WO2023074887A1 - 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 - Google Patents
情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 Download PDFInfo
- Publication number
- WO2023074887A1 WO2023074887A1 PCT/JP2022/040579 JP2022040579W WO2023074887A1 WO 2023074887 A1 WO2023074887 A1 WO 2023074887A1 JP 2022040579 W JP2022040579 W JP 2022040579W WO 2023074887 A1 WO2023074887 A1 WO 2023074887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- transmitter
- information processing
- sensor
- sensor device
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 216
- 238000003672 processing method Methods 0.000 title claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 75
- 238000012545 processing Methods 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 36
- 238000013459 approach Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000005286 illumination Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 description 28
- 230000006870 function Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/14—Determining absolute distances from a plurality of spaced points of known location
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/68—Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
Definitions
- the present disclosure relates to an information processing system, an information processing device, an information processing method, an information processing program, an air conditioner, and a lighting device.
- the position specifying device described in Patent Literature 1 includes an air pressure sensor and a reader that receives information on the air pressure measured by the air pressure sensor.
- a reader is placed on each floor of the building. For each reader, an upper limit and a lower limit of air pressure measured by an air pressure sensor arranged on each floor are set. The reader identifies that there is an air pressure sensor on the floor on which the reader is located, which measures the air pressure between the upper and lower air pressure limits.
- the position specifying device described above uses air pressure to specify the position in the height direction, and if the air pressure cannot be measured, the position cannot be specified. Also, when specifying the position of an object, it may be required to specify the position in the horizontal direction.
- the present disclosure provides an information processing system, an information processing device, an information processing method, an information processing program, an air conditioner, and a lighting device capable of specifying the position of a sensor device.
- An information processing system of one aspect includes one or a plurality of transmitters that wirelessly transmit power, the transmitters being capable of transmitting different first signals, and a plurality of sensor devices each having a receiver capable of receiving a first signal, arranged at different positions, and capable of measuring a predetermined physical quantity, and each of the plurality of sensor devices and a second signal corresponding to the first signal transmitted from each transmitter, from a plurality of sensor devices, the information processing device comprising: a storage unit that stores first correspondence information that associates a position where a transmitter is arranged, a first signal transmitted by the transmitter, and a second signal corresponding to the first signal; By specifying a transmitter that transmits a first signal corresponding to the second signal transmitted from the sensor device, among the transmitters, based on the first correspondence information, the second signal is transmitted near the transmitter. an estimating unit for estimating that there is a transmitting sensor device.
- a transmitter that transmits a first signal corresponding to a second signal transmitted from a sensor device is specified, and it is estimated that there is a sensor device that transmits a second signal near the transmitter, A sensor device can be located.
- FIG. 1 is a diagram for explaining an information processing system according to an embodiment;
- FIG. 1 is a block diagram for explaining a transmitter according to one embodiment;
- FIG. It is a figure for demonstrating an example of an antenna.
- 1 is a block diagram for explaining a sensor device according to one embodiment;
- FIG. It is a figure for demonstrating an example of a sensor transmission part.
- It is a figure for demonstrating an example of the chair in which a sensor apparatus is arranged.
- 1 is a block diagram for explaining an information processing device according to an embodiment;
- FIG. 4 is a flowchart for explaining an information processing method according to one embodiment;
- FIG. 11 is a diagram for explaining an example of a positioning method of a sensor device according to a modified example of one embodiment
- FIG. 11 is a diagram for explaining another example of the positioning method of the sensor device according to the modified example of the embodiment
- FIG. 11 is a diagram for explaining still another example of a positioning method of a sensor device according to a modification of one embodiment
- a "processor” is one or more processors.
- the at least one processor is typically a microprocessor such as a CPU (Central Processing Unit), but may be another type of processor such as a GPU (Graphics Processing Unit).
- At least one processor may be single-core or multi-core.
- At least one processor may be a broadly defined processor such as a hardware circuit that performs part or all of the processing (for example, FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit)).
- FPGA Field-Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- the expression "xxx table” may be used to describe information that produces an output for an input. It may be a learning model such as a generated neural network. Therefore, the “xxx table” can be called “xxx information”.
- each table is an example, and one table may be divided into two or more tables, or all or part of two or more tables may be one table. good.
- processing may be described using the term “program” as the subject.
- the subject of processing may be a processor (or a device, such as a controller, having that processor).
- the program may be installed on a device such as a computer, or may be, for example, on a program distribution server or computer-readable (eg, non-temporary) recording medium. Also, in the following description, two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
- identification numbers are used as identification information of various objects, but identification information of types other than identification numbers (for example, identifiers containing alphabetic characters and symbols) may be adopted.
- control lines and information lines indicate those that are considered necessary for the explanation, and not all the control lines and information lines are necessarily shown on the product. All configurations may be interconnected.
- FIG. 1 is a diagram for explaining an information processing system 1 according to one embodiment.
- the information processing system 1 includes, for example, a transmitter 100, a sensor device 200, an information processing device 300, and the like.
- a plurality of transmitters 100 may be provided.
- the transmitter 100 wirelessly transmits power to the sensor device 200 and also transmits a first signal.
- Each of the multiple transmitters 100 may, for example, transmit a different first signal.
- the first signal may be, for example, various signals transmitted from the transmitter to the sensor device, or may be a predetermined specific signal.
- a plurality of sensor devices 200 may be provided.
- the sensor device 200 may receive power transmitted from the transmitter 100 and perform various operations including an operation of measuring a predetermined physical quantity.
- the sensor device 200 may transmit a predetermined physical quantity to the information processing device 300 .
- the sensor device 200 receives a first signal transmitted from the transmitter 100 and transmits a second signal corresponding to the first signal to the information processing device 300 .
- the sensor device 200 may transmit the first signal to the information processing device 300 as the second signal.
- the sensor device 200 may transmit a second signal corresponding to the first signal on a one-to-one basis to the information processing device 300 .
- the sensor device 200 may transmit a second signal predetermined according to the first signal to the information processing device 300 as a second signal corresponding to the first signal on a one-to-one basis.
- the information processing device 300 may be, for example, a computer such as a server, desktop, laptop, and tablet.
- the information processing device 300 receives predetermined physical quantities and second signals transmitted from each of the plurality of sensor devices 200 .
- the information processing device 300 refers to the (first) correspondence information and estimates the position of the sensor device 200 that transmits the second signal.
- the first correspondence information is, for example, information that associates a position where each of the plurality of transmitters 100 is arranged, a first signal transmitted by each transmitter 100, and a second signal corresponding to the first signal. may be That is, first, the information processing device 300 identifies the transmitter 100 that transmits the first signal corresponding to the second signal transmitted from the sensor device 200, among the plurality of transmitters 100, based on the first correspondence information. do. Next, the information processing device 300 estimates that there is a sensor device 200 transmitting the second signal near the identified transmitter 100 .
- FIG. 2 is a block diagram for explaining the transmitter 100 according to one embodiment.
- each transmitter 100 wirelessly transmits power to, for example, the sensor device 200 .
- a plurality of transmitters 100 may be capable of transmitting different first signals, for example.
- the first signal may be, for example, various signals or may be a predetermined specific signal.
- Transmitter 100 may transmit the first signal, for example, when transmitting power.
- the transmitter 100 may, for example, always transmit the first signal, or may transmit the first signal at predetermined timings.
- the predetermined timing may be, for example, every predetermined time, the timing when the sensor device 200 is newly installed, or any other timing.
- each of the plurality of transmitters 100 may have a directional coupler 103 for the power signal transmitted from the antenna 104 .
- the transmitter 100 may include a phase locked loop (PLL (Phase Locked Loop) circuit) 101, an amplifier circuit (Amp.) 102, a directional coupler 103, and an antenna 104, for example.
- the phase synchronization circuit 101 may be, for example, a circuit that feeds back part of an input signal and outputs a phase-synchronized signal.
- the amplifier circuit 102 may be, for example, a circuit that amplifies a signal.
- the directional coupler 103 is, for example, a device capable of extracting part of a signal (progressive wave) input from the amplifier circuit 102 side and extracting part of a signal (reflected wave) input from the antenna 104 side. may be
- FIG. 3 is a diagram for explaining an example of the antenna 213.
- FIG. 3 is a diagram for explaining an example of the antenna 213.
- FIG. 4 is a block diagram for explaining the sensor device 200 according to one embodiment.
- a plurality of sensor devices 200 may be provided, for example.
- the plurality of sensor devices 200 are arranged at different positions.
- Each sensor device 200 may be arranged at an arbitrary position, or may be arranged at a specific position, for example.
- the sensor device 200 includes a receiver capable of receiving power transmitted by the transmitter 100 and receiving the first signal.
- the sensor device 200 can measure a predetermined physical quantity.
- Such a sensor device 200 includes, for example, a sensor communication section 210, a sensor section 220, and the like.
- the sensor communication unit 210 includes a sensor reception unit 211 and a sensor transmission unit 212.
- the sensor receiver 211 may be an embodiment of the receiver described above.
- the sensor receiver 211 may receive power transmitted from the transmitter 100, for example. Further, the sensor receiver 211 may receive the first signal transmitted from the transmitter 100, for example.
- the sensor transmission unit 212 may transmit a predetermined physical quantity measured by the sensor unit 220 to the information processing device 300, for example. Further, the sensor transmission unit 212 may transmit a second signal corresponding to the first signal to the information processing device 300, for example. Furthermore, the sensor transmission unit 212 may transmit, for example, identification information for identifying each of the plurality of sensor devices 200 to the information processing device 300 .
- the identification information may include, for example, identification content unique to each of the plurality of sensor devices 200 (for example, content composed of letters, numbers, symbols, etc.).
- the identification content may be stored in each sensor device 200, for example. As an example, the identification information may be included in the second signal.
- the sensor communication unit 210 may include an antenna 213, an example of which is shown in FIG. 3, or may include various other antennas.
- Antenna 213, an example of which is shown in FIG. 3, is of a type in which two flat plates are connected at one end and a feed point 214 is provided at the other end.
- the sensor unit 220 may measure a predetermined physical quantity, for example.
- the predetermined physical quantity may be temperature, humidity, illuminance, carbon dioxide, etc., and may be various other physical quantities.
- the sensor unit 220 may have a control function of the sensor device 200 . That is, when the sensor receiving unit 211 (sensor communication unit 210) receives the first signal, the sensor unit 220 transmits the second signal corresponding to the first signal to the information processing device 300. 210) may be controlled. In this case, the sensor unit 220 may control to transmit the first signal as the second signal when the sensor receiving unit 211 receives the first signal. Alternatively, the sensor unit 220 may control, for example, to transmit a second signal corresponding to the first signal on a one-to-one basis when the sensor receiving unit 211 receives the first signal. In this case, the sensor unit 220 may be controlled to transmit a second signal predetermined according to the first signal, for example, as a second signal corresponding to the first signal on a one-to-one basis.
- FIG. 5 is a diagram for explaining an example of the sensor transmission unit 212.
- FIG. 5 is a diagram for explaining an example of the sensor transmission unit 212.
- FIG. 6 is a diagram for explaining an example of the chair 231 on which the sensor device 200 is arranged.
