WO2023075057A1 - 폐플라스틱의 가스화 방법 및 이를 위한 폐플라스틱 용융 장치 - Google Patents

폐플라스틱의 가스화 방법 및 이를 위한 폐플라스틱 용융 장치 Download PDF

Info

Publication number
WO2023075057A1
WO2023075057A1 PCT/KR2022/007726 KR2022007726W WO2023075057A1 WO 2023075057 A1 WO2023075057 A1 WO 2023075057A1 KR 2022007726 W KR2022007726 W KR 2022007726W WO 2023075057 A1 WO2023075057 A1 WO 2023075057A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste plastic
extruder
melting
gasification
molten
Prior art date
Application number
PCT/KR2022/007726
Other languages
English (en)
French (fr)
Inventor
조시동
유정민
김환
이상준
염승엽
Original Assignee
현대엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대엔지니어링 주식회사 filed Critical 현대엔지니어링 주식회사
Publication of WO2023075057A1 publication Critical patent/WO2023075057A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/12Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of plastics, e.g. rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Definitions

  • the present invention relates to a technology for gasification of waste, and more particularly, to a technology for producing syngas using waste plastic as a raw material.
  • gasification means producing syngas, which is a gaseous material, by heat and chemical energy conversion of a solid material.
  • Korean Patent Registration No. 10-1229220 describes a technology of gasifying waste containing waste plastic.
  • shredded waste stored in a hopper is supplied to a gasification chamber, the gasification chamber gasifies the shredded waste using a plasma torch, and burns the gas discharged from the gasification chamber in a combustion chamber.
  • Gasification of waste including waste plastics In this conventional gasification technology of waste plastics, waste plastics are introduced into the gasification process in a solid state. Moisture and inorganic and incombustible materials make it difficult to operate the gasification process stably.
  • An object of the present invention is to provide a method for gasifying waste plastics that supplies waste plastics in a state of appropriate physical properties to a gasification process.
  • an apparatus for producing a molten waste plastic material as a raw material for gasification of waste plastic comprising: a first extruder for melting the waste plastic in a solid state; and a second extruder extruding and conveying the molten waste plastic discharged from the first extruder.
  • the waste plastic raw material can be supplied with uniform physical properties to the gasification process.
  • FIG. 1 is a flowchart schematically illustrating a method for gasifying waste plastic according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates the configuration of a waste plastic melting device in which a first melting step and a second melting step are performed in the waste plastic gasification method shown in FIG. 1 .
  • a waste plastic gasification method includes a waste plastic aggregate production step (S10) of producing waste plastic aggregates using waste plastic as a raw material, and a waste plastic aggregate production step (S10).
  • waste plastic aggregates compressed using waste plastic as a raw material are produced.
  • the waste plastic aggregate producing step (S10) may be performed using a conventional pellet mill.
  • the waste plastic aggregate produced through the waste plastic aggregate production step (S10) is supplied to the waste plastic melting step (S20) and melted. Since the waste plastic itself has a very low volume density, it is not suitable to be directly supplied to the waste plastic melting step (S20).
  • the volume density of the waste plastic aggregate produced through the waste plastic aggregate production step (S10) is preferably 0.1 g/cm 3 or more, more preferably 0.3 g/cm 3 or more. am.
  • the waste plastic melting step (S20) the waste plastic aggregate produced in the waste plastic aggregate production step (S10) is melted to produce a liquefied waste plastic melt material.
  • the waste plastic melting step (S20) includes a first melting step (S21) and a second melting step (S22) that are continuously performed, and is performed using the waste plastic melting device 100 shown in FIG.
  • the waste plastic melting device 100 includes a first extruder 110 in which a first melting step (S21 in FIG. 1) is performed, and a first extruder 110 in which a second melting step (S22 in FIG. 2) is performed. It includes two extruders 150, a connecting passage 190 for communicating the first extruder 110 and the second extruder 150, and a screen changer 193 installed on the connecting passage 190.
  • the first extruder 110 extrudes and transports a cylindrical first barrel 120 and waste plastic aggregates A accommodated inside the first barrel 120 and put into the first barrel 120.
  • the first screw 130, the first drive motor 140 for rotating the first screw 130, and the first heating heater for heating the waste plastic agglomerates A inside the first barrel 120 (not shown). city) is provided.
  • a first melting step (S21 in FIG. 1) is performed by the first extruder 110.
  • the first barrel 120 has a cylindrical shape, and the first screw 130 is accommodated in the first barrel 120, and the first transfer passage 122 through which the injected waste plastic aggregates A are melted and extruded is formed. are provided A hopper 145 is installed in the first barrel 120 to accommodate waste plastic aggregates A supplied to the first transfer passage 122 of the first barrel 120 .
  • the first barrel 120 is connected to a first gas discharge pipe 126 through which gas generated during the melting process of the waste plastic agglomerate A in the first transfer passage 122 is discharged.
  • the gas discharged through the first gas discharge pipe 126 is supplied to the desalination device where the desalination step ( S50 in FIG. 1 ) is performed.
  • the molten waste plastic material discharged from the first barrel 120 is supplied to the second extruder 150 through the connecting passage 190 .
  • the first screw 130 is accommodated in the first transfer passage 122 of the first barrel 120 and is rotated by the first driving motor 140 .
  • the waste plastic agglomerates A and the waste plastic molten material introduced into the first barrel 120 by rotation of the first screw 130 are extruded and transported through the first conveying passage 122 .
  • the first driving motor 140 rotates the first screw 130 to extrude and transfer the waste plastic agglomerates A and the waste plastic molten material in the first transfer passage 122 .
