JP2004226157A - センサネットワーク、センサ、電波送信体、及びコンピュータプログラム - Google Patents
センサネットワーク、センサ、電波送信体、及びコンピュータプログラム Download PDFInfo
- Publication number
- JP2004226157A JP2004226157A JP2003012174A JP2003012174A JP2004226157A JP 2004226157 A JP2004226157 A JP 2004226157A JP 2003012174 A JP2003012174 A JP 2003012174A JP 2003012174 A JP2003012174 A JP 2003012174A JP 2004226157 A JP2004226157 A JP 2004226157A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- radio wave
- measurement
- physical quantity
- child
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Selective Calling Equipment (AREA)
Abstract
【課題】配線施工の問題や電源供給の問題が無いセンサネットワークを提供する。
【解決手段】計測対象の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数のセンサ30と、電源11を有し前記センサに対して前記電波を送信する電波送信体10とを備え、前記センサは、前記電波の受信に応答して、前記センサが配置された前記部位の物理量又は化学量を計測し、前記電波送信体は、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する。
【選択図】 図1
【解決手段】計測対象の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数のセンサ30と、電源11を有し前記センサに対して前記電波を送信する電波送信体10とを備え、前記センサは、前記電波の受信に応答して、前記センサが配置された前記部位の物理量又は化学量を計測し、前記電波送信体は、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、センサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムに関する。
【0002】
【従来の技術】
従来の計測においては、センサと、そのセンサによる計測結果を収集する測定装置間の配線施工が大変であり、特に多数の計測点がある場合には、準備作業、材料費などの費用も大きかった。
【0003】
一方、配線レス化の手法として、センサに無線装置を取付け、センサで検出したデータを測定装置に無線伝送する手法が開発されている。しかし、無線装置付のセンサには電源が必要であり、外部電源からの給電を受ける場合には、電源との配線作業が依然として必要となる上に、電源と配線接続する関係で設置場所が限定されていた。電池式にする場合には、定期的に電池の交換が必要であった。これらのことから、計測点が多数である場合には、無線装置付のセンサの採用は作業性が容易とはいえなかった。
【0004】
また、電源を持たないRFID方式(Radio Frequency Identifier:無線タグ方式)のセンサもあるが、常時計測ができないことから用途が限られていた。
【0005】
【非特許文献1】
日経エレクトロニクス(2002年6月17日発行)第37頁の「無線センサ・ネットに米国で関心高まる」と題する記事
【特許文献1】
特開2001−320781号公報
【0006】
【発明が解決しようとする課題】
配線施工の問題や電源供給の問題が無いセンサが望まれている。
特に、多数の計測点に配置され、配線施工の問題や電源供給の問題が無いセンサが望まれている。
省エネルギーでかつ所望の計測を確実に行えるセンサが望まれている。
配線施工の問題や電源供給の問題が無く、複数のセンサが異なるタイミング(順番を含む)で計測を行えるセンサが望まれている。
配線施工の問題や電源供給の問題が無く、複数のセンサのそれぞれのサンプリング(計測)周期を変えることができるセンサが望まれている。
【0007】
本発明の目的は、配線施工の問題や電源供給の問題が無いセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の他の目的は、特に、多数の計測点に配置され、配線施工の問題や電源供給の問題が無いセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の更に他の目的は、省エネルギーでかつ所望の計測を確実に行えるセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の更に他の目的は、配線施工の問題や電源供給の問題が無く、複数のセンサが異なるタイミング(順番を含む)で計測を行えるセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の更に他の目的は、配線施工の問題や電源供給の問題が無く、複数のセンサのそれぞれのサンプリング(計測)周期を変えることができるセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
【0008】
【課題を解決するための手段】
以下に、[発明の実施の形態]で使用する番号・符号を用いて、[課題を解決するための手段]を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明の実施の形態]の記載との対応関係を明らかにするために付加されたものであるが、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
【0009】
本発明のセンサネットワークは、計測対象の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数のセンサ(30)と、電源(11)を有し前記センサ(30)に対して前記電波を送信する電波送信体(10)とを備え、前記センサ(30)は、前記電波の受信に応答して、前記センサ(30)が配置された前記部位の物理量又は化学量を計測し、前記電波送信体(10)は、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する。
【0010】
本発明のセンサネットワークにおいて、前記電波送信体(10)は、前記センサ(30)が計測する第1の前記物理量又は化学量とは異なる第2の前記物理量又は化学量を検出する。
【0011】
本発明のセンサネットワークにおいて、前記電波送信体(10)は、前記計測対象に配置され、前記第2の物理量又は化学量を検出するセンサである。
【0012】
本発明のセンサネットワークにおいて、前記センサ(30)は、計測した前記第1の物理量又は化学量を示すデータを前記電波送信体(10)に送信し、前記電波送信体(10)は、受信した前記センサ(30)からの前記第1の物理量又は化学量を示すデータの受信タイミングに基づいて、前記第2の物理量又は化学量として、前記センサ(10)と前記電波送信体(10)との間の距離を検出する。
【0013】
本発明のセンサネットワークにおいて、前記電波送信体(10)は、前記複数のセンサ(30)のそれぞれを識別するための識別子を示すデータを含む信号に対応する前記電波を前記センサ(30)に送信し、前記センサ(30)は、前記電波に対応する前記信号に含まれる前記データに含まれる前記識別子に基づいて、前記センサ(30)が配置された前記部位の物理量又は化学量を計測するか否かを決定する。
【0014】
本発明のセンサネットワークにおいて、前記電波送信体(10)を複数含み、前記センサ(30)は、計測した前記第1の物理量又は化学量を示すデータを前記電波送信体(10)に送信し、第1の前記電波送信体(10)は、受信した前記第1の物理量又は化学量を示すデータを第2の前記電波送信体(10)に送信する。
【0015】
本発明のセンサは、計測対象の複数の部位のそれぞれに配置されるセンサ(30)であって、前記計測対象に関する物理量又は化学量に基づいて送信された電波を受信して前記電波のエネルギーを電源として動作し、前記電波の受信に応答して、前記センサ(30)が配置された前記部位の物理量又は化学量を計測する。
【0016】
本発明の電波送信体は、電源を有する電波送信体(10)であって、計測対象の複数の部位に配置され送信された電波を受信して前記電波のエネルギーを電源として動作し前記電波の受信に応答して前記配置された部位の物理量又は化学量を計測する複数のセンサ(30)に対して、前記電波を送信し、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する。
【0017】
本発明の橋梁の計測システムは、橋梁の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサ(30)と、前記橋梁に配置され前記橋梁に関する物理量又は化学量を計測し、電源(11)を有し前記第1センサ(30)に対して前記電波を送信する第2センサ(10)とを備え、前記第1センサ(30)は、前記電波の受信に応答して、前記第1センサ(30)が配置された前記部位の物理量又は化学量を計測し、前記第2センサ(10)は、計測した前記物理量又は化学量に基づいて、前記電波を送信するか否かを決定する。
【0018】
本発明の橋梁の計測システムにおいて、前記第2センサ(10)は、風速計であり、前記第1センサ(30)は、加速度センサ、変位センサ及び歪センサを含む応力検知センサのうちの少なくともいずれか一つである。
【0019】
本発明の橋梁の計測システムにおいて、前記第2センサ(10)は、重量計及び速度計の少なくともいずれか一つであり、前記第1センサ(30)は、歪センサを含む応力検知センサである。
【0020】
本発明の霧の発生検知システムは、霧の発生を検知すべき計測場所に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサ(30)と、前記計測場所に配置され前記計測場所に関する物理量又は化学量を計測し、電源(11)を有し前記第1センサ(30)に対して前記電波を送信する第2センサ(10)とを備え、前記第1センサ(30)は、前記電波の受信に応答して、前記第1センサ(30)が配置された前記計測場所の物理量又は化学量を計測し、前記第2センサ(10)は、計測した前記物理量又は化学量に基づいて、前記電波を送信するか否かを決定する。
【0021】
本発明の霧の発生検知システムにおいて、前記第2センサ(10)は、温度・湿度計であり、前記第1センサ(30)は、視程計である。
【0022】
本発明の土砂の崩落検知システムは、土砂の崩落を検知すべき計測場所に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサ(30)と、電源(11)を有し前記第1センサ(30)に対して前記電波を送信する電波送信体(10)とを備え、前記第1センサ(30)は、前記電波の受信に応答して、前記第1センサ(30)が配置された前記計測場所の物理量又は化学量を計測し、前記計測の結果を前記電波送信体(10)に送信し、前記電波送信体(10)は、受信した前記計測の結果の受信タイミング及び前記計測の結果の少なくともいずれか一方に基づいて、前記土砂の崩落の可能性を検知する。
【0023】
本発明の土砂の崩落検知システムにおいて、前記電波送信体(10)は、前記計測の結果に基づいて、前記電波を送信する頻度を決定する。
【0024】
本発明の土砂の崩落検知システムにおいて、前記第1センサ(30)は、水分計である。
【0025】
本発明のコンピュータプログラムは、電源(11)を有する親センサ(10)を含むコンピュータで実行されるコンピュータプログラムであって、(a) 計測対象物に関し前記親センサ(10)で計測された物理量又は化学量が基準値以上であるか否かを判定するステップと、(b) 前記(a)の判定の結果、前記物理量又は化学量が前記基準値以上であれば、前記計測対象物の複数の部位に配置され送信された電波を受信して前記電波のエネルギーを電源として動作するとともに前記電波の受信に応答して前記配置された部位の物理量又は化学量を計測する複数の子センサ(30)に対して、前記電波を送信するステップとを前記コンピュータに実行させるためのコンピュータプログラムである。
【0026】
【発明の実施の形態】
添付図面を参照して、本発明のセンサネットワークの一実施形態を説明する。
【0027】
本実施形態は、図1に示すように、電源が必要な無線機能付きセンサを親センサ10とし、電源を持たないRFID方式のセンサを子センサ30として、親センサ10と複数の子センサ30とが組み合わされてなるセンサネットワークである。なお、子センサ30は、RFID方式に限られない。子センサ30は、自らは電源を持たずに、送信された電波を受信して、その受信電波を電源のエネルギーとして起動するものであればよい。