- a plurality of sensor transmitters 212 of the sensor device 200 described above may be arranged as shown in FIG. 5, the four sensor transmitters 212 of the sensor device 200 are arranged.
- One or more sensor transmitters 212 of the sensor device 200 may be arranged so as to radiate radio waves.
- antenna 2122 may be a bar antenna or the like.
- the antenna 2122 illustrated in FIG. 5 has directivity of radio wave radiation. For this reason, in the case of FIG. 5, four sensor transmitters 212 are provided, and by directing each antenna 2122 in different directions, radio waves are radiated in all directions as a whole.
- the sensor device 200 illustrated in FIG. 5 may be placed on a chair 231 or the like as illustrated in FIG.
- the sensor device 200 may be arranged on the plate surface 232 that contacts the floor surface of the chair 231 .
- a sensor receiver 211 (not shown in FIG. 6), etc. (reception side), which will be described later, may be arranged on the seat surface 233 of the chair 231 .
- FIG. 7 is a diagram for explaining an example of the sensor reception unit 211.
- FIG. 7 is a diagram for explaining an example of the sensor reception unit 211.
- the sensor receiving unit 211 may have a configuration or the like as shown in FIG.
- the sensor receiver 211 may receive a signal (information) transmitted from the information processing device 300, for example.
- the sensor receiver 211 may be arranged, for example, on the seat surface 233 of a chair 231 illustrated in FIG. 6 (the sensor receiver 211 is not illustrated in FIG. 6).
- the sensor receiver 211 may include, for example, multiple antennas 213 . Although six antennas 213 are provided in the case illustrated in FIG. 7, the number of antennas 213 is not limited to the example (six).
- Each of the multiple antennas 213 may be connected by a DC line 2112 via a rectifier 2111, for example. Also, the DC line 2112 may be connected to the sensor section 220, for example.
- the antenna 213 is not limited to the configuration illustrated in FIG. 3, and may have various configurations including a bar antenna.
- FIG. 8 is a block diagram for explaining the information processing device 300 according to one embodiment.
- the information processing device 300 acquires from the plurality of sensor devices 200 the physical quantity measured by each of the plurality of sensor devices 200 and the second signal corresponding to the first signal transmitted from each of the plurality of transmitters 100. is possible.
- Such an information processing device 300 includes, for example, a communication unit 321, a storage unit 322, a display unit 323, a control unit 310, and the like.
- the communication unit 321, the storage unit 322, and the display unit 323 may be, for example, an embodiment of the output unit.
- the control unit 310 includes, for example, an acquisition unit 311, an estimation unit 312, an antenna control unit 313, a processing control unit 314, a reception unit 315, a transmission control unit 316, an output control unit 317, and the like.
- the control unit 310 may be configured by, for example, an arithmetic processing device of the information processing device 300 .
- the control unit 310 (e.g., arithmetic processing unit, etc.) reads and executes various programs stored in the storage unit 322, etc., as appropriate, so that each unit (e.g., acquisition unit 311, estimation unit 312, antenna control unit, etc.) 313, processing control unit 314, reception unit 315, transmission control unit 316, output control unit 317, etc.).
- each unit e.g., acquisition unit 311, estimation unit 312, antenna control unit, etc.
- processing control unit 314 reception unit 315, transmission control unit 316, output control unit 317, etc.
- the communication unit 321 is capable of transmitting and receiving various information with, for example, a device outside the information processing device 300 (external device).
- the communication unit 321 can communicate with, for example, the transmitter 100, the sensor device 200, and the processing unit 400, which will be described later.
- the storage unit 322 may store various information and programs, for example.
- An example of the storage unit 322 may be a memory, a solid state drive, a hard disk drive, and the like.
- the storage unit 322 stores (first) correspondence information that associates the position where the transmitter 100 is arranged, the first signal transmitted by the transmitter 100, and the second signal corresponding to the first signal.
- the first correspondence information includes the position where each of the plurality of transmitters 100 is arranged and the position of each of the plurality of transmitters 100. may be information associated with the first signal transmitted from.
- the first correspondence information includes the positions where each of the plurality of transmitters 100 is arranged, and the location of each of the plurality of transmitters 100. and information in which the first signal transmitted from each of the transmitters 100 and the second signal corresponding to the first signal on a one-to-one basis are associated with each other.
- the display unit 323 can display, for example, various characters, symbols and images.
- the acquisition unit 311 acquires from the plurality of sensor devices 200 the physical quantity measured by each of the plurality of sensor devices 200 and the second signal corresponding to the first signal transmitted from each of the plurality of transmitters 100 . That is, the acquisition unit 311 acquires the physical quantity and the second signal from each of the plurality of sensor devices 200 via the communication unit 321, for example.
- the acquisition unit 311 may acquire identification information from each of the plurality of sensor devices 200 via the communication unit 321, for example.
- the estimation unit 312 Based on the first correspondence information stored in the storage unit 322, the estimation unit 312 generates a first signal according to the second signal transmitted from the sensor device 200 acquired by the acquisition unit 311 among the plurality of transmitters 100. By identifying the transmitter 100 that transmits , it is estimated that there is a sensor device 200 that transmits the second signal near that transmitter 100 . That is, the estimation unit 312, for example, refers to the first correspondence information and identifies the first signal corresponding to the second signal on a one-to-one basis. Furthermore, the estimation unit 312 identifies the transmitter 100 that transmitted the first signal identified as described above, for example, by referring to the first correspondence information.
- the estimation unit 312 acquires the identification information from the sensor device 200, the sensor device 200 that has transmitted the second signal can be identified. Therefore, the estimation unit 312 can estimate that the sensor device 200 that transmitted the second signal is located near the transmitter 100 identified as described above.
- the sensor device 200 described above may be capable of receiving each of the first signals transmitted from the plurality of transmitters 100, for example.
- the sensor device 200 may transmit a second signal corresponding to each of the plurality of first signals to the information processing device 300 .
- the sensor device 200 may include in the second signal information regarding the radio wave intensity of each first signal when each of the plurality of first signals is received.
- the acquisition unit 311 may acquire second signals corresponding to a plurality of first signals from one sensor device 200 (each of a plurality of sensor devices 200) via the communication unit 321.
- the estimation unit 312 performs transmission based on the radio wave intensity of the first signal when the sensor device 200 receives the first signal. It is possible to estimate the distance from the aircraft 100 to the sensor device 200 . That is, for example, assuming that the radio wave intensity of the first signal attenuates according to the transmission distance of the first signal, the estimating unit 312 assumes that the radio wave intensity when the transmitter 100 transmits the first signal and the sensor device 200 The distance from the transmitter 100 to the sensor device 200 can be estimated based on the radio wave intensity when the first signal is received.
- the estimation unit 312 may It is possible to estimate the distance to the device 200 . That is, the estimation unit 312 estimates the position of the sensor device 200 based on, for example, a plurality of distances between each of the plurality of transmitters 100 and the sensor device 200 and the position of the transmitter 100 recorded in the first correspondence information. It is possible to estimate
- the antenna control unit 313 may be provided with an antenna control unit 313 that controls the directivity of the antenna 104 of the transmitter 100 toward the position of the sensor device 200 estimated by the estimation unit 312 . That is, when the antenna 104 has directivity, the antenna control unit 313 selects a direction in which the radio field strength is increased so that the power transmitted from the antenna 104 and the radio field strength of the first signal are relatively increased.
- the orientation of the antenna 104 may be controlled to point toward the sensor device 200 . In this case, the antenna controller 313 may control the orientation of the antenna 104 using various methods and devices, for example.
- the antenna control unit 313 may control the antenna 104 of the transmitter 100 closest to the sensor device 200 based on the position of the sensor device 200 estimated by the estimation unit 312 . For example, when the position of the sensor device 200 is estimated by the estimation unit 312 , the antenna control unit 313 controls the antenna 104 of the transmitter 100 closest to the position of the sensor device 200 to face the sensor device 200 . good too. In this case, the antenna control section 313 may specify the transmitter 100 closest to the position of the sensor device 200 by referring to the position of the transmitter 100 recorded in the first correspondence information.
- the processing control unit 314 controls the processing unit 400 to perform a predetermined process on the position of the sensor device 200. You may
- the processing unit 400 may be an air conditioner (air conditioner).
- the sensor device 200 may include a temperature sensor.
- the sensor device 200 measures temperature as a physical quantity using a temperature sensor.
- the processing control unit 314 may control the air conditioner by sending a control signal to the air conditioner to adjust the temperature at the position where the temperature sensor is arranged. .
- the processing control unit 314 controls the air conditioner so that the temperature at the position where the sensor device 200 measuring the temperature drops (rises). may That is, the processing control unit 314 may control the air conditioner so that the wind direction of the air conditioner is directed to the position where the sensor device 200 is arranged, for example.
- the processing control unit 314 may use, for example, first processing correspondence information that associates in advance the wind direction of the air conditioner with various positions in the environment where the air conditioner is arranged.
- the first process correspondence information may be stored in the storage unit 322, for example.
- first processing correspondence information is prepared in advance, which associates the arrangement position of each sensor device 200 with the target temperature at this arrangement position, and the temperature measured by the sensor device 200 (temperature sensor) is
- the air conditioner may be controlled so as to approach the target temperature associated with the arrangement position of device 200 .
- the control of the air conditioner may be performed based on the temperature and the direction of the wind blowing from the air conditioner.
- control signal is a combination of the temperature measured by the sensor device 200, which is a temperature sensor, and the position of the sensor device 200 estimated by the estimation unit 312.
- Air conditioners usually have a temperature sensor on the air conditioner body, and control themselves based on the temperature measured by the temperature sensor on the air conditioner body (this is usually the temperature near the air conditioner body).
- the air conditioner is controlled by the temperature of the air blown out from the air conditioner and the direction of the temperature-adjusted air.
- the air conditioner that receives the control signal from the information processing device 300 preferably performs control based on the control signal rather than the temperature measured by the temperature sensor provided in the main body of the air conditioner.
- the control signal is a combination of the temperature measured by the sensor device 200, which is a temperature sensor, and the position of the sensor device 200 estimated by the estimation unit 312.
- the air conditioner may be controlled based on the average value of the temperatures measured by a plurality of sensor devices 200, or if there is a significant difference between the temperature measured by a specific sensor device 200 and the temperature measured by the other sensor devices 200. If there is a difference, the air conditioner may be controlled to eliminate this difference.
- the information processing device 300 may generate a temperature distribution map of the floor or the like, and the air conditioner may refer to this temperature distribution map to control the temperature distribution to be as uniform as possible.
- a method of providing a temperature sensor in the remote control of the air conditioner and controlling the air conditioner based on the temperature measured by this temperature sensor is conceivable. , it is unclear what kind of control should be performed based on the temperature measured by the temperature sensor provided in the remote control. Also, configurations with multiple remote controls are not very practical. In addition, there are cases where the air conditioner itself is equipped with a means to measure the temperature distribution around it based on the heat rays emitted by the object. It is difficult to measure temperature in places that are hidden by equipment in the floor.
- the processing unit 400 may be a lighting device.
- the sensor device 200 may include an illuminance sensor.