  • a first heating heater heats and melts the waste plastic agglomerates A accommodated in the first transfer passage 122 of the first barrel 120 .
  • the temperature of the first heating heater can be controlled so that the extrusion temperature of the first extruder 110 can be adjusted.
  • the waste plastic aggregates (A) supplied to the first transfer passage 122 of the first barrel 120 are compressed, heated, and melted while being transported by the first screw 130 .
  • the waste plastic molten material discharged from the first barrel 120 is supplied to the second extruder 150 through the moving passage 190 .
  • the second extruder 150 includes a cylindrical second barrel 160 and a second screw accommodated inside the second barrel 160 and extruding and transferring the waste plastic molten material introduced into the second barrel 160 ( 170), a second driving motor 180 for rotating the second screw 170, and a second heating heater (not shown) for heating the waste plastic melt inside the second barrel 160.
  • a second melting step (S22 in FIG. 1) is performed by the second extruder 150.
  • the second extruder 150 transports only the molten waste plastic material with a small load, so that the second extruder 150 may be smaller than the first extruder 110. That is, compared to the first extruder 110, less energy may be used to operate the second driving motor 180 and the second heating heater (not shown) of the second extruder 160.
  • the second barrel 160 has a cylindrical shape, and a second screw 170 is accommodated in the second barrel 160 and a second transfer passage 162 through which the molten waste plastic material is extruded and transported is provided.
  • the molten waste plastic material discharged from the first extruder 110 flows into the second transfer passage 162 of the second barrel 160 through the connection passage 190 .
  • a second gas discharge pipe 166 through which gas generated in the second transfer passage 162 is discharged is connected to the second barrel 160 .
  • the gas discharged through the second gas discharge pipe 166 is supplied to the desalination device where the desalination step ( S50 in FIG. 1 ) is performed.
  • the molten waste plastic material discharged from the second barrel 160 is supplied through the discharge passage 199 to a homogenization device where a homogenization step (S30 in FIG. 1 ) is performed.
  • a homogenization step S30 in FIG. 1
  • the length of the second barrel 160 is It is possible to form shorter than the length of one barrel (110).
  • the second screw 170 is accommodated in the second transfer passage 162 of the second barrel 160 and is rotated by the second drive motor 180 .
  • the molten waste plastic material introduced into the second barrel 160 by the rotation of the second screw 170 is extruded and transported through the second conveying passage 162 .
  • the second driving motor 180 rotates the second screw 170 to extrude and transport the waste plastic melt in the second conveying passage 162 .
  • the second drive motor 180 may be rotated with a lower driving force than the first driving motor 140 of the extruder 110 .
  • a second heating heater maintains a molten state by heating the molten waste plastic material that is received and transported in the second transfer passage 162 of the second barrel 160 .
  • the temperature of the second heating heater can be adjusted so that the extrusion temperature of the second extruder 150 can be adjusted.
  • the extrusion temperature by the second extruder 150 may be formed higher than the extrusion temperature by the first extruder 110 .
  • the connecting passage 190 communicates the outlet of the first barrel 120 of the first extruder 110 and the inlet of the second barrel 160 of the second extruder 150 .
  • the molten waste plastic material discharged from the first barrel 120 flows into the second barrel 160 through the connection passage 190 .
  • a screen changer 193 is installed on the connection passage 190 .
  • the screen changer 193 is installed on the connection passage 190.
  • the screen changer 193 includes a screen 196 that filters impurities such as inorganic substances from the waste plastic melt passing through the connecting passage 190 .
  • the screen changer 193 has a structure that can easily replace the screen 196.
  • the molten state of the waste plastic molten material produced through the waste plastic melting step (S20) is homogenized.
  • the homogenization step (S30) is performed by allowing the waste plastic molten material produced in the waste plastic melting step (S20) to stay in a vessel for a certain period of time. Since the waste plastic is composed of various polymer materials, physical properties including specific gravity and viscosity of the waste plastic melt produced in the waste plastic melting step (S20) are inevitably non-uniform.
  • the waste plastic melt produced in the waste plastic melting step (S20) stays in the vessel for a certain period of time, so that the specific gravity and viscosity can be made uniform.
  • a heating heater for maintaining a molten state of the waste plastic material may be provided in the container.
  • the gas generated in the homogenization step (S30) is supplied to the desalination device where the desalination step (S50) is performed.
  • the waste plastic molten material having melted properties uniformized through the homogenization step (S30) is supplied to the gasification furnace where the gasification step (S40) is performed.
  • the waste plastic molten material that has passed through the homogenization step (S30) is partially oxidized in a gasification furnace to produce syngas.
  • the gasification furnace used in the gasification step (S40) includes a configuration commonly used in the gasification process (eg, the gasification furnace described in Korean Patent Registration No. 10-1323636), a detailed description thereof will be omitted.
  • the desalination step (S50) the halogen components included in the decomposition gas generated in the melting step (S20) and the gas generated in the homogenization step (S30) are removed.
  • hydrocarbon condensates usable as fuel in the gasification step (S40) may be recovered through the desalination step (S50). Since the desalination step (S50) may be performed by conventional desalination equipment, a detailed description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명에 의하면, 폐플라스틱을 용융시켜서 폐플라스틱 용융물질을 생산하는 폐플라스틱 용융 단계; 및 상기 폐플라스틱 용융물질을 가스화 노에서 부분 산화시켜서 합성가스를 생산하는 가스화 단계를 포함하는, 폐플라스틱의 가스화 방법이 제공된다.

