥面板2的位置时,在桥面板2上开 孔洞,使第一预制桩底端穿过桥面板2上的孔洞,并垂直插入桥梁下方的土体中;
沿桥梁宽度方向安装第一横梁31和第二横梁32,且第一横梁31与第一预制桩顶部固定,第二横梁32设置在桥墩1上方的桥面板2上;
在第一横梁31和第二横梁32上待安装纵梁40的位置设置数控千斤顶50,所述数控千斤顶50设置有压力传感器51,用于监测压力,所述压力传感器51设定有容许压力值;
沿桥梁长度方向安装纵梁40,且横跨第一横梁31和第二横梁32,并于数控千斤顶50顶部接触;
在纵梁40上方铺设用于通行的顶板10;
设置控制器60,使控制器60与数控千斤顶50连接,确保能够控制每一台数控千斤顶50;使控制器60与压力传感器51连接,用于接收数据传感器测量数据。
进一步,在桥墩1处沿桥梁宽度方向设置有第二预制桩,用于提高顶面的承载力,分摊桥面板2和桥墩1的承载力。进一步,在同一排的第一预制桩之间,以及同一排的第二预制桩之间、第二预制桩与桥墩1之间设置加固件,用以提高每一排的第一预制桩、第二预制桩的整体形成,提高抗弯折性能和整体承载能力。
进一步,所述第一预制桩中设置有第一填充物,当设置有第二预制桩时,第二预制桩中也设置第一填充物,用以提高钢管桩抗弯性能。进一步,在顶板10和桥面板2之间的缝隙中设置有第二填充物,第二填充物设置于第一横梁31、第二横梁32之间,以及纵梁40之间,第二填充物用于力的平稳传递,且提高顶板10的承载力和抗变形能力。第一填充物、第二填充物可以为沙土和砾石等。
实施例三
本实施例提供了一种桥梁动态加固方法,桥梁加固系统的具体结构参见实 施例一,此处不再赘述。下面结合图1至图5对该使用方法作进一步描述。
所述桥梁动态加固方法包括如下步骤:
车辆在顶板10上运行;
压力传感器51监测压力并传递至控制器60;
当压力传感器51监测压力超过预设的压力容许值时,控制器60控制相邻的数控千斤顶50升操作,使压力回落至压力容许值内,并保证相邻的压力传感器51监测压力在压力允许值内。
作为举例,如图5所示,当车辆行驶至桥墩1正上方时,该处桥墩1所受压力将会大幅度增加,此时若该桥墩1处压力传感器51反馈的压力大于安全压力值,则调节桥墩1两侧的第一预制桩上方的数控千斤顶50进行一定程度顶升,增加两处第一预制桩受力,减少中间桥墩1受力,保证该桥墩1处压力处于安全值内。当车辆运行到桥梁中间位置时,根据受力原理该处跨中存在最大挠度值,此时若挠度传感器52反馈数值大于安全挠度值,则调节车辆下方最近的第一预制桩上方的数控千斤顶50进行一定程度顶升,增加两处第一预制桩受力,减少中间桥面板2受力,保证该处桥面板2挠度处于安全值内。若车辆行进至某一位置时,桥墩1处的压力传感器51监测的压力超过容许值,且中间处的桥面板2的挠度亦超过容许值时,首先判定两者超过容许值的比例,先通调节比例较小的,然后调节比例较大的,使二者均处于安全范围内。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种桥梁加固系统,所述桥梁包括桥墩和桥面板,其特征在于,所述加固系统包括:
    顶板,所述顶板设置于桥面板上方,用于通行;
    若干第一预制桩,所述第一预制桩设置于顶板下方,位于所述桥面板处的第一预制桩的底端穿过所述桥面板;
    第一横梁,所述第一横梁沿桥梁宽度方向设置,并与至少两个第一预制桩的顶部固定;
    第二横梁,所述第二横梁沿桥梁宽度方向设置,固定于桥面板上,且位于桥墩的正上方;
