WO2023075239A1 - 트랜스포머 - Google Patents

트랜스포머 Download PDF

Info

Publication number
WO2023075239A1
WO2023075239A1 PCT/KR2022/015605 KR2022015605W WO2023075239A1 WO 2023075239 A1 WO2023075239 A1 WO 2023075239A1 KR 2022015605 W KR2022015605 W KR 2022015605W WO 2023075239 A1 WO2023075239 A1 WO 2023075239A1
Authority
WO
WIPO (PCT)
Prior art keywords
bobbin
transformer
flange
lower flange
upper flange
Prior art date
Application number
PCT/KR2022/015605
Other languages
English (en)
French (fr)
Inventor
윤황석
Original Assignee
주식회사 엠에스티테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠에스티테크 filed Critical 주식회사 엠에스티테크
Priority to CN202280068873.9A priority Critical patent/CN118103932A/zh
Publication of WO2023075239A1 publication Critical patent/WO2023075239A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2819Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F2027/297Terminals; Tapping arrangements for signal inductances with pin-like terminal to be inserted in hole of printed path

Definitions

  • the present invention relates to a transformer, and more particularly, to a transformer applied to electrical and electronic devices.
  • a transformer is a power supply conversion device that converts to an appropriate voltage when power is supplied.
  • the transformer includes a primary coil and a secondary coil that are magnetically coupled, and the basic principle is that when current flows in the primary coil, current also flows in the secondary coil due to electromagnetic induction.
  • the ratio of the voltage of the primary coil to the voltage of the secondary coil that is transmitted corresponds to the ratio of the number of turns winding the coil.
  • a magnetic field surrounding the primary coil induces a voltage around the secondary coil, and a desired output voltage can be obtained by changing the ratio of the number of windings wound around the coil.
  • the conventional transformer since the conventional transformer only insulates the primary coil and the secondary coil in a way that is not electrically insulated, it is necessary to secure an insulation distance. Since the thickness must be formed thickly, there is a problem in that the size of the transformer increases.
  • An object of the present invention is to provide a transformer in which insulation is significantly improved by improving creepage distance by applying a wavy concave-convex portion to a second bobbin on which a secondary coil is wound, in a structure for securing an insulation distance by molding.
  • a transformer according to an embodiment of the present invention for solving the above problems includes a main body and a core coupled to the main body, the main body includes a first bobbin and a second bobbin, and the second bobbin has a coil wound thereon. and an upper flange and a lower flange extending outwardly to support the coil with the winding unit interposed therebetween, wherein the upper flange and the lower flange of the second bobbin have ridges and valleys on an inner surface thereof in the extension direction. It includes concavo-convex portions formed repeatedly in a wavy shape.
  • the concave-convex portion of the upper flange and the concave-convex portion of the lower flange have symmetrical shapes.
  • the concave-convex portion may further include peaks having different heights.
  • the uneven portion may have the highest height of an outermost mountain portion.
  • the concavo-convex portion may have a shape in which an upper end of an outermost mountain portion is inclined toward the winding portion.
  • Thicknesses of the upper flange and the lower flange where the ridge is formed are equal to or smaller than the thicknesses of the upper flange and the lower flange at the portion where the concavo-convex part is not formed, except for a portion where the ridge is formed at the outermost part.
  • the concave-convex portion may be formed at edges of the upper flange and the lower flange.
  • the concavo-convex portion may be formed along edges of the upper flange and the lower flange in parallel with peaks and valleys.
  • the first bobbin is coupled to the second bobbin, and the bobbin assembly in which the first bobbin and the second bobbin are coupled is molded by a molding unit.
  • the first bobbin has an injection groove for filling a space between the first bobbin and the second bobbin with the molding part.
  • the present invention has a structure that secures the insulation distance by molding, it is possible to secure the insulation distance between the primary side and the secondary side, thereby reducing the size of the transformer, and applying a corrugated concave-convex part to the second bobbin on which the secondary coil is wound. Since the creepage distance is increased, it is possible to additionally secure the insulation distance without increasing the size of the transformer, thereby significantly improving insulation properties.
  • the creepage distance can be increased without increasing the thickness of the transformer.
  • the concavo-convex part of the present invention has an effect of securing structural rigidity of the transformer and improving internal pressure by increasing injection coupling force with the molding part integrating the first bobbin and the second bobbin.
  • FIG. 1 is a perspective view showing a transformer according to an embodiment of the present invention.
  • Figure 2 is a transformer according to an embodiment of the present invention, a perspective view showing a state in which the core is coupled to the main body.
  • FIG. 3 is an A-A cross-sectional view of the main body of FIG. 2, and FIG. 4 is a perspective view showing a bobbin assembly in which a first bobbin and a second bobbin of FIG. 3 are coupled.
  • FIG. 5 is a perspective view showing the first bobbin and the second bobbin of FIG. 3 before they are coupled
  • FIG. 6 is an enlarged view of the cross-section of FIG. 3 .
  • 7 and 8 are comparative examples comparing creepage distances according to the presence or absence of concavo-convex portions according to an embodiment of the present invention. is the drawing shown.
  • FIG. 1 is a perspective view showing a transformer according to an embodiment of the present invention.
  • a transformer 10 includes a main body 100 and a core 200 coupled to the main body 100 .
  • the main body 100 includes a coil inside and terminal pins 125 and 145 connected to the coil outside.
  • a plurality of terminal pins 125 and 145 are provided on one side and the other side of the body 100, and each terminal pin 125 and 145 is spaced apart from each other and arranged side by side in a line.
  • the terminal pin 125 arranged on one side of the main body 100 is an input terminal
  • the terminal pin 145 arranged on the other side of the main body 100 is an output terminal.
  • Figure 2 is a transformer according to an embodiment of the present invention, a perspective view showing a state in which the core is coupled to the main body.
  • the main body 100 has molding flanges 101 and 102 formed on both sides and a core coupling part 103 formed therebetween.
  • the molding flanges 101 and 102 are formed by wrapping the molding part 160 around the bobbin assembly 150 to be described later to a predetermined thickness.
  • the core coupling portion 103 is a stepped portion between the molding flanges 101 and 102 on both sides.
  • the core coupling part 103 is formed with a first through hole 115 penetrating vertically in a central portion.
  • the cores 210 and 220 are coupled to the first through hole 115 of the core coupling part 103 .
  • the width and length of the core coupler 103 are designed in advance in consideration of the size of the cores 210 and 220 coupled to the core coupler 103 .
  • the core 200 includes an upper core 210 and a lower core 220 .
  • the upper core 210 is coupled from the upper portion of the body 100 and the lower core 220 is coupled from the lower portion of the body 100 .
  • the upper core 210 and the lower core 220 coupled at the top and bottom of the main body 100 surround the coil included in the main body 100 to form a magnetic path to control the flow of electricity in the coil.
  • the main body 100 includes a primary coil 120 and a secondary coil 140, and a high voltage introduced into the primary coil 120 generates an induced electromotive force in the adjacent secondary coil 140. so that it can be output at a lower voltage.
  • the upper core 210 and the lower core 220 are formed in a shape including a flat plate part (a), both side leg parts (b) and a center leg part (c). Specifically, in the upper core 210 and the lower core 220, both leg portions (b) protrude vertically from both sides of the flat plate portion (a), and the central leg portion (c) is between the leg portions (b) on both sides. It is formed in an E-shaped cross-sectional shape that protrudes vertically from
  • the flat plate part (a) is in close contact with the upper or lower surface of the core coupling part (103) and both leg parts (b) are in close contact with both sides of the core coupling part (103) in the width direction.
  • the central leg portion (c) is coupled to the main body 100 in such a way that it is inserted into the first through hole (115).
  • the upper core 210 and the lower core 220 are formed of a magnetic material.
  • the magnetic material is made of a ferromagnetic material capable of obtaining strong magnetic flux, and a ferrite core with low loss at high frequencies can be used.
  • a ferrite core with low loss at high frequencies can be used.
  • an Mn-Zn ferrite core may be used as the magnetic material.
  • FIG. 3 is an A-A cross-sectional view of the main body of FIG. 2, and FIG. 4 is a perspective view showing a bobbin assembly in which a first bobbin and a second bobbin of FIG. 3 are coupled.
  • the main body 100 uses two bobbins, coils are wound on each bobbin, and then the secondary coil 140 is disposed outside the primary coil 120 by vertically fitting. become a structure
  • the primary coil 120 and the secondary coil 140 are insulated with bobbins 110 and 130 to reduce leakage inductance Lk between the primary coil 120 and the secondary coil 140 .
  • the main body 100 includes a first bobbin 110 and a second bobbin 130 .
  • the primary coil 120 is wound around the first bobbin 110 and the secondary coil 140 is wound around the second bobbin 130 .
  • the bobbin assembly 150 is formed.
  • the bobbin assembly 150 in which the first bobbin 110 and the second bobbin 130 are coupled is molded by the molding unit 160 .
  • the molding part 160 is made of an insulating material to insulate the primary coil 120 and the secondary coil 140 from the outside and protect the coils from moisture and the like.
  • the primary coil 120 wound around the first bobbin 110 and the secondary coil 140 wound around the second bobbin 130 are finally insulated from the outside by the molding part 160 .
  • the part where the primary coil 120 and the first terminal pin 125 are connected and the part where the secondary coil 140 and the second terminal pin 145 are connected are molded by the molding unit 160 after soldering. are not exposed to the outside, and end sides of the first terminal pin 125 and the second terminal pin 145 are exposed to the outside of the molding part 160 so that they can be mounted on a board.
  • the first bobbin 110 is provided with a first terminal pin 125 protruding downward on one side and a first through hole 115 formed in the central portion.
  • the central leg portions c of the upper core 210 and the lower core 220 are coupled to the first through hole 115 .
  • a primary coil 120 is wound around the first bobbin 110 .
  • An end of the primary coil 120 wound around the first bobbin 110 is connected to the first terminal pin 125 by soldering.
  • the end copper wire of the primary coil 120 wound around the first bobbin 110 may be wound and connected to the first terminal pin 125 and then soldered and fixed.
  • the second bobbin 130 is provided with a second terminal pin 145 protruding downward on the other side and a second through hole 135 is formed in the central portion.
  • the first bobbin 110 is fitted into the second through hole 135 from top to bottom.
  • a secondary coil 140 is wound around the second bobbin 130 .
  • An end of the secondary coil 140 wound around the second bobbin 130 is connected to the second terminal pin 145 by soldering.
  • the end copper wire of the secondary coil 140 wound around the second bobbin 130 may be wound and connected to the second terminal pin 145, and then soldered and fixed.
  • FIG. 5 is a perspective view showing the first bobbin and the second bobbin of FIG. 3 before they are coupled
  • FIG. 6 is an enlarged view of the cross-section of FIG. 3 .
  • the first bobbin 110 and the second bobbin 130 extend outward to support the coils, respectively, with the winding parts 111 and 131 where the coil is wound and the winding parts 111 and 131 interposed therebetween. It includes upper flanges 112 and 132 and lower flanges 113 and 133.
  • the first bobbin 110 and the second bobbin 130 are made of an insulating material, preferably formed of a plastic injection molding material.
  • the first bobbin 110 and the second bobbin 130 are overlapped vertically on the upper flanges 112 and 132 or the lower flanges 113 and 133 so that they can be well coupled when fitted together. A losing step is formed.