Description

폐플라스틱의 가스화 방법 및 이를 위한 폐플라스틱 용융 장치
본 발명은 폐기물의 가스화 기술에 관한 것으로서, 더욱 상세하게는 폐플라스틱을 원료로 합성가스를 생산하는 기술에 관한 것이다.
일반적으로 가스화는 고체 상태의 물질을 열, 화학적 에너지 전환방법에 의하여 기체 상태의 물질인 합성가스(syngas)를 생산하는 것을 의미한다.
본 발명의 기술분야인 폐기물의 가스화 기술과 관련하여, 대한민국 등록특허 제10-1229220호에는 폐플라스틱을 포함하는 폐기물을 가스화하는 기술이 기재되어 있다. 대한민국 등록특허 제10-1229220호에서는, 호퍼에 저장된 파쇄된 폐기물이 가스화실로 공급되고, 상기 가스화실은 플라즈마 토치를 이용하여 상기 파쇄된 폐기물을 가스화하며, 상기 가스화실에서 배출되는 가스를 연소실에서 연소시켜서 폐플라스틱을 포함하는 폐기물을 가스화한다. 이러한 종래의 폐플라스틱의 가스화 기술은 폐플라스틱을 고체 상태로 가스화 공정에 투입하는데, 폐플라스틱을 고체 상태로 가스화 공정에 투입하는 경우에, 고체상태 폐플라스틱의 불균질한 물성과, 폐플라스틱에 포함된 수분 및 무기물과 불연성 물질 등은 가스화 공정의 안정적 운전을 어렵게 한다.
본 발명의 목적은 폐플라스틱을 가스화 공정에 적절한 물성치의 상태로 공급하는 폐플라스틱의 가스화 방법을 제공하는 것이다.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 폐플라스틱을 용융시켜서 폐플라스틱 용융물질을 생산하는 폐플라스틱 용융 단계; 및 상기 폐플라스틱 용융물질을 가스화 노에서 부분 산화시켜서 합성가스를 생산하는 가스화 단계를 포함하는, 폐플라스틱의 가스화 방법이 제공된다.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 다른 측면에 따르면, 폐플라스틱의 가스화를 위한 원료로서 폐플라스틱 용융물질을 생산하는 장치로서, 고체 상태의 폐플라스틱을 용융시키는 제1 압출기; 및 상기 제1 압출기로부터 배출되는 용융된 폐플라스틱을 압출 이송시키는 제2 압출기를 포함하는, 폐플라스틱 용융 장치가 제공된다.
본 발명에 의하면 앞서서 기재한 본 발명의 목적을 모두 달성할 수 있다. 구체적으로, 폐플라스틱이 압출기에 의해 용융된 후 균일화 단계를 거쳐서 가스화 공정에 공급하므로, 가스화 공정에 폐플라스틱 원료가 균일화된 물성으로 공급될 수 있다.
도 1은 본 발명의 일 실시예에 따른 폐플라스틱의 가스화 방법을 개략적으로 설명하는 순서도이다.
도 2는 도 1에 도시된 폐플라스틱의 가스화 방법에서 제1 용융 단계와 제2 용융 단계가 수행되는 폐플라스틱 용융 장치의 구성을 개략적으로 도시한 것이다.
이하, 도면을 참조하여 본 발명에 따른 실시예의 구성 및 작용을 상세하게 설명한다.
도 1에는 본 발명의 일 실시예에 따른 폐플라스틱의 가스화 방법이 순서도로서 도시되어 있다. 도 1을 참조하면 본 발명의 일 실시예에 따른 폐플라스틱의 가스화 방법은, 폐플라스틱을 원료로 폐플라스틱 응집물을 생산하는 폐플라스틱 응집물 생산 단계(S10)와, 폐플라스틱 응집물 생산 단계(S10)를 통해 생산된 폐플라스틱 응집물을 용융하여 폐플라스틱 용융물질을 생산하는 폐플라스틱 용융 단계(S20)와, 폐플라스틱 용융 단계(S20)를 통해 생산된 폐플라스틱 용융물질의 용융 상태를 균일화하는 균일화 단계(S30)와, 균일화 단계(S30)를 거친 폐플라스틱 용융물질을 가스화 노에서 부분 산화시켜서 합성가스를 생산하는 가스화 단계(S40)와, 용융 단계(S20)와 균일화 단계(S30)에서 발생한 가스에서 할로겐 성분을 제거하는 탈염 단계(S50)를 포함한다. 이제, 폐플라스틱의 가스화 방법의 각 단계들(S10, S20, S30, S40, S50)을 상세하게 설명한다.