【0028】
本実施形態は、個々のアプリケーション(後述)毎に、親センサ10、子センサ30のセンシング部を変更し、親センサ10の計測ロジックを変更することができ、配線レスである無線機能付きセンサの特徴を生かしたセンサネットワークである。
【0029】
親センサ10は、複数の子センサ30と双方向に無線通信する。親センサ10aは、複数の子センサ30a〜30dと通信し、1つのグループを形成している。親センサ10bは、複数の子センサ30e、30f、…と通信し、1つのグループを形成している。親センサ10cは、図示しない複数の子センサと通信し、1つのグループを形成している。図示しない他の親センサ10d、10e…についても同様である。
【0030】
各親センサ10a、10bは、その無線機能によりデータ収集センタ50と無線通信網60を介してデータ通信する。
【0031】
次に、図3を参照して、親センサ10の構成について説明する。なお、親センサ10a、10b…の構成は基本的に互いに同一である。
【0032】
親センサ10は、電源11と、メモリ12と、補助記憶装置13と、カレンダー・タイマ機能部14と、入力部15と、センサ16と、子センサ用無線機能部17と、通信機能部18と、制御装置19とを備えている。
【0033】
電源11は、電池、充電池、又は周辺の商用電源である。電源11として、風力発電、太陽電池の利用なども親センサ10の設置場所によっては考えられる。電源11より各部12〜19へ給電される。
【0034】
メモリ12は、プログラム領域12aと、データ領域12bに分かれている。プログラム領域12aには、適用されるアプリケーション毎の子センサ30との通信処理手順、上位との通信処理手順、収集したセンサ値の処理手順、センサ値やタイマ値等に基づいて子センサ30からデータを得る処理手順が記録されている。また、プログラム領域12aには、親センサ10を識別するIDコードが記録されている。そのIDコードは、子センサ30、他の親センサ10又はデータ収集センタ50との通信時に、その親センサ10を特定するために通信データに含まれる。データ領域12bは、収集したデータを、上位へ通知するまでの間、一時的にデータを保存する場所である。
【0035】
補助記憶装置13は、上位へ通信によりデータを送るのではなく、メモリカードのような取替え可能な記録メディアによりデータの収集を行う場合に利用するもので、必要に応じて設置される。その場合、作業員が定期点検時等に、記録メディアを交換してデータを収集する。
【0036】
カレンダー・タイマ機能部14は、日時をカウントする時計であり、定期的なデータ収集の収集周期の計時に利用したり、イベント(外部入力値が所定値を超えた場合など)の発生時の日時記録の為などに利用する。なお、後述するアプリケーションによっては利用されない場合がある。
【0037】
入力部15は、入力端子15aと、入力インターフェース(I/F)15bとを有している。センサ16の信号を入力端子15aで受け、入力インターフェース15bでアナログ値をデジタル値に変換(AD変換)し、またon/offのデジタル信号も内部回路で扱えるレベルに変換(DI入力)して制御装置19に取込めるようにする。
【0038】
センサ16は、アプリケーション毎に異なるが、温度計、湿度計、加速度計、歪み計、変位センサ、水分計、照度計、風向風速計、重量計、圧力計、電圧・電流計、抵抗計などの物理量を計測するセンサ又は、CO2、O2、NOx、SOx、ダイオキシン等の化学量を計測するセンサが考えられる。
【0039】
子センサ用無線機能部17は、複数の子センサ30のそれぞれに電波を送ることで、各子センサ30に動作エネルギーを供給して活性化させ、各子センサ30からセンシング結果を示すデータを受信する。子センサ用無線機能部17は、受信データに含まれる子センサ30毎のIDを認識し、複数の子センサ30からの信号を判別して送受信処理する。
【0040】
通信機能部18は、上位のデータ収集センタ50との通信を行う。通信機能部18としては、システム構成に応じて無線、有線を選択して構成する。また、直接、上位のデータ収集センタ50と通信をせずに、親センサ10間のネットワークを経由して通信することもできる。
【0041】
制御装置19は、メモリ12のプログラム領域12aに記載された処理手順に従い、計測処理、通信処理を行う。
【0042】
次に、図4を参照して、子センサ30の構成について説明する。複数の子センサ30a、30b…の構成は、基本的に互いに同一である。
【0043】
子センサ30は、電源機能部31と、メモリ32と、入力I/F部33と、センサ機能部34と、制御機能部35と、無線機能部36とを備えている。
【0044】
電源機能部31は、無線機能部36で受信した電波のエネルギーを電源として必要な電圧に変換して、各部32〜36に給電する。
【0045】
メモリ32には、動作時の入力処理手順、通信処理手順が記録されている。また、子センサ30を識別するためのIDコードも記録されている。そのIDコードは、子センサ30から親センサ10に計測結果を送信するときの送信データに含まれる。
【0046】
入力I/F部33は、センサ機能部34からの信号をデジタル値化(AD変換等)して制御機能部35に出力する。
【0047】
センサ機能部34は、小型省電力化したものを選定する。センサ機能部34は、アプリケーション毎に異なるが、温度計、湿度計、加速度計、歪み計、水分計、照度計、風向風速計、重量計、視程計、圧力計、電圧・電流計、抵抗計などの物理量を計測するセンサ又は、CO2、O2、NOx、SOx、ダイオキシン等の化学量を計測するセンサが考えられる。
【0048】
制御機能部35は、電源が入り動作を始めると、メモリ32より処理手順を読出し入力I/F部33からデータを取込み、無線機能部36を通じて親センサ10に計測値を通知する。
【0049】
無線機能部36は、親センサ10からの電波を受けエネルギーとして電源機能部31へ送る機能と、親センサ10との送受信を行う機能を有する。
【0050】
子センサ30の各部31〜36は、小型一体化することが望ましく、センサ機能部34以外はICチップとして一体化することができる。センサ機能部34は、歪みゲージのように被計測物に密着させる必要があるものなど、計測対象によっては、一体化が困難であるので、センサ機能部34の構成は対象に応じて決める。
【0051】
次に、本実施形態が適用される例(アプリケーション)について説明する。
【0052】
図2に示すように、本実施形態は、橋梁のモニタリングシステムに適用可能である。本例では、親センサ10a、10b…は、風速計であり、子センサ30a、30b…は、加速度計である。
【0053】
親センサ10a、10b…は、橋梁の支柱部分5に設置されている。支柱部分5には、街灯6が設置されている。親センサ10a、10b…は、街灯6用の電源(図示されず)から給電されることで常時稼動することができる。
【0054】
親センサ10a、10b…の設置位置は、特に限定されないが、電源との配線作業性及びコストの観点から、電源の位置から近い場所が適している。街灯6用の電源のような既設の電源がある場合には、その近くに設けられることが望ましい。
【0055】
親センサ10a、10b…の通信機能部(アンテナ)18は、高架橋を走行する道路点検パトロールカー(データ収集センタ50)と良好に通信可能なように、高架橋の上方に出るように設置されている。
【0056】
子センサ30a、30b…は、高架橋の下面側(裏側)に設置される。子センサ30a、30b…は、電源と配線で接続されていたり電池を内蔵している訳ではない電源レスである。子センサ30a、30b…のそれぞれは、同じグループを形成する親センサ10a、10b…から送信された電波を受信し、その電波のエネルギーを電源として使用する。
【0057】
親センサ10a、10b…が子センサ30a、30b…から収集したセンシング結果は、橋梁を定期的に走行する道路点検パトロールカー50と親センサ10a、10b…との間の無線通信により、道路点検パトロールカー50に伝送される。道路点検パトロールカー50は、橋梁を走行しながら、その走行場所に近い親センサ10a、10b…と順次通信することで、各親センサ10a、10b…からセンシング結果を受ける。
【0058】
次に、他の実施形態(アプリケーション例)について説明する。
第1のアプリケーションは、▲1▼強風時の振動計測に関し、第2のアプリケーションは、▲2▼過積載車通過時の橋部材の応力計測に関し、第3のアプリケーションは、▲3▼霧発生検知に関し、第4のアプリケーションは、▲4▼がけ/傾斜地の崩落検知に関する。
【0059】
▲1▼強風時の振動計測
強風が吹くと橋が振動する問題がある。しかし橋が振動するほどの強風は年に数回しかなく常時観測し続けるのは効率が悪く、強風時にのみ観測できることが望ましい。一方、振動計測時にはなるべく多数の点の情報が得られることが評価の精度を上げるために必要である。
【0060】
そこで、本実施形態の橋の振動計測システムでは、親センサ10に風速計を設けると共に、子センサ30には加速度計を設け、親センサ10で所定の値以上の風速を検知した場合に親センサ10から子センサ30に計測指示信号を送る。子センサ30は、計測指示信号を電波で受けると、その電波をエネルギーとして給電されて動作を開始する。子センサ30は、計測指示信号を受信するまでは、無給電状態であるため動作は停止したままである。子センサ30は、受信した計測指示信号に応答して、センサ機能部34で計測(振動計測)し、その計測結果を親センサ10に出力する。親センサ10は、所定値以上の風速を検知した場合に、所定の計測時間の間、所定のサンプリング周期で計測指示信号を子センサ30に送信する。子センサ30は、その計測指示信号を受信する度に計測し、その計測結果を親センサ10に送信する。なお、子センサ30には加速度センサ以外に、歪センサ、変位センサを用いる場合がある。
【0061】
図5は、親センサ10の全体の動作を示すフローチャートである。
【0062】
親センサ10は、電源が投入されると、制御装置19がメモリ12のプログラム領域12aに格納されたプログラムを読み込み(ステップS1)、子センサ用無線機能部17、通信機能部18、及び入力I/F部15bの初期化処理を行う(ステップS2)。その後、親センサ10は、上位のデータ収集センタ50や親センサ10との上位通信処理(ステップS3)と計測処理(ステップS4)を繰り返す。
【0063】
図6は、親センサ10の上位通信処理(ステップS3)の動作を示すフローチャートである。
【0064】
親センサ10は、上位(データ収集センタ50又は他の親センサ10)との接続があるか否かを判断し、接続するまで待つ(ステップS11)。親センサ10は、上位と接続すると、メモリ12のデータ領域12bに送信すべきデータが有るか否かを判断する(ステップS12)。その結果、データ領域12bに送信すべきデータが無い場合には、「メモリ12b内に送信すべきデータが無い」旨の情報を、接続中の上位に送信し(ステップS13)、ステップS11に戻る。
【0065】
一方、ステップS12の結果、データ領域12bに送信すべきデータが有る場合には、データ領域12bから送信すべきデータを1セット読出し(ステップS14)、その読み出したデータを上位に送信する(ステップS15)。次に、ステップS15での送信が正常に完了したか否かを判断し(ステップS16)、正常に完了していなければステップS11に戻る。一方、正常に完了していれば、その送信した1セットのデータをデータ領域12bから削除し(ステップS17)、ステップS12に戻る。
【0066】
図7は、上記▲1▼の例をとった場合の親センサ10の計測処理(ステップS4)の動作を示すフローチャートである。
【0067】
親センサ10は、風速計(センサ16)の計測データを読み込み(ステップS21)、その計測値が基準値以上であるか否かを判定する(ステップS22)。その判定の結果、計測値が基準値未満であれば、ステップS21に戻る。
【0068】
一方、制御装置19は、その判定の結果、計測値が基準値以上であれば、カレンダー・タイマ機能部14の計測タイマ(n分)とサンプリングタイマ(m秒)をスタートさせる(ステップS23)。ここで、計測タイマは、計測値が基準値以上であった場合に、継続して計測を行う所定時間(n分)をカウントし、サンプリングタイマは、その所定時間内で計測を行うときのサンプリング周期(m秒)をカウントする。
【0069】
その後、親センサ10は、子センサ30へ計測指示信号を送信する(ステップS24)。このとき、親センサ10は、計測指示信号の電波で子センサ30に電力を送信する(ステップS24)。この場合、親センサ10は、その親センサ10のグループに属する複数の子センサ30(親センサ10aであれば子センサ30a〜30d)に対して同時に計測指示信号を送信する。
【0070】