  • first stepped surfaces 117a and 117b are formed on the bottom surfaces of the upper flange 112 and the lower flange 113 along outer edges, respectively, and the second bobbin 130 has an upper Second stepped surfaces 137a and 137b are formed on the upper surfaces of the flange 132 and the lower flange 133 along inner edges, respectively. Accordingly, when the first bobbin 110 is inserted into the second through hole 135 of the second bobbin 130, the first stepped surfaces 117a and 117b of the bottom surface of the first bobbin 110 are formed on the second bobbin 130.
  • the upper flange 112 extends more outward than the lower flange 113, and the second bobbin 130 has a lower flange 133 with a second through hole. (135).
  • the first stepped surfaces 117a and 117b form the first bobbin 110. formed on the bottom surfaces of the upper flange 112 and the lower flange 113, and the second stepped surfaces 137a and 137b are formed on the upper surfaces of the upper flange 132 and the lower flange 133 of the second bobbin 130.
  • the first stepped surfaces 117a and 117b are formed of the first bobbin 110.
  • the second stepped surfaces 137a and 137b are formed on the lower surfaces of the upper flange 132 and the lower flange 133 of the second bobbin 130.
  • An injection groove 118 for filling a gap between the first bobbin 110 and the second bobbin 130 with the molding part 160 is formed at the upper flange 112 of the first bobbin 110 .
  • the injection groove 118 forms a hole between the first bobbin 110 and the second bobbin 130 through which an insulating material (injection material) for forming the molding part 160 can be injected.
  • the first bobbin 110 and the second bobbin 130 are integrated by injecting the injected material through the injection groove 118 of the first bobbin 110, and the primary coil 120 wound on the first bobbin 110 is A surrounding molding part 160 is formed.
  • An injection hole 138 is formed in the lower flange 133 of the second bobbin 130 .
  • the injection hole 138 is formed at a position communicating with the injection groove 118 so that a gap between the first bobbin 110 and the second bobbin 130 can be filled with the molding part 160 .
  • Filling the gap between the first bobbin 110 and the second bobbin 130 with the molding part 160 through the two holes composed of the injection groove 118 and the injection hole 138 causes the first bobbin 110 without generating bubbles. ) and the second bobbin 130 can be uniformly filled with the molding portion 160 to protect the primary coil 120 from moisture.
  • the insulating material is placed in the injection groove 118 of the first bobbin 110.
  • the air remaining in the coil winding space between the first bobbin 110 and the second bobbin 130 may smoothly escape to the outside through the injection hole 138 on the opposite side and be discharged. Therefore, the coil winding space between the first bobbin 110 and the second bobbin 130 can be formed as a uniform molding part 160 without air bubbles, and thereby the first bobbin 110 and the second bobbin.
  • the quality of transformer products can be improved because the bonding strength and insulation performance between (130) are increased.
  • the upper flange 132 and the lower flange 133 of the second bobbin 130 have concavo-convex portions formed by repeating crests and valleys in a wavy shape on both inner surfaces in the longitudinal direction. (139).
  • the concave-convex portion 139 is to increase the creepage distance to additionally secure the insulation distance. Creepage distance is the shortest distance along the surface of the insulation between two conductors, and insulation distance is the shortest distance between two conductors in the air, that is, the clearance distance (air insulation distance).
  • the insulation distance to prevent leakage current from the transformer 10 is Degree 2 and 1.0mm in the case of an open structure when set as a contamination standard. That is, if the transformer is made of an open structure in which the coil of the winding part is exposed to the outside, the insulation distance (length (m) to the end of the second bobbin excluding the winding part where the secondary coil is wound) must be 1.0 mm or more.
  • Table 1 below shows the minimum air insulation distance according to pollution degree.
  • the minimum air insulation distance means the space distance that must be secured to prevent contamination. Contamination refers to foreign substances that can reduce the electrical strength and surface resistance of an insulator.
  • the space distance can be reduced by using the molding part 160 .
  • the coil parts of the first bobbin 110 and the second bobbin 130 are blocked by the molding part 160 and have an insulation structure without contamination, it is possible to design a clearance distance of 0.25 mm or more, which is Degree 1. . Therefore, in the present invention, the coil parts of the first bobbin 110 and the second bobbin 130 are molded into the molding part 160 to design a space distance of 0.25 mm, which is Degree 1, and apply the concave-convex part 139 The insulation distance can be additionally secured by increasing the creepage distance.
  • peaks s1 , s2 , and s3 and valleys v1 , v2 , and v3 of the concave-convex portion 139 of the upper flange 132 are It has a shape that is symmetrical to the peaks (s1, s2, s3) and valleys (v1, v2, v3). If the concavo-convex part 139 of the upper flange 132 and the concavo-convex part 139 of the lower flange 133 are formed in symmetrical shapes, the second bobbin 130 can be easily formed and taken out.
  • concave-convex portion 139 neighboring peaks s1 , s2 , and s3 may have different heights.
  • the concave-convex portion 139 reinforces the overall structure of the main body 100 by improving injection bonding strength with the injection molding material forming the molding portion 160 .
  • the injection coupling force is further improved, which is advantageous in strengthening the overall structure of the main body 100 .
  • the peak part s3 positioned at the outermost part has the highest height. This makes the height of the winding unit 131 lower on the outside than on the inside, so that the coil can be wound around the winding unit 131 with a margin, and prevents the coil wound on the winding unit 131 from being arbitrarily separated.
  • the outermost ridge s3 protrudes more than the other ridges s1 and s2 to additionally secure an insulation distance, and the protruding height protrudes to the maximum possible level for automatic winding.
  • the concave-convex portion 139 preferably has a shape in which the upper end of the outermost peak s3 is inclined inward, which means that even if the height of the outer side of the winding portion 131 is lower than that of the inner side, the coil is wound. This is to facilitate automatic winding by being well inserted into the portion 131. That is, the coil is wound well and does not unwind.
  • the upper flange 132 and the lower flange 133 are within the thickness range of the upper flange 132 and the lower flange 133, except for the outermost peak portion s3. ) to form a height equal to or relatively lower than the height of the inner surface of the Specifically, the thickness of the upper flange 132 and the lower flange 133 on which the ridge is formed, except for the portion where the ridge is located at the outermost position, is the upper flange 132 and the lower flange of the portion where the concavo-convex portion 139 is not formed. It is equal to or smaller than the thickness of (133).
  • the concave-convex portion 139 is formed only at the edges of inner surfaces of both sides of the upper flange 132 and the lower flange 133 . Since the uneven part 139 is formed to increase the creepage distance in the length (clearance distance) (m) to the end of the second bobbin 130 excluding the winding part 131 where the secondary coil is directly wound, the uneven part ( 139) is preferably formed vertically only on the edge of the inner surface in the extending direction of the upper flange 132 and the lower flange 133.
  • the concavo-convex portion 139 is formed even in a portion where the coil is directly wound, it may be difficult to stably wind the coil.
  • the inner surfaces of both sides of the upper flange 132 and the lower flange 133 corresponding to the winding part 131 on which the secondary coil 140 is directly wound are formed flat so that the coil is press-fitted into the winding part 131 so that the coil is It is desirable to make it winding stably.
  • the concavo-convex portion 139 may have a wavy shape with irregular heights and intervals between the crests s1, s2, and s3 and the valleys v1, v2, and v3.
  • the peaks (s1, s2, s3) and the valleys (v1, v2, v3) have irregular heights and intervals, except for the outermost peak (s3), the rest of the peaks (s1, s2) are the upper flange 132 and the lower Within the thickness range of the flange 133, it is preferable to form a height equal to or relatively lower than the height of the inner surfaces of the upper flange 132 and the lower flange 133.
  • the thickness of the upper flange 132 and the lower flange 133 on which the ridges s1 and s2 are formed, except for the portion where the outermost ridge s3 is formed, is the upper portion of the portion where the concavo-convex portion 139 is not formed.
  • the thickness of the flange 132 and the lower flange 133 is preferably equal to or smaller than that of the flange 132 .
  • the concave-convex portion 139 may be formed parallel to peaks and valleys along edges of the upper flange 132 and the lower flange 133 .
  • FIG. 7 and 8 show comparative examples in which creepage distances are compared according to the presence or absence of irregularities according to the embodiment of the present invention.
  • FIG. 7 shows the creepage distance when there is no uneven part
  • FIG. 8 shows the creepage distance when there is uneven part.
  • the length (space distance) (m) to the end of the second bobbin 130 excluding the winding part 131 in which the secondary coil 140 is directly wound is 2.5 mm.
  • the creepage distance when the concavo-convex part is not formed as shown in FIG. 7, it is 4.43 mm.
  • the part where the creepage distance was calculated is shown in bold color.
  • the length (space distance) (m) to the end of the second bobbin 130 excluding the winding part 131 in which the secondary coil 140 is directly wound is designed to be 2.5 mm, , when calculating the creepage distance when the concavo-convex portion 139 is formed as shown in FIG. 8, it is 5.72 mm.
  • the concavo-convex part 139 is applied in the same size as the conventional secondary bobbin 130 and increases the creepage distance to additionally secure the insulation distance, thereby contributing to miniaturization of the transformer, ensuring safety and improving product reliability. do.
  • the uneven portion 139 is formed on the inner surfaces of the upper flange 132 and the lower flange 133 of the second bobbin 130, it is not necessary to increase the size of the transformer to improve insulation performance, thereby reducing the size of the transformer. can also contribute.
  • the transformer 10 of the present invention has a pollution-free insulation structure by applying the molding part 160, when designing a clearance of 0.25 mm or more, which is Degree 1., it can be recognized by a certification authority, so the size of the transformer 10 can reduce
  • the transformer 10 of the present invention increases the creepage distance by applying the concavo-convex parts 139 to the inner surfaces of both the upper flange 132 and the lower flange 133 of the second bobbin 130, thereby increasing the Since the insulation distance can be additionally secured without increasing the size, insulation can be greatly improved.
  • the concave-convex portion 139 is not formed on the outer surfaces of the upper flange 132 and the lower flange 133 but is formed on the inner surface, the overall height of the transformer 10 can be reduced.
  • An insulation distance may be additionally secured by forming the uneven portions 139 on the outer surfaces of the upper flange 132 and the lower flange 133, but in this case, the height of the transformer is increased. That is, the embodiment of the present invention can additionally secure the insulation distance without increasing the height of the transformer 10 .
  • the concavo-convex portion 139 may increase injection coupling force with the molding portion 160 to secure structural rigidity of the transformer 10 and improve internal pressure.
  • stable winding of the primary coil 120 and the secondary coil 140 is maintained because the first bobbin 110 is completely sealed by the molding unit 160 in a state in which the second bobbin 130 is coupled. and insulation can be secured.
  • the first bobbin 110 and the second bobbin 130 form an integrated structure by the molding unit 160, it is easy to assemble the cores 210 and 220 and the manufacturing process is simple, so productivity can be increased. .
  • the terminal pins 125 and 145 and the end copper wires of the coils 120 and 140 are molded by the molding unit 160, a short circuit at the connection portion between the coils 120 and 140 and the terminal pins 125 and 145 can be prevented. This can improve product reliability.
  • the above-described transformer can be installed in a TV, monitor, LED drive power supply, PC power supply, etc. to enable stable power supply.
  • the concavo-convex part applied to the transformer can be applied to various devices to secure an insulation distance while miniaturizing the size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Abstract