폐플라스틱 응집물 생산 단계(S10)에서는 폐플라스틱을 원료로 압축된 폐플라스틱 응집물이 생산된다. 폐플라스틱 응집물 생산 단계(S10)는 통상적인 펠렛 밀(pellet mill)을 이용하여 수행될 수 있다. 폐플라스틱 응집물 생산 단계(S10)를 통해 생산된 폐플라스틱 응집물은 폐플라스틱 용융 단계(S20)로 공급되어서 용융된다. 폐플라스틱 자체는 체적 밀도가 매우 낮기 때문에 폐플라스틱 용융 단계(S20)로 바로 공급되기에 적합하지 않다. 폐플라스틱 용융 단계(S20)의 효율적 수행을 위하여 폐플라스틱 응집물 생산 단계(S10)를 통해 생산되는 폐플라스틱 응집물의 체적 밀도는 바람직하게는 0.1g/㎤ 이상이며, 더욱 바람직하게는 0.3g/㎤ 이상이다.
폐플라스틱 용융 단계(S20)에서는 폐플라스틱 응집물 생산 단계(S10)를 통해 생산된 폐플라스틱 응집물이 용융되어서 액화된 폐플라스틱 용융물질이 생산된다. 폐플라스틱 용융 단계(S20)는 연속적으로 수행되는 제1 용융 단계(S21)와 제2 용융 단계(S22)를 구비하는데, 도 2에 도시된 폐플라스틱 용융 장치(100)를 이용하여 수행된다.
도 2를 참조하면, 폐플라스틱 용융 장치(100)는, 제1 용융 단계(도 1의 S21)가 수행되는 제1 압출기(110)와, 제2 용융 단계(도 2의 S22)가 수행되는 제2 압출기(150)와, 제1 압출기(110)와 제2 압출기(150)를 연통시키는 연결 통로(190)와, 연결 통로(190) 상에 설치되는 스크린 체인저(193)를 포함한다.
제1 압출기(110)는 원통 형상의 제1 배럴(barrel)(120)과, 제1 배럴(120)의 내부에 수용되어서 제1 배럴(120)에 투입된 폐플라스틱 응집물(A)들을 압출 이송하는 제1 스크루(130)와, 제1 스크루(130)를 회전시키는 제1 구동 모터(140)와, 제1 배럴(120)의 내부에서 폐플라스틱 응집물(A)들을 가열하는 제1 가열 히터(미도시)를 구비한다. 제1 압출기(110)에 의해 제1 용융 단계(도 1의 S21)가 수행된다.
제1 배럴(120)은 원통 형상으로서, 제1 배럴(120)의 내부에 제1 스크루(130)가 수용되고 투입된 폐플라스틱 응집물(A)들이 용융되면서 압출 이송되는 제1 이송 통로(122)가 구비된다. 제1 배럴(120)에는 제1 배럴(120)의 제1 이송 통로(122)로 공급되는 폐플라스틱 응집물(A)들이 수용되는 호퍼(145)가 설치된다. 제1 배럴(120)에는 제1 이송 통로(122)에서 폐플라스틱 응집물(A)의 용융 과정에서 발생한 가스가 배출되는 제1 가스 배출관(126)이 연결된다. 제1 가스 배출관(126)을 통해 배출되는 가스는 탈염 단계(도 1의 S50)가 수행되는 탈염 장치로 공급된다. 제1 배럴(120)로부터 배출되는 폐플라스틱 용융물질은 연결 통로(190)를 통해 제2 압출기(150)로 공급된다.