その後、親センサ10は、計測指示信号の送信先である複数の子センサ30のそれぞれから、子センサ30の計測値を示すデータを受信する(ステップS25)。また、親センサ10は、風速計16の計測データを読み込み(ステップS26)、その風速計の計測データと、ステップS25で受信した子センサ30の計測値を示すデータとをデータ領域12bに保存する(ステップS27)。
【0071】
ここで、データ領域12bには、計測日時と、風速(ステップS26での親センサ10の計測値)と、ステップS25で複数の子センサ30のそれぞれから受信した加速度の値(加速度#1、加速度#2…)が記録される。親センサ10が親センサ10aである場合には、加速度#1は、子センサ30aの計測結果に対応し、加速度#2は、子センサ30bの計測結果に対応する。
【0072】
次いで、計測タイマが終了していないか否かを判定し、終了していればステップS21に戻り、終了していなければステップS29に進む(ステップS28)。ステップS29では、サンプリングタイマが終了していないか否かを判定し、終了していればステップS24とステップS26に戻り、終了するまでS29を繰り返す。
【0073】
図8は、子センサ30の全体の動作を示すフローチャートである。
【0074】
子センサ30は、親センサ10から計測指示信号の電波(ステップS24参照)を受信する。子センサ30は、受信した電波により電源が供給される(ステップS31)。次いで、子センサ30は、メモリ32に格納されたプログラムを読み込み(ステップS32)、入力I/F部33や無線機能部36を初期化する(ステップS33)。次いで、子センサ30は、センサ機能部34によりセンシングした計測値を入力I/F部33を介して入力する(ステップS34)。次いで、子センサ30は、入力した計測値を、自己のIDを示すデータとともに親センサ10に送信する(ステップS35)。なお、サンプリング間隔が非常に短い場合は、親センサ10からの電波を出し続けることで、子センサ30は受信中は給電状態が続くので、計測指示信号受信時に毎回ステップS31,S32,S33の処理を行う必要はなく、計測(S34)と送信(S35)のみを行えばよく、高速サンプリングを可能とする。
【0075】
次に、第2のアプリケーションについて説明する。
【0076】
▲2▼過積載車通過時の橋部材の応力計測
鉄構構造物の疲労は、そこにかかる応力の大きさと回数によって決まるので、発生した応力の強さと回数を計測することが、構造物の余寿命診断の重要なデータとなる。例えば橋梁の場合、設計時に想定する最大車両重量(例えば25t)を超えた過積載車両(例えば30〜40t)によるダメージが、設計寿命を低下させる大きな要因となるため、この頻度を計測して橋の補修計画を立てることで、効率よく構造物の維持補修が行えるようになる。
【0077】
ここでは、親センサ10に車重計を接続し、子センサ30に歪ゲージ等の応力検知センサを付けたシステムを構築する。親センサ10で所定の重量以上の車両が通過した場合に、各子センサ30に計測指示信号を出すことで、過積載車両の通過時のみの計測ができ、効率良い計測ができる。
【0078】
第2のアプリケーションにおいて、親センサ10の動作は、基本的に図5、図6及び図7に示した通りであり、図7のステップS21とステップS26の「風速計データ読み込み」を「車重計データ読み込み」に代え、ステップS27の「風速」を「車重」に、「加速度」を「歪み量」にそれぞれ代えるのみである。子センサ30の動作は、図8に示した通りである。
【0079】
また、車重計は高価であることから、一台の親センサ10にのみ設置し、親センサ10間で通信をすることで道路の経路に沿って順次計測することが可能となる。親センサ10に車速検出器を設置することで、各子センサ30の位置までの移動時間を推定することができ、その移動時間を加味して計測指示信号を送信することで、各子センサ30に各子センサ30を通過する瞬間(又は、前後を含む所定時間)の値を効率よく計測させることができる。
【0080】
なお、鉄道橋においては、親センサ10のタイマ機能を用いて列車ダイヤに合わせて計測指示信号を送信することで、列車が各子センサ30を通過する時にその子センサ30による計測を行わせることが可能である。また、列車の通過を検知する信号機からの通過信号を親センサ10に取込み、その通過信号の受信タイミングを考慮して所定のタイミングで計測指示信号を送信することで、列車が各子センサ30を通過する時にその子センサ30による計測を行わせることができる。
【0081】
上記の車速検出器を用いる場合や鉄道橋の例においては、親センサ10の動作は、一部を除いて図5、図6及び図7に示した通りである。車速検出器を用いる場合には、図7のステップS21及びステップS22を「移動時間が経過したか?」の判定ステップに代えて、その判定結果がYESであればステップS23に進み、NOであればその判定ステップに戻るように代える。列車ダイヤを用いる場合には、ステップS21及びステップS22を「列車ダイヤの時刻か?」の判定ステップに代えて、その判定結果がYESであればステップS23に進み、NOであればその判定ステップに戻るように代える。通過信号を用いる場合には、ステップS21及びステップS22を「通過信号を受信し、かつ、通過信号を受信してからその信号機から子センサへまでの距離に対応する列車の走行時間が経過したか?」の判定ステップに代えて、その判定結果がYESであればステップS23に進み、NOであればその判定ステップに戻るように代える。更に、ステップS26の「風速計データ読み込み」を「車重計データ読み込み」に代え、ステップS27の「風速」を「車重」に、「加速度」を「歪み量」にそれぞれ代えるのみである。子センサ30の動作は、図8に示した通りである。
【0082】
次に、第3のアプリケーションについて説明する。
【0083】
▲3▼霧発生検知
霧は、大気の温度、湿度状態によって発生するが局地的に発生するため、一箇所で広域を監視することは難しい。よって、詳細に監視するためには多地点での観測が必要である。従来、霧の発生程度の監視は視程計を用い、発生有無の監視、道路における交通規制の必要性の監視を行っている。
【0084】
親センサ10には、温度計、湿度計を設置する。一方、子センサ30には、視程計を設置し、必要に応じて風向風速計を設置する。子センサ30の風向風速計は霧の流れを予測する上で重要である。
【0085】
親センサ10は、親センサ10により計測した温度・湿度の値に基づいて、霧の発生予測情報として事前に注意報/警報をデータ収集センタ50に送信することができる。また、親センサ10は、計測した温度・湿度の値に基づいて、霧が発生したと判断すると、子センサ30に計測指示信号を送信する。
【0086】
子センサ30は、受信した計測指示信号に応答して、子センサ30の視程計34にて霧の発生度合を計測し、その計測結果を子センサ30のIDと共に親センサ10に送信する。このとき、子センサ30が風向風速計を有している場合には、風向風速計による計測結果も親センサ10に送信する。親センサ10は、親センサ10により計測した温度・湿度情報と、子センサ30から受信した霧の発生度合いを示すデータ(又は、更に風向風速計による計測結果を示すデータ)をデータ収集センタ50に送信する。データ収集センタ50は、親センサ10から受信したデータに基づいて、霧の今後の発生状況を予測することができる。
【0087】
この霧センサネットワークは、高速道路沿線に設置するだけではなく市街地における街灯を親センサ10の基点として設置することで、地域全体をカバーする霧発生予測・検知網が構築できる。
【0088】
第3のアプリケーションにおいて、親センサ10の動作は、一部を除いて図5、図6及び図7に示した通りである。図7のステップS21とステップS26の「風速計データ読み込み」を「温度計・湿度計データ読み込み」に代え、ステップS22を「霧の発生有り?」の判定ステップに代え、ステップS27の「風速」を「温度・湿度」に、「加速度」を「霧の発生度合い」にそれぞれ代える。子センサ30の動作は、図8に示した通りである。
【0089】
次に、第4のアプリケーションについて説明する。
【0090】
▲4▼がけ/傾斜地の崩落検知
親センサ10は、子センサ30に対して信号を送り、子センサ30からの返信を受信するまでの時間差と、電波の速度から、親センサ10と子センサ30の距離を求める。一方、傾斜地における土砂崩れの要因としては土中の水分量の増加がある。
【0091】
そこで、子センサ30には水分計を付けて土中に設置し、親センサ10からの計測指示に対してその地点の土中水分量とIDを付して応答する。親センサ10は、定期的に計測指示を送信して、土中に設置された各子センサ30を呼び出し、水分量変化と子センサ30までの距離を計測する。親センサ10は、同じ子センサ30までの距離が変化した場合、その子センサ30が設置された部位の土が移動(子センサ30の変位)したことを検出する。
【0092】
子センサ30の変位は、事前に計測した既知の位置に子センサ30を設置して、その既知の位置からの変化を計測することにより求めることができる。また、子センサ30を任意の位置に設置し、その設置直後の初回計測値を基準として変化を計測することにより、子センサ30の変位を求めることができる。
【0093】
親センサ10は、子センサ30の変位量が所定の基準値を超えた場合に、崩落の危険有りとして警報を出す。また、親センサ10は、子センサ30の変位が小さくても、土中の水分量が基準値を超える場合には同様に警報を出す。また、親センサ10は、水分量が増えてきた場合には、親センサ10から子センサ30への計測指示信号の送信頻度を高めて、子センサ30による計測頻度を上げることにより、崩落の急変を見逃すことなく計測することができる。
【0094】
第4のアプリケーションにおいて、子センサ30の動作は、図8に示した通りである。親センサ10の動作は、図5及び図6に示した通りであるが、図7に代えて図9に示した通りである。
【0095】
図9のステップS41に示すように、親センサ10は、設定された送信頻度に従い、子センサ30に計測指示信号を送信する。その計測指示信号の電波は、子センサ30において動作エネルギーとして用いられる。
【0096】
次に、親センサ10は、子センサ30から水分量を示す計測値とIDを示すデータを受信する(ステップS42)。次に、親センサ10は、ステップS42での受信タイミングに基づいて、親センサ10から子センサ30までの距離を求め、その距離から変位量を求める。次に、親センサ10は、各子センサ30毎に変位量と水分量をメモリに保存する(ステップS43)。
【0097】
次いで、ステップS44に示すように、親センサ10は、子センサ30の変位量が所定の基準値を超えたか否かを判定し、その判定の結果、変位量が基準値を超えていたら、警報を出す(ステップS46)。また、ステップS45に示すように、親センサ10は、子センサ30により計測された土中の水分量が基準値を超えたか否かを判定し、その判定の結果、変位量が基準値を超えていたら、警報を出す(ステップS46)。また、ステップS47に示すように、親センサ10は、水分量がステップS45の基準値未満であっても所定値以上であれば、親センサ10から子センサ30への計測指示信号の送信頻度を高め(ステップS47)、それ以降の子センサ30による計測頻度を上げる。
【0098】
なお、上記においては、親センサ10は、自己のグループに属する複数の子センサ30の全てに対して同時に計測指示を送り、それら全ての子センサ30からの計測結果を受信していた。これに代えて、親センサ10は、自己のグループに属する複数の子センサ30のうちの特定の単数又は複数の子センサ30に対してのみに計測指示を送り、その特定の子センサ30からの計測結果を受信する構成とすることができる。
【0099】
この場合、親センサ10は、計測指示信号に特定の単数又は複数の子センサ30のIDを示すデータを含ませた状態で、その計測指示信号を送信する。その計測指示信号は、その計測指示信号を送信した親センサ10のグループに属する複数の子センサ30の全てによって受信される。
【0100】
その計測指示信号を受信した複数の子センサ30のうち上記特定の単数又は複数の子センサ30以外の子センサ30は、その計測指示信号の電波のエネルギーにより起動するが、その計測指示信号に自己のIDを示すデータが含まれていないので、計測を行わず、親センサ10に対する返答を行わない。
【0101】
一方、その計測指示信号を受信した複数の子センサ30のうち上記特定の単数又は複数の子センサ30は、その計測指示信号の電波のエネルギーにより起動し、その計測指示信号に自己のIDを示すデータが含まれているので、計測を行い、その計測結果を示すデータを親センサ10に対して送信する。
【0102】
この方法を用いることにより、ある特定の計測場所に配置された特定の子センサ30のサンプリング周期を他の子センサ30と変えることが可能である。
【0103】
親センサ10は、自己のグループに属する複数の子センサ30に対して、順番に上記特定の子センサ30に選定しておけば、計測場所にそれぞれ配置された子センサ30を任意の順番で計測させることができる。
【0104】
以上に述べたように、本実施形態によれば、以下の効果を奏することができる。