- the sensor device 200 measures ambient brightness as a physical quantity using an illuminance sensor.
- the processing control unit 314 controls the illuminating device by sending to the illuminating device a control signal that adjusts the brightness of the position where the illuminance sensor is arranged.
- the processing control unit 314 measures the illuminance and brightens (turns on) the lighting device near the position where the sensor is arranged. may control the lighting device.
- the processing control unit 314 may use, for example, second processing correspondence information in which lighting devices are associated in advance with various positions in the environment in which the lighting devices are arranged.
- the second process correspondence information may be stored in the storage unit 322, for example.
- second processing correspondence information that associates the arrangement position of each sensor device 200 with the target illuminance at this arrangement position is prepared in advance for the lighting device, and the sensor device 200 (temperature The lighting device may be controlled so that the illuminance measured by the sensor) approaches the target illuminance associated with the arrangement position of the sensor device 200 .
- the details of the control of the lighting device are the same as the details of the control of the air conditioner, so the description is omitted here.
- the sensor device 200 can be placed near the occupant, such as on the floor, so that it is possible to measure illuminance close to the occupant's sensory illuminance. Therefore, by giving priority to the control based on the control signal, it is possible to perform quick illuminance control for the occupants, perform more comfortable illuminance control for the occupants, and perform efficient illuminance control. It also increases energy efficiency. In other words, based on the illuminance at the position where the illuminance sensor is arranged, the illuminance of the environment in the vicinity of the illuminance sensor can be finely adjusted to be appropriate for the person in the vicinity of the illuminance sensor.
- the sensor device 200 may include a human sensor such as an infrared type.
- a human sensor such as an infrared type.
- the sensor device 200 measures the amount of infrared rays around the sensor device 200 as a physical quantity using the human sensor.
- Air conditioners and lighting devices can be controlled based on the measurement results of the motion sensor.
- the temperature and illuminance of the environment near the human sensor are arranged in detail, and for people who are near the human sensor. can be adjusted to suit
- the sensor device 200 may have a button that can be operated by a resident near the sensor device 200.
- the processing unit 400 such as temperature control and illuminance control
- the processing control unit 314 instructs the processing unit 400 to control the vicinity of the sensor device 200 whose button is pressed.
- the air conditioner and lighting device are instructed to preferentially perform temperature control, illuminance control, etc. in the vicinity of the sensor device 200 whose button has been pressed.
- Variations to be performed with priority include control so that the temperature and illuminance in the vicinity of the sensor device 200 where the button is pressed quickly reach the target temperature, etc., and control of the temperature and illuminance in the vicinity of the sensor device 200 where the button is pressed. is not prioritized (I don't want you to do temperature control, illuminance control, etc. too much).
- the controlled object may be a humidity sensor, a CO2 sensor, or a VOC (volatile organic compound) sensor.
- the reception unit 315 may receive predetermined characteristics measured by each of the plurality of directional couplers 103 . That is, the receiving unit 315 may receive predetermined characteristics of the directional couplers 103 arranged in each of the plurality of transmitters 100 via the communication unit 321, for example.
- the predetermined characteristic may be, for example, an insertion loss or the like based on the input wave and the reflected wave.
- the transmission control unit 316 adjusts the transmission power of the transmitter 100 to which the directional coupler 103 whose characteristics have changed is connected. It may be controlled to be weaker than when it is absent. For example, when the insertion loss of the directional coupler 103 or the like changes to relatively worsen, the transmission control unit 316 can estimate that there is an object relatively close to the antenna 104. . In this case, the transmission control section 316 may control the transmitter 100 so that the power transmitted from the transmitter 100 is relatively weakened.
- a predetermined characteristic (eg, insertion loss, etc.) of the directional coupler 103 temporarily ) can get worse.
- a specific example of a case where a person is near the antenna 104 is a case where a person is working near the antenna 104, a case where a plurality of people are talking near the antenna 104, or the like.
- the transmission control unit 316 estimates that a person is nearby, and weakens the transmission power for a predetermined time.
- the transmitter 100 may be controlled as follows.
- the predetermined time period may be various times such as, for example, 1 minute, 3 minutes, 5 minutes, 8 minutes and 10 minutes.
- the transmission control section 316 may perform control so that the transmission power is restored after a predetermined period of time has elapsed.
- the transmission control unit 316 assumes that an object is nearby, and controls the transmission power to return to the original state. You may
- the output control unit 317 may control the output unit to output the position of the sensor device 200 estimated by the estimation unit 312, for example.
- the output unit may be, for example, the communication unit 321, the storage unit 322, the display unit 323, and the like.
- the output control unit 317 may control the communication unit 321 to transmit information regarding the position of the sensor device 200 estimated by the estimation unit 312 to the outside (external device).
- the external device may be, for example, a server (not shown), a user terminal (not shown) used by a user who uses the information processing apparatus 300, or the like.
- User terminals may be, for example, desktops, laptops, tablets, smartphones, and the like.
- the output control unit 317 may control the storage unit 322 to store information regarding the position of the sensor device 200 estimated by the estimation unit 312, for example.
- the output control unit 317 may control the display unit 323 to display the position of the sensor device 200 estimated by the estimation unit 312, for example.
- the output control unit 317 may control the output unit to output various information generated by each unit of the information processing device 300, not limited to the position of the sensor device 200 estimated by the estimation unit 312, for example. good.
- FIG. 9 is a flowchart for explaining an information processing method according to one embodiment.
- step ST101 the transmitter 100 wirelessly transmits power to the sensor device 200 and also transmits a first signal.
- Each of the multiple sensor devices 200 may, for example, transmit a different first signal.
- step ST102 when the sensor device 200 receives the power transmitted in step ST101, the sensor device 200 measures a physical quantity and transmits it to the information processing device 300, and also generates a second signal corresponding to the first signal transmitted in step ST101. It transmits to the information processing device 300 .
- step ST103 the information processing device 300 acquires the physical quantity and the second signal transmitted in step ST102.
- step ST104 information processing apparatus 300 identifies transmitter 100 that transmits the first signal corresponding to the second signal acquired in step ST103 based on the first correspondence information stored in storage section 322, and Assume that there is sensor device 200 near transmitter 100 that transmits the second signal in step ST102.
- the information processing device 300 may estimate the distance between each of the plurality of transmitters 100 and the sensor device 200 .
- the estimation unit 312 performs triangulation based on, for example, a plurality of distances between each of the plurality of transmitters 100 and the sensor device 200 and the position of the transmitter 100 recorded in the first correspondence information. It is possible to estimate the position.
- the information processing device 300 controls the directivity of the antenna 104 of the transmitter 100 toward the position of the sensor device 200 estimated in step ST105.
- information processing apparatus 300 may control antenna 104 of transmitter 100 closest to sensor apparatus 200 based on the position of sensor apparatus 200 estimated in step ST105.
- the information processing device 300 causes the processing unit to perform a predetermined process on the position of the sensor device 200 based on the physical quantity measured by the sensor device 200 whose position is estimated in step ST105.
- 400 may be controlled. Examples of physical quantities may be temperature, illuminance, and the like.
- An example of the processing unit 400 may be an air conditioner, a lighting device, and the like.
- the information processing device 300 may control the air conditioner to adjust the temperature at the position where the temperature sensor is arranged.
- the information processing device 300 may control the lighting device to adjust the brightness at the position where the illuminance sensor is arranged.
- step ST107 the transmitter 100 transmits the predetermined characteristic acquired by the directional coupler 103 to the information processing device 300.
- the predetermined characteristic may be insertion loss or the like.
- step ST108 the information processing device 300 receives the predetermined characteristic of the directional coupler 103 in step ST107.
- step ST109 information processing apparatus 300 changes the transmission power of transmitter 100 to which directional coupler 103 whose characteristic has changed is connected when the predetermined characteristic received in step ST108 changes to the characteristic. Control to make it weaker than when no change occurs. In this case, the information processing device 300 may control the transmitter 100 to weaken the transmission power for a predetermined period of time.
- the position of the sensor device 200 which is the target of wireless power transmission, can be estimated and preferably identified.
- a plurality of transmitters 100 and sensor devices 200 are provided.
- sensor devices 200 By providing a plurality of sensor devices 200, when a large number of people live in a space in which sensor devices 200 are provided, such as an office or a residence in a building, sensor devices 200 can be placed near the people. can be placed.
- the power required for the sensor device 200 itself to measure the physical quantity is by no means large. Therefore, the transmitter 100 can supply sufficient power for the physical quantity measurement by the sensor device 200 by wireless power transmission.
- the air conditioner, the lighting device, and the like it is possible to control the air conditioner, the lighting device, and the like. That is, the sensor device 200 can measure the physical quantity in the vicinity of a person who lives in an office or the like, and can control an air conditioner or the like so as to create a comfortable space for the person.
- the temperature control of air conditioners and the illuminance control of lighting devices are generally performed based on the temperature at the location where the air conditioner is installed.
- Conventional air conditioner control can be said to be temperature control for optimizing places where there are no people.
- the sensor device 200 can be placed near a person, it is possible to control the temperature and the like to improve the comfort of the person living in the space where the sensor device 200 is provided. can be performed precisely and reliably.
- the information processing device 300 converts the physical quantity measured by each of the plurality of sensor devices 200 and the second signal corresponding to the first signal transmitted from each of the plurality of transmitters 100 into a plurality of It was acquired from the sensor device 200 .
- the transmitter 100 acquires (receives) a signal representing the physical quantity measured by each of the number sensor devices 200 and a second signal corresponding to the first signal transmitted from each of the plurality of transmitters 100.
- the transmitter 100 may transmit the acquired signal representing the physical quantity and the second signal to the information processing device 300 .
- the signal input from the amplifier circuit 102 is transmitted as a transmission power signal from the antenna 104 to the sensor device 200.
- the transmitted signal representing the physical quantity and the second signal received by the antenna 104 may be used as the received signal.
- the frequency band and protocol of the power transmission signal and the first signal from the transmitter 100 to the sensor device 200, and the frequency of the signal representing the physical quantity and the second signal from the sensor device 200 to the transmitter 100 and/or the information processing device 300 Bands and protocols can be appropriately selected from well-known ones. An example will be described below, but the frequency band and protocol that can be employed in the information processing system 1 disclosed in one embodiment and modifications are not limited to those illustrated.
- the power transmission signal transmitted from the transmitter 100 may be, for example, a continuous wave (CW) having a predetermined power.
- the frequency band of the power transmission signal is, for example, a 900 MHz band in consideration of the distance between the transmitter 100 and the sensor device 200 . If the frequency band is higher than the exemplified frequency band, unless the distance between the transmitter 100 and the sensor device 200 is shortened, there is a possibility that the predetermined power that enables the sensor device 200 to operate cannot be supplied.
- a suitable frequency band can be determined by taking into account (for example, the distance between the transmitter 100 and the sensor device is several meters).
- the law of the country where the information processing system 1 is installed may impose restrictions on the intermittent transmission of power signals having a predetermined power.
- the power transmission signal from the transmitter 100 falls under the radio station regulations stipulated in the Radio Law of Japan (regardless of whether or not it has a license)
- the power transmission signal will be given a certain rest period based on the Radio Law. may need to be provided.