    纵梁,所述纵梁沿所述桥梁长度方向设置,且横跨第一横梁和第二横梁;所述顶板设置于所述纵梁上;
    数控千斤顶,所述数控千斤顶设置于第一横梁与纵梁之间,及第二横梁与纵梁之间;所述数控千斤顶设置有压力传感器,用于监测压力,所述压力传感器设定有容许压力值;
    控制器,用于在所述数控千斤顶的压力传感器的压力超过容许压力值时,控制相邻的数控千斤顶伸缩操作,使所述压力传感器的压力处于容许压力值以内。
  2. 如权利要求1所述的桥梁加固系统,其特征在于,
    在桥墩处沿桥梁宽度方向还设置有第二预制桩,第二预制桩的顶部与第二横梁底部固定连接。
  3. 如权利要求1或2所述的桥梁加固系统,其特征在于,
    所述第一预制桩为钢管桩,所述钢管桩内设置有第一填充物。
  4. 如权利要求1或2所述的桥梁加固系统,其特征在于,
    第一预制桩沿桥梁宽度方向成排设置,每一排的相邻第一预制桩之间设置有加固件。
  5. 如权利要求1或2所述的桥梁加固系统,其特征在于,在顶板和桥面板之间的缝隙中设置有第二填充物。
  6. 一种桥梁动态加固方法,其特征在于,采用权利要求1所述的桥梁加固系统,所述桥梁动态加固方法包括如下步骤:
    车辆在顶板上运行;
    压力传感器监测压力并传递至控制器;
    当压力传感器监测压力超过预设的压力容许值时,控制器控制相邻的数控千斤顶升操作,使所述压力回落至压力容许值内,并保证相邻的压力传感器监测压力在压力容许值内。
  7. 如权利要求6所述的桥梁动态加固方法,其特征在于,
    所述桥面板位于两个相邻桥墩的中间位置设置有挠度传感度,用于监测桥面板的挠度,挠度传感器设置有挠度容许值。
  8. 如权利要求7所述的桥梁动态加固方法,其特征在于,
    当车辆运行到桥梁中间位置时,若挠度传感器反馈数值大于安全挠度值,则调节车辆下方最近的第一预制桩上方的数控千斤顶进行一定程度顶升,增加两处第一预制桩受力,减少中间桥面板受力,保证该处桥面板挠度处于安全值内。
  9. 如权利要求7所述的桥梁动态加固方法,其特征在于,
    在桥墩处沿桥梁宽度方向还设置有第二预制桩,第二预制桩的顶部与第二横梁底部固定连接;
    当车辆行驶至桥墩正上方时,该处桥墩所受压力将会大幅度增加,此时若该桥墩处压力传感器反馈的压力大于压力容许值,则调节桥墩处的第二预制桩上方的数控千斤顶进行顶升操作、并控制相邻的第一预制桩上方的数控千斤顶进行一定程度顶升操作,减少桥墩受力,保证该桥墩处压力处于安全值内。
  10. 如权利要求9所述的桥梁动态加固方法,其特征在于,
    所述桥面板位于两个相邻桥墩的中间位置设置有挠度传感度,用于监测桥面板的挠度,挠度传感器设置有挠度容许值;
    车辆行进至某一位置时,若桥墩处的压力传感器监测的压力超过容许值,且中间处的桥面板的挠度亦超过容许值时,首先判定两者超过容许值的比例,先使比例较小的调至容许值内,然后再使比例较大的调至容许值内。
PCT/CN2022/086307 2021-11-04 2022-04-12 桥梁加固系统及动态加固方法 WO2023077723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111297329.5 2021-11-04
CN202111297329.5A CN113737667B (zh) 2021-11-04 2021-11-04 桥梁加固系统及动态加固方法