제1 스크루(130)는 제1 배럴(120)의 제1 이송 통로(122)에 수용되고 제1 구동 모터(140)에 의해 회전한다. 제1 스크루(130)의 회전에 의해 제1 배럴(120)에 투입된 폐플라스틱 응집물(A)들 및 폐플라스틱 용융물질이 제1 이송 통로(122)를 통해 압출 이송된다.
제1 구동 모터(140)는 제1 스크루(130)를 회전시켜서 제1 이송 통로(122)에서 폐플라스틱 응집물(A)들 및 폐플라스틱 용융물질을 압출 이송시킨다.
제1 가열 히터(미도시)는 제1 배럴(120)의 제1 이송 통로(122)에 수용된 폐플라스틱 응집물(A)들을 가열하여 용융시킨다. 제1 가열 히터(미도시)는 온도 조절이 가능하여 제1 압출기(110)에 의한 압출 온도가 조절될 수 있다.
제1 배럴(120)의 제1 이송 통로(122)로 공급된 폐플라스틱 응집물(A)들은 제1 스크루(130)에 의해 이송되는 과정에서 압축 및 가열되어서 용융된다. 제1 배럴(120)로부터 배출되는 폐플라스틱 용융물질은 이동 통로(190)를 거쳐서 제2 압출기(150)로 공급된다.
제2 압출기(150)는 원통 형상의 제2 배럴(160)과, 제2 배럴(160)의 내부에 수용되어서 제2 배럴(160)에 유입된 폐플라스틱 용융물질을 압출 이송하는 제2 스크루(170)와, 제2 스크루(170)를 회전시키는 제2 구동 모터(180)와, 제2 배럴(160)의 내부에서 폐플라스틱 용융물질을 가열하는 제2 가열 히터(미도시)를 구비한다. 제2 압출기(150)에 의해 제2 용융 단계(도 1의 S22)가 수행된다. 제2 압출기(150)는 제1 압출기(110)와는 달리 부하가 적은 폐플라스틱 용융물질만을 이송하기 때문에, 제1 압출기(110)보다 소형의 것이 사용될 수 있다. 즉, 제1 압출기(110)에 비해 제2 압출기(160)의 제2 구동 모터(180) 및 제2 가열 히터(미도시)의 작동에 적은 에너지가 사용될 수 있다.
제2 배럴(160)은 원통 형상으로서, 제2 배럴(160)의 내부에 제2 스크루(170)가 수용되고 폐플라스틱 용융물질이 압출 이송되는 제2 이송 통로(162)가 구비된다. 제2 배럴(160)의 제2 이송 통로(162)로는 연결 통로(190)를 통해 제1 압출기(110)로부터 배출되는 폐플라스틱 용융물질이 유입된다. 제2 배럴(160)에는 제2 이송 통로(162)에서 발생한 가스가 배출되는 제2 가스 배출관(166)이 연결된다. 제2 가스 배출관(166)을 통해 배출되는 가스는 탈염 단계(도 1의 S50)가 수행되는 탈염 장치로 공급된다. 제2 배럴(160)로부터 배출되는 폐플라스틱 용융물질은 배출 통로(199)를 통해 균일화 단계(도 1의 S30)가 수행되는 균일화 장치로 공급된다. 제2 배럴(160)의 제2 이송 통로(162)에는 제1 배럴(120)의 제1 이송 통로(122)와는 달리 폐플라스틱 용융물질만이 유동하므로, 제2 배럴(160)의 길이는 제1 배럴(110)의 길이보다 짧게 형성되는 것이 가능하다.
제2 스크루(170)는 제2 배럴(160)의 제2 이송 통로(162)에 수용되고 제2 구동 모터(180)에 의해 회전한다. 제2 스크루(170)의 회전에 의해 제2 배럴(160)로 유입된 폐플라스틱 용융물질이 제2 이송 통로(162)를 통해 압출 이송된다.