- the power transmission signal cannot be said to be a continuous wave when considered on a certain time axis. Therefore, in the information processing system 1 of the present embodiment, it is considered that the intermittent power transmission signal also serves as the first signal. However, it is essential to provide a rest period, and a short rest period is sufficient, so the power transmission signal transmitted from the transmitter 100 can be regarded as a substantially continuous wave.
- the first signal may not be different for each of the plurality of transmitters 100 .
- the frequency bands of the signal representing the physical quantity and the second signal may be determined by the transmission protocol of these signals.
- the protocol of these signals is defined by the wireless LAN (IEEE802.11) standard
- the frequency band of the signals is 2.4 GHz.
- the protocol of the signal is defined by the Bluetooth (registered trademark) standard
- the frequency band of the signal is also 2.4 GHz.
- the signal protocol is UWB (Ultra Wide Band)
- the microwave band and quasi-millimeter wave band are specific frequency bands determined by each country.
- the signal protocol is RFID (Radio Frequency Identification)
- an appropriate frequency band is selected according to the distance and communication method between the transmitter 100 and the sensor device 200 (the sensor communication unit 210 of the RF tag). be done.
- the protocol of the signal representing the physical quantity and the second signal which are transmitted from the sensor device 200 to the transmitter 100 and/or the information processing device 300, is a protocol that enables data transmission and reception, particularly a relatively short distance (e.g. A known protocol that allows communication at several m) is preferably applied. Examples include wireless LAN, Bluetooth, UWB, RFID, and the like.
- each of the transmitter 100 and the information processing device 300 has a wireless transmission/reception section.
- the transmission timing of the power transmission signal from the transmitter 100 and the transmission timing of the signal representing the physical quantity from the sensor device 200 may be simultaneous. That is, the transmitter 100 may transmit the power transmission signal and the sensor device 200 may transmit the signal representing the physical quantity at the same time.
- the transmission timing of the power transmission signal and the first signal from the transmitter 100 and the transmission timing of the signal representing the physical quantity and the second signal from the sensor device 200 may be simultaneous.
- the signal transmitted from the RFID uses the reflected wave (backscatter) of the transmission signal from the RFID reader/writer. Therefore, it is difficult to transmit a power transmission signal from the transmitter 100 and a signal such as a physical quantity from the sensor device 200 at the same time, as referred to in this embodiment. Furthermore, in communication using backscatter, signals are transmitted and received in the same frequency band, and it is technically difficult to transmit and receive signals at the same time.
- the frequency band of the power transmission signal from the transmitter 100 can be made different from the frequency band of the signal representing the physical quantity from the sensor device 200. The technical difficulty of simultaneously transmitting and receiving is low.
- the storage unit 322 of the information processing device 300 stores (second) correspondence information.
- the second correspondence information is information that associates the distance between the transmitter 100 and the sensor device 200 with the second signal corresponding to the first signal.
- the details of the second correspondence information are determined by how the estimation unit 312 of the information processing device 300 detects the distance between the transmitter 100 and the sensor device 200 .
- Methods for detecting the distance between the transmitter 100 and the sensor device 200 include a method based on the radio wave intensity (Received Signal Strength Indication) of the radio wave from the sensor device 200 and a method based on the arrival angle of the radio wave from the sensor device 200. , and a method based on the arrival time of radio waves from the sensor device 200 .
- the method based on the radio wave intensity is as follows.
- the radio wave intensity of the radio wave transmitted by the sensor device 200 is given as the second correspondence information, and the estimation unit 312 detects the radio wave intensity from the sensor device 200 received by the transmitter 100 and/or the information processing device 300 .
- the Friis transmission formula it is known that the radio waves from the sensor device 200 are attenuated in inverse proportion to the square of the distance to the transmitter 100 and/or the information processing device 300.
- the estimation unit 312 can obtain the distance from the sensor device 200 to the transmitter 100 and/or the information processing device 300 .
- Such a method is widely used in wireless LAN (IEEE802.11).
- the method based on the arrival angle of radio waves is the following method. If the transmitter 100 and/or the information processing device 300 adopts a configuration in which the radio waves from the sensor device 200 are received by a plurality of antennas, the estimating unit 312 determines whether the sensor device The arrival angle of radio waves from 200 can be obtained. Then, by obtaining the arrival angles of radio waves from the same sensor device 200 using a plurality of transmitters 100 and/or information processing devices 300, the estimation unit 312 calculates can be calculated. Such a method is defined as AoA (Angle of Arrival) in Bluetooth 5.0. Note that AoD (Angle of Departure) can also be used if the sensor device 200 has a plurality of antennas. At this time, the second correspondence information is a table showing the relationship between the difference in reception time of radio waves and the arrival angle.
- AoA Angle of Arrival
- AoD Angle of Departure
- the method based on the arrival time of radio waves is as follows. It is assumed that the transmission timing of radio waves transmitted from the sensor device 200 has a certain period (for example, based on a clock), and the transmitter 100 and/or the information processing device 300 have a clock synchronized with this clock.
- the estimation unit 312 determines the arrival time of the radio wave from the sensor device 200, that is, the time when the radio wave was transmitted from the sensor device 200, based on the timing at which the transmitter 100 and/or the information processing device 300 received the radio wave from the sensor device 200. A difference from the time when the transmitter 100 and/or the information processing device 300 received the radio wave is obtained.
- the estimation unit 312 can obtain the distance from the sensor device 200 to the transmitter 100 and/or the information processing device 300 based on this time difference.
- a method is used when UWB is adopted as a radio protocol.
- the second correspondence information is a table showing the relationship between the arrival time of radio waves and the distance.
- the estimation unit 312 can calculate the distance between the sensor device 200 that has transmitted the radio wave and the transmitter 100 and/or the information processing device 300. Based on the calculated distance, the second The transmitter 100 with the closest distance to the sensor device 200 that transmitted the signal can be identified. Then, the estimation unit 312 estimates that there is a sensor device 200 transmitting the second signal near the identified transmitter 100 . In addition, the estimating unit 312 calculates the distance between the sensor device 200 and the transmitter 100 and/or the information processing device 300 calculated by the above-described method, using the same sensor device 200 and the plurality of transmitters 100 and/or By obtaining the position of the information processing device 300, the position of the sensor device 200 can be obtained. A method for obtaining the position of the sensor device 200 will be described below with reference to FIGS. 10 to 12. FIG.
- Methods for obtaining the position of the sensor device 200 include a so-called triangulation method, a check-in method, a fingerprint method, and the like.
- Triangulation measures the distance between at least two transmitters 100 and/or information processing devices 300 and sensor devices 200, preferably three or more transmitters 100 and/or information processing devices 300 and sensor devices 200. It is assumed that the distance between In the example shown in FIG. 10 , it is assumed that the estimation unit 312 obtains the distances to the sensor device 200 for each of the three transmitters 100 . This distance is indicated by a circle 500 respectively. Although the distance between the transmitter 100 and the sensor device 200 is illustrated in FIG. 10, the distance between the information processing device 300 and the sensor device 200 may be used. From the distance relationship between each transmitter 100 and the sensor device 200, it is estimated that the sensor device 200 exists at the intersection 510 of the three circles 500. FIG. In this manner, the estimation unit 312 can obtain the distance between the transmitter 100 and/or the information processing device 300 and the sensor device 200 .
- a value of radio wave intensity corresponding to a predetermined distance is determined in advance as a threshold.
- the estimation unit 312 monitors the radio wave intensity of radio waves transmitted from the sensor device 200 for a specific transmitter 100, and when the radio wave intensity exceeds a predetermined threshold, the specific transmitter 100 and the sensor device 200 is the distance corresponding to this radio wave intensity.
- a circle 600 represents the distance corresponding to the threshold.
- a method called fingerprinting will be described with reference to FIG.
- a plurality of (three in FIG. 12) transmitters 100 are installed near the roof of a room 700 or the like in which the sensor device 200 is arranged. It is also assumed that sensor device 200 is placed on plane 710 near the floor of room 700 .
- the radio wave intensity of the radio wave from the sensor device 200 received by each transmitter 100 is obtained in advance.
- the radio wave intensity in each section 720 may be an actual measurement value, or may be obtained by theoretical calculation (can be calculated if the distance between the transmitter 100 and the sensor device 200 is known).
- the estimation unit 312 detects the radio wave intensity of the radio waves of the sensor device 200 detected by the plurality of transmitters 100, and selects the values that match or are closest to each other from among the sets of radio wave intensity values assigned to the section 720.
- a section 720 to which the radio wave intensity is assigned is obtained, and it is estimated that the sensor device 200 is located in this section 720 .
- the distance between the transmitter 100 and the sensor device 200 is illustrated in FIG. 12 as well, it may be the distance between the information processing device 300 and the sensor device 200 .
- the transmitter 100 and the information processing device 300 shown in FIG. 1 and the like can be considered as information processing devices.
- the information processing system 1 of the modified example can also obtain the same effects as the information processing system 1 of the embodiment.
- Each part of the information processing device 300 described above may be realized as a function of an arithmetic processing device of a computer or the like. That is, the acquisition unit 311, the estimation unit 312, the antenna control unit 313, the processing control unit 314, the reception unit 315, the transmission control unit 316, and the output control unit 317 (control unit 310) of the information processing device 300 are computer processing units.
- An acquisition function, an estimation function, an antenna control function, a processing control function, a reception function, a transmission control function, and an output control function (control function) may be implemented.
- the information processing program can cause the computer to implement each function described above.
- the information processing program may be recorded in a non-temporary computer-readable recording medium such as a memory, solid state drive, hard disk drive, or optical disc.
- each part of the information processing device 300 may be realized by an arithmetic processing device or the like of a computer.
- the arithmetic processing unit or the like is configured by an integrated circuit or the like, for example. Therefore, each part of the information processing device 300 may be implemented as a circuit that constitutes an arithmetic processing device or the like. That is, the acquisition unit 311, the estimation unit 312, the antenna control unit 313, the processing control unit 314, the reception unit 315, the transmission control unit 316, and the output control unit 317 (control unit 310) of the information processing device 300 are computer processing units. , an acquisition circuit, an estimation circuit, an antenna control circuit, a processing control circuit, a reception circuit, a transmission control circuit, and an output control circuit (control circuit).
- the communication unit 321, the storage unit 322, and the display unit 323 (output unit) of the information processing device 300 may be implemented as, for example, a communication function including functions of an arithmetic processing unit, a storage function, and a display function (output function). good. Further, the communication unit 321, the storage unit 322, and the display unit 323 (output unit) of the information processing device 300 are realized as a communication circuit, a storage circuit, and a display circuit (output circuit) by being configured by an integrated circuit or the like, for example.
- the communication unit 321, the storage unit 322, and the display unit 323 (output unit) of the information processing device 300 are configured as a communication device, a storage device, and a display device (output device) by being configured by a plurality of devices, for example.
- the information processing system 1 can combine one or any number of the plurality of units described above.
- An information processing system includes one or more transmitters that wirelessly transmit power, each transmitter being capable of transmitting a different first signal, and power being transmitted by the transmitters.