본 발명은 트랜스포머에 관한 것으로, 본체(100)와 상기 본체(100)에 결합되는 코어(210,220)를 포함하고, 상기 본체(100)는 제1 보빈(110)과 제2 보빈(130)을 포함하며, 상기 제2 보빈(130)은 코일(120,140)이 권선되는 권선부(111,131)와 상기 권선부(111,131)를 사이에 두고 각각 코일(120,140)을 지지하기 위하여 외측으로 연장된 상부 플랜지(112,132)와 하부 플랜지(113,133)를 포함하며, 상기 제2 보빈(130)의 상부 플랜지(132)와 하부 플랜지(133)는 양측 내면에 길이 방향으로 산부(s1,s2,s3)와 골부(v1,v2,v3)가 물결 형상으로 반복되어 형성된 요철부(139)를 포함한다. 본 발명은 2차 코일이 권선되는 제2 보빈에 물결 형상의 요철부를 적용하여 연면거리를 향상시켜 절연성을 대폭 향상시킬 수 있는 이점이 있다.

Description

트랜스포머
본 발명은 트랜스포머에 관한 것으로, 더욱 상세하게는 전기전자 기기에 적용되는 트랜스포머에 관한 것이다.
트랜스포머는 전원 공급시 적정 전압으로 변환시키는 전원공급변환장치이다.
트랜스포머는 자기적으로 결합되는 1차 코일과 2차 코일을 포함하며, 1차 코일에 전류가 흐르면 전자기 유도현상에 의해 2차 코일도 전류가 흐르게 되는 것을 기본 원리로 한다. 1차 코일의 전압과 전달되는 2차 코일의 전압의 비는 코일을 감는 권선수의 비와 대응된다.
이러한 트랜스포머는 1차 코일 주위를 둘러싼 자기장이 2차 코일 주위에 전압을 유도시키며, 코일에 감은 권선수의 비를 변화시켜 원하는 출력 전압을 얻을 수 있다.
또한, 트랜스포머는 하나의 트랜스포머에 여러 종류의 출력 전압을 얻기 위하여 여러 개의 1차 코일 또는 2차 코일을 권선하고, 1차 코일과 2차 코일을 조합하여 여러 다른 전압을 얻을 수 있다.
그런데, 종래의 트랜스포머는 1차 코일과 2차 코일이 전기적으로 절연되지 않는 방식으로만 절연하므로 절연 거리 확보가 필요하고 이를 위해 1차 코일이 권선되는 내측 보빈과 2차 코일이 권선되는 외측 보빈의 두께를 두껍게 형성해야 하므로 트랜스포머의 크기가 커지는 문제점이 있다.
본 발명의 목적은 몰딩으로 절연거리를 확보하는 구조에 있어서, 2차 코일이 권선되는 제2 보빈에 물결 형상의 요철부를 적용하여 연면거리를 향상시켜 절연성을 대폭 향상시키는 트랜스포머를 제공하는 것이다.
상기한 과제를 해결하기 위한 본 발명의 실시예에 따른 트랜스포머는 본체와 상기 본체에 결합되는 코어를 포함하고, 상기 본체는 제1 보빈과 제2 보빈을 포함하며, 상기 제2 보빈은 코일이 권선되는 권선부와 상기 권선부를 사이에 두고 각각 코일을 지지하기 위하여 외측으로 연장된 상부 플랜지와 하부 플랜지를 포함하며, 상기 제2 보빈의 상부 플랜지와 하부 플랜지는 내면에 상기 연장 방향으로 산부와 골부가 물결 형상으로 반복되어 형성된 요철부를 포함한다.
상기 상부 플랜지의 요철부와 상기 하부 플랜지의 요철부는 서로 대칭되는 형상이다.
상기 요철부는 높이가 다른 산부를 더 포함할 수 있다.
상기 요철부는 가장 바깥쪽에 위치한 산부의 높이가 가장 높을 수 있다.
상기 요철부는 가장 바깥쪽에 위치한 산부의 상단이 상기 권선부를 향해 경사진 형상일 수 있다.
가장 바깥쪽에 위치한 산부가 형성된 부분을 제외하고 상기 산부가 형성된 상기 상부 플랜지 및 상기 하부 플랜지의 두께는, 상기 요철부가 형성되지 않은 부분의 상기 상부 플랜지 및 상기 하부 플랜지의 두께와 동일하거나 작다.
상기 요철부는 상부 플랜지와 하부 플랜지의 가장자리에 형성될 수 있다.
상기 요철부는 상기 상부 플랜지와 상기 하부 플랜지의 가장자리를 따라 산부와 골부가 나란하게 형성될 수 있다.
상기 제1 보빈이 상기 제2 보빈에 결합되어, 상기 제1 보빈과 상기 제2 보빈이 결합된 보빈 결합체는 몰딩부에 의해 몰딩되어 있다.
상기 제1 보빈은 상기 제1 보빈과 상기 제2 보빈의 사이를 상기 몰딩부로 채우기 위한 주입홈이 형성된다.
본 발명은 몰딩으로 절연거리를 확보하는 구조이므로 1차측과 2차측의 절연거리를 확보할 수 있어 트랜스포머의 크기를 줄일 수 있고, 2차 코일이 권선되는 제2 보빈에 물결 형상의 요철부를 적용하여 연면거리를 증가시키므로 트랜스포머의 크기를 증가시키지 않고도 절연거리를 추가로 확보할 수 있어 절연성을 대폭 향상시킬 수 있는 효과가 있다.
또한, 본 발명은 요철부가 제2 보빈의 상부 플랜지와 하부 플랜지의 양측 내면에 형성되므로 트랜서포머의 두께를 증가시키기 않고도 연면거리를 증가시킬 수 있는 효과가 있다.
또한, 본 발명의 요철부는 제1 보빈과 제2 보빈을 일체화하는 몰딩부와 사출 결합력을 증가시켜 트랜스포머의 구조적 강성을 확보하고 내압을 개선할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 의한 트랜스포머를 보인 사시도이다.
도 2는 본 발명의 실시예에 의한 트랜스포머로, 본체에 코어가 결합되는 모습을 보인 사시도이다.
도 3은 도 2의 본체의 A-A 단면도이고, 도 4는 도 3의 제1 보빈과 제2 보빈이 결합된 보빈 결합체를 보인 사시도이다.
도 5는 도 3의 제1 보빈과 제2 보빈이 결합되기 전 모습을 보인 사시도이고, 도 6은 도 3의 단면부를 확대하여 보인 도면이다.
도 7 및 도 8은 본 발명의 실시예에 의한 요철부 형성 유무 따른 연면거리를 비교한 비교예로서, 도 7은 요철부가 없는 경우의 연면거리를, 도 8은 요철부가 있는 경우의 연면거리를 나타낸 도면이다.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
도 1은 본 발명의 실시예에 의한 트랜스포머를 보인 사시도이다.
도 1에 도시된 바에 의하면, 본 발명의 실시예에 의한 트랜스포머(10)는 본체(100) 및 본체(100)에 결합되는 코어(200)를 포함한다. 본체(100)는 내부에 코일을 포함하고 외부에 코일과 연결된 단자핀(125,145)을 포함한다.
단자핀(125,145)은 본체(100)의 일측과 타측에 복수 개가 구비되며, 각각의 단자핀(125,145)은 서로 이격되고 일렬로 나란히 배열되어 있다. 실시예에서 본체(100)의 일측에 배열되어 있는 단자핀(125)이 입력단자이고, 본체(100)의 타측에 배열되어 있는 단자핀(145)이 출력단자이다.
도 2는 본 발명의 실시예에 의한 트랜스포머로, 본체에 코어가 결합되는 모습을 보인 사시도이다.