Publications (1)

Publication Number Publication Date
WO2023077723A1 true WO2023077723A1 (zh) 2023-05-11

Family

ID=78727314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086307 WO2023077723A1 (zh) 2021-11-04 2022-04-12 桥梁加固系统及动态加固方法

Country Status (2)

Country Link
CN (1) CN113737667B (zh)
WO (1) WO2023077723A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737667B (zh) * 2021-11-04 2022-01-21 上海建工五建集团有限公司 桥梁加固系统及动态加固方法
CN115323863B (zh) * 2022-08-26 2023-12-05 中国水利水电第十一工程局有限公司 特重设备运输车辆通过轻型小桥的临时便道施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036317A (ja) * 2002-07-05 2004-02-05 Asahi Engineering Kk 橋梁の補強構造
CN203768895U (zh) * 2014-03-03 2014-08-13 福建省建筑工程质量检测中心有限公司 一种桥梁增补桩系统
KR101824961B1 (ko) * 2017-05-10 2018-02-02 더강이엔씨 주식회사 주두부 브라켓을 이용한 가설교량 및 그 시공방법
JP2019011591A (ja) * 2017-06-29 2019-01-24 株式会社ハナミズキ・ブリッジ・プランニング 橋脚基礎の耐震補強方法及び橋脚の耐震補強方法
CN213571600U (zh) * 2020-09-30 2021-06-29 中交路桥华南工程有限公司 桥梁托换支撑结构
CN214362791U (zh) * 2020-12-17 2021-10-08 四川省交通建设集团股份有限公司 装配式公路钢便桥
CN113737667A (zh) * 2021-11-04 2021-12-03 上海建工五建集团有限公司 桥梁加固系统及动态加固方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036317A (ja) * 2002-07-05 2004-02-05 Asahi Engineering Kk 橋梁の補強構造
CN203768895U (zh) * 2014-03-03 2014-08-13 福建省建筑工程质量检测中心有限公司 一种桥梁增补桩系统
KR101824961B1 (ko) * 2017-05-10 2018-02-02 더강이엔씨 주식회사 주두부 브라켓을 이용한 가설교량 및 그 시공방법
JP2019011591A (ja) * 2017-06-29 2019-01-24 株式会社ハナミズキ・ブリッジ・プランニング 橋脚基礎の耐震補強方法及び橋脚の耐震補強方法
CN213571600U (zh) * 2020-09-30 2021-06-29 中交路桥华南工程有限公司 桥梁托换支撑结构
CN214362791U (zh) * 2020-12-17 2021-10-08 四川省交通建设集团股份有限公司 装配式公路钢便桥
CN113737667A (zh) * 2021-11-04 2021-12-03 上海建工五建集团有限公司 桥梁加固系统及动态加固方法

Also Published As

Publication number Publication date
CN113737667A (zh) 2021-12-03
CN113737667B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023077723A1 (zh) 桥梁加固系统及动态加固方法
CN101230563B (zh) 一种不中断交通更换桥梁支座的方法及其专用装置
CN106869012B (zh) 采用体内预应力系统的预制薄壁盖梁
CN106087711B (zh) 波腹工梁-钢砼顶板-体外预应力组合t型简支梁
CN208121541U (zh) 中跨采用无支架方案施工的钢混组合梁桥
CN103821359A (zh) 大截面混凝土梁分层浇筑施工工法
KR101527782B1 (ko) 합성형 교량의 변위관리 및 반전합성 경사지보공 설치방법
CN110700113B (zh) 一种无预应力束桥梁的预应力施加装置的施工方法
CN211848838U (zh) 改善钢混组合连续梁负弯矩区受力的装置
CN108221636A (zh) 中跨采用无支架方案施工的钢混组合梁桥及成桥方法
CN102704414A (zh) 一种拱桥顶升的施工方法
JP2005171638A (ja) コンクリート桁の張出し架設工法における変位調整方法
CN111877168B (zh) 一种组合斜拉桥格构式钢主梁扭转纠偏方法
CN210482013U (zh) 桥梁
CN209873560U (zh) 采用超高性能混凝土的桥面连续连接结构
CN218643166U (zh) 软土基坑工程施工的装配式钢结构栈桥
CN216947928U (zh) 一种既有刚构桥墩高调整系统
CN117188347B (zh) 贯通式的桥梁拆装方法
KR102578491B1 (ko) 램프교를 형성하는 콘크리트 거더 해체 공법
CN215857300U (zh) 一种工字组合梁桥面板的加固结构
CN212294783U (zh) 大跨度双向预应力箱型托换梁的组合顶升托换结构
CN217352139U (zh) 一种门式墩横梁施工模架
CN110629613A (zh) 一种适用于大型综合体场内永临结合道路加固方法
CN117738079A (zh) 一种偏压盖梁上托架法现浇箱梁施工方法
McRae et al. Rehabilitation of bridge superstructures via the addition of girder lines. II: Practical considerations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888762

Country of ref document: EP

Kind code of ref document: A1