- a plurality of sensor devices each having a receiver capable of receiving electric power and a first signal, arranged at different positions, and capable of measuring a predetermined physical quantity, and each of the plurality of sensor devices an information processing device capable of acquiring, from a plurality of sensor devices, a physical quantity to be measured and a second signal corresponding to a first signal transmitted from each transmitter; a storage unit that stores first correspondence information that associates a position where the transmitter is arranged, a first signal transmitted by the transmitter, and a second signal corresponding to the first signal; Based on the first correspondence information, the transmitter that transmits the first signal corresponding to the second signal transmitted from the sensor device is specified among the transmitters, and the second signal is transmitted near the transmitter.
- the information processing system can estimate the position of the sensor device.
- the information processing system can specify the position of the sensor device by performing triangulation using the first signals transmitted from each of the plurality of transmitters.
- An information processing system includes one or more transmitters that wirelessly transmit power, the transmitter being capable of transmitting a first signal; , a receiver capable of receiving a first signal, a plurality of sensor devices arranged at different positions and capable of measuring a predetermined physical quantity, and a physical quantity measured by each of the plurality of sensor devices and a second signal corresponding to the first signal transmitted from each of the transmitters, from a plurality of sensor devices, the information processing device including the transmitter and the a storage unit for storing second correspondence information that associates a distance from the sensor device with a second signal corresponding to the first signal; and a transmitter based on the second correspondence information stored in the storage unit an estimating unit for estimating that there is a sensor device transmitting the second signal near the transmitter by specifying the transmitter having the closest distance to the sensor device transmitting the second signal.
- the information processing system can estimate the distance between the sensor device and the information processing device.
- the information processing system can identify the position of the sensor device by performing triangulation using the second signals transmitted from each of the plurality of transmitters.
- the information processing device may include an antenna control unit that controls the directivity of the antenna of the transmitter toward the position of the sensor device estimated by the estimation unit.
- the information processing system can efficiently transmit power and the first signal from the transmitter to the sensor device.
- the antenna control unit may control the antenna of the transmitter closest to the sensor device based on the position of the sensor device estimated by the estimation unit.
- the information processing system can efficiently transmit power and the first signal from the transmitter to the sensor device.
- the information processing device performs processing to perform a predetermined process on the position of the sensor device based on the physical quantity measured by the sensor device whose position is estimated by the estimation unit.
- a processing control unit that controls the unit may be provided.
- the information processing system can use physical quantities in the environment where the sensor device is arranged to process the environment at the position (nearby position) where the sensor device is arranged.
- the processing unit is an air conditioner
- the sensor device includes a temperature sensor
- the processing control unit controls the position where the temperature sensor is arranged when the temperature measured by the temperature sensor changes.
- the air conditioner may be controlled to adjust the temperature of the
- the information processing system can adjust the temperature of the environment near where the sensor device is arranged based on the temperature of the position where the sensor device is arranged.
- the processing control unit has first processing correspondence information that associates the placement position of the sensor device with the target temperature at this placement position, and the temperature measured by each temperature sensor is , the air conditioner may be controlled so as to approach the target temperature associated with the arrangement position of the sensor device.
- the information processing system finely adjusts the temperature of the environment near the sensor device based on the temperature at the position where the sensor device is disposed, and adjusts the temperature to a comfortable temperature for the person located near the sensor device. can do.
- the processing unit is a lighting device
- the sensor device includes an illuminance sensor
- the processing control unit is provided with the illuminance sensor when the illuminance measured by the illuminance sensor changes.
- the illumination device may be controlled to adjust the brightness of the position.
- the information processing system can adjust the illuminance of the environment near where the sensor device is arranged based on the illuminance of the position where the sensor device is arranged.
- the processing control unit has the second processing correspondence information that associates the arrangement position of the sensor device with the target illuminance at this arrangement position, and the illuminance measured by each illuminance sensor is , the lighting device may be controlled so as to approach the target illuminance associated with the arrangement position of the sensor device.
- the information processing system finely adjusts the illuminance of the environment near the sensor device based on the illuminance at the position where the sensor device is disposed, and adjusts the illuminance to be suitable for people who are in the vicinity of the sensor device. be able to.
- each transmitter includes a directional coupler for a power signal transmitted from an antenna of the transmitter, and the information processing device measures a predetermined characteristic measured by each directional coupler. If there is a change in the receiving unit that accepts and the predetermined characteristics received by the receiving unit deteriorate, the transmission power of the transmitter connected to the directional coupler whose characteristics have changed is reduced compared to when there is no change in the characteristics. and a transmission control unit that controls to weaken the transmission rate.
- the information processing system can weaken the power transmitted from the transmitter, for example, when there is a person near the transmitter. In other words, the information processing system can, for example, prevent people from being adversely affected by the transmission power.
- the transmission control unit may control the transmitter to weaken transmission power for a predetermined period of time.
- the information processing system can temporarily weaken the power transmitted from the transmitter, for example, when there is a person near the transmitter.
- a plurality of transmitters may be provided, and the second correspondence information stored in the storage unit includes the distance between the transmitter and the sensor device and the second correspondence information corresponding to the first signal.
- the estimating unit obtains the signal strengths of the plurality of second signals received by the plurality of transmitters, and based on the plurality of signal strengths and the second correspondence information may identify, among the plurality of transmitters, the transmitter having the closest distance to the sensor device transmitting the second signal.
- three or more transmitters may be provided, and the estimation unit obtains signal strengths of a plurality of second signals received by at least three or more transmitters, and calculates the signal strengths and Based on the second correspondence information, a transmitter having the closest distance to the sensor device transmitting the second signal is specified among the plurality of transmitters, and the sensor device having the closest distance to the transmitter is arranged. location may be specified.
- the information processing system can specify the position of the sensor device using the second signal transmitted from the sensor device.
- the estimation unit obtains the signal strength of the second signal received by the transmitter, and determines whether the signal strength is equal to or greater than a predetermined threshold based on the signal strength and the second correspondence information.
- a transmitter of the plurality of transmitters having the closest distance to the sensor device transmitting the second signal may be identified based on the distance.
- three or more transmitters may be provided.
- the estimation unit obtains the signal strengths of a plurality of second signals received by at least three or more transmitters, and calculates the plurality of signal strengths and the second correspondence information. Identify the transmitter having the closest distance to the sensor device that transmits the second signal, among the plurality of transmitters, and identify the position where the sensor device having the closest distance to the transmitter is located based on may
- the information processing system can identify the position of the sensor device using the signal strength of the second signal transmitted from the sensor device.
- a plurality of transmitters may be provided, and the estimation unit obtains the arrival angles of the plurality of second signals received by the plurality of transmitters, and calculates the plurality of arrival angles and the second correspondence information.
- a transmitter among the plurality of transmitters having the closest distance to the sensor device transmitting the second signal may be identified based on and.
- the information processing system can more accurately identify the transmitter having the closest distance to the sensor device by using the arrival angle of the second signal transmitted from the sensor device.
- the estimator may be provided in the transmitter.
- the information processing system can simplify the configuration of the information processing device.
- the power transmission signal transmitted from the transmitter may be the first signal.
- the information processing system can simplify the configuration of the transmitter.
- the power transmission signal may be a substantially continuous radio frequency signal having a predetermined power, and the radio frequency signal may be intermittently transmitted from the transmitter at a predetermined cycle.
- the information processing system can stably supply power to the sensor device and widen the distance between the transmitter and the sensor device.
- the frequency band of the first signal and the frequency band of the second signal may be different.
- the sensor device may transmit the physical quantity and the second signal at the same time as the power transmission signal transmitted from the transmitter.
- the transmitter and the sensor device can transmit the power transmission signal, the physical quantity, and the second signal at the timing determined by themselves.
- An information processing apparatus includes one or more transmitters that wirelessly transmit power, wherein each transmitter is capable of transmitting a different first signal.
- a storage unit that stores first correspondence information that associates a first signal transmitted by a transmitter with a second signal corresponding to the first signal;
- a plurality of sensor devices arranged at different positions and capable of measuring a predetermined physical quantity, wherein the physical quantity to be measured and the transmitter are respectively transmitted from a second signal corresponding to the first signal from a plurality of sensor devices; an estimating unit for estimating that there is a sensor device transmitting the second signal near the transmitter by identifying the transmitter transmitting the first signal responsive to the transmitted second signal.
- the information processing apparatus can achieve the same effects as the information processing system of one aspect described above.
- one or a plurality of transmitters that transmit power wirelessly, the transmitters each being capable of transmitting a different first signal are arranged; a computer having a storage unit that stores first correspondence information that associates a first signal transmitted by the transmitter with a second signal corresponding to the first signal, receives power transmitted by the transmitter, A plurality of sensor devices each having a receiver capable of receiving a first signal, arranged at different positions, and capable of measuring a predetermined physical quantity, wherein the physical quantity to be measured and the transmitter respectively an acquisition step of acquiring a second signal corresponding to the transmitted first signal from the plurality of sensor devices; and an acquisition step of the transmitter based on the first correspondence information stored in the storage unit. an estimating step of estimating that there is a sensor device transmitting the second signal near the transmitter by identifying the transmitter transmitting the first signal in response to the second signal transmitted from the sensor device; Execute.
- the information processing method can achieve the same effects as the information processing system of one aspect described above.
- the computer is provided with one or more transmitters that wirelessly transmit power, each of which is capable of transmitting a different first signal.
- a storage function for storing first correspondence information that associates a first signal transmitted by a transmitter with a second signal corresponding to the first signal; and receiving power transmitted by the transmitter,
- a plurality of sensor devices each having a receiver capable of receiving a first signal, arranged at different positions, and capable of measuring a predetermined physical quantity, wherein the physical quantity to be measured and the transmitter respectively
- An acquisition function of the transmitter acquires a second signal corresponding to the transmitted first signal from the plurality of sensor devices, and the acquisition function of the transmitter based on the first correspondence information stored in the storage function.
- an estimating function for estimating that there is a sensor device transmitting a second signal near the transmitter by specifying a transmitter that transmits a first signal in response to a second signal transmitted from the sensor device; make it happen.
- the information processing program can achieve the same effects as the information processing system of one aspect described above.
- An air conditioner of one aspect is an air conditioner that performs control based on temperatures measured by a plurality of temperature sensors arranged at predetermined positions in a space, wherein the plurality of temperature sensors are respectively arranged at predetermined positions. When the temperature measured by the temperature sensor changes, it receives a control signal for adjusting the temperature at the location where the temperature sensor is located, and controls based on this control signal.
- the air conditioner can adjust the temperature of the environment near where the temperature sensor is located based on the temperature at the location where the temperature sensor is located.
- the temperature measured by each temperature sensor is determined based on the first processing correspondence information that associates the arrangement position of the temperature sensor with the target temperature at the arrangement position. may accept a control signal that approaches the target temperature associated with .
- the air conditioner finely adjusts the temperature of the environment in the vicinity of the temperature sensor so that it is comfortable for people in the vicinity of the temperature sensor. can do.
- a lighting device of one aspect is a lighting device that performs control based on illuminance measured by a plurality of illuminance sensors arranged at predetermined positions in a space, wherein the plurality of illuminance sensors are respectively arranged at predetermined positions.