도 2에 도시된 바에 의하면, 본체(100)는 양측을 몰딩 플랜지(101,102)가 형성하며 그 사이를 코어 결합부(103)가 형성한다. 몰딩 플랜지(101,102)는 후술할 보빈 결합체(150)를 몰딩부(160)가 소정의 두께로 감싸 형성된 부분이다. 코어 결합부(103)는 양측 몰딩 플랜지(101,102)의 사이에 단차진 부분이다. 코어 결합부(103)는 중앙 부분에 상하로 관통하는 제1 관통공(115)이 형성된다. 코어 결합부(103)의 제1 관통공(115)에 코어(210,220)가 결합된다. 코어 결합부(103)의 폭과 길이는 코어 결합부(103)에 결합되는 코어(210,220)의 크기를 고려하여 미리 설계된다.
코어(200)는 상부 코어(210)와 하부 코어(220)를 포함한다. 상부 코어(210)는 본체(100)의 상부에서 결합되고 하부 코어(220)는 본체(100)의 하부에서 결합된다. 본체(100)의 상부와 하부에서 결합된 상부 코어(210)와 하부 코어(220)는 본체(100)에 포함된 코일을 둘러싸 자로를 형성함으로써 코일의 전기 흐름을 제어한다. 일 예로, 본체(100)는 1차 코일(120)과 2차 코일(140)을 포함하고, 1차 코일(120)로 유입된 높은 전압은 근접해있는 2차 코일(140)에 유도기전력을 발생시켜 낮은 전압으로 출력되게 할 수 있다.
상부 코어(210)와 하부 코어(220)는 평판부(a), 양측 다리부(b) 및 중앙 다리부(c)를 포함하는 형상으로 형성된다. 구체적으로, 상부 코어(210)와 하부 코어(220)는 양측 다리부(b)가 평판부(a)의 양측에서 수직으로 돌출 형성되고 중앙 다리부(c)가 양측 다리부(b)의 사이에서 수직으로 돌출되는 E자 단면 형상으로 형성된다.
상부 코어(210)와 하부 코어(220)는 평판부(a)가 코어 결합부(103)의 상면 또는 하면에 밀착되고 양측 다리부(b)가 코어 결합부(103)의 폭방향 양측면에 밀착되며, 중앙 다리부(c)가 제1 관통공(115)에 삽입되는 방식으로 본체(100)에 결합된다.
상부 코어(210)와 하부 코어(220)는 자성 재료로 형성된다. 자성 재료는 강한 자속을 얻을 수 있는 강자성 물질로 이루어지며 높은 주파수에서 손실이 적은 페라이트 코어를 사용할 수 있다. 일 예로 자성 재료는 Mn-Zn 페라이트 코어를 사용할 수 있다.
도 3은 도 2의 본체의 A-A 단면도이고, 도 4는 도 3의 제1 보빈과 제2 보빈이 결합된 보빈 결합체를 보인 사시도이다.
도 3에 도시된 바에 의하면, 본체(100)는 2개의 보빈을 사용하고 각각의 보빈에 코일을 권선한 다음 상하 끼움 결합하여 1차 코일(120)의 외측에 2차 코일(140)이 배치된 구조가 된다. 1차 코일(120)과 2차 코일(140) 사이는 보빈(110,130)으로 절연하여 1차 코일(120)과 2차 코일(140) 사이의 누설 인덕턴스(Lk)를 줄인다.
본체(100)는 제1 보빈(110)과 제2 보빈(130)을 포함한다. 제1 보빈(110)에 1차 코일(120)이 권선되고 제2 보빈(130)에 2차 코일(140)이 권선된다. 1차 코일(120)이 권선된 제1 보빈(110)을 2차 코일(140)이 권선된 제2 보빈(130)에 결합하면 보빈 결합체(150)가 된다. 제1 보빈(110)과 제2 보빈(130)이 결합된 보빈 결합체(150)는 몰딩부(160)에 의해 몰딩된다. 몰딩부(160)는 절연재질로 이루어져 1차 코일(120)과 2차 코일(140)을 외부와 절연하고, 내습 등으로부터 코일을 보호한다. 제1 보빈(110)에 권선된 1차 코일(120)과 제2 보빈(130)에 권선된 2차 코일(140)은 몰딩부(160)에 의해 최종적으로 외부와 절연된다.
또한, 1차 코일(120)과 제1 단자핀(125)이 연결되는 부분, 2차 코일(140)과 제2 단자핀(145)이 연결되는 부분은 납땜 후 몰딩부(160)에 의해 몰딩되어 외부로 노출되지 않으며, 제1 단자핀(125) 및 제2 단자핀(145)의 단부측은 몰딩부(160)의 외부로 노출되어 기판에 실장될 수 있다.
도 3 및 도 4에 도시된 바에 의하면, 제1 보빈(110)은 일측에 하부로 돌출된 제1 단자핀(125)이 구비되고 중앙 부분에 제1 관통공(115)이 형성된다. 제1 관통공(115)에 상부 코어(210)와 하부 코어(220)의 중앙 다리부(c)가 결합된다. 제1 보빈(110)에는 1차 코일(120)이 권선된다. 제1 보빈(110)에 권선된 1차 코일(120)의 단부는 제1 단자핀(125)에 납땜에 의해 연결된다. 일 예로, 제1 보빈(110)에 권선된 1차 코일(120)의 단부 동선을 제1 단자핀(125)에 감아 연결시킨 다음 납땜하여 고정할 수 있다.
제2 보빈(130)은 타측에 하부로 돌출된 제2 단자핀(145)이 구비되고 중앙 부분에 제2 관통공(135)이 형성된다. 제2 관통공(135)에는 제1 보빈(110)이 상부에서 하부 방향으로 끼움 결합된다. 제2 보빈(130)에는 2차 코일(140)이 권선된다. 제2 보빈(130)에 권선된 2차 코일(140)의 단부는 제2 단자핀(145)에 납땜에 의해 연결된다. 일 예로, 제2 보빈(130)에 권선된 2차 코일(140)의 단부 동선을 제2 단자핀(145)에 감아 연결시킨 다음 납땜하여 고정할 수 있다.
도 5는 도 3의 제1 보빈과 제2 보빈이 결합되기 전 모습을 보인 사시도이고, 도 6은 도 3의 단면부를 확대하여 보인 도면이다.
도 5에 도시된 바에 의하면, 제1 보빈(110)과 제2 보빈(130)은 코일이 권선되는 권선부(111,131), 권선부(111,131)를 사이에 두고 각각 코일을 지지하기 위하여 외측으로 연장된 상부 플랜지(112,132)와 하부 플랜지(113,133)를 포함한다. 제1 보빈(110)과 제2 보빈(130)은 절연재질로 이루어지고, 바람직하게는 플라스틱 사출물로 형성된다.
도 5 및 도 6에 도시된 바에 의하면, 제1 보빈(110)과 제2 보빈(130)은 상호 끼움 결합할 때 잘 결합될 수 있도록 상부 플랜지(112,132) 또는 하부 플랜지(113,133)에 상하로 겹쳐지는 단차가 형성된다.
구체적으로, 제1 보빈(110)은 상부 플랜지(112)와 하부 플랜지(113)의 저면에 각각 외측 테두리를 따라 제1 단차면(117a,117b)이 형성되고, 제2 보빈(130)은 상부 플랜지(132)와 하부 플랜지(133)의 상면에 각각 내측 테두리를 따라 제2 단차면(137a,137b)이 형성된다. 그에 따라 제1 보빈(110)이 제2 보빈(130)의 제2 관통공(135)에 끼워지면 제1 보빈(110)의 저면의 제1 단차면(117a,117b)이 제2 보빈(130)의 상면의 제2 단차면(137a,137b)과 상하로 겹쳐지게 되어 끼움 결합이 용이하고 결합된 상태가 안정적이게 된다. 이를 위해 실시예의 제1 보빈(110)은 상부 플랜지(112)가 하부 플랜지(113)에 비해 외측방향으로 더 연장 형성되어 있고, 제2 보빈(130)은 하부 플랜지(133)가 제2 관통공(135)으로 연장되어 있다.