제2 구동 모터(180)는 제2 스크루(170)를 회전시켜서 제2 이송 통로(162)에서 폐플라스틱 용융물질을 압출 이송시킨다. 제2 배럴(160)의 제2 이송 통로(162)에는 제1 배럴(120)의 제1 이송 통로(122)와는 달리 폐플라스틱 용융물질만이 유동하므로, 제2 구동 모터(180)은 제1 압출기(110)의 제1 구동 모터(140)보다 낮은 구동력으로 제2 스크루(170)를 회전시킬 수 있다.
제2 가열 히터(미도시)는 제2 배럴(160)의 제2 이송 통로(162)에 수용되어 이송되는 폐플라스틱 용융물질을 가열하여 용융상태를 유지시킨다. 제2 가열 히터(미도시)는 온도 조절이 가능하여 제2 압출기(150)에 의한 압출 온도가 조절될 수 있다. 제2 압출기(150)에 의한 압출 온도는 제1 압출기(110)에 의한 압출 온도보다 높게 형성될 수 있다.
연결 통로(190)는 제1 압출기(110)의 제1 배럴(120)의 배출구와 제2 압출기(150)의 제2 배럴(160)의 유입구를 연통시킨다. 연결 통로(190)를 통해 제1 배럴(120)로부터 배출되는 폐플라스틱 용융물질이 제2 배럴(160)로 유입된다. 연결 통로(190) 상에는 스크린 체인저(193)가 설치된다.
스크린 체인저(193)는 연결 통로(190) 상에 설치된다. 스크린 체인저(193)는 연결 통로(190)를 통과하는 폐플라스틱 용융물질에서 무기물 등과 같은 불순물을 걸러내는 스크린(196)을 구비한다. 스크린 체인저(193)는 스크린(196)을 용이하게 교체할 수 있는 구조를 갖는다.
도 1을 참조하면, 균일화 단계(S30)에서는 폐플라스틱 용융 단계(S20)를 통해 생산된 폐플라스틱 용융물질의 용융 상태를 균일화한다. 균일화 단계(S30)는 폐플라스틱 용융 단계(S20)에서 생산된 폐플라스틱 용융물질이 용기(vessel)에 일정시간 체류함으로써 수행된다. 폐플라스틱은 다양한 고분자 물질로 구성되기 때문에, 폐플라스틱 용융 단계(S20)에서 생산된 폐플라스틱 용융물질의 비중과 점도를 포함하는 물성이 불균일할 수 밖에 없다. 균일화 단계(S30)를 통해 폐플라스틱 용융 단계(S20)에서 생산된 폐플라스틱 용융물질이 용기(vessel)에 일정시간 체류함으로써 비중과 점도가 균일해질 수 있다. 도시되지는 않았으나, 균일화 단계(S30)에서 폐플라스틱 용융물질의 용융상태를 유지하기 위한 가열 히터가 용기에 함께 구비될 수 있다. 균일화 단계(S30)에서 발생하는 가스는 탈염 단계(S50)가 수행되는 탈염 장치로 공급된다. 균일화 단계(S30)를 통해 용융 물성이 균일화된 폐플라스틱 용융물질이 가스화 단계(S40)가 수행되는 가스화 노로 공급된다.
가스화 단계(S40)에서는 균일화 단계(S30)를 거친 폐플라스틱 용융물질이 가스화 노에서 부분 산화되어서 합성가스가 생산된다. 가스화 단계(S40)에서 사용되는 가스화 노는 가스화 공정에서 통상적으로 사용되는 구성(예를 들어, 대한민국 등록특허 제10-1323636호에 기재된 가스화 노)을 포함하므로, 이에 대한 상세한 설명은 생략한다.
탈염 단계(S50)에서는 용융 단계(S20)에서 발생한 분해가스와 균일화 단계(S30)에서 발생한 가스에 포함된 할로겐 성분이 제거된다. 또한, 탈염 단계(S50)를 통해 가스화 단계(S40)에서 연료로 사용 가능한 탄화수소 응축물이 회수될 수 있다. 탈염 단계(S50)는 통상적인 탈염 장비에 의해 수행될 수 있으므로, 이에 대한 상세한 설명은 생략한다.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.