・親センサ(親局)10と子センサ(子局)30の組合せにより、広範囲なセンシングを効率的に行うことができる。
・親センサ10の中継機能により、データ収集センタ50が通信網60を介してその親センサ10から直接的にデータを収集できないような点の計測も可能となる。
・親センサ10間のネットワーク機能により広範囲の計測が可能となる。
・親センサ10の制御により、任意の間隔でのサンプリングが可能となる。この場合、子センサ30に個別に信号を送り順番に計測することができる。また、子センサ30に一斉に信号を送り、全体の瞬時値を計測することができる。更に、計測場所によってサンプリング間隔を変えて計測を行うことができる。
・電源供給の課題を親センサ10に限定することで、適用アプリケーションの拡大、コストダウン(省配線、定期電池交換の省力化)を図ることができる。
【0105】
【発明の効果】
本発明のセンサネットワークによれば、配線施工の問題や電源供給の問題が無い。
【図面の簡単な説明】
【図1】図1は、本発明のセンサネットワークの一実施形態の構成を示す図である。
【図2】図2は、本発明のセンサネットワークの一実施形態が橋梁に適用された例を示す図である。
【図3】図3は、本発明のセンサネットワークの一実施形態の親センサの構成を示す図である。
【図4】図4は、本発明のセンサネットワークの一実施形態の子センサの構成を示す図である。
【図5】図5は、本発明のセンサネットワークの一実施形態の親センサの全体の動作を示すフローチャートである。
【図6】図6は、本発明のセンサネットワークの一実施形態の親センサの上位との通信処理の動作を示すフローチャートである。
【図7】図7は、本発明のセンサネットワークの一実施形態の親センサの測定処理(強風時振動計測)の動作を示すフローチャートである。
【図8】図8は、本発明のセンサネットワークの一実施形態の子センサの全体の動作を示すフローチャートである。
【図9】図9は、本発明のセンサネットワークの一実施形態の親センサの測定処理(霧の発生検知)の動作を示すフローチャートである。
【符号の説明】
10 親センサ
10a〜10c 親センサ
11 電源
30 子センサ
30a〜30h 子センサ
【発明の属する技術分野】
本発明は、センサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムに関する。
【0002】
【従来の技術】
従来の計測においては、センサと、そのセンサによる計測結果を収集する測定装置間の配線施工が大変であり、特に多数の計測点がある場合には、準備作業、材料費などの費用も大きかった。
【0003】
一方、配線レス化の手法として、センサに無線装置を取付け、センサで検出したデータを測定装置に無線伝送する手法が開発されている。しかし、無線装置付のセンサには電源が必要であり、外部電源からの給電を受ける場合には、電源との配線作業が依然として必要となる上に、電源と配線接続する関係で設置場所が限定されていた。電池式にする場合には、定期的に電池の交換が必要であった。これらのことから、計測点が多数である場合には、無線装置付のセンサの採用は作業性が容易とはいえなかった。
【0004】
また、電源を持たないRFID方式(Radio Frequency Identifier:無線タグ方式)のセンサもあるが、常時計測ができないことから用途が限られていた。
【0005】
【非特許文献1】
日経エレクトロニクス(2002年6月17日発行)第37頁の「無線センサ・ネットに米国で関心高まる」と題する記事
【特許文献1】
特開2001−320781号公報
【0006】
【発明が解決しようとする課題】
配線施工の問題や電源供給の問題が無いセンサが望まれている。
特に、多数の計測点に配置され、配線施工の問題や電源供給の問題が無いセンサが望まれている。
省エネルギーでかつ所望の計測を確実に行えるセンサが望まれている。
配線施工の問題や電源供給の問題が無く、複数のセンサが異なるタイミング(順番を含む)で計測を行えるセンサが望まれている。
配線施工の問題や電源供給の問題が無く、複数のセンサのそれぞれのサンプリング(計測)周期を変えることができるセンサが望まれている。
【0007】
本発明の目的は、配線施工の問題や電源供給の問題が無いセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の他の目的は、特に、多数の計測点に配置され、配線施工の問題や電源供給の問題が無いセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の更に他の目的は、省エネルギーでかつ所望の計測を確実に行えるセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の更に他の目的は、配線施工の問題や電源供給の問題が無く、複数のセンサが異なるタイミング(順番を含む)で計測を行えるセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
本発明の更に他の目的は、配線施工の問題や電源供給の問題が無く、複数のセンサのそれぞれのサンプリング(計測)周期を変えることができるセンサネットワーク、センサ、電波送信体、橋梁の計測システム、霧の発生検知システム、土砂の崩落検知システム及びコンピュータプログラムを提供することである。
【0008】
【課題を解決するための手段】
以下に、[発明の実施の形態]で使用する番号・符号を用いて、[課題を解決するための手段]を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明の実施の形態]の記載との対応関係を明らかにするために付加されたものであるが、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
【0009】
本発明のセンサネットワークは、計測対象の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数のセンサ(30)と、電源(11)を有し前記センサ(30)に対して前記電波を送信する電波送信体(10)とを備え、前記センサ(30)は、前記電波の受信に応答して、前記センサ(30)が配置された前記部位の物理量又は化学量を計測し、前記電波送信体(10)は、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する。
【0010】
本発明のセンサネットワークにおいて、前記電波送信体(10)は、前記センサ(30)が計測する第1の前記物理量又は化学量とは異なる第2の前記物理量又は化学量を検出する。
【0011】
本発明のセンサネットワークにおいて、前記電波送信体(10)は、前記計測対象に配置され、前記第2の物理量又は化学量を検出するセンサである。
【0012】
本発明のセンサネットワークにおいて、前記センサ(30)は、計測した前記第1の物理量又は化学量を示すデータを前記電波送信体(10)に送信し、前記電波送信体(10)は、受信した前記センサ(30)からの前記第1の物理量又は化学量を示すデータの受信タイミングに基づいて、前記第2の物理量又は化学量として、前記センサ(10)と前記電波送信体(10)との間の距離を検出する。
【0013】
本発明のセンサネットワークにおいて、前記電波送信体(10)は、前記複数のセンサ(30)のそれぞれを識別するための識別子を示すデータを含む信号に対応する前記電波を前記センサ(30)に送信し、前記センサ(30)は、前記電波に対応する前記信号に含まれる前記データに含まれる前記識別子に基づいて、前記センサ(30)が配置された前記部位の物理量又は化学量を計測するか否かを決定する。
【0014】
本発明のセンサネットワークにおいて、前記電波送信体(10)を複数含み、前記センサ(30)は、計測した前記第1の物理量又は化学量を示すデータを前記電波送信体(10)に送信し、第1の前記電波送信体(10)は、受信した前記第1の物理量又は化学量を示すデータを第2の前記電波送信体(10)に送信する。
【0015】
本発明のセンサは、計測対象の複数の部位のそれぞれに配置されるセンサ(30)であって、前記計測対象に関する物理量又は化学量に基づいて送信された電波を受信して前記電波のエネルギーを電源として動作し、前記電波の受信に応答して、前記センサ(30)が配置された前記部位の物理量又は化学量を計測する。
【0016】
本発明の電波送信体は、電源を有する電波送信体(10)であって、計測対象の複数の部位に配置され送信された電波を受信して前記電波のエネルギーを電源として動作し前記電波の受信に応答して前記配置された部位の物理量又は化学量を計測する複数のセンサ(30)に対して、前記電波を送信し、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する。
【0017】
本発明の橋梁の計測システムは、橋梁の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサ(30)と、前記橋梁に配置され前記橋梁に関する物理量又は化学量を計測し、電源(11)を有し前記第1センサ(30)に対して前記電波を送信する第2センサ(10)とを備え、前記第1センサ(30)は、前記電波の受信に応答して、前記第1センサ(30)が配置された前記部位の物理量又は化学量を計測し、前記第2センサ(10)は、計測した前記物理量又は化学量に基づいて、前記電波を送信するか否かを決定する。
【0018】
本発明の橋梁の計測システムにおいて、前記第2センサ(10)は、風速計であり、前記第1センサ(30)は、加速度センサ、変位センサ及び歪センサを含む応力検知センサのうちの少なくともいずれか一つである。
【0019】
本発明の橋梁の計測システムにおいて、前記第2センサ(10)は、重量計及び速度計の少なくともいずれか一つであり、前記第1センサ(30)は、歪センサを含む応力検知センサである。
【0020】
本発明の霧の発生検知システムは、霧の発生を検知すべき計測場所に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサ(30)と、前記計測場所に配置され前記計測場所に関する物理量又は化学量を計測し、電源(11)を有し前記第1センサ(30)に対して前記電波を送信する第2センサ(10)とを備え、前記第1センサ(30)は、前記電波の受信に応答して、前記第1センサ(30)が配置された前記計測場所の物理量又は化学量を計測し、前記第2センサ(10)は、計測した前記物理量又は化学量に基づいて、前記電波を送信するか否かを決定する。
【0021】
本発明の霧の発生検知システムにおいて、前記第2センサ(10)は、温度・湿度計であり、前記第1センサ(30)は、視程計である。
【0022】
本発明の土砂の崩落検知システムは、土砂の崩落を検知すべき計測場所に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサ(30)と、電源(11)を有し前記第1センサ(30)に対して前記電波を送信する電波送信体(10)とを備え、前記第1センサ(30)は、前記電波の受信に応答して、前記第1センサ(30)が配置された前記計測場所の物理量又は化学量を計測し、前記計測の結果を前記電波送信体(10)に送信し、前記電波送信体(10)は、受信した前記計測の結果の受信タイミング及び前記計測の結果の少なくともいずれか一方に基づいて、前記土砂の崩落の可能性を検知する。
【0023】
本発明の土砂の崩落検知システムにおいて、前記電波送信体(10)は、前記計測の結果に基づいて、前記電波を送信する頻度を決定する。
【0024】
本発明の土砂の崩落検知システムにおいて、前記第1センサ(30)は、水分計である。
【0025】
本発明のコンピュータプログラムは、電源(11)を有する親センサ(10)を含むコンピュータで実行されるコンピュータプログラムであって、(a) 計測対象物に関し前記親センサ(10)で計測された物理量又は化学量が基準値以上であるか否かを判定するステップと、(b) 前記(a)の判定の結果、前記物理量又は化学量が前記基準値以上であれば、前記計測対象物の複数の部位に配置され送信された電波を受信して前記電波のエネルギーを電源として動作するとともに前記電波の受信に応答して前記配置された部位の物理量又は化学量を計測する複数の子センサ(30)に対して、前記電波を送信するステップとを前記コンピュータに実行させるためのコンピュータプログラムである。
【0026】
【発明の実施の形態】
添付図面を参照して、本発明のセンサネットワークの一実施形態を説明する。
【0027】
本実施形態は、図1に示すように、電源が必要な無線機能付きセンサを親センサ10とし、電源を持たないRFID方式のセンサを子センサ30として、親センサ10と複数の子センサ30とが組み合わされてなるセンサネットワークである。なお、子センサ30は、RFID方式に限られない。子センサ30は、自らは電源を持たずに、送信された電波を受信して、その受信電波を電源のエネルギーとして起動するものであればよい。
【0028】