실시예는 제2 보빈(130)의 제2 관통공(135)에 제1 보빈(110)이 상부에서 하부 방향으로 끼움 결합되므로, 제1 단차면(117a,117b)이 제1 보빈(110)의 상부 플랜지(112)와 하부 플랜지(113)의 저면에 형성되고, 제2 단차면(137a,137b)이 제2 보빈(130)의 상부 플랜지(132)와 하부 플랜지(133)의 상면에 형성되는 것으로 설명하였으나, 반대로 제1 보빈(110)이 제2 보빈(130)에 하부에서 상부 방향으로 끼움 결합하는 구조로 제작하면, 제1 단차면(117a,117b)이 제1 보빈(110)의 상부 플랜지(112)와 하부 플랜지(113)의 상면에 형성되고, 제2 단차면(137a,137b)이 제2 보빈(130)의 상부 플랜지(132)와 하부 플랜지(133)의 하면에 형성될 수도 있다.
제1 보빈(110)의 상부 플랜지(112) 부분에는 제1 보빈(110)과 제2 보빈(130)의 사이를 몰딩부(160)로 채우기 위한 주입홈(118)이 형성된다. 주입홈(118)은 제1 보빈(110)과 제2 보빈(130)의 사이에 몰딩부(160) 형성을 위한 절연물질(사출물)을 주입할 수 있는 구멍을 형성한다.
제1 보빈(110)의 주입홈(118)을 통해 사출물을 주입하여 제1 보빈(110)과 제2 보빈(130)을 일체화시키고 제1 보빈(110)에 권선된 1차 코일(120)을 감싸는 몰딩부(160)를 형성한다.
제2 보빈(130)의 하부 플랜지(133)에 주입공(138)이 형성된다. 주입공(138)은 주입홈(118)과 연통되는 위치에 형성되어 제1 보빈(110)과 제2 보빈(130)의 사이를 몰딩부(160)로 채울 수 있도록 한다. 주입홈(118)과 주입공(138)으로 구성되는 2개의 구멍을 통해 제1 보빈(110)과 제2 보빈(130)의 사이를 몰딩부(160)로 채우면 기포 발생없이 제1 보빈(110)과 제2 보빈(130)의 사이를 몰딩부(160)로 균일하게 채울 수 있어 내습 등으로부터 1차 코일(120)을 보호할 수 있다.
이 경우, 주입공(138)을 주입홈(118)의 직하방 위치에 배치하여 주입홈(118)과 연통되는 구조로 형성하게 되면, 제1 보빈(110)의 주입홈(118)에 절연물질을 주입하는 과정에서 제1 보빈(110)과 제2 보빈(130) 사이의 코일 권선 공간에 잔류하고 있던 공기가 반대편의 주입공(138)을 통해 외부로 원활이 빠져나가 배출될 수 있다. 따라서, 제1 보빈(110)과 제2 보빈(130) 사이의 코일 권선 공간을 기포 발생이 없는 균일한 몰딩부(160)로 형성할 수 있으며, 이로 인해 제1 보빈(110)과 제2 보빈(130)의 사이의 결합력과 절연성능이 높아지게 되어 트랜스포머 제품의 품질을 향상시킬 수 있다.
한편, 도 5와 도 6에 도시된 바에 의하면, 제2 보빈(130)의 상부 플랜지(132)와 하부 플랜지(133)는 양측 내면에 길이 방향으로 산부와 골부가 물결 형상으로 반복되어 형성된 요철부(139)를 포함한다.
요철부(139)는 연면거리를 증가시켜 절연거리를 추가 확보하기 위한 것이다. 연면거리는 두 개의 도체 사이에서 절연물의 표면을 따르는 최단거리이고, 절연거리는 공기 중에서 두 개의 도체 사이의 최단거리, 즉 공간거리(공기 절연거리)이다.
트랜스포머(10)에서 누설전류를 없게 하기 위한 절연거리는 오염 기준으로 설정시 오픈 구조인 경우 Degree 2이고 1.0mm이다. 즉, 권선부의 코일이 외부로 노출되는 오픈된 구조의 트랜스포머로 제작하면 절연거리(2차 코일이 권선된 권선부를 제외한 제2 보빈의 단부까지 길이(m))가 1.0mm이상이 되어야 한다.
아래의 표 1은 오염 등급에 따른 최소 공기 절연거리를 나타낸 것이다.
Pollution degree
(see 13.1)
X
mm
1 0.25
2 1.0
3 1.5
표 1에서 최소 공기 절연거리는 오염을 방지하기 위해 확보해야 하는 공간거리를 의미한다. 오염은 절연체의 전기적 강도, 표면저항을 감소시킬 수 있는 이물질을 의미한다. 몰딩부(160)를 사용하여 공간거리를 줄일 수 있다.
본 발명의 실시예는 제1 보빈(110)과 제2 보빈(130)의 코일 부분이 몰딩부(160)로 막혀져서 오염이 없는 절연 구조이므로 공간거리를 Degree 1인 0.25mm 이상으로 설계 가능하다. 따라서, 본 발명은 제1 보빈(110)과 제2 보빈(130)의 코일 부분을 몰딩부(160)로 몰딩하여 Degree 1인 0.25mm로 공간거리를 설계하고, 요철부(139)를 적용하여 연면거리를 증가시킴으로써 절연거리를 추가 확보할 수 있다.
도 6에 도시된 바에 의하면, 상부 플랜지(132)의 요철부(139)의 산부(s1,s2,s3)와 골부(v1,v2,v3)는 하부 플랜지(133)의 요철부(139)의 산부(s1,s2,s3)와 골부(v1,v2,v3)와 서로 대칭되는 형상이다. 상부 플랜지(132)의 요철부(139)와 하부 플랜지(133)의 요철부(139)를 서로 대칭되는 형상으로 형성하면 제2 보빈(130)의 형상 성형이 용이하고 취출도 용이하다.
요철부(139)는 서로 이웃하는 산부들(s1,s2,s3)의 높이가 서로 다를 수 있다. 요철부(139)는 몰딩부(160)를 형성하는 사출물과 사출 결합력을 향상시켜 본체(100)의 전체적인 구조를 강화한다. 요철부(139)에서 서로 이웃하는 산부들(s1,s2,s3)의 높이가 서로 다르면 사출 결합력이 더 향상되어 본체(100)의 전체적인 구조를 강화하는데 이점이 있다.
요철부(139)는 가장 바깥쪽에 위치한 산부(s3)의 높이가 가장 높다. 이는 권선부(131)의 높이를 안쪽에 비해 바깥쪽이 낮게 하여, 권선부(131)에 코일이 여유있게 권선될 수 있도록 하고, 권선부(131)에 권선된 코일이 임의로 이탈되는 것을 방지한다. 또한, 가장 바깥쪽에 위치한 산부(s3)는 다른 산부(s1,s2)에 비해 더 돌출되어 절연거리를 추가 확보하는 기능을 하며, 돌출된 높이는 자동 권선이 최대 가능한 수준까지 돌출된다.
또한, 요철부(139)는 가장 바깥쪽에 위치한 산부(s3)의 상단이 안쪽을 향해 경사진 형상인 것이 바람직한데, 이는 권선부(131)의 바깥쪽의 높이가 안쪽에 비해 낮더라도 코일이 권선부(131)로 잘 삽입되게 함으로써 자동 권선이 용이하도록 하기 위함이다. 즉, 코일이 잘 감기고 풀어지지 않도록 한다.