- the illuminance measured by the illuminance sensor changes, it receives a control signal for adjusting the brightness of the position where the illuminance sensor is arranged, and performs control based on this control signal.
- the lighting device can adjust the illuminance of the environment near where the illuminance sensor is arranged based on the illuminance of the position where the illuminance sensor is arranged.
- the illumination device has second processing correspondence information that associates the arrangement position of the illuminance sensor with the target illuminance at this arrangement position, and the illuminance measured by each illuminance sensor is the arrangement position of the illuminance sensor. It is also possible to accept a control signal that approaches the target illuminance associated with .
- the lighting device finely adjusts the illuminance of the environment in the vicinity of the illuminance sensor based on the illuminance of the position where the illuminance sensor is arranged to be suitable for the person who is in the vicinity of the illuminance sensor. can be done.
- Information Processing System 100 Transmitter 101 Phase Synchronization Circuit 102 Amplifier Circuit 103 Directional Coupler 200 Sensor Device 210 Sensor Communication Section 211 Sensor Reception Section 212 Sensor Transmission Section 213 Antenna 214 Feeding Point 220 Sensor Section 300 Information Processing Device 310 Control Section 311 Acquisition unit 312 Estimation unit 313 Antenna control unit 314 Processing control unit 315 Reception unit 316 Transmission control unit 317 Output control unit 321 Communication unit 322 Storage unit 323 Display unit 400 Processing unit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
まず、一実施形態に係る情報処理システム1の概要について説明する。
次に、一実施形態の情報処理システム1の詳細について説明する。
まず、一実施形態に係る送信機100の詳細について説明する。
次に、一実施形態に係るセンサ装置200の詳細について説明する。
次に、一実施形態に係る情報処理装置300の詳細について説明する。
次に、一実施形態に係る情報処理方法について説明する。
以上説明したように、一実施形態の情報処理システム1によれば、無線送電の対象であるセンサ装置200の位置を推定し、好ましくは特定することができる。
上述した一実施形態では、情報処理装置300が、複数のセンサ装置200それぞれで測定される物理量と、複数の送信機100それぞれから送信される第1信号に応じた第2信号とを、複数のセンサ装置200から取得していた。このとき、送信機100が、数のセンサ装置200それぞれで測定される物理量を表す信号と、複数の送信機100それぞれから送信される第1信号に応じた第2信号とを取得(受信)し、送信機100が、取得した物理量を表す信号と第2信号とを情報処理装置300に送出してもよい。上述したように、送信機100は方向性結合器103を有しているので、アンプ回路102から入力される信号を送電電力信号としてアンテナ104からセンサ装置200に送信し、一方、センサ装置200から送信された物理量を表す信号と第2信号とをアンテナ104で受信したものを受信信号として取り入れてもよい。
上述した情報処理装置300の各部は、コンピュータの演算処理装置等の機能として実現されてもよい。すなわち、情報処理装置300の取得部311、推定部312、アンテナ制御部313、処理制御部314、受付部315、送信制御部316及び出力制御部317(制御部310)は、コンピュータの演算処理装置等による取得機能、推定機能、アンテナ制御機能、処理制御機能、受付機能、送信制御機能及び出力制御機能(制御機能)としてそれぞれ実現されてもよい。
次に、本実施形態の一態様及び各態様が奏する効果について説明する。なお、本実施形態は以下に記載する各態様に限定されることはなく、上述した各部を適宜組み合わせて実現されてもよい。また、以下に記載する効果は一例であり、各態様が奏する効果は以下に記載するものに限定されることはない。
一態様の情報処理システムは、電力を無線で送電する1つ又は複数の送信機であって、送信機それぞれで異なる第1信号を送信することが可能な送信機と、送信機によって送電される電力を受電すると共に、第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置と、複数のセンサ装置それぞれで測定される物理量と、送信機それぞれから送信される第1信号に応じた第2信号とを、複数のセンサ装置から取得することが可能な情報処理装置と、を備え、情報処理装置は、送信機が配される位置と、送信機によって送信される第1信号と、第1信号に応じた第2信号とを対応づけた第1対応情報を記憶する記憶部と、記憶部に記憶される第1対応情報に基づいて、送信機のうち、センサ装置から送信される第2信号に応じた第1信号を送信する送信機を特定することにより、その送信機の近くに第2信号を送信するセンサ装置があると推定する推定部と、を備える。
一態様の情報処理システムは、電力を無線で送電する1つ又は複数の送信機であって、第1信号を送信することが可能な送信機と、送信機によって送電される電力を受電すると共に、第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置と、複数のセンサ装置それぞれで測定される物理量を表す信号と、送信機それぞれから送信される第1信号に応じた第2信号とを、複数のセンサ装置から取得することが可能な情報処理装置と、を備え、情報処理装置は、送信機とセンサ装置との間の距離と、第1信号に応じた第2信号とを対応づけた第2対応情報を記憶する記憶部と、記憶部に記憶される第2対応情報に基づいて、送信機のうち、第2信号を送信するセンサ装置に最も近い距離を有する送信機を特定することにより、当該送信機の近くに第2信号を送信するセンサ装置があると推定する推定部と、を備える。
一態様の情報処理システムでは、情報処理装置は、推定部によって推定されるセンサ装置の位置に対して、送信機のアンテナの指向性が向くよう制御するアンテナ制御部を備えることとしてもよい。
一態様の情報処理システムでは、アンテナ制御部は、推定部によって推定されるセンサ装置の位置に基づいて、そのセンサ装置に最も近い送信機のアンテナを制御することとしてもよい。
一態様の情報処理システムでは、情報処理装置は、推定部によって位置が推定されるセンサ装置によって測定される物理量に基づいて、そのセンサ装置が配される位置に対して所定の処理を行うよう処理部を制御する処理制御部を備えることとしてもよい。
一態様の情報処理システムでは、処理部は、エアコンであり、センサ装置は、温度センサを備え、処理制御部は、温度センサによって測定される温度が変化する場合、その温度センサが配される位置の温度を調整するようエアコンを制御することとしてもよい。
一態様の情報処理システムでは、処理制御部は、センサ装置の配置位置と、この配置位置における目標温度とを対応付けた第1処理対応情報を有し、個々の温度センサにより測定された温度が、センサ装置の配置位置に対応付けられた目標温度に近付くようにエアコンを制御することとしてもよい。
一態様の情報処理システムでは、処理部は、照明装置であり、センサ装置は、照度センサを備え、処理制御部は、照度センサによって測定される照度が変化する場合、その照度センサが配される位置の明るさを調整するよう照明装置を制御することとしてもよい。
一態様の情報処理システムでは、処理制御部は、センサ装置の配置位置と、この配置位置における目標照度とを対応付けた第2処理対応情報を有し、個々の照度センサにより測定された照度が、センサ装置の配置位置に対応付けられた目標照度に近付くように照明装置を制御することとしてもよい。
一態様の情報処理システムでは、送信機それぞれは、送信機のアンテナから送電する電力の信号についての方向性結合器を備え、情報処理装置は、方向性結合器それぞれによって測定される所定の特性を受け付ける受付部と、受付部によって受け付ける所定の特性が悪くなる変化が生じた場合、その特性が変化した方向性結合器が接続される送信機の送信電力を、特性の変化が生じない場合に比べて弱くするよう制御する送信制御部と、を備えることとしてもよい。
一態様の情報処理システムでは、送信制御部は、所定の時間、送信電力を弱くするよう送信機を制御することとしてもよい。
一態様の情報処理システムでは、送信機が複数設けられてもよく、記憶部に記憶される第2対応情報は、送信機とセンサ装置との間の距離と、第1信号に応じた第2信号の信号強度とを対応づけた情報であってもよく、推定部は、複数の送信機が受信した複数の第2信号の信号強度を求め、複数の信号強度と第2対応情報とに基づいて、複数の送信機のうち、第2信号を送信するセンサ装置に最も近い距離を有する送信機を特定してもよい。
一態様の情報処理システムでは、送信機が3つ以上設けられてもよく、推定部は、少なくとも3つ以上の送信機が受信した複数の第2信号の信号強度を求め、複数の信号強度と第2対応情報とに基づいて、複数の送信機のうち、第2信号を送信するセンサ装置に最も近い距離を有する送信機を特定するとともに、送信機に最も近い距離を有するセンサ装置が配置された位置を特定してもよい。
一態様の情報処理システムでは、推定部は、送信機が受信した第2信号の信号強度を求め、信号強度と第2対応情報とに基づいて、信号強度が予め定めた閾値以上であるか否かに基づいて、複数の送信機のうち、第2信号を送信するセンサ装置に最も近い距離を有する送信機を特定してもよい。
一態様の情報処理システムでは、送信機が3つ以上設けられてもよく、記憶部に記憶される第2対応情報は、センサ装置が配置される位置と、第1信号に応じた第2信号の信号強度とを対応づけた情報であってもよく、推定部は、少なくとも3つ以上の送信機が受信した複数の第2信号の信号強度を求め、複数の信号強度と第2対応情報とに基づいて、複数の送信機のうち、第2信号を送信するセンサ装置に最も近い距離を有する送信機を特定するとともに、送信機に最も近い距離を有するセンサ装置が配置された位置を特定してもよい。
一態様の情報処理システムでは、送信機が複数設けられてもよく、記推定部は、複数の送信機が受信した複数の第2信号の到来角を求め、複数の到来角と第2対応情報とに基づいて、複数の送信機のうち、第2信号を送信するセンサ装置に最も近い距離を有する送信機を特定してもよい。
一態様の情報処理システムでは、推定部を送信機に設けてもよい。
一態様の情報処理システムでは、送信機から送信される送電信号を第1信号としてもよい。
一態様の情報処理システムでは、送電信号は所定の電力を有する略連続的な無線周波数信号であり、かつ、この無線周波数信号が所定の周期で間欠的に送信機から送信されてもよい。
一態様の情報処理システムでは、第1信号の周波数帯域と第2信号の周波数帯域とが異なってもよい。
一態様の情報処理システムでは、送信機から送信される送電信号と同時に、センサ装置が物理量と第2信号とを送信してもよい。
一態様の情報処理装置は、電力を無線で送電する1つ又は複数の送信機であって、送信機それぞれで異なる第1信号を送信することが可能な送信機が配される位置と、送信機によって送信される第1信号と、第1信号に応じた第2信号とを対応づけた第1対応情報を記憶する記憶部と、送信機によって送電される電力を受電すると共に、第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置であって、測定される物理量と、送信機それぞれから送信される第1信号に応じた第2信号とを、複数のセンサ装置から取得する取得部と、記憶部に記憶される第1対応情報に基づいて、送信機のうち、取得部によって取得するセンサ装置から送信される第2信号に応じた第1信号を送信する送信機を特定することにより、その送信機の近くに第2信号を送信するセンサ装置があると推定する推定部と、を備える。
一態様の情報処理方法では、電力を無線で送電する1つ又は複数の送信機であって、送信機それぞれで異なる第1信号を送信することが可能な送信機が配される位置と、送信機によって送信される第1信号と、第1信号に応じた第2信号とを対応づけた第1対応情報を記憶する記憶部を備えるコンピュータが、送信機によって送電される電力を受電すると共に、第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置であって、測定される物理量と、送信機それぞれから送信される第1信号に応じた第2信号とを、複数のセンサ装置から取得する取得ステップと、記憶部に記憶される第1対応情報に基づいて、送信機のうち、取得ステップによって取得するセンサ装置から送信される第2信号に応じた第1信号を送信する送信機を特定することにより、その送信機の近くに第2信号を送信するセンサ装置があると推定する推定ステップと、を実行する。