本実施形態は、個々のアプリケーション(後述)毎に、親センサ10、子センサ30のセンシング部を変更し、親センサ10の計測ロジックを変更することができ、配線レスである無線機能付きセンサの特徴を生かしたセンサネットワークである。
【0029】
親センサ10は、複数の子センサ30と双方向に無線通信する。親センサ10aは、複数の子センサ30a〜30dと通信し、1つのグループを形成している。親センサ10bは、複数の子センサ30e、30f、…と通信し、1つのグループを形成している。親センサ10cは、図示しない複数の子センサと通信し、1つのグループを形成している。図示しない他の親センサ10d、10e…についても同様である。
【0030】
各親センサ10a、10bは、その無線機能によりデータ収集センタ50と無線通信網60を介してデータ通信する。
【0031】
次に、図3を参照して、親センサ10の構成について説明する。なお、親センサ10a、10b…の構成は基本的に互いに同一である。
【0032】
親センサ10は、電源11と、メモリ12と、補助記憶装置13と、カレンダー・タイマ機能部14と、入力部15と、センサ16と、子センサ用無線機能部17と、通信機能部18と、制御装置19とを備えている。
【0033】
電源11は、電池、充電池、又は周辺の商用電源である。電源11として、風力発電、太陽電池の利用なども親センサ10の設置場所によっては考えられる。電源11より各部12〜19へ給電される。
【0034】
メモリ12は、プログラム領域12aと、データ領域12bに分かれている。プログラム領域12aには、適用されるアプリケーション毎の子センサ30との通信処理手順、上位との通信処理手順、収集したセンサ値の処理手順、センサ値やタイマ値等に基づいて子センサ30からデータを得る処理手順が記録されている。また、プログラム領域12aには、親センサ10を識別するIDコードが記録されている。そのIDコードは、子センサ30、他の親センサ10又はデータ収集センタ50との通信時に、その親センサ10を特定するために通信データに含まれる。データ領域12bは、収集したデータを、上位へ通知するまでの間、一時的にデータを保存する場所である。
【0035】
補助記憶装置13は、上位へ通信によりデータを送るのではなく、メモリカードのような取替え可能な記録メディアによりデータの収集を行う場合に利用するもので、必要に応じて設置される。その場合、作業員が定期点検時等に、記録メディアを交換してデータを収集する。
【0036】
カレンダー・タイマ機能部14は、日時をカウントする時計であり、定期的なデータ収集の収集周期の計時に利用したり、イベント(外部入力値が所定値を超えた場合など)の発生時の日時記録の為などに利用する。なお、後述するアプリケーションによっては利用されない場合がある。
【0037】
入力部15は、入力端子15aと、入力インターフェース(I/F)15bとを有している。センサ16の信号を入力端子15aで受け、入力インターフェース15bでアナログ値をデジタル値に変換(AD変換)し、またon/offのデジタル信号も内部回路で扱えるレベルに変換(DI入力)して制御装置19に取込めるようにする。
【0038】
センサ16は、アプリケーション毎に異なるが、温度計、湿度計、加速度計、歪み計、変位センサ、水分計、照度計、風向風速計、重量計、圧力計、電圧・電流計、抵抗計などの物理量を計測するセンサ又は、CO2、O2、NOx、SOx、ダイオキシン等の化学量を計測するセンサが考えられる。
【0039】
子センサ用無線機能部17は、複数の子センサ30のそれぞれに電波を送ることで、各子センサ30に動作エネルギーを供給して活性化させ、各子センサ30からセンシング結果を示すデータを受信する。子センサ用無線機能部17は、受信データに含まれる子センサ30毎のIDを認識し、複数の子センサ30からの信号を判別して送受信処理する。
【0040】
通信機能部18は、上位のデータ収集センタ50との通信を行う。通信機能部18としては、システム構成に応じて無線、有線を選択して構成する。また、直接、上位のデータ収集センタ50と通信をせずに、親センサ10間のネットワークを経由して通信することもできる。
【0041】
制御装置19は、メモリ12のプログラム領域12aに記載された処理手順に従い、計測処理、通信処理を行う。
【0042】
次に、図4を参照して、子センサ30の構成について説明する。複数の子センサ30a、30b…の構成は、基本的に互いに同一である。
【0043】
子センサ30は、電源機能部31と、メモリ32と、入力I/F部33と、センサ機能部34と、制御機能部35と、無線機能部36とを備えている。
【0044】
電源機能部31は、無線機能部36で受信した電波のエネルギーを電源として必要な電圧に変換して、各部32〜36に給電する。
【0045】
メモリ32には、動作時の入力処理手順、通信処理手順が記録されている。また、子センサ30を識別するためのIDコードも記録されている。そのIDコードは、子センサ30から親センサ10に計測結果を送信するときの送信データに含まれる。
【0046】
入力I/F部33は、センサ機能部34からの信号をデジタル値化(AD変換等)して制御機能部35に出力する。
【0047】
センサ機能部34は、小型省電力化したものを選定する。センサ機能部34は、アプリケーション毎に異なるが、温度計、湿度計、加速度計、歪み計、水分計、照度計、風向風速計、重量計、視程計、圧力計、電圧・電流計、抵抗計などの物理量を計測するセンサ又は、CO2、O2、NOx、SOx、ダイオキシン等の化学量を計測するセンサが考えられる。
【0048】
制御機能部35は、電源が入り動作を始めると、メモリ32より処理手順を読出し入力I/F部33からデータを取込み、無線機能部36を通じて親センサ10に計測値を通知する。
【0049】
無線機能部36は、親センサ10からの電波を受けエネルギーとして電源機能部31へ送る機能と、親センサ10との送受信を行う機能を有する。
【0050】
子センサ30の各部31〜36は、小型一体化することが望ましく、センサ機能部34以外はICチップとして一体化することができる。センサ機能部34は、歪みゲージのように被計測物に密着させる必要があるものなど、計測対象によっては、一体化が困難であるので、センサ機能部34の構成は対象に応じて決める。
【0051】
次に、本実施形態が適用される例(アプリケーション)について説明する。
【0052】
図2に示すように、本実施形態は、橋梁のモニタリングシステムに適用可能である。本例では、親センサ10a、10b…は、風速計であり、子センサ30a、30b…は、加速度計である。
【0053】
親センサ10a、10b…は、橋梁の支柱部分5に設置されている。支柱部分5には、街灯6が設置されている。親センサ10a、10b…は、街灯6用の電源(図示されず)から給電されることで常時稼動することができる。
【0054】
親センサ10a、10b…の設置位置は、特に限定されないが、電源との配線作業性及びコストの観点から、電源の位置から近い場所が適している。街灯6用の電源のような既設の電源がある場合には、その近くに設けられることが望ましい。
【0055】
親センサ10a、10b…の通信機能部(アンテナ)18は、高架橋を走行する道路点検パトロールカー(データ収集センタ50)と良好に通信可能なように、高架橋の上方に出るように設置されている。
【0056】
子センサ30a、30b…は、高架橋の下面側(裏側)に設置される。子センサ30a、30b…は、電源と配線で接続されていたり電池を内蔵している訳ではない電源レスである。子センサ30a、30b…のそれぞれは、同じグループを形成する親センサ10a、10b…から送信された電波を受信し、その電波のエネルギーを電源として使用する。
【0057】
親センサ10a、10b…が子センサ30a、30b…から収集したセンシング結果は、橋梁を定期的に走行する道路点検パトロールカー50と親センサ10a、10b…との間の無線通信により、道路点検パトロールカー50に伝送される。道路点検パトロールカー50は、橋梁を走行しながら、その走行場所に近い親センサ10a、10b…と順次通信することで、各親センサ10a、10b…からセンシング結果を受ける。
【0058】
次に、他の実施形態(アプリケーション例)について説明する。
第1のアプリケーションは、▲1▼強風時の振動計測に関し、第2のアプリケーションは、▲2▼過積載車通過時の橋部材の応力計測に関し、第3のアプリケーションは、▲3▼霧発生検知に関し、第4のアプリケーションは、▲4▼がけ/傾斜地の崩落検知に関する。
【0059】
▲1▼強風時の振動計測
強風が吹くと橋が振動する問題がある。しかし橋が振動するほどの強風は年に数回しかなく常時観測し続けるのは効率が悪く、強風時にのみ観測できることが望ましい。一方、振動計測時にはなるべく多数の点の情報が得られることが評価の精度を上げるために必要である。
【0060】
そこで、本実施形態の橋の振動計測システムでは、親センサ10に風速計を設けると共に、子センサ30には加速度計を設け、親センサ10で所定の値以上の風速を検知した場合に親センサ10から子センサ30に計測指示信号を送る。子センサ30は、計測指示信号を電波で受けると、その電波をエネルギーとして給電されて動作を開始する。子センサ30は、計測指示信号を受信するまでは、無給電状態であるため動作は停止したままである。子センサ30は、受信した計測指示信号に応答して、センサ機能部34で計測(振動計測)し、その計測結果を親センサ10に出力する。親センサ10は、所定値以上の風速を検知した場合に、所定の計測時間の間、所定のサンプリング周期で計測指示信号を子センサ30に送信する。子センサ30は、その計測指示信号を受信する度に計測し、その計測結果を親センサ10に送信する。なお、子センサ30には加速度センサ以外に、歪センサ、変位センサを用いる場合がある。
【0061】
図5は、親センサ10の全体の動作を示すフローチャートである。
【0062】
親センサ10は、電源が投入されると、制御装置19がメモリ12のプログラム領域12aに格納されたプログラムを読み込み(ステップS1)、子センサ用無線機能部17、通信機能部18、及び入力I/F部15bの初期化処理を行う(ステップS2)。その後、親センサ10は、上位のデータ収集センタ50や親センサ10との上位通信処理(ステップS3)と計測処理(ステップS4)を繰り返す。
【0063】
図6は、親センサ10の上位通信処理(ステップS3)の動作を示すフローチャートである。
【0064】
親センサ10は、上位(データ収集センタ50又は他の親センサ10)との接続があるか否かを判断し、接続するまで待つ(ステップS11)。親センサ10は、上位と接続すると、メモリ12のデータ領域12bに送信すべきデータが有るか否かを判断する(ステップS12)。その結果、データ領域12bに送信すべきデータが無い場合には、「メモリ12b内に送信すべきデータが無い」旨の情報を、接続中の上位に送信し(ステップS13)、ステップS11に戻る。
【0065】
一方、ステップS12の結果、データ領域12bに送信すべきデータが有る場合には、データ領域12bから送信すべきデータを1セット読出し(ステップS14)、その読み出したデータを上位に送信する(ステップS15)。次に、ステップS15での送信が正常に完了したか否かを判断し(ステップS16)、正常に完了していなければステップS11に戻る。一方、正常に完了していれば、その送信した1セットのデータをデータ領域12bから削除し(ステップS17)、ステップS12に戻る。
【0066】
図7は、上記▲1▼の例をとった場合の親センサ10の計測処理(ステップS4)の動作を示すフローチャートである。
【0067】
親センサ10は、風速計(センサ16)の計測データを読み込み(ステップS21)、その計測値が基準値以上であるか否かを判定する(ステップS22)。その判定の結果、計測値が基準値未満であれば、ステップS21に戻る。
【0068】
一方、制御装置19は、その判定の結果、計測値が基準値以上であれば、カレンダー・タイマ機能部14の計測タイマ(n分)とサンプリングタイマ(m秒)をスタートさせる(ステップS23)。ここで、計測タイマは、計測値が基準値以上であった場合に、継続して計測を行う所定時間(n分)をカウントし、サンプリングタイマは、その所定時間内で計測を行うときのサンプリング周期(m秒)をカウントする。
【0069】
その後、親センサ10は、子センサ30へ計測指示信号を送信する(ステップS24)。このとき、親センサ10は、計測指示信号の電波で子センサ30に電力を送信する(ステップS24)。この場合、親センサ10は、その親センサ10のグループに属する複数の子センサ30(親センサ10aであれば子センサ30a〜30d)に対して同時に計測指示信号を送信する。
【0070】
その後、親センサ10は、計測指示信号の送信先である複数の子センサ30のそれぞれから、子センサ30の計測値を示すデータを受信する(ステップS25)。また、親センサ10は、風速計16の計測データを読み込み(ステップS26)、その風速計の計測データと、ステップS25で受信した子センサ30の計測値を示すデータとをデータ領域12bに保存する(ステップS27)。