요철부(139)는 가장 바깥쪽에 위치한 산부(s3)를 제외한 나머지 산부(s1,s2)가 상부 플랜지(132) 및 하부 플랜지(133)의 두께 범위 내에서 상부 플랜지(132) 및 하부 플랜지(133)의 내면 높이와 같거나 상대적으로 낮은 높이를 형성한다. 구체적으로, 가장 바깥쪽에 위치한 산부가 형성된 부분을 제외하고 산부가 형성된 상부 플랜지(132) 및 하부 플랜지(133)의 두께는 요철부(139)가 형성되지 않은 부분의 상부 플랜지(132) 및 하부 플랜지(133)의 두께와 동일하거나 작다. 이는 요철부(139)가 상부 플랜지(132) 및 하부 플랜지(133)에 음각으로 형성되어 코일의 자동 권선에는 악영향을 미치지 않으면서 연면거리를 증가시키고 사출물과의 사출결합력을 향상시키는데는 이점으로 작용할 수 있도록 하기 위함이다.
요철부(139)는 상부 플랜지(132)와 하부 플랜지(133)의 양측 내면에서 가장자리에만 형성되는 것이 바람직하다. 2차 코일이 직접 권선된 권선부(131)를 제외한 제2 보빈(130)의 단부까지 길이(공간거리)(m)에서 연면거리를 증가시키기 위해 요철부(139)를 형성하므로, 요철부(139)는 상부 플랜지(132)와 하부 플랜지(133)의 연장 방향으로 내면에 가장자리에만 상하로 형성되는 것이 바람직하다.
코일이 직접 권선되는 부분에도 요철부(139)가 형성되면 코일을 안정적으로 권선하는 것이 어려울 수 있다. 2차 코일(140)이 직접 권선되는 권선부(131)에 대응하는 상부 플랜지(132)와 하부 플랜지(133)의 양측 내면은 평평하게 형성하여 코일이 권선부(131)에 압입되도록 함으로써 코일이 안정적으로 권선되게 하는 것이 바람직하다.
요철부(139)는 산부(s1,s2,s3)와 골부(v1,v2,v3)의 높이와 간격이 불규칙한 물결 형상일 수 있다. 산부(s1,s2,s3)와 골부(v1,v2,v3)의 높이와 간격이 불규칙하되, 가장 바깥쪽에 위치한 산부(s3)를 제외한 나머지 산부(s1,s2)는 상부 플랜지(132) 및 하부 플랜지(133)의 두께 범위 내에서 상부 플랜지(132) 및 하부 플랜지(133)의 내면 높이와 같거나 상대적으로 낮은 높이를 형성하는 것이 바람직하다.
즉, 가장 바깥쪽에 위치한 산부(s3)가 형성된 부분을 제외하고 산부(s1,s2)가 형성된 상부 플랜지(132) 및 하부 플랜지(133)의 두께는 요철부(139)가 형성되지 않은 부분의 상부 플랜지(132) 및 하부 플랜지(133)의 두께와 동일하거나 작은 것이 바람직하다.
이러한 요철부(139)는 상부 플랜지(132)와 하부 플랜지(133)의 가장자리를 따라 산부와 골부가 나란하게 형성될 수 있다.
도 7 및 도 8은 본 발명의 실시예에 의한 요철부 형성 유무에 따른 연면거리를 비교한 비교예를 보인 것이다. 여기서, 도 7은 요철부가 없는 경우의 연면거리를, 도 8은 요철부가 있는 경우의 연면거리를 나타낸 것이다.
일 예로, 도 7에 도시된 바와 같이, 2차 코일(140)이 직접 권선된 권선부(131)를 제외한 제2 보빈(130)의 단부까지 길이(공간거리)(m)가 2.5mm가 되게 설계하고, 도 7에서와 같이 요철부가 형성되지 않은 경우의 연면거리를 산출하면 4.43mm가 된다. 연면거리를 산출한 부분은 굵은색으로 나타내었다.
반면, 도 8에 도시된 바와 같이 2차 코일(140)이 직접 권선된 권선부(131)를 제외한 제2 보빈(130)의 단부까지 길이(공간거리)(m)가 2.5mm가 되게 설계하고, 도 8에서와 같이 요철부(139)가 형성된 경우의 연면거리를 산출하면 5.72mm가 된다.
이러한 요철부(139)는 기존의 2차 보빈(130)의 크기와 동일하게 적용하면서 연면거리를 증가시켜 절연거리를 추가로 확보하게 하므로 트랜스포머의 소형화에 기여할 수 있으면서 안전성이 보장되고 제품 신뢰성도 향상된다.
또한, 요철부(139)는 제2 보빈(130)의 상부 플랜지(132)와 하부 플랜지(133)의 내면에 형성되므로 절연성능을 향상시키기 위해 트랜스포머의 크기를 증가시키지 않아도 되어 트랜스포머의 크기를 줄이는데도 기여할 수 있다.
이하, 본 발명의 작용을 설명한다.
본 발명의 트랜스포머(10)는 몰딩부(160)를 적용하여 오염이 없는 절연 구조가 되므로 Degree 1.인 0.25mm 이상으로 공간거리를 설계시 인증기관의 인정을 받을 수 있어 트랜스포머(10)의 크기를 줄일 수 있다.
또한, 본 발명의 트랜스포머(10)는 제2 보빈(130)의 상부 플랜지(132)와 하부 플랜지(133)의 양측 내면에 요철부(139)를 적용하여 연면거리를 증가시키므로 트랜스포머(10)의 크기를 증가시키지 않고도 절연거리를 추가로 확보할 수 있어 절연성을 대폭 향상시킬 수 있다.
또한, 요철부(139)는 상부 플랜지(132)와 하부 플랜지(133)의 외면에 형성되지 않고 내면에 형성되므로 트랜스포머(10)의 전체 높이를 낮출 수 있다. 요철부(139)를 상부 플랜지(132)와 하부 플랜지(133)의 외면에 형성하여 절연거리를 추가로 확보할 수는 있으나, 이 경우 트랜스포머의 높이가 높아지게 된다. 즉, 본 발명의 실시예는 트랜스포머(10)의 높이를 높이지 않고도 절연거리를 추가로 확보할 수 있다.
또한, 요철부(139)는 몰딩부(160)와 사출 결합력을 증가시켜 트랜스포머(10)의 구조적 강성을 확보하고 내압을 개선할 수 있다.
또한, 본 발명은 제1 보빈(110)을 제2 보빈(130)에 결합한 상태에서 몰딩부(160)에 의해 완전 밀폐되므로 1차 코일(120)과 2차 코일(140)의 안정적인 권선이 유지되고 절연성이 확보될 수 있다.
또한, 본 발명은 제1 보빈(110)과 제2 보빈(130)이 몰딩부(160)에 의해 일체화된 구조를 형성하므로 코어(210,220) 조립이 용이하고 제작공정이 단순하여 생산성을 높일 수 있다.
또한, 본 발명은 단자핀(125,145)과 코일(120,140)의 단부 동선이 연결된 부분이 몰딩부(160)에 의해 몰딩되므로 코일(120,140)과 단자핀(125,145)의 연결부분의 단락을 방지할 수 있어 제품 신뢰성을 향상시킬 수 있다.
상술한 트랜스포머는 TV, 모니터, LED 드라이브 전원장치, PC 파워서플라이 등에 설치하여 안정적인 전원공급이 가능하도록 할 수 있다. 트랜스포머에 적용된 요철부는 크기를 소형화하면서 절연거리를 확보하기 위한 다양한 장치들에 적용 가능하다.
본 발명은 도면과 명세서에 최적의 실시예들이 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (10)