一態様の情報処理プログラムでは、コンピュータに、電力を無線で送電する1つ又は複数の送信機であって、送信機それぞれで異なる第1信号を送信することが可能な送信機が配される位置と、送信機によって送信される第1信号と、第1信号に応じた第2信号とを対応づけた第1対応情報を記憶する記憶機能と、送信機によって送電される電力を受電すると共に、第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置であって、測定される物理量と、送信機それぞれから送信される第1信号に応じた第2信号とを、複数のセンサ装置から取得する取得機能と、記憶機能に記憶される第1対応情報に基づいて、送信機のうち、取得機能によって取得するセンサ装置から送信される第2信号に応じた第1信号を送信する送信機を特定することにより、その送信機の近くに第2信号を送信するセンサ装置があると推定する推定機能と、を実現させる。
一態様の空調機器は、空間内の所定の位置に配置された複数の温度センサにより測定された温度に基づいて制御を行う空調機器であって、複数の温度センサはそれぞれ所定の配置位置に配置され、温度センサによって測定される温度が変化する場合、当該温度センサが配される位置の温度を調整する制御信号を受け入れ、この制御信号に基づいて制御する。
一態様の空調機器では、温度センサの配置位置と、この配置位置における目標温度とを対応付けた第1処理対応情報に基づいて、個々の温度センサにより測定された温度が、温度センサの配置位置に対応付けられた目標温度に近付くような制御信号を受け入れることとしてもよい。
一態様の照明装置は、空間内の所定の位置に配置された複数の照度センサにより測定された照度に基づいて制御を行う照明装置であって、複数の照度センサはそれぞれ所定の配置位置に配置され、照度センサによって測定される照度が変化する場合、当該照度センサが配される位置の明るさを調整する制御信号を受け入れ、この制御信号に基づいて制御する。
一態様の照明装置では、照度センサの配置位置と、この配置位置における目標照度とを対応付けた第2処理対応情報を有し、個々の照度センサにより測定された照度が、照度センサの配置位置に対応付けられた目標照度に近付くような制御信号を受け入れることとしてもよい。
100 送信機
101 位相同期回路
102 アンプ回路
103 方向性結合器
200 センサ装置
210 センサ通信部
211 センサ受信部
212 センサ送信部
213 アンテナ
214 給電点
220 センサ部
300 情報処理装置
310 制御部
311 取得部
312 推定部
313 アンテナ制御部
314 処理制御部
315 受付部
316 送信制御部
317 出力制御部
321 通信部
322 記憶部
323 表示部
400 処理部
Claims (28)
- 電力を無線で送電する1つ又は複数の送信機であって、前記送信機それぞれで異なる第1信号を送信することが可能な前記送信機と、
前記送信機によって送電される電力を受電すると共に、前記第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置と、
複数の前記センサ装置それぞれで測定される前記物理量と、前記送信機それぞれから送信される前記第1信号に応じた第2信号とを、複数の前記センサ装置から取得することが可能な情報処理装置と、を備え、
前記情報処理装置は、
前記送信機が配される位置と、前記送信機によって送信される前記第1信号と、前記第1信号に応じた前記第2信号とを対応づけた第1対応情報を記憶する記憶部と、
前記記憶部に記憶される前記第1対応情報に基づいて、前記送信機のうち、前記センサ装置から送信される前記第2信号に応じた前記第1信号を送信する前記送信機を特定することにより、当該送信機の近くに前記第2信号を送信する前記センサ装置があると推定する推定部と、
を備える情報処理システム。 - 電力を無線で送電する1つ又は複数の送信機であって、第1信号を送信することが可能な前記送信機と、
前記送信機によって送電される電力を受電すると共に、前記第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置と、
複数の前記センサ装置それぞれで測定される前記物理量を表す信号と、前記送信機それぞれから送信される前記第1信号に応じた第2信号とを、複数の前記センサ装置から取得することが可能な情報処理装置と、を備え、
前記情報処理装置は、
前記送信機と前記センサ装置との間の距離と、前記第1信号に応じた前記第2信号とを対応づけた第2対応情報を記憶する記憶部と、
前記記憶部に記憶される前記第2対応情報に基づいて、前記送信機のうち、前記第2信号を送信する前記センサ装置に最も近い前記距離を有する前記送信機を特定することにより、当該送信機の近くに前記第2信号を送信する前記センサ装置があると推定する推定部と、
を備える情報処理システム。 - 前記情報処理装置は、前記推定部によって推定される前記センサ装置の位置に対して、前記送信機のアンテナの指向性が向くよう制御するアンテナ制御部を備える
請求項1または2に記載の情報処理システム。 - 前記アンテナ制御部は、前記推定部によって推定される前記センサ装置の位置に基づいて、当該センサ装置に最も近い前記送信機のアンテナを制御する
請求項3に記載の情報処理システム。 - 前記情報処理装置は、前記推定部によって位置が推定される前記センサ装置によって測定される前記物理量に基づいて、当該センサ装置が配される位置に対して所定の処理を行うよう処理部を制御する処理制御部を備える
請求項1~4のいずれか1項に記載の情報処理システム。 - 前記処理部は、エアコンであり、
前記センサ装置は、温度センサを備え、
前記処理制御部は、前記温度センサによって測定される温度が変化する場合、当該温度センサが配される位置の温度を調整するよう前記エアコンを制御する
請求項5に記載の情報処理システム。 - 前記処理制御部は、前記センサ装置の配置位置と、この配置位置における目標温度とを対応付けた第1処理対応情報を有し、個々の前記温度センサにより測定された温度が、前記センサ装置の配置位置に対応付けられた目標温度に近付くように前記エアコンを制御する
請求項6に記載の情報処理システム。 - 前記処理部は、照明装置であり、
前記センサ装置は、照度センサを備え、
前記処理制御部は、前記照度センサによって測定される照度が変化する場合、当該照度センサが配される位置の明るさを調整するよう前記照明装置を制御する
請求項5に記載の情報処理システム。 - 前記処理制御部は、前記センサ装置の配置位置と、この配置位置における目標照度とを対応付けた第2処理対応情報を有し、個々の前記照度センサにより測定された照度が、前記センサ装置の配置位置に対応付けられた目標照度に近付くように前記照明装置を制御する
請求項8に記載の情報処理システム。 - 前記送信機それぞれは、前記送信機のアンテナから送電する電力の信号についての方向性結合器を備え、
前記情報処理装置は、
前記方向性結合器それぞれによって測定される所定の特性を受け付ける受付部と、
前記受付部によって受け付ける所定の特性が悪くなる変化が生じた場合、当該特性が変化した前記方向性結合器が接続される前記送信機の送信電力を、前記特性の変化が生じない場合に比べて弱くするよう制御する送信制御部と、
を備える請求項1~9のいずれか1項に記載の情報処理システム。 - 前記送信制御部は、所定の時間、前記送信電力を弱くするよう前記送信機を制御する
請求項10に記載の情報処理システム。 - 前記送信機は複数設けられ、
前記記憶部に記憶される前記第2対応情報は、前記送信機と前記センサ装置との間の前記距離と、前記第1信号に応じた前記第2信号の信号強度とを対応づけた情報であり、
前記推定部は、複数の前記送信機が受信した複数の前記第2信号の前記信号強度を求め、前記複数の信号強度と前記第2対応情報とに基づいて、複数の前記送信機のうち、前記第2信号を送信する前記センサ装置に最も近い前記距離を有する前記送信機を特定する
請求項2に記載の情報処理システム。 - 前記送信機は3つ以上設けられ、
前記推定部は、少なくとも3つ以上の前記送信機が受信した複数の前記第2信号の前記信号強度を求め、前記複数の信号強度と前記第2対応情報とに基づいて、複数の前記送信機のうち、前記第2信号を送信する前記センサ装置に最も近い前記距離を有する前記送信機を特定するとともに、前記送信機に最も近い前記距離を有する前記センサ装置が配置された位置を特定する
請求項12に記載の情報処理システム。 - 前記推定部は、前記送信機が受信した前記第2信号の信号強度を求め、前記信号強度と前記第2対応情報とに基づいて、前記信号強度が予め定めた閾値以上であるか否かに基づいて、前記送信機のうち、前記第2信号を送信する前記センサ装置に最も近い前記距離を有する前記送信機を特定する
請求項2に記載の情報処理システム。 - 前記送信機は3つ以上設けられ、
前記記憶部に記憶される前記第2対応情報は、前記センサ装置が配置される位置と、前記第1信号に応じた前記第2信号の信号強度とを対応づけた情報であり、
前記推定部は、少なくとも3つ以上の前記送信機が受信した複数の前記第2信号の前記信号強度を求め、前記複数の信号強度と前記第2対応情報とに基づいて、複数の前記送信機のうち、前記第2信号を送信する前記センサ装置に最も近い前記距離を有する前記送信機を特定するとともに、前記送信機に最も近い前記距離を有する前記センサ装置が配置された位置を特定する
請求項2に記載の情報処理システム。 - 前記送信機は複数設けられ、
前記推定部は、複数の前記送信機が受信した複数の前記第2信号の到来角を求め、前記複数の到来角と前記第2対応情報とに基づいて、複数の前記送信機のうち、前記第2信号を送信する前記センサ装置に最も近い前記距離を有する前記送信機を特定する
請求項2に記載の情報処理システム。 - 前記推定部を前記送信機に設けたことを特徴とする請求項2、12~16のいずれか1項に記載の情報処理システム。
- 前記送信機から送信される送電信号は前記第1信号である、請求項1または2に記載の情報処理システム。
- 前記送電信号は所定の電力を有する略連続的な無線周波数信号であり、かつ、この無線周波数信号が所定の周期で間欠的に前記送信機から送信されることで、前記送電信号が前記第1信号となる、請求項18に記載の情報処理システム。
- 前記第1信号の周波数帯域と前記第2信号の周波数帯域とが異なる、請求項19に記載の情報処理システム。
- 前記送信機から送信される送電信号と同時に、前記センサ装置が前記物理量と前記第2信号とを送信する、請求項1、2または18のいずれか1項に記載の情報処理システム。
- 電力を無線で送電する1つ又は複数の送信機であって、前記送信機それぞれで異なる第1信号を送信することが可能な前記送信機が配される位置と、前記送信機によって送信される前記第1信号と、前記第1信号に応じた第2信号とを対応づけた第1対応情報を記憶する記憶部と、
前記送信機によって送電される電力を受電すると共に、前記第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置であって、測定される前記物理量と、前記送信機それぞれから送信される前記第1信号に応じた前記第2信号とを、複数の前記センサ装置から取得する取得部と、
前記記憶部に記憶される前記第1対応情報に基づいて、前記送信機のうち、前記取得部によって取得する前記センサ装置から送信される前記第2信号に応じた前記第1信号を送信する前記送信機を特定することにより、当該送信機の近くに前記第2信号を送信する前記センサ装置があると推定する推定部と、
を備える情報処理装置。 - 電力を無線で送電する1つ又複数の送信機であって、前記送信機それぞれで異なる第1信号を送信することが可能な前記送信機が配される位置と、前記送信機によって送信される前記第1信号と、前記第1信号に応じた第2信号とを対応づけた第1対応情報を記憶する記憶部を備えるコンピュータが、
前記送信機によって送電される電力を受電すると共に、前記第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置であって、測定される前記物理量と、前記送信機それぞれから送信される前記第1信号に応じた前記第2信号とを、複数の前記センサ装置から取得する取得ステップと、
前記記憶部に記憶される前記第1対応情報に基づいて、前記送信機のうち、前記取得ステップによって取得する前記センサ装置から送信される前記第2信号に応じた前記第1信号を送信する前記送信機を特定することにより、当該送信機の近くに前記第2信号を送信する前記センサ装置があると推定する推定ステップと、
を実行する情報処理方法。 - コンピュータに、
電力を無線で送電する1つ又は複数の送信機であって、前記送信機それぞれで異なる第1信号を送信することが可能な前記送信機が配される位置と、前記送信機によって送信される前記第1信号と、前記第1信号に応じた前記第2信号とを対応づけた第1対応情報を記憶する記憶機能と、
前記送信機によって送電される電力を受電すると共に、前記第1信号を受信することが可能な受信機を備え、それぞれ異なる位置に配され、所定の物理量を測定することが可能な複数のセンサ装置であって、測定される前記物理量と、前記送信機それぞれから送信される前記第1信号に応じた前記第2信号とを、複数の前記センサ装置から取得する取得機能と、
前記記憶機能に記憶される前記第1対応情報に基づいて、前記送信機のうち、前記取得機能によって取得する前記センサ装置から送信される前記第2信号に応じた前記第1信号を送信する前記送信機を特定することにより、当該送信機の近くに前記第2信号を送信する前記センサ装置があると推定する推定機能と、
を実現させる情報処理プログラム。 - 空間内の所定の位置に配置された複数の温度センサにより測定された温度に基づいて制御を行う空調機器であって、
複数の前記温度センサはそれぞれ所定の配置位置に配置され、
前記温度センサによって測定される温度が変化する場合、当該温度センサが配される位置の温度を調整する制御信号を受け入れ、この制御信号に基づいて制御する
空調機器。 - 前記温度センサの配置位置と、この配置位置における目標温度とを対応付けた第1処理対応情報に基づいて、個々の前記温度センサにより測定された温度が、前記温度センサの配置位置に対応付けられた目標温度に近付くような前記制御信号を受け入れる
請求項25に記載の空調機器。 - 空間内の所定の位置に配置された複数の照度センサにより測定された照度に基づいて制御を行う照明装置であって、
複数の前記照度センサはそれぞれ所定の配置位置に配置され、
前記照度センサによって測定される照度が変化する場合、当該照度センサが配される位置の明るさを調整する制御信号を受け入れ、この制御信号に基づいて制御する
照明装置。 - 前記照度センサの配置位置と、この配置位置における目標照度とを対応付けた第2処理対応情報を有し、個々の前記照度センサにより測定された照度が、前記照度センサの配置位置に対応付けられた目標照度に近付くような前記制御信号を受け入れる
請求項27に記載の照明装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022573541A JP7291985B1 (ja) | 2021-11-01 | 2022-10-31 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
EP22887212.3A EP4428560A1 (en) | 2021-11-01 | 2022-10-31 | Information processing system, information processing device, information processing method, information processing program, air conditioner, and lighting device |
CN202280071740.7A CN118159862A (zh) | 2021-11-01 | 2022-10-31 | 信息处理系统、信息处理装置、信息处理方法、信息处理程序、空调设备以及照明装置 |
JP2023032996A JP2023067962A (ja) | 2021-11-01 | 2023-03-03 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
JP2023088312A JP2023118701A (ja) | 2021-11-01 | 2023-05-30 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
US18/650,690 US20240356379A1 (en) | 2021-11-01 | 2024-04-30 | Information processing system, information processing device, information processing method, information processing program, air conditioning equipment, and lighting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2021/040311 | 2021-11-01 | ||
PCT/JP2021/040311 WO2023074002A1 (ja) | 2021-11-01 | 2021-11-01 | 情報処理システム、情報処理装置、情報処理方法及び情報処理プログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/650,690 Continuation US20240356379A1 (en) | 2021-11-01 | 2024-04-30 | Information processing system, information processing device, information processing method, information processing program, air conditioning equipment, and lighting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074887A1 true WO2023074887A1 (ja) | 2023-05-04 |
Family
ID=86159494
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040311 WO2023074002A1 (ja) | 2021-11-01 | 2021-11-01 | 情報処理システム、情報処理装置、情報処理方法及び情報処理プログラム |
PCT/JP2022/040579 WO2023074887A1 (ja) | 2021-11-01 | 2022-10-31 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040311 WO2023074002A1 (ja) | 2021-11-01 | 2021-11-01 | 情報処理システム、情報処理装置、情報処理方法及び情報処理プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240356379A1 (ja) |
EP (1) | EP4428560A1 (ja) |
JP (3) | JP7291985B1 (ja) |
CN (1) | CN118159862A (ja) |
WO (2) | WO2023074002A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7449619B1 (ja) | 2023-07-31 | 2024-03-14 | エイターリンク株式会社 | システム、測定器、方法、プログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004226157A (ja) * | 2003-01-21 | 2004-08-12 | Mitsubishi Heavy Ind Ltd | センサネットワーク、センサ、電波送信体、及びコンピュータプログラム |
JP2005208754A (ja) * | 2004-01-20 | 2005-08-04 | Matsushita Electric Ind Co Ltd | 非接触icカード通信装置 |
US20060022800A1 (en) * | 2004-07-30 | 2006-02-02 | Reva Systems Corporation | Scheduling in an RFID system having a coordinated RFID tag reader array |
JP2019019988A (ja) * | 2017-07-11 | 2019-02-07 | 株式会社東芝 | 空調運転条件作成装置、空調運転条件作成方法、プログラム、および空調システム |
US20190094332A1 (en) * | 2016-05-25 | 2019-03-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Waveform design for locating system |
JP2019133784A (ja) * | 2018-01-30 | 2019-08-08 | 株式会社東芝 | データ作成装置、プログラム、データ作成方法および照明制御システム |
JP2021124442A (ja) | 2020-02-07 | 2021-08-30 | 上田日本無線株式会社 | 位置検知システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11095153B2 (en) * | 2019-03-15 | 2021-08-17 | Ossia Inc. | Wireless power system technology implemented in lighting infrastructure |
-
2021
- 2021-11-01 WO PCT/JP2021/040311 patent/WO2023074002A1/ja active Application Filing
-
2022
- 2022-10-31 EP EP22887212.3A patent/EP4428560A1/en active Pending
- 2022-10-31 JP JP2022573541A patent/JP7291985B1/ja active Active
- 2022-10-31 CN CN202280071740.7A patent/CN118159862A/zh active Pending
- 2022-10-31 WO PCT/JP2022/040579 patent/WO2023074887A1/ja active Application Filing
-
2023
- 2023-03-03 JP JP2023032996A patent/JP2023067962A/ja active Pending
- 2023-05-30 JP JP2023088312A patent/JP2023118701A/ja active Pending
-
2024
- 2024-04-30 US US18/650,690 patent/US20240356379A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004226157A (ja) * | 2003-01-21 | 2004-08-12 | Mitsubishi Heavy Ind Ltd | センサネットワーク、センサ、電波送信体、及びコンピュータプログラム |
JP2005208754A (ja) * | 2004-01-20 | 2005-08-04 | Matsushita Electric Ind Co Ltd | 非接触icカード通信装置 |
US20060022800A1 (en) * | 2004-07-30 | 2006-02-02 | Reva Systems Corporation | Scheduling in an RFID system having a coordinated RFID tag reader array |
US20190094332A1 (en) * | 2016-05-25 | 2019-03-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Waveform design for locating system |
JP2019019988A (ja) * | 2017-07-11 | 2019-02-07 | 株式会社東芝 | 空調運転条件作成装置、空調運転条件作成方法、プログラム、および空調システム |
JP2019133784A (ja) * | 2018-01-30 | 2019-08-08 | 株式会社東芝 | データ作成装置、プログラム、データ作成方法および照明制御システム |
JP2021124442A (ja) | 2020-02-07 | 2021-08-30 | 上田日本無線株式会社 | 位置検知システム |
Also Published As
Publication number | Publication date |
---|---|
EP4428560A1 (en) | 2024-09-11 |
JP2023067962A (ja) | 2023-05-16 |
JP2023118701A (ja) | 2023-08-25 |
CN118159862A (zh) | 2024-06-07 |
JP7291985B1 (ja) | 2023-06-16 |
US20240356379A1 (en) | 2024-10-24 |
WO2023074002A1 (ja) | 2023-05-04 |
JPWO2023074887A1 (ja) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10516301B2 (en) | System and methods for using sound waves to wirelessly deliver power to electronic devices | |
US7893876B2 (en) | System and method for determining locations of medical devices | |
US11914033B2 (en) | Transmitting device for use in location determination systems | |
US20110025464A1 (en) | Antenna Diversity For Wireless Tracking System And Method | |
KR101898101B1 (ko) | Iot 상호작용 시스템 | |
WO2023074887A1 (ja) | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 | |
US11564300B2 (en) | Real time locating system having lighting control devices | |
US9086469B2 (en) | Low frequency magnetic induction positioning system and method | |
US7764171B2 (en) | Adjusting a communications channel between control unit and remote sensor | |
JP2014075755A (ja) | 認証システム | |
CN110519718A (zh) | 一种基于无线信号的人体存在检测系统 | |
JP6986709B2 (ja) | 制御システム、制御プログラム、制御方法、及び制御システムに用いられる発信機 | |
US20210332999A1 (en) | Air-conditioning system | |
CN210776339U (zh) | 一种智慧酒店客房的控制系统 | |
Moriya et al. | Indoor localization based on distance-illuminance model and active control of lighting devices | |
JP2009162732A (ja) | 位置情報検出システム | |
WO2015185087A1 (en) | Building automation system and method therefor | |
US20240089017A1 (en) | Antenna diversity implementation for remote sensors in an hvac system | |
KR20220058435A (ko) | 센서 장치, 처리 방법, 기록 매체 | |
KR20160104920A (ko) | 리모콘 찾기용 위치추적 시스템 및 그 구동방법 | |
JP7246011B2 (ja) | 人検知装置および人検知システム | |
JP5708989B2 (ja) | 機器制御システム | |
JP2013037440A (ja) | 認証システム | |
WO2020012144A1 (en) | Determining presence of a person | |
CN108616808A (zh) | 一种室内人员精确定位方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022573541 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22887212 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280071740.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022887212 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022887212 Country of ref document: EP Effective date: 20240603 |