【0071】
ここで、データ領域12bには、計測日時と、風速(ステップS26での親センサ10の計測値)と、ステップS25で複数の子センサ30のそれぞれから受信した加速度の値(加速度#1、加速度#2…)が記録される。親センサ10が親センサ10aである場合には、加速度#1は、子センサ30aの計測結果に対応し、加速度#2は、子センサ30bの計測結果に対応する。
【0072】
次いで、計測タイマが終了していないか否かを判定し、終了していればステップS21に戻り、終了していなければステップS29に進む(ステップS28)。ステップS29では、サンプリングタイマが終了していないか否かを判定し、終了していればステップS24とステップS26に戻り、終了するまでS29を繰り返す。
【0073】
図8は、子センサ30の全体の動作を示すフローチャートである。
【0074】
子センサ30は、親センサ10から計測指示信号の電波(ステップS24参照)を受信する。子センサ30は、受信した電波により電源が供給される(ステップS31)。次いで、子センサ30は、メモリ32に格納されたプログラムを読み込み(ステップS32)、入力I/F部33や無線機能部36を初期化する(ステップS33)。次いで、子センサ30は、センサ機能部34によりセンシングした計測値を入力I/F部33を介して入力する(ステップS34)。次いで、子センサ30は、入力した計測値を、自己のIDを示すデータとともに親センサ10に送信する(ステップS35)。なお、サンプリング間隔が非常に短い場合は、親センサ10からの電波を出し続けることで、子センサ30は受信中は給電状態が続くので、計測指示信号受信時に毎回ステップS31,S32,S33の処理を行う必要はなく、計測(S34)と送信(S35)のみを行えばよく、高速サンプリングを可能とする。
【0075】
次に、第2のアプリケーションについて説明する。
【0076】
▲2▼過積載車通過時の橋部材の応力計測
鉄構構造物の疲労は、そこにかかる応力の大きさと回数によって決まるので、発生した応力の強さと回数を計測することが、構造物の余寿命診断の重要なデータとなる。例えば橋梁の場合、設計時に想定する最大車両重量(例えば25t)を超えた過積載車両(例えば30〜40t)によるダメージが、設計寿命を低下させる大きな要因となるため、この頻度を計測して橋の補修計画を立てることで、効率よく構造物の維持補修が行えるようになる。
【0077】
ここでは、親センサ10に車重計を接続し、子センサ30に歪ゲージ等の応力検知センサを付けたシステムを構築する。親センサ10で所定の重量以上の車両が通過した場合に、各子センサ30に計測指示信号を出すことで、過積載車両の通過時のみの計測ができ、効率良い計測ができる。
【0078】
第2のアプリケーションにおいて、親センサ10の動作は、基本的に図5、図6及び図7に示した通りであり、図7のステップS21とステップS26の「風速計データ読み込み」を「車重計データ読み込み」に代え、ステップS27の「風速」を「車重」に、「加速度」を「歪み量」にそれぞれ代えるのみである。子センサ30の動作は、図8に示した通りである。
【0079】
また、車重計は高価であることから、一台の親センサ10にのみ設置し、親センサ10間で通信をすることで道路の経路に沿って順次計測することが可能となる。親センサ10に車速検出器を設置することで、各子センサ30の位置までの移動時間を推定することができ、その移動時間を加味して計測指示信号を送信することで、各子センサ30に各子センサ30を通過する瞬間(又は、前後を含む所定時間)の値を効率よく計測させることができる。
【0080】
なお、鉄道橋においては、親センサ10のタイマ機能を用いて列車ダイヤに合わせて計測指示信号を送信することで、列車が各子センサ30を通過する時にその子センサ30による計測を行わせることが可能である。また、列車の通過を検知する信号機からの通過信号を親センサ10に取込み、その通過信号の受信タイミングを考慮して所定のタイミングで計測指示信号を送信することで、列車が各子センサ30を通過する時にその子センサ30による計測を行わせることができる。
【0081】
上記の車速検出器を用いる場合や鉄道橋の例においては、親センサ10の動作は、一部を除いて図5、図6及び図7に示した通りである。車速検出器を用いる場合には、図7のステップS21及びステップS22を「移動時間が経過したか?」の判定ステップに代えて、その判定結果がYESであればステップS23に進み、NOであればその判定ステップに戻るように代える。列車ダイヤを用いる場合には、ステップS21及びステップS22を「列車ダイヤの時刻か?」の判定ステップに代えて、その判定結果がYESであればステップS23に進み、NOであればその判定ステップに戻るように代える。通過信号を用いる場合には、ステップS21及びステップS22を「通過信号を受信し、かつ、通過信号を受信してからその信号機から子センサへまでの距離に対応する列車の走行時間が経過したか?」の判定ステップに代えて、その判定結果がYESであればステップS23に進み、NOであればその判定ステップに戻るように代える。更に、ステップS26の「風速計データ読み込み」を「車重計データ読み込み」に代え、ステップS27の「風速」を「車重」に、「加速度」を「歪み量」にそれぞれ代えるのみである。子センサ30の動作は、図8に示した通りである。
【0082】
次に、第3のアプリケーションについて説明する。
【0083】
▲3▼霧発生検知
霧は、大気の温度、湿度状態によって発生するが局地的に発生するため、一箇所で広域を監視することは難しい。よって、詳細に監視するためには多地点での観測が必要である。従来、霧の発生程度の監視は視程計を用い、発生有無の監視、道路における交通規制の必要性の監視を行っている。
【0084】
親センサ10には、温度計、湿度計を設置する。一方、子センサ30には、視程計を設置し、必要に応じて風向風速計を設置する。子センサ30の風向風速計は霧の流れを予測する上で重要である。
【0085】
親センサ10は、親センサ10により計測した温度・湿度の値に基づいて、霧の発生予測情報として事前に注意報/警報をデータ収集センタ50に送信することができる。また、親センサ10は、計測した温度・湿度の値に基づいて、霧が発生したと判断すると、子センサ30に計測指示信号を送信する。
【0086】
子センサ30は、受信した計測指示信号に応答して、子センサ30の視程計34にて霧の発生度合を計測し、その計測結果を子センサ30のIDと共に親センサ10に送信する。このとき、子センサ30が風向風速計を有している場合には、風向風速計による計測結果も親センサ10に送信する。親センサ10は、親センサ10により計測した温度・湿度情報と、子センサ30から受信した霧の発生度合いを示すデータ(又は、更に風向風速計による計測結果を示すデータ)をデータ収集センタ50に送信する。データ収集センタ50は、親センサ10から受信したデータに基づいて、霧の今後の発生状況を予測することができる。
【0087】
この霧センサネットワークは、高速道路沿線に設置するだけではなく市街地における街灯を親センサ10の基点として設置することで、地域全体をカバーする霧発生予測・検知網が構築できる。
【0088】
第3のアプリケーションにおいて、親センサ10の動作は、一部を除いて図5、図6及び図7に示した通りである。図7のステップS21とステップS26の「風速計データ読み込み」を「温度計・湿度計データ読み込み」に代え、ステップS22を「霧の発生有り?」の判定ステップに代え、ステップS27の「風速」を「温度・湿度」に、「加速度」を「霧の発生度合い」にそれぞれ代える。子センサ30の動作は、図8に示した通りである。
【0089】
次に、第4のアプリケーションについて説明する。
【0090】
▲4▼がけ/傾斜地の崩落検知
親センサ10は、子センサ30に対して信号を送り、子センサ30からの返信を受信するまでの時間差と、電波の速度から、親センサ10と子センサ30の距離を求める。一方、傾斜地における土砂崩れの要因としては土中の水分量の増加がある。
【0091】
そこで、子センサ30には水分計を付けて土中に設置し、親センサ10からの計測指示に対してその地点の土中水分量とIDを付して応答する。親センサ10は、定期的に計測指示を送信して、土中に設置された各子センサ30を呼び出し、水分量変化と子センサ30までの距離を計測する。親センサ10は、同じ子センサ30までの距離が変化した場合、その子センサ30が設置された部位の土が移動(子センサ30の変位)したことを検出する。
【0092】
子センサ30の変位は、事前に計測した既知の位置に子センサ30を設置して、その既知の位置からの変化を計測することにより求めることができる。また、子センサ30を任意の位置に設置し、その設置直後の初回計測値を基準として変化を計測することにより、子センサ30の変位を求めることができる。
【0093】
親センサ10は、子センサ30の変位量が所定の基準値を超えた場合に、崩落の危険有りとして警報を出す。また、親センサ10は、子センサ30の変位が小さくても、土中の水分量が基準値を超える場合には同様に警報を出す。また、親センサ10は、水分量が増えてきた場合には、親センサ10から子センサ30への計測指示信号の送信頻度を高めて、子センサ30による計測頻度を上げることにより、崩落の急変を見逃すことなく計測することができる。
【0094】
第4のアプリケーションにおいて、子センサ30の動作は、図8に示した通りである。親センサ10の動作は、図5及び図6に示した通りであるが、図7に代えて図9に示した通りである。
【0095】
図9のステップS41に示すように、親センサ10は、設定された送信頻度に従い、子センサ30に計測指示信号を送信する。その計測指示信号の電波は、子センサ30において動作エネルギーとして用いられる。
【0096】
次に、親センサ10は、子センサ30から水分量を示す計測値とIDを示すデータを受信する(ステップS42)。次に、親センサ10は、ステップS42での受信タイミングに基づいて、親センサ10から子センサ30までの距離を求め、その距離から変位量を求める。次に、親センサ10は、各子センサ30毎に変位量と水分量をメモリに保存する(ステップS43)。
【0097】
次いで、ステップS44に示すように、親センサ10は、子センサ30の変位量が所定の基準値を超えたか否かを判定し、その判定の結果、変位量が基準値を超えていたら、警報を出す(ステップS46)。また、ステップS45に示すように、親センサ10は、子センサ30により計測された土中の水分量が基準値を超えたか否かを判定し、その判定の結果、変位量が基準値を超えていたら、警報を出す(ステップS46)。また、ステップS47に示すように、親センサ10は、水分量がステップS45の基準値未満であっても所定値以上であれば、親センサ10から子センサ30への計測指示信号の送信頻度を高め(ステップS47)、それ以降の子センサ30による計測頻度を上げる。
【0098】
なお、上記においては、親センサ10は、自己のグループに属する複数の子センサ30の全てに対して同時に計測指示を送り、それら全ての子センサ30からの計測結果を受信していた。これに代えて、親センサ10は、自己のグループに属する複数の子センサ30のうちの特定の単数又は複数の子センサ30に対してのみに計測指示を送り、その特定の子センサ30からの計測結果を受信する構成とすることができる。
【0099】
この場合、親センサ10は、計測指示信号に特定の単数又は複数の子センサ30のIDを示すデータを含ませた状態で、その計測指示信号を送信する。その計測指示信号は、その計測指示信号を送信した親センサ10のグループに属する複数の子センサ30の全てによって受信される。
【0100】
その計測指示信号を受信した複数の子センサ30のうち上記特定の単数又は複数の子センサ30以外の子センサ30は、その計測指示信号の電波のエネルギーにより起動するが、その計測指示信号に自己のIDを示すデータが含まれていないので、計測を行わず、親センサ10に対する返答を行わない。
【0101】
一方、その計測指示信号を受信した複数の子センサ30のうち上記特定の単数又は複数の子センサ30は、その計測指示信号の電波のエネルギーにより起動し、その計測指示信号に自己のIDを示すデータが含まれているので、計測を行い、その計測結果を示すデータを親センサ10に対して送信する。
【0102】
この方法を用いることにより、ある特定の計測場所に配置された特定の子センサ30のサンプリング周期を他の子センサ30と変えることが可能である。
【0103】
親センサ10は、自己のグループに属する複数の子センサ30に対して、順番に上記特定の子センサ30に選定しておけば、計測場所にそれぞれ配置された子センサ30を任意の順番で計測させることができる。
【0104】
以上に述べたように、本実施形態によれば、以下の効果を奏することができる。
・親センサ(親局)10と子センサ(子局)30の組合せにより、広範囲なセンシングを効率的に行うことができる。
・親センサ10の中継機能により、データ収集センタ50が通信網60を介してその親センサ10から直接的にデータを収集できないような点の計測も可能となる。