  1. 본체; 및
    상기 본체에 결합되는 코어;
    를 포함하고,
    상기 본체는
    제1 보빈과 제2 보빈을 포함하며,
    상기 제2 보빈은
    코일이 권선되는 권선부;
    상기 권선부를 사이에 두고 각각 코일을 지지하기 위하여 외측으로 연장된 상부 플랜지와 하부 플랜지를 포함하며,
    상기 제2 보빈의 상부 플랜지와 하부 플랜지는 내면에 상기 연장 방향으로 산부와 골부가 물결 형상으로 반복되어 형성된 요철부를 포함하는 트랜스포머.
  2. 제1항에 있어서,
    상기 상부 플랜지의 요철부와 상기 하부 플랜지의 요철부는 서로 대칭되는 형상인 트랜스포머.
  3. 제1항에 있어서,
    상기 요철부는 높이가 다른 산부를 더 포함하는 트랜스포머.
  4. 제1항에 있어서,
    상기 요철부는 가장 바깥쪽에 위치한 산부의 높이가 가장 높은 트랜스포머.
  5. 제1항에 있어서,
    상기 요철부는 가장 바깥쪽에 위치한 산부의 상단이 상기 권선부를 향해 경사진 형상인 트랜스포머.
  6. 제1항에 있어서,
    가장 바깥쪽에 위치한 산부가 형성된 부분을 제외하고 상기 산부가 형성된 상기 상부 플랜지 및 상기 하부 플랜지의 두께는,
    상기 요철부가 형성되지 않은 부분의 상기 상부 플랜지 및 상기 하부 플랜지의 두께와 동일하거나 작은 트랜스포머.
  7. 제1항에 있어서,
    상기 요철부는 상부 플랜지와 하부 플랜지의 가장자리에 형성되는 트랜스포머.
  8. 제1항에 있어서,
    상기 요철부는 상기 상부 플랜지와 상기 하부 플랜지의 가장자리를 따라 산부와 골부가 나란하게 형성된 트랜스포머.
  9. 제1항에 있어서,
    상기 제1 보빈이 상기 제2 보빈에 결합되어,
    상기 제1 보빈과 상기 제2 보빈이 결합된 보빈 결합체는 몰딩부에 의해 몰딩되어 있는 트랜스포머.
  10. 제9항에 있어서,
    상기 제1 보빈은 상기 제1 보빈과 상기 제2 보빈의 사이를 상기 몰딩부로 채우기 위한 주입홈이 형성된 트랜스포머.
PCT/KR2022/015605 2021-10-25 2022-10-14 트랜스포머 WO2023075239A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280068873.9A CN118103932A (zh) 2021-10-25 2022-10-14 变流器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210142390A KR102647723B1 (ko) 2021-10-25 2021-10-25 트랜스포머
KR10-2021-0142390 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023075239A1 true WO2023075239A1 (ko) 2023-05-04

Family

ID=86158349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015605 WO2023075239A1 (ko) 2021-10-25 2022-10-14 트랜스포머

Country Status (3)

Country Link
KR (1) KR102647723B1 (ko)
CN (1) CN118103932A (ko)
WO (1) WO2023075239A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076299A (ko) * 2010-12-29 2012-07-09 삼성전기주식회사 트랜스포머 및 이를 구비하는 평판 디스플레이 장치
US20150116068A1 (en) * 2013-10-31 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20180100825A (ko) * 2017-03-02 2018-09-12 현대자동차주식회사 변압기
KR20190077065A (ko) * 2016-11-09 2019-07-02 엔티엔 가부시키가이샤 인덕터
KR102313650B1 (ko) * 2021-06-18 2021-10-18 주식회사 엠에스티테크 트랜스포머 및 이의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133294B1 (ko) * 2010-09-20 2012-04-04 삼성전기주식회사 트랜스포머
KR102132848B1 (ko) * 2019-08-27 2020-07-13 주식회사 엠에스티테크 트랜스포머 및 그 제조방법
KR20220114306A (ko) * 2021-02-08 2022-08-17 엘지이노텍 주식회사 자성 소자 및 이를 포함하는 회로 기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076299A (ko) * 2010-12-29 2012-07-09 삼성전기주식회사 트랜스포머 및 이를 구비하는 평판 디스플레이 장치
US20150116068A1 (en) * 2013-10-31 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20190077065A (ko) * 2016-11-09 2019-07-02 엔티엔 가부시키가이샤 인덕터
KR20180100825A (ko) * 2017-03-02 2018-09-12 현대자동차주식회사 변압기
KR102313650B1 (ko) * 2021-06-18 2021-10-18 주식회사 엠에스티테크 트랜스포머 및 이의 제조방법

Also Published As

Publication number Publication date
KR20230058774A (ko) 2023-05-03
CN118103932A (zh) 2024-05-28
KR102647723B1 (ko) 2024-03-14

Similar Documents

Publication Publication Date Title
US10658101B2 (en) Transformer and power supply device including the same
US8102237B2 (en) Low profile coil-wound bobbin
TWI420286B (zh) 電源模組及其電路板組合
US5559486A (en) Bobbin for high frequency core
US7515026B1 (en) Structure of transformer
WO2021177801A1 (ko) 권선 코일 및 패턴 코일을 이용한 자성부품
WO2021154048A1 (ko) 트랜스포머 및 이를 포함하는 평판 디스플레이 장치
WO2023075239A1 (ko) 트랜스포머
KR102281276B1 (ko) 평판형 변압기
US6060974A (en) Header plate for a low profile surface mount transformer
WO2023169224A1 (zh) 变压器的高压组件、变压器和电力设备
KR100302951B1 (ko) 트랜스
KR102429668B1 (ko) 트랜스포머
WO2023018067A1 (ko) 코일 부품
JP3640279B2 (ja) トランス
US9570223B2 (en) Transformer apparatus and method for manufacturing transformer apparatus
WO2024071471A1 (ko) 트랜스포머 및 이를 포함하는 llc 공진형 컨버터
WO2022059823A1 (ko) 고조파 저감용 리액터
WO2024106920A1 (ko) 트랜스포머 및 디스플레이 장치
KR102477029B1 (ko) 트랜스포머
KR102702198B1 (ko) 트랜스포머
CN219457323U (zh) 变压器及底盒电源
WO2024128876A1 (ko) 자성 소자 및 이를 포함하는 회로 기판
KR102651675B1 (ko) 트랜스포머
US20240038441A1 (en) Transformer, Power Module and Switching Power Supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280068873.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22887436

Country of ref document: EP

Kind code of ref document: A1