Claims (15)

  1. 폐플라스틱을 용융시켜서 폐플라스틱 용융물질을 생산하는 폐플라스틱 용융 단계; 및
    상기 폐플라스틱 용융물질을 가스화 노에서 부분 산화시켜서 합성가스를 생산하는 가스화 단계를 포함하는,
    폐플라스틱의 가스화 방법.
  2. 청구항 1에 있어서,
    상기 폐플라스틱 용융 단계는 연속적으로 수행되는 제1 용융 단계와 제2 용융 단계를 구비하며,
    상기 제1 용융 단계는 제1 압출기에 의해 수행되며,
    상기 제2 용융 단계는 상기 제1 압출기와 연통되는 제2 압출기에 의해 수행되는,
    폐플라스틱의 가스화 방법.
  3. 청구항 1에 있어서,
    상기 제1 압출기로부터 상기 제2 압출기로 상기 폐플라스틱 용융물질이 이동하는 과정에서 상기 폐플라스틱 용융 물질에 포함된 불순물이 스크린에 의해 걸러지는,
    폐플라스틱의 가스화 방법.
  4. 청구항 1에 있어서,
    상기 폐플라스틱 용융물질이 가스화 노로 공급되기 전에 상기 폐플라스틱 용융물질의 비중과 점도를 균일화 시키는 균일화 단계를 더 포함하며,
    상기 균일화 단계는 상기 폐플라스틱 용융물질을 용기에 일정시간 체류시킴으로써 수행되는,
    폐플라스틱의 가스화 방법.
  5. 청구항 1에 있어서,
    상기 폐플라스틱을 원료로 압축된 폐플라스틱 응집물을 생산하는 폐플라스틱 응집물 생산 단계를 더 포함하며,
    상기 폐플라스틱 응집물이 상기 폐플라스틱 용융 단계의 용융 대상으로 공급되는,
    폐플라스틱의 가스화 방법.
  6. 청구항 5에 있어서,
    상기 폐플라스틱 응집물 생산 단계에서 상기 폐플라스틱 응집물은 체적 밀도는 0.1g/㎤ 이상이 되도록 생산되는,
    폐플라스틱의 가스화 방법.
  7. 청구항 6에 있어서,
    상기 폐플라스틱 응집물 생산 단계에서 상기 폐플라스틱 응집물은 체적 밀도는 0.3g/㎤ 이상이 되도록 생산되는,
    폐플라스틱의 가스화 방법.
  8. 청구항 1에 있어서,
    상기 용융 단계에서 발생한 분해가스에 포함된 할로겐 성분을 제거하는 탈염 단계를 더 포함하는,
    폐플라스틱의 가스화 방법.
  9. 폐플라스틱의 가스화를 위한 원료로서 폐플라스틱 용융물질을 생산하는 장치로서,
    고체 상태의 폐플라스틱을 용융시키는 제1 압출기; 및
    상기 제1 압출기로부터 배출되는 용융된 폐플라스틱을 압출 이송시키는 제2 압출기를 포함하는,
    폐플라스틱 용융 장치.
  10. 청구항 9에 있어서,
    상기 제1 압출기로부터 배출되는 용융된 폐플라스틱이 유동하고 상기 제2 압출기와 연결되는 연결 통로와, 상기 연결 통로 상에 설치되어서 상기 연결 통로 상에서 유동하는 상기 용융된 폐플라스틱으로부터 불순물을 걸러내는 스크린을 더 포함하는,
    폐플라스틱 용융 장치.
  11. 청구항 9에 있어서,
    상기 제1 압출기로부터 가스를 배출시켜서 탈염 장치로 공급하는 제1 가스 배출관과, 상기 제2 압출기로부터 가스를 배출시켜서 상기 탈염 장치로 공급하는 제2 가스 배출관을 더 포함하는,
    폐플라스틱 용융 장치.
  12. 청구항 9에 있어서,
    상기 제1 압출기는 제1 이송 통로가 형성되는 제1 배럴과, 상기 제1 이송 통로에 수용되는 제1 스크루와, 상기 제1 스크루를 회전시키는 제1 구동 모터와, 압출 온도를 조절하는 제1 가열 히터를 구비하며,
    상기 제2 압출기는 제2 이송 통로가 형성되는 제2 배럴과, 상기 제2 이송 통로에 수용되는 제2 스크루와, 상기 제2 스크루를 회전시키는 제2 구동 모터와, 압출 온도를 조절하는 제2 가열 히터를 구비하는,
    폐플라스틱 용융 장치.
  13. 청구항 12에 있어서,
    상기 제2 압출기에 의한 압출 온도가 상기 제1 압출기에 의한 압출 온도보다 높게 조절되는,
    폐플라스틱 용융 장치.
  14. 청구항 12에 있어서,
    상기 제2 구동 모터은 상기 제1 구동 모터보다 낮은 구동력으로 상기 제2 스크루를 회전시키는,
    폐플라스틱 용융 장치.
  15. 청구항 12에 있어서,
    상기 제2 배럴의 길이가 상기 제1 배럴의 길이보다 짧게 형성되는,
    폐플라스틱 용융 장치.
PCT/KR2022/007726 2021-10-26 2022-05-31 폐플라스틱의 가스화 방법 및 이를 위한 폐플라스틱 용융 장치 WO2023075057A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0143296 2021-10-26
KR1020210143296A KR102672725B1 (ko) 2021-10-26 2021-10-26 폐플라스틱 가스화 설비

Publications (1)

Publication Number Publication Date
WO2023075057A1 true WO2023075057A1 (ko) 2023-05-04

Family

ID=86160078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007726 WO2023075057A1 (ko) 2021-10-26 2022-05-31 폐플라스틱의 가스화 방법 및 이를 위한 폐플라스틱 용융 장치

Country Status (2)