・親センサ10間のネットワーク機能により広範囲の計測が可能となる。
・親センサ10の制御により、任意の間隔でのサンプリングが可能となる。この場合、子センサ30に個別に信号を送り順番に計測することができる。また、子センサ30に一斉に信号を送り、全体の瞬時値を計測することができる。更に、計測場所によってサンプリング間隔を変えて計測を行うことができる。
・電源供給の課題を親センサ10に限定することで、適用アプリケーションの拡大、コストダウン(省配線、定期電池交換の省力化)を図ることができる。
【0105】
【発明の効果】
本発明のセンサネットワークによれば、配線施工の問題や電源供給の問題が無い。
【図面の簡単な説明】
【図1】図1は、本発明のセンサネットワークの一実施形態の構成を示す図である。
【図2】図2は、本発明のセンサネットワークの一実施形態が橋梁に適用された例を示す図である。
【図3】図3は、本発明のセンサネットワークの一実施形態の親センサの構成を示す図である。
【図4】図4は、本発明のセンサネットワークの一実施形態の子センサの構成を示す図である。
【図5】図5は、本発明のセンサネットワークの一実施形態の親センサの全体の動作を示すフローチャートである。
【図6】図6は、本発明のセンサネットワークの一実施形態の親センサの上位との通信処理の動作を示すフローチャートである。
【図7】図7は、本発明のセンサネットワークの一実施形態の親センサの測定処理(強風時振動計測)の動作を示すフローチャートである。
【図8】図8は、本発明のセンサネットワークの一実施形態の子センサの全体の動作を示すフローチャートである。
【図9】図9は、本発明のセンサネットワークの一実施形態の親センサの測定処理(霧の発生検知)の動作を示すフローチャートである。
【符号の説明】
10 親センサ
10a〜10c 親センサ
11 電源
30 子センサ
30a〜30h 子センサ
Claims (17)
- 計測対象の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数のセンサと、
電源を有し前記センサに対して前記電波を送信する電波送信体とを備え、
前記センサは、前記電波の受信に応答して、前記センサが配置された前記部位の物理量又は化学量を計測し、
前記電波送信体は、前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する
センサネットワーク。 - 請求項1記載のセンサネットワークにおいて、
前記電波送信体は、前記センサが計測する第1の前記物理量又は化学量とは異なる第2の前記物理量又は化学量を検出する
センサネットワーク。 - 請求項2記載のセンサネットワークにおいて、
前記電波送信体は、前記計測対象に配置され、前記第2の物理量又は化学量を検出するセンサである
センサネットワーク。 - 請求項2記載のセンサネットワークにおいて、
前記センサは、計測した前記第1の物理量又は化学量を示すデータを前記電波送信体に送信し、
前記電波送信体は、受信した前記センサからの前記第1の物理量又は化学量を示すデータの受信タイミングに基づいて、前記第2の物理量として、前記センサと前記電波送信体との間の距離を検出する
センサネットワーク。 - 請求項1から4のいずれか1項に記載のセンサネットワークにおいて、
前記電波送信体は、前記複数のセンサのそれぞれを識別するための識別子を示すデータを含む信号に対応する前記電波を前記センサに送信し、
前記センサは、前記電波に対応する前記信号に含まれる前記データに含まれる前記識別子に基づいて、前記センサが配置された前記部位の物理量又は化学量を計測するか否かを決定する
センサネットワーク。 - 請求項1から5のいずれか1項に記載のセンサネットワークにおいて、
前記電波送信体を複数含み、
前記センサは、計測した前記第1の物理量又は化学量を示すデータを前記電波送信体に送信し、
第1の前記電波送信体は、受信した前記第1の物理量又は化学量を示すデータを第2の前記電波送信体に送信する
センサネットワーク。 - 計測対象の複数の部位のそれぞれに配置されるセンサであって、
前記計測対象に関する物理量又は化学量に基づいて送信された電波を受信して前記電波のエネルギーを電源として動作し、前記電波の受信に応答して、前記センサが配置された前記部位の物理量又は化学量を計測する
センサ。 - 電源を有する電波送信体であって、
計測対象の複数の部位に配置され送信された電波を受信して前記電波のエネルギーを電源として動作し前記電波の受信に応答して前記配置された部位の物理量又は化学量を計測する複数のセンサに対して、前記電波を送信し、
前記計測対象に関する物理量又は化学量を検出し、前記検出の結果に基づいて、前記電波を送信するタイミングを決定する
電波送信体。 - 橋梁の複数の部位に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサと、
前記橋梁に配置され前記橋梁に関する物理量又は化学量を計測し、電源を有し前記第1センサに対して前記電波を送信する第2センサとを備え、
前記第1センサは、前記電波の受信に応答して、前記第1センサが配置された前記部位の物理量又は化学量を計測し、
前記第2センサは、計測した前記物理量又は化学量に基づいて、前記電波を送信するか否かを決定する
橋梁の計測システム。 - 請求項9記載の橋梁の計測システムにおいて、
前記第2センサは、風速計であり、
前記第1センサは、加速度センサ、変位センサ及び歪センサを含む応力検知センサのうちの少なくともいずれか一つである
橋梁の計測システム。 - 請求項9記載の橋梁の計測システムにおいて、
前記第2センサは、重量計及び速度計の少なくともいずれか一つであり、
前記第1センサは、歪センサを含む応力検知センサである
橋梁の計測システム。 - 霧の発生を検知すべき計測場所に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサと、
前記計測場所に配置され前記計測場所に関する物理量又は化学量を計測し、電源を有し前記第1センサに対して前記電波を送信する第2センサとを備え、
前記第1センサは、前記電波の受信に応答して、前記第1センサが配置された前記計測場所の物理量又は化学量を計測し、
前記第2センサは、計測した前記物理量又は化学量に基づいて、前記電波を送信するか否かを決定する
霧の発生検知システム。 - 請求項12記載の霧の発生検知システムにおいて、
前記第2センサは、温度・湿度計であり、
前記第1センサは、視程計である
霧の発生検知システム。 - 土砂の崩落を検知すべき計測場所に配置され、送信された電波を受信して前記電波のエネルギーを電源として動作する複数の第1センサと、
電源を有し前記第1センサに対して前記電波を送信する電波送信体とを備え、
前記第1センサは、前記電波の受信に応答して、前記第1センサが配置された前記計測場所の物理量又は化学量を計測し、前記計測の結果を前記電波送信体に送信し、
前記電波送信体は、送受信した前記計測の結果の送受信タイミングから得られる第1センサまでの距離及び前記計測の結果の少なくともいずれか一方に基づいて、前記土砂の崩落の可能性を検知する
土砂の崩落検知システム。 - 請求項14記載の土砂の崩落検知システムにおいて、
前記電波送信体は、前記計測の結果に基づいて、前記電波を送信する頻度を決定する
土砂の崩落検知システム。 - 請求項14または15に記載の土砂の崩落検知システムにおいて、
前記第1センサは、水分計である
土砂の崩落検知システム。 - 電源を有する親センサを含むコンピュータで実行されるコンピュータプログラムであって、
(a) 計測対象物に関し前記親センサで計測された物理量又は化学量が基準値以上であるか否かを判定するステップと、
(b) 前記(a)の判定の結果、前記物理量又は化学量が前記基準値以上であれば、前記計測対象物の複数の部位に配置され送信された電波を受信して前記電波のエネルギーを電源として動作するとともに前記電波の受信に応答して前記配置された部位の物理量又は化学量を計測する複数の子センサに対して、前記電波を送信するステップと
を前記コンピュータに実行させるためのコンピュータプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012174A JP2004226157A (ja) | 2003-01-21 | 2003-01-21 | センサネットワーク、センサ、電波送信体、及びコンピュータプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012174A JP2004226157A (ja) | 2003-01-21 | 2003-01-21 | センサネットワーク、センサ、電波送信体、及びコンピュータプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004226157A true JP2004226157A (ja) | 2004-08-12 |
Family
ID=32900869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003012174A Withdrawn JP2004226157A (ja) | 2003-01-21 | 2003-01-21 | センサネットワーク、センサ、電波送信体、及びコンピュータプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004226157A (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006087613A (ja) * | 2004-09-22 | 2006-04-06 | Heiwa Corp | パチンコ機の球検出器およびそれを使用したパチンコ機 |
KR100594993B1 (ko) | 2004-11-17 | 2006-07-03 | 삼성전기주식회사 | 통신 네트워크에서 탐색 응답 패킷 전송 방법 |
GB2425606A (en) * | 2005-04-29 | 2006-11-01 | Hewlett Packard Development Co | Remote Measurement Of Motion Employing RFID |
WO2007085478A1 (de) * | 2006-01-26 | 2007-08-02 | Franken-Schotter Gmbh & Co. Kg | Bodenbelag mit einem die kerntemperatur des bodenbelags messenden sensor |
JP2008255571A (ja) * | 2007-03-31 | 2008-10-23 | Univ Waseda | 大型建造物の診断システム、大型建造物の診断プログラム、記録媒体および大型建造物の診断方法 |
JP2009128180A (ja) * | 2007-11-22 | 2009-06-11 | Toshiba Corp | 霧予測装置及び霧予測方法 |
JP2010518503A (ja) * | 2007-02-12 | 2010-05-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | ネットワーク化された制御システム及びネットワーク化された制御システムの装置 |
JP2010524278A (ja) * | 2007-03-13 | 2010-07-15 | シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト | アドホックセンサネットワークのための方法およびシステム |
JP2010156672A (ja) * | 2008-12-05 | 2010-07-15 | Sumitomo Osaka Cement Co Ltd | 構造物における水の検知方法及び構造物用部材並びに構造物における水の検知装置 |
JP2010198136A (ja) * | 2009-02-23 | 2010-09-09 | Mitsubishi Electric Corp | センサアドホックネットワーク、センサ端末および管理センサ端末 |
JP2013011962A (ja) * | 2011-06-28 | 2013-01-17 | Seiko Instruments Inc | センサネットワークシステム |
CN102915019A (zh) * | 2012-10-31 | 2013-02-06 | 大连海事大学 | 浮船坞游离和锚泊状态监视系统 |
WO2013065203A1 (ja) * | 2011-11-04 | 2013-05-10 | オムロン株式会社 | ネットワークシステム、ノード装置群、センサ装置群およびセンサデータ送受信方法 |
JP2014528132A (ja) * | 2011-09-23 | 2014-10-23 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 第1のセンサを少なくとも1つの第2のセンサと結合するための方法及び装置 |
US20160202140A1 (en) * | 2015-01-12 | 2016-07-14 | Yuk Lin Poon | Systems and methods for detecting, preventing and avoiding water leaks |
JP2016206067A (ja) * | 2015-04-24 | 2016-12-08 | 株式会社東芝 | センサー監視システム、災害監視システム、及び災害監視方法 |
WO2017146251A1 (ja) * | 2016-02-26 | 2017-08-31 | 国立大学法人東京大学 | 水分量検出装置 |
WO2019244201A1 (ja) * | 2018-06-18 | 2019-12-26 | 株式会社Secual | 収集装置及びデータ収集解析システム |
WO2023074887A1 (ja) * | 2021-11-01 | 2023-05-04 | エイターリンク株式会社 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
JP7449619B1 (ja) | 2023-07-31 | 2024-03-14 | エイターリンク株式会社 | システム、測定器、方法、プログラム |
-
2003
- 2003-01-21 JP JP2003012174A patent/JP2004226157A/ja not_active Withdrawn
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006087613A (ja) * | 2004-09-22 | 2006-04-06 | Heiwa Corp | パチンコ機の球検出器およびそれを使用したパチンコ機 |
JP4579631B2 (ja) * | 2004-09-22 | 2010-11-10 | 株式会社平和 | パチンコ機の球検出器およびそれを使用したパチンコ機 |
KR100594993B1 (ko) | 2004-11-17 | 2006-07-03 | 삼성전기주식회사 | 통신 네트워크에서 탐색 응답 패킷 전송 방법 |
GB2425606B (en) * | 2005-04-29 | 2009-12-16 | Hewlett Packard Development Co | Remote measurement of motion employing RFID |
GB2425606A (en) * | 2005-04-29 | 2006-11-01 | Hewlett Packard Development Co | Remote Measurement Of Motion Employing RFID |
WO2007085478A1 (de) * | 2006-01-26 | 2007-08-02 | Franken-Schotter Gmbh & Co. Kg | Bodenbelag mit einem die kerntemperatur des bodenbelags messenden sensor |
JP2010518503A (ja) * | 2007-02-12 | 2010-05-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | ネットワーク化された制御システム及びネットワーク化された制御システムの装置 |
JP2010524278A (ja) * | 2007-03-13 | 2010-07-15 | シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト | アドホックセンサネットワークのための方法およびシステム |
JP2008255571A (ja) * | 2007-03-31 | 2008-10-23 | Univ Waseda | 大型建造物の診断システム、大型建造物の診断プログラム、記録媒体および大型建造物の診断方法 |
JP2009128180A (ja) * | 2007-11-22 | 2009-06-11 | Toshiba Corp | 霧予測装置及び霧予測方法 |
JP2010156672A (ja) * | 2008-12-05 | 2010-07-15 | Sumitomo Osaka Cement Co Ltd | 構造物における水の検知方法及び構造物用部材並びに構造物における水の検知装置 |
JP2010198136A (ja) * | 2009-02-23 | 2010-09-09 | Mitsubishi Electric Corp | センサアドホックネットワーク、センサ端末および管理センサ端末 |
JP2013011962A (ja) * | 2011-06-28 | 2013-01-17 | Seiko Instruments Inc | センサネットワークシステム |
US9665524B2 (en) | 2011-09-23 | 2017-05-30 | Robert Bosch Gmbh | Method and device for coupling a first sensor to at least one second sensor |
JP2014528132A (ja) * | 2011-09-23 | 2014-10-23 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 第1のセンサを少なくとも1つの第2のセンサと結合するための方法及び装置 |
JP2016194939A (ja) * | 2011-09-23 | 2016-11-17 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 第1のセンサを少なくとも1つの第2のセンサと結合するための方法及び装置 |
JP2013097724A (ja) * | 2011-11-04 | 2013-05-20 | Omron Corp | ネットワークシステム、ノード装置群、センサ装置群およびセンサデータ送受信方法 |
US9357008B2 (en) | 2011-11-04 | 2016-05-31 | Omron Corporation | Network system, node device group, sensor device group, and method for transmitting and receiving sensor data |
WO2013065203A1 (ja) * | 2011-11-04 | 2013-05-10 | オムロン株式会社 | ネットワークシステム、ノード装置群、センサ装置群およびセンサデータ送受信方法 |
CN102915019A (zh) * | 2012-10-31 | 2013-02-06 | 大连海事大学 | 浮船坞游离和锚泊状态监视系统 |
US9752952B2 (en) * | 2015-01-12 | 2017-09-05 | Yuk Lin Poon | Method for installing a water leakage system |
US20160202140A1 (en) * | 2015-01-12 | 2016-07-14 | Yuk Lin Poon | Systems and methods for detecting, preventing and avoiding water leaks |
JP2016206067A (ja) * | 2015-04-24 | 2016-12-08 | 株式会社東芝 | センサー監視システム、災害監視システム、及び災害監視方法 |
WO2017146251A1 (ja) * | 2016-02-26 | 2017-08-31 | 国立大学法人東京大学 | 水分量検出装置 |
JP2017151042A (ja) * | 2016-02-26 | 2017-08-31 | 国立大学法人 東京大学 | 水分量検出装置 |
WO2019244201A1 (ja) * | 2018-06-18 | 2019-12-26 | 株式会社Secual | 収集装置及びデータ収集解析システム |
WO2023074887A1 (ja) * | 2021-11-01 | 2023-05-04 | エイターリンク株式会社 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
WO2023074002A1 (ja) * | 2021-11-01 | 2023-05-04 | エイターリンク株式会社 | 情報処理システム、情報処理装置、情報処理方法及び情報処理プログラム |
JP7291985B1 (ja) * | 2021-11-01 | 2023-06-16 | エイターリンク株式会社 | 情報処理システム、情報処理装置、情報処理方法、情報処理プログラム、空調機器及び照明装置 |
JP7449619B1 (ja) | 2023-07-31 | 2024-03-14 | エイターリンク株式会社 | システム、測定器、方法、プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004226157A (ja) | センサネットワーク、センサ、電波送信体、及びコンピュータプログラム | |
US11181445B2 (en) | Devices, systems and methods, and sensor modules for use in monitoring the structural health of structures | |
CN101896393B (zh) | 车辆部件剩余使用寿命的确定 | |
US5507188A (en) | Structural monitoring system | |
CN104316108B (zh) | 山地环境500kV输电塔在线监测系统构建及分析方法 | |
CN107205285A (zh) | 结构健康监测系统、收集装置以及结构健康监测方法 | |
Whelan et al. | Highway bridge assessment using an adaptive real-time wireless sensor network | |
US20140067284A1 (en) | Structural monitoring | |
JP5279460B2 (ja) | 道路施設の保守管理支援方法及びそのシステム | |
EP2433146A2 (en) | Component rfid tag with non-volatile display of component use and scheme for low power strain measurement | |
CN208172538U (zh) | 一种基于物联网大数据的桥梁安全监测采集系统 | |
CN102507121A (zh) | 基于无线传感网的建筑结构震害评估系统及方法 | |
CN206039247U (zh) | 一种桥梁结构健康监测系统 | |
CN105916753A (zh) | 用于监控铁路车厢性能的系统和方法 | |
KR102108115B1 (ko) | 교량 안전 모니터링 시스템 구축용 상황 진동 감지 전자식 멀티 센서 모듈 | |
RU2009110986A (ru) | Способ мониторинга безопасности несущих конструкций, конструктивных элементов зданий и сооружений и система для его осуществления | |
CN102183925A (zh) | 一种钢筋混凝土结构建筑物健康实时监测方法 | |
JP5366910B2 (ja) | 無線タグシステム | |
KR101531034B1 (ko) | 지자기 검지기와 피에조 센서를 이용한 차량검지시스템 | |
Gangone et al. | Deployment of a dense hybrid wireless sensing system for bridge assessment | |
JP2008082941A (ja) | 積雪測定システム | |
Ceylan et al. | Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements: volume I | |
CN115372042A (zh) | 一种基于智能手机的桥梁伸缩缝工作性能检测方法及系统 | |
KR102207821B1 (ko) | IoT 기반의 자가반응형 교량받침 이동식 변위 추적 시스템 | |
CN211651697U (zh) | 一种桥梁安全监测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060404 |