Country Link
KR (1) KR102672725B1 (ko)
WO (1) WO2023075057A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040062793A (ko) * 2003-01-03 2004-07-09 한국에너지기술연구원 피브이씨가 혼합된 폐플라스틱으로부터 염소 제거를 위한스크류반응기 가스배출시스템
JP2006327189A (ja) * 2005-04-28 2006-12-07 Nippon Steel Corp 廃プラスチック成形方法及び廃プラスチック熱分解方法
KR20120014155A (ko) * 2009-04-17 2012-02-16 에레마 엔지니어링 리싸이클링 마쉬넨 운트 안라겐 게젤샤프트 엠. 베.하. 플라스틱 재료 재활용 방법
KR20120103832A (ko) * 2011-03-11 2012-09-20 추용식 폐합성수지 연료화 장치
KR102181822B1 (ko) * 2019-06-15 2020-11-24 홍영기 바이오매스를 포함하는 가연성 재생 연료를 이용한 열분해가스화 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229220B1 (ko) 2011-05-11 2013-02-01 전주대학교 산학협력단 폐기물 가스화처리장치
KR101810068B1 (ko) * 2017-02-02 2017-12-18 주식회사동서산업롤 연속적인 폐플라스틱 유화 시스템 및 그 방법
KR101937192B1 (ko) * 2017-02-13 2019-04-09 곽재경 폐플라스틱 유화 공정에서 발생하는 폐가스를 이용한 에너지 생산 시스템 및 그 방법
KR101810069B1 (ko) * 2017-02-13 2017-12-18 주식회사동서산업롤 마이크로 웨이브의 효율적인 제어를 통한 폐플라스틱 유화 시스템 및 그 방법
KR101828312B1 (ko) * 2017-02-13 2018-02-13 곽재경 마이크로 웨이브를 이용한 폐플라스틱 유화 시스템
KR101857012B1 (ko) * 2017-03-27 2018-05-14 곽재경 가스의 순환을 이용한 연속적인 폐플라스틱 유화 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040062793A (ko) * 2003-01-03 2004-07-09 한국에너지기술연구원 피브이씨가 혼합된 폐플라스틱으로부터 염소 제거를 위한스크류반응기 가스배출시스템
JP2006327189A (ja) * 2005-04-28 2006-12-07 Nippon Steel Corp 廃プラスチック成形方法及び廃プラスチック熱分解方法
KR20120014155A (ko) * 2009-04-17 2012-02-16 에레마 엔지니어링 리싸이클링 마쉬넨 운트 안라겐 게젤샤프트 엠. 베.하. 플라스틱 재료 재활용 방법
KR20120103832A (ko) * 2011-03-11 2012-09-20 추용식 폐합성수지 연료화 장치
KR102181822B1 (ko) * 2019-06-15 2020-11-24 홍영기 바이오매스를 포함하는 가연성 재생 연료를 이용한 열분해가스화 시스템

Also Published As

Publication number Publication date
KR20230059278A (ko) 2023-05-03
KR102672725B1 (ko) 2024-06-04

Similar Documents

Publication Publication Date Title
US9821492B2 (en) Process for recycling plastic materials
CA2352256C (en) Method and device for processing a thermoplastic condensation polymer
KR100756060B1 (ko) 강제피더를 채용한 2축 압출 성형기
JPH04259528A (ja) ポリマー溶融液を直接、連続的に変性する方法および装置
WO2023075057A1 (ko) 폐플라스틱의 가스화 방법 및 이를 위한 폐플라스틱 용융 장치
ITMI20082348A1 (it) Processo ed apparecchiatura di estrusione di poliestere espanso impiegabile in impianti di produzione di foglie, lastre o tubi di poliestere espanso
KR101909164B1 (ko) 폐전선의 피복재 재활용장치
US20160271836A1 (en) Methods and apparatus for extruding recycled plastics
Kimura et al. Twin‐Screw Extrusion of Polyethylene
JP4258791B2 (ja) 廃プラスチックのリサイクル装置およびリサイクル方法
JPH07178790A (ja) 異物の検出方法および熱可塑性樹脂成形品の製造方法
CN212446203U (zh) 一种用于熔喷熔融聚合物的挤出机
US20160279838A1 (en) Moulding method and moulding machine for solid and tubular structures
JP2006130756A (ja) マテリアルリサイクル用原料ペレットの製造方法
CN112454719A (zh) 一种高分子材料用造粒装置及其使用方法
CN117222509A (zh) 混练装置
KR20210103704A (ko) 폐플라스틱 고형연료 성형장치
JPH06285848A (ja) 熱可塑性樹脂組成物の製造方法
KR20240028842A (ko) 스크류 컨베이어가 구비된 중합장치
SI21606A (sl) Postopek mehanskega recikliranja kompozitnega polimernega materiala
CN110625845A (zh) 用于塑料泡沫回收的造粒结构
CN110757674A (zh) 塑料泡沫造粒机
KR20010070864A (ko) 동방향 회전식 2축 압출기를 이용한 선목분건조 후용융수지 혼합 압출방법
JPH11116730A (ja) 熱可塑性樹脂の熱分解装置
JP2003082156A (ja) 高分子系廃棄物の搬送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE