WO2023074660A1 - 熱処理炉及び熱処理方法 - Google Patents

熱処理炉及び熱処理方法 Download PDF

Info

Publication number
WO2023074660A1
WO2023074660A1 PCT/JP2022/039635 JP2022039635W WO2023074660A1 WO 2023074660 A1 WO2023074660 A1 WO 2023074660A1 JP 2022039635 W JP2022039635 W JP 2022039635W WO 2023074660 A1 WO2023074660 A1 WO 2023074660A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat treatment
treatment furnace
supply device
heat
Prior art date
Application number
PCT/JP2022/039635
Other languages
English (en)
French (fr)
Inventor
愼一 ▲高▼橋
謙介 ▲高▼橋
輝一 神田
浩 大下
Original Assignee
関東冶金工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東冶金工業株式会社 filed Critical 関東冶金工業株式会社
Priority to JP2023519369A priority Critical patent/JP7407495B2/ja
Publication of WO2023074660A1 publication Critical patent/WO2023074660A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the present disclosure relates to a heat treatment furnace and a heat treatment method, and more particularly to a heat treatment furnace in which the atmosphere gas in the furnace is controlled and a heat treatment method using the heat treatment furnace.
  • the member to be heat-treated (the object to be heat-treated) is heated in the air in the heat treatment furnace, the carbon component contained in the object to be heat-treated is decarburized, oxidized, or discolored. , it interferes with the quality of the heat-treated material.
  • a reducing gas which is an inert gas such as nitrogen gas or argon gas
  • a muffle case is installed in the heat treatment furnace.
  • Inert gas such as nitrogen gas, argon gas, or hydrogen gas is introduced singly or in combination into the muffle case to keep the oxygen concentration in the metal muffle low, and heat treatment is performed in it. ing.
  • an exothermic gas generator having a combustion burner is placed in the temperature rising zone adjacent to the heating zone of the heat treatment furnace, and a mixed gas of raw material gas (butane, propane, etc.) and air is burned.
  • a mixed gas of raw material gas butane, propane, etc.
  • This dew point-adjusted transformed gas is fed to the heating zone and the cooling zone, and used as furnace air for non-oxidation treatment of a material to be heat-treated such as carbon steel.
  • the modified gas contains carbon monoxide (CO), carbon dioxide (CO 2 ), and hydrogen (H 2 ) in addition to nitrogen (N 2 ).
  • the modified gas actually contains a small amount of moisture (H 2 O), oxygen (O 2 ), and the like.
  • DX gas exothermic modified gas
  • O 2 oxygen
  • the component ratio is such that carbon monoxide increases and carbon dioxide decreases.
  • An object of the present disclosure is to provide a heat treatment furnace and a heat treatment method that have sufficient performance as the atmosphere gas in the heat treatment furnace and can reduce the amount of carbon-based gas emissions.
  • a first aspect of the present disclosure is a heat treatment furnace for performing heat treatment by heating an object to be heat treated, wherein the heat treatment furnace is provided with an atmosphere gas supply device,
  • the atmospheric gas supply device reacts a hydrocarbon gas with nitrogen gas containing 1 vol % or more and 15 vol % or less of oxygen gas as a combustion-supporting gas of the hydrocarbon gas to generate a metamorphic gas. It is configured to supply a gas as an atmosphere gas into the heat treatment furnace.
  • the atmosphere gas supply device includes a nitrogen gas generator, a hydrocarbon supply device, another gas supply device for supplying a gas different from the nitrogen gas and the hydrocarbon gas, and a mixer for mixing the gases. and a metamorphic furnace for generating a metamorphic gas from the gas mixed in the mixer.
  • the nitrogen gas generator includes a first control valve for controlling the supply amount of the generated nitrogen gas, and an oxygen sensor for measuring the oxygen partial pressure in the nitrogen gas generated by the nitrogen gas generator.
  • the other gas supply device has a second control valve for controlling the supply amount of the gas to be supplied, and the other gas supply device has the oxygen partial pressure and the nitrogen gas generator The supply amount of the gas supplied from the other gas supply device is controlled based on the supply amount of the nitrogen gas supplied from the other gas supply device so that the concentration of oxygen gas in the nitrogen gas becomes a predetermined concentration. ing.
  • the gas supplied from the other gas supply device contains air or oxygen.
  • the object to be heat-treated is a motor core or carbon steel.
  • a second aspect of the present disclosure is a heat treatment method of heating an object to be heat treated to perform heat treatment, comprising a hydrocarbon gas and 1 vol% or more and 15 vol% or less of a combustion-supporting gas of the hydrocarbon gas. It has a first step of reacting with nitrogen gas containing oxygen gas to generate a metamorphic gas, and a second step of heat-treating an object to be heat-treated using the metamorphic gas as a furnace atmosphere gas.
  • the object to be heat treated is a motor core or carbon steel.
  • FIG. 1 is a schematic diagram showing the configuration of a heat treatment furnace according to one embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a heat treatment method in the heat treatment furnace of FIG.
  • FIG. 3 is a bar graph showing the amount of carbon in the sample after heat treatment with respect to the amount of oxygen in the combustion-supporting gas.
  • FIG. 1 shows a heat treatment furnace 10 according to one embodiment of the present disclosure.
  • the heat treatment furnace 10 includes a preheating chamber 11 , a heating chamber 12 and a cooling chamber 14 .
  • a heating chamber 12 is provided downstream of the preheating chamber 11
  • a cooling chamber 14 is provided downstream of the heating chamber 12 .
  • the heating chamber 12 communicates directly with the preheating chamber 11 and the cooling chamber 14 communicates directly with the heating chamber 12 .
  • a partition door is not provided between the preheating chamber 11 and the heating chamber 12, but may be provided.
  • a partition door is not provided between the heating chamber 12 and the cooling chamber 14, but may be provided.
  • the preheating chamber 11 and the heating chamber 12 are each provided with a heater. Each heater is controlled so that the temperature of the room in which it is installed is the corresponding target temperature.
  • the cooling chamber 14 comprises cooling means, for example a water cooling system. In addition, the structure which does not provide the preheating chamber 11 may be sufficient.
  • the heat treatment furnace 10 is equipped with an atmospheric gas supply device (hereinafter referred to as a modified gas supply device) 16 .
  • the transformed gas supply 16 is configured to supply transformed gas to the heating chamber 12 and/or the cooling chamber 14 and comprises a transformed furnace 18 for producing the transformed gas.
  • the fuel gas and nitrogen gas containing 1 vol% or more and 15 vol% or less of oxygen gas as a combustion-supporting gas of the fuel gas are mixed at a predetermined ratio and mixed to generate a metamorphic gas. It is
  • Hydrocarbon gases such as methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), and butane (C 4 H 10 ) are preferably used as the fuel gas.
  • the above gas may be used alone, or, for example, 13A city gas (main component: methane (CH 4 ): 89.6%, ethane (C 2 H 6 ): 5.62% , propane ( C3H8 ) : 3.43% , butane ( C4H10 ): 1.35%) may be used.
  • Nitrogen gas containing 1 vol% or more and 15 vol% or less of oxygen gas is used as the combustion-supporting gas of the fuel gas, as described above.
  • Nitrogen gas containing 15% or less of oxygen gas may be composed by adding nitrogen gas of a predetermined purity and a predetermined concentration to air, or by adding nitrogen gas of a predetermined purity and a predetermined concentration to oxygen gas at a predetermined ratio. or a configuration in which nitrogen gas having a predetermined concentration is generated in advance by a nitrogen generator and then supplied.
  • nitrogen gas generated by a nitrogen generator nitrogen gas generated by a pressure swing (PSA) method using a known molecular sieve or a separation membrane method using a polymer membrane module may be used.
  • PSA pressure swing
  • the former method can usually generate nitrogen with a purity of about 99.5% to 99.99%, and the latter method can usually generate nitrogen gas with a purity of about 95% to 99.5% (the remaining The main component is oxygen).
  • the type of the metamorphic gas obtained varies depending on the metamorphic conditions such as the metamorphic ratio.
  • propane (C 3 H 8 ) is used as a hydrocarbon gas will be briefly described below as an example.
  • propane gas as a raw material can be reacted with a large amount of air and completely combusted to produce a modified gas according to the following Reaction Formula 1.
  • the metamorphic gas produced by Formula 1 is used, for example, in a bright annealing furnace for rolling coils.
  • a modified gas can be generated according to the following Reaction Formula 2.
  • the modified gas produced by Equation 2 is used, for example, in a gas carburizing furnace.
  • the heat treatment furnace of the present disclosure uses nitrogen gas containing 1 vol% or more and 15 vol% or less of oxygen gas as the combustion-supporting gas for generating the metamorphic gas. Therefore, since it is not necessary to use nitrogen having a high purity such as 99.9995 mass% or more, the cost for generating the modified gas can be suppressed, and the operating cost can also be reduced.
  • the present inventors have found that by using the above-described modified gas, it is possible to perform heat treatment equivalent to or higher than that of conventional exothermic modified gas (DX gas) or endothermic modified gas (RX gas). In addition, it was found that carbon gas emissions can be reduced.
  • FIG. 1 shows a configuration example of the modified gas supply device 16 of the present disclosure.
  • the shift gas supply 16 includes a nitrogen gas generator 20, a hydrocarbon supply 22 that supplies hydrocarbon gas, another gas supply 24, and a gas generator 24 for mixing these gases. and a transforming furnace 18 for producing transforming gas from the mixed gas. If heat supply from the outside is required to generate the modified gas, it is preferable to provide an external heat supply source (not shown) and, if necessary, a nickel (Ni) catalyst or the like.
  • the nitrogen gas generator 20 is a device that generates nitrogen gas by the method described above or the like.
  • a control valve for controlling the supply amount of nitrogen gas is provided downstream of the nitrogen gas generator 20 so that the nitrogen gas of a predetermined concentration generated by the nitrogen gas generator 20 can be supplied in a stable and continuous manner. It is preferable to provide V 0 (corresponding to the first control valve) and the like.
  • the nitrogen gas generator 20 is preferably provided with an oxygen sensor capable of measuring the oxygen partial pressure in the nitrogen gas to be supplied. It is preferable to have a configuration in which the supply amount of the hydrocarbon gas to be supplied and/or the supply amount of the other gas supply device 24 can be changed.
  • the hydrocarbon feeder 22 preferably has a configuration capable of vaporizing liquefied high-purity hydrocarbons filled in a high-pressure vessel having a predetermined volume under reduced pressure and supplying them at a desired supply pressure. It is preferable to provide a control valve V1 or the like for controlling the supply amount of the hydrocarbon gas downstream of the device 22 .
  • the other gas supply device 24 is a gas supply device for supplying other gases such as air or oxygen gas according to the oxygen concentration (oxygen partial pressure, etc.) in the nitrogen gas generated by the nitrogen gas generator 20. Therefore, it is usually preferable to provide a control valve V 2 (corresponding to a second control valve) or the like for controlling the supply amount of the other gas downstream of the other gas supply device 24 . If the concentration and supply amount of the nitrogen gas generated by the nitrogen gas generator 20 are at levels required for the heat treatment, the configuration may be such that no other gas supply device is provided. Further, the control valves V 0 , V 1 , V 2 may be built in each of the devices 20, 22, 24 . A configuration in which V2 is not provided may also be used.
  • Each gas supplied from the nitrogen gas generator 20, the hydrocarbon feeder 22, and the other gas feeder 24 is introduced into, for example, a mixer 26 and mixed, and then introduced into the transforming furnace 18 and converted into a transforming gas. be done.
  • the metamorphic gas generated in the metamorphic furnace 18 is cooled and/or dehydrated and supplied into the heat treatment furnace 10 as atmospheric gas.
  • gases are fed into heating chamber 12 and/or cooling chamber 14, respectively, as shown in FIG.
  • the preheating chamber 11 communicates with the heating chamber 12 .
  • the gas supply 16 may be connected only to the heating chamber 12 or only to the cooling chamber 14 to allow gas to flow to the next chamber.
  • the combustion device as the transformation furnace 18 of the gas supply device 16 may be provided so as to be incorporated in the preheating chamber 11 or the heating chamber 12, for example. Thereby, the heating efficiency of the preheating chamber 11 or the heating chamber 12 can be improved.
  • An oxygen sensor that can measure oxygen partial pressure is preferably provided, but various other sensors such as a temperature sensor that measures temperature may be provided.
  • a hydrogen sensor for measuring the hydrogen partial pressure a dew point sensor for measuring the dew point in the heat treatment furnace 10
  • a CO sensor capable of measuring the carbon monoxide partial pressure a CO 2 sensor capable of measuring the carbon dioxide partial pressure, and the like are provided.
  • the nitrogen generator preferably has an oxygen sensor for measuring the oxygen partial pressure in the supplied nitrogen gas, a regulating valve, and a flow meter, and it is preferable to obtain these adjustment and monitor outputs as control signals.
  • the object to be heat treated enters from the entrance 10a, passes through the preheating chamber 11, the heating chamber 12 and the cooling chamber 14 in order, and is conveyed so as to exit from the exit 10b.
  • the heat treatment furnace 10 is provided with a transportation device equipped with mesh belts or hearth rollers.
  • the cooling chamber 14 is directly connected to the downstream side of the heating chamber 12 without a slow cooling chamber. Therefore, the object to be heat-treated after leaving the heating chamber 12 is immediately cooled in the cooling chamber 14 .
  • a slow cooling chamber is provided downstream of the heating chamber and upstream of the cooling chamber for slowly cooling the object to be heat treated.
  • an outlet 10b is provided at the downstream end of the cooling chamber 14.
  • FIG. 2 shows a flowchart of an example of the heat treatment method according to this embodiment.
  • the heat treatment method includes: a first step (step S201) of reacting a hydrocarbon gas with a nitrogen gas containing 1 vol% or more and 15 vol% or less of oxygen gas as a combustion-supporting gas of the hydrocarbon gas to generate a metamorphic gas; and a second step (step S203) of heat-treating the object to be heat-treated using the modified gas as the furnace atmosphere gas.
  • the object to be heat-treated may be preheated in the preheating chamber 11 before the second step (step S203).
  • preheating in the preheating chamber 11 is performed for the purpose of removing oil adhering to the object to be heat-treated.
  • this step can be omitted.
  • the first step (step S201) is a step of generating the in-furnace atmosphere gas (transformed gas) supplied by the atmosphere gas supply device 16.
  • the modified gas in the present disclosure is generated by mixing a hydrocarbon gas and a nitrogen gas containing 1 vol% or more and 15 vol% or less of oxygen gas as a combustion-supporting gas of the hydrocarbon gas at a predetermined ratio. It is a metamorphic gas.
  • An additional gas such as an enrich gas or a reduce gas is supplied for the purpose of adjusting the dew point and carbon potential value (CP value) of the transformed gas generated in the first step, depending on the heat treatment content of the second step described later.
  • the second step (step S203) is a step of heat-treating the object to be heat-treated under the generated denatured gas atmosphere.
  • the heat treatment temperature, heat treatment time, and the like can be appropriately set according to the predetermined heat treatment.
  • the heat-treated object is usually cooled in the cooling chamber 14 .
  • the cooling may be natural cooling or forced cooling using a cooling means depending on the desired heat treatment.
  • the atmosphere in the cooling chamber 14 may be the above-described modified gas.
  • Example 1-Example 4 S45C (JIS G 4051) was prepared as an object to be heat-treated in the example, and a predetermined heat treatment was performed.
  • the heat treatment temperature was 950° C. ( ⁇ 10° C.) and the heat treatment time was 30 minutes.
  • propane gas or 13A city gas was used as fuel gas, and nitrogen gas containing 5 vol % oxygen gas was used as combustion-supporting gas.
  • an exothermic modified gas (DX gas) or an endothermic modified gas (RX gas) using propane gas or 13A city gas as the atmosphere gas as the fuel gas and air as the combustion-supporting gas is used.
  • Heat treatment was performed in the same manner as in the example except that the heat treatment was performed. Table 1 shows the transformation conditions of the transformed gas used.
  • Comparative Examples 1 and 2 are examples using a conventional exothermic modified gas (DX gas), and Examples 1 and 2 are examples using this conventional DX gas. It is an example carried out for comparison. Further, Comparative Examples 3 and 4 are examples using a conventional endothermic gas (RX gas), and Examples 3 and 4 are for comparison with examples using this conventional RX gas. It is an example implemented in For reference, Table 1 also shows the data of the material to be heat-treated that has not been heat-treated.
  • DX gas exothermic modified gas
  • RX gas conventional endothermic gas
  • Table 1 also shows the data of the material to be heat-treated that has not been heat-treated.
  • Vickers hardness was measured at surface depth positions of 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, and 600 ⁇ m from the surface for each heat-treated sample.
  • the Vickers hardness is measured according to JIS Z 2244.
  • composition of the atmosphere gas in the heat treatment furnace is calculated using sensors for each gas type, and the decarburization and carburization of the steel is calculated from the carbon monoxide partial pressure p CO and the carbon dioxide partial pressure p CO2 in the heat treatment furnace.
  • carbon potential value which is an index of
  • the amount of carbon monoxide and carbon dioxide emitted was less in the example samples than in the comparative example samples.
  • the amount of carbon monoxide and carbon dioxide emitted was less in the example samples than in the comparative example samples.
  • Example 5-9 An embodiment confirmed to prevent carburization in the step of annealing the motor core will be described in detail below.
  • an object to be heat-treated in the example four pieces of Fe-4%Si-100ppmC having a size of 10 mm ⁇ 20 mm ⁇ 0.3 mm in length ⁇ width ⁇ height were prepared, and these were laminated and subjected to a predetermined heat treatment. bottom.
  • the heat treatment temperature was set at 850° C.
  • the heat treatment time was set at 20 minutes.
  • propane gas was used as the atmosphere gas as the fuel gas, and 1 vol% (Example 5), 3 vol% (Example 6), 5 vol% (Example 7), 10 vol% (Example 8)
  • nitrogen gas containing 5 vol %, 10 vol %, and 15 vol % oxygen gas and air was used as the combustion-supporting gas.
  • FIG. 3 shows a bar graph showing the amount of carbon in the sample after heat treatment versus the amount of oxygen in the combustion-supporting gas.
  • the carbon content was measured with a solid carbon/sulfur analyzer EMIA (registered trademark)-Pro (manufactured by Horiba, Ltd.) employing an infrared absorption method.
  • the modified gas is used.
  • the amount of carbon is within the standard of 30-50 ppm.
  • oxygen content 20.9 vol%
  • the heat treatment furnace and heat treatment method using the heat treatment furnace according to the present invention can be used for heat treatment of various steels such as motor cores and carbon steel.
  • the carbon content of the carbon steel may be, for example, 0.50 mass% or less, may be 0.25 mass% or less, may be 200 ppm or less, and may be 100 ppm or less in this case, For example, it may be 50 ppm or less, and its lower limit may be a very small amount.
  • this carbon steel can be steel with a carbon content of 0.50 mass% or less, and preferably includes steel with a carbon content of 10 ppm or more and 100 ppm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本開示は、熱処理炉内雰囲気ガスとして十分な性能を有し、かつ、炭素系ガスの排出量を低減可能な熱処理炉及び熱処理方法を提供することに向けられている。本開示の一態様に係る熱処理炉は、被熱処理物を加熱して熱処理を行う熱処理炉であって、前記熱処理炉は、雰囲気ガス供給装置が設けられており、前記雰囲気ガス供給装置は、炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを生成し、生成された前記変成ガスを雰囲気ガスとして前記熱処理炉内に供給するよう構成されている。

Description

熱処理炉及び熱処理方法
 本開示は、熱処理炉及び熱処理方法に関し、特に炉内雰囲気ガスを制御した熱処理炉及び該熱処理炉を使用した熱処理方法に関する。
 熱処理される部材(被熱処理物)が、熱処理炉内において空気中で昇温されると、被熱処理物中に含まれている炭素成分が脱炭されたり、酸化されたり、変色したりして、被熱処理物の品質に支障を及ぼす。
 その対策として、熱処理炉内に窒素ガス、アルゴンガス等の不活性ガスに水素を添加した還元性のガスを導入して、熱処理炉内雰囲気ガスとして使用する技術や、熱処理炉内にマッフルケースを設け、マッフルケース内に窒素ガス、アルゴンガス等の不活性ガスや水素ガスを単独又は混合して導入して、金属製のマッフル内の酸素濃度を低く抑え、その中で熱処理する技術が知られている。
 しかしながら、上記ガスの高純度のガスは、コストが高いために、熱処理炉内を不活性ガス雰囲気に保つために使用すると、稼働コストが更に高くなる。
 そのため、熱処理炉内の雰囲気ガスとして使用する不活性ガスの低コスト化として、予熱炉内にガスバーナを配置してその燃焼熱を予熱の熱源として使用し、ガスバーナの燃焼によって生じる排気ガスを、熱処理炉内雰囲気ガスとして活用する技術が知られている(特許文献1参照)。
 この技術は、熱処理炉の加熱域に隣接した昇温域に、燃焼用バーナを有する発熱型ガス発生装置を配置し、原料ガス(ブタン、プロパン等)と空気を混合した混合ガスを燃焼させて変成ガスを生成して、その燃焼熱で被熱処理物の予熱を行い、排気される変成ガスを変成ガス熱交換器で冷却、脱水し、冷凍脱水機でさらに冷却、脱水し、露点調節する構成である。この露点調節された変成ガスを、加熱域及び冷却域に送給し、炭素鋼等の被熱処理物の無酸化処理用の炉気として使用する。
日本国特公昭58-27323号公報
 近年、熱処理の分野においては、熱処理された鋼の特性を高精度に制御することが求められる一方で、環境への配慮が求められ、二酸化炭素や一酸化炭素の排出量を少なくすることが求められている。
 上記変成ガスは、窒素(N)以外に、一酸化炭素(CO)、二酸化炭素(CO)、水素(H)が含まれている。なお、変成ガスには、実際は、微量の水分(HO)、酸素(O)等も含まれている。特に、完全燃焼に比較的近い燃焼によって生じる発熱型変成ガス(DXガス)の場合の成分比は、一酸化炭素は少なくなり二酸化炭素が増加する。また、比較的不完全燃焼で生じる吸熱型変成ガス(RXガス)の場合の成分比は、一酸化炭素は多くなり二酸化炭素は少なくなる。
 本開示の目的は、熱処理炉内雰囲気ガスとして十分な性能を有し、かつ、炭素系ガスの排出量を低減可能な熱処理炉及び熱処理方法を提供することにある。
 上記目的を達成するために、本開示に係る第1の様態は、被熱処理物を加熱して熱処理を行う熱処理炉であって、前記熱処理炉は、雰囲気ガス供給装置が設けられており、前記雰囲気ガス供給装置は、炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを生成し、生成された前記変成ガスを雰囲気ガスとして前記熱処理炉内に供給するよう構成されている。
 好ましくは、前記雰囲気ガス供給装置は、窒素ガス発生装置と、炭化水素供給装置と、窒素ガスと炭化水素ガスとは異なるガスを供給するその他のガス供給装置と、ガスを混合するための混合器と、前記混合器で混合したガスから変成ガスを生成するための変成炉と、を有する。
 好ましくは、前記窒素ガス発生装置は、発生した窒素ガスの供給量を制御するための第1の制御弁と、前記窒素ガス発生装置で発生した窒素ガス中の酸素分圧を測定する酸素センサとを有し、前記その他のガス供給装置は、供給するガスの供給量を制御するための第2の制御弁を有し、前記その他のガス供給装置は、前記酸素分圧と前記窒素ガス発生装置から供給される窒素ガスの供給量とに基づいて、窒素ガス中の酸素ガスの濃度が所定の濃度となるように、前記その他のガス供給装置から供給するガスの供給量を制御するよう構成されている。
 好ましくは、前記その他のガス供給装置から供給するガスは、空気又は酸素を含む。なお、例えば、前記被熱処理物は、モーターコア又は炭素鋼である。
 また、本開示に係る第2の態様は、被熱処理物を加熱して熱処理を行う熱処理方法であって、炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを生成する第1工程と、被熱処理物を炉内雰囲気ガスとして前記変成ガスを用いて熱処理する第2工程とを有する。例えば、前記被熱処理物は、モーターコア又は炭素鋼である。
 本開示の上記第1及び第2の様態によれば、熱処理炉内雰囲気ガスとして十分な性能を有し、かつ、炭素系ガスの排出量を低減可能な熱処理炉及び熱処理方法を提供することができる。
図1は、本開示の一実施形態に係る熱処理炉の構成を示す概略図である。 図2は、図1の熱処理炉における熱処理方法のフローチャートである。 図3は、支燃性ガスの酸素量に対する熱処理後の試料の炭素量を示す棒グラフである。
 以下に、本開示の一実施形態に係る熱処理炉及びその熱処理炉での熱処理方法について、図面に基づいて説明する。
 (熱処理炉の構成)
 図1に、本開示の一実施形態に係る熱処理炉10を示す。熱処理炉10は、予熱室11と、加熱室12と、冷却室14とを備える。予熱室11の下流側に加熱室12が設けられ、加熱室12の下流側に冷却室14が設けられている。加熱室12は予熱室11に直接連通し、冷却室14は加熱室12に直接的に連通する。予熱室11と加熱室12との間に仕切扉は設けられていないが、設けられてもよい。同様に、加熱室12と冷却室14との間にも仕切扉は設けられていないが、設けられてもよい。予熱室11と加熱室12はそれぞれヒーターを備える。各ヒーターは、設置された部屋の温度が対応する目標温度になるように制御される。冷却室14は冷却手段、例えば水冷システムを備える。なお、予熱室11を設けない構成であっても良い。
 熱処理炉10は、雰囲気ガス供給装置(以下、変成ガス供給装置)16を備えている。変成ガス供給装置16は、変成ガスを加熱室12及び/又は冷却室14に供給するように構成されており、変成ガスを生成する変成炉18を備える。
 そして、本開示においては、燃料ガスと、燃料ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとが所定割合に制御されて混合されて変成ガスを発生させるよう構成されている。
 燃料ガスとしては、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)等の炭化水素ガスが用いられるとよい。なお、燃料ガスは、上記ガスを単独で使用されてもよいし、例えば、13A都市ガス(主成分:メタン(CH):89.6%、エタン(C):5.62%、プロパン(C):3.43%、ブタン(C10):1.35%)等の混合炭化水素ガスが使用されてもよい。
 燃料ガスの支燃性ガスとしては、上述の通り、1vol%以上15vol%以下の酸素ガスを有する窒素ガスが使用される。15%以下の酸素ガスを有する窒素ガスは、空気に、所定純度、所定濃度の窒素ガスを添加する構成であってもよいし、酸素ガスに、所定純度、所定濃度の窒素ガスを所定の割合で供給する構成であってもよいし、予め窒素発生装置で、所定濃度の窒素ガスを生成させて、それを供給する構成であってもよい。
 窒素発生装置で窒素ガスを生成する場合、公知の分子篩を利用した圧力スウィング(PSA)式や高分子膜モジュールを利用した分離膜式で生成された窒素ガスを用いてもよい。前者の方式では、通常、99.5%~99.99%程度の純度の窒素を生成することができ、後者の方式では、通常、95%~99.5%程度の窒素ガス(残量の主成分は酸素)を生成することができる。
 なお、上記の炭化水素ガスを燃料ガスとして変成ガスを生成する場合、変成比率等の変成条件の違いにより、得られる変成ガスの種類も異なってくる。以下、一例として炭化水素ガスとしてプロパン(C)を使用する場合について、簡単に説明する。
 例えば、プロパンガスを原料に、大量の空気と反応させて完全燃焼させることで下記反応式1により変成ガスを生成することができる。
 + 5(O+3.76N) → 3CO + 18.8N + 4HO   式1
 式1で生成される変成ガスは、例えば、圧延コイルなどの光輝焼鈍炉等に用いられる。
 一方、同様にプロパンガスを原料として使用し、1000℃程度に加熱したニッケル触媒を通過させることで、下記反応式2により変成ガスを生成することができる。
8 + 3/2(O +3.76N) → 3CO + 4H + 5.64N  式2
 式2で生成される変成ガスは、例えば、ガス浸炭炉等に用いられる。
 本開示の熱処理炉は、変成ガスを生成するための支燃性ガスとして、1vol%以上15vol%以下の酸素ガスを有する窒素ガスを使用する。そのため、例えば99.9995mass%以上といった高い純度を有する窒素を使用する必要がないため、変成ガスを生成するためのコストを抑制することができ、稼働コストも低減することができる。そして、本発明者らは、上記の変成ガスを使用することで、従来の発熱型変成ガス(DXガス)又は吸熱型変性ガス(RXガス)と比較しても同等以上の熱処理を実施することができる上に、炭素ガスの排出量を低減することができることを見出した。
 図1に、本開示の変成ガス供給装置16の構成例について示している。図1に示した一例として、変成ガス供給装置16は、窒素ガス発生装置20と、炭化水素ガスを供給する炭化水素供給装置22と、その他のガス供給装置24と、これらのガスを混合するための混合器26と、混合ガスから変成ガスを生成するための変成炉18と、を有する。なお、変成ガスを生成する際に外部からの熱供給を要する場合には、図示しない外部からの熱供給源及び必要に応じてニッケル(Ni)触媒等を配することが好ましい。
 窒素ガス発生装置20は、上述の方法などで窒素ガスを発生させる装置である。窒素ガス発生装置20で発生した所定濃度の窒素ガスを、安定的かつ連続的に定量供給できるように、窒素ガス発生装置20の下流側には、窒素ガスの供給量を制御するための制御弁V(第1の制御弁に該当)等を設けることが好ましい。
 また、窒素ガス発生装置20は、供給する窒素ガス中の酸素分圧を測定可能な酸素センサを設けることが好ましく、窒素ガス中の酸素分圧等に応じて、炭化水素ガス供給装置22から供給する炭化水素ガスの供給量、及び/又は、その他のガス供給装置24の供給量を変更可能な構成とすることが好ましい。
 炭化水素供給装置22は、例えば、所定の容積を有する高圧容器に充填された液化高純度炭化水素を、減圧気化して所望の供給圧で供給できる構成を有することが好ましく、通常、炭化水素供給装置22の下流側には、炭化水素ガスの供給量を制御するための制御弁V等を設けることが好ましい。
 その他のガス供給装置24は、窒素ガス発生装置20で発生させる窒素ガス中の酸素濃度(酸素分圧等)に応じて、空気又は酸素ガス等のその他のガスを供給するためのガス供給装置であり、通常、その他のガス供給装置24の下流側には、その他のガスの供給量を制御するための制御弁V(第2の制御弁に該当)等を設けることが好ましい。なお、窒素ガス発生装置20で発生させる窒素ガスの濃度や供給量等が熱処理に要求されるレベルにある場合には、その他のガス供給装置を設けない構成であってもよい。また、制御弁V,V,Vは、各々の装置20,22,24に内蔵される構成であってもよいし、定量発生機能がある場合は、制御弁V,V,Vを設けない構成であってもよい。
 窒素ガス発生装置20、炭化水素供給装置22及びその他のガス供給装置24から供給された各ガスは、例えば混合器26に導入されて混合した後、変成炉18に導入されて変成ガスへと変換される。
 変成炉18で生成された変成ガスは、冷却及び/又は脱水されて、雰囲気ガスとして熱処理炉10の炉内に供給される。ここでは、こうしたガスは、図1に示すように、加熱室12内及び/又は冷却室14内のそれぞれに供給される。なお、予熱室11は加熱室12と連通している。ガス供給装置16は加熱室12のみ又は冷却室14にのみ接続されて、隣の部屋にガスが流れるようにしてもよい。なお、ガス供給装置16の変成炉18としての燃焼装置は、例えば予熱室11又は加熱室12に内蔵されるように設けられてもよい。これにより、予熱室11又は加熱室12の加熱効率を高めることができる。
 熱処理炉10には種々のセンサが設けられる。酸素分圧を測定可能な酸素センサが設けられているとよいが、他にも温度を測定する温度センサなど種々のセンサが設けられ得る。例えば、水素分圧を測定する水素センサ、熱処理炉10内の露点を測定する露点センサ、一酸化炭素分圧を測定可能なCOセンサ、二酸化炭素分圧を測定可能なCOセンサ等が設けられていてもよい。特に、窒素発生装置は、供給する窒素ガス中の酸素分圧を測定する酸素センサや、調整弁、流量計を有することが好ましく、これらの調整・およびモニタ出力を制御信号として得ることが好ましい。
 この熱処理炉10では、被熱処理物は、その入口10aから入り、予熱室11、加熱室12、冷却室14を順に通過し、出口10bから出るように搬送される。この搬送のために、熱処理炉10は、メッシュベルト若しくはハースローラーを備える搬送装置を備える。熱処理炉10では、加熱室12の下流に、徐冷室無しで、冷却室14が直接的につながる。したがって、加熱室12を出た被熱処理物は冷却室14で直ぐに冷却される。なお、従来からある、一般的なモーターコアの焼鈍を行う熱処理炉では、加熱室の下流側かつ冷却室の上流側に、被熱処理物を徐冷するために徐冷室が設けられている。
 熱処理炉10では、冷却室14の下流端に出口10bが設けられている。
 (熱処理方法)
 次に、熱処理炉10での被熱処理物の熱処理方法について、図2に基づいて説明する。図2に、本実施形態に係る熱処理方法の一例のフローチャートを示す。
 図2に示すように、本実施形態に係る熱処理方法は、
 炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを生成する第1工程(ステップS201)と、
 被熱処理物を炉内雰囲気ガスとして前記変成ガスを用いて熱処理する第2工程(ステップS203)とを有する。
 なお、本開示においては、第2工程(ステップS203)の前に、予熱室11で被熱処理物を予熱してもよい。なお、予熱室11での予熱は、被熱処理物に付着した油分などの除去等を目的に行われる場合がある。しかし、熱処理炉10に予熱室11を設けない場合、この工程は省略され得る。
 第1工程(ステップS201)は、雰囲気ガス供給装置16が供給する炉内雰囲気ガス(変成ガス)を生成する工程である。上述の通り、本開示における変成ガスは、炭化水素ガスと、炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとが所定割合に制御されて混合されて生成した変成ガスである。
 なお、後述する第2工程の熱処理内容に応じて、第1工程で生成した変成ガスの露点及びカーボンポテンシャル値(CP値)を調整する目的で、追加のガス、例えばエンリッチガスやリデュースガスを供給してもよい。
 第2工程(ステップS203)は、生成した変成ガス雰囲気下で被熱処理物を熱処理する工程である。熱処理温度及び熱処理時間等は、所定の熱処理に応じて適宜設定することができる。
 第2工程の後、熱処理された被熱処理物は、通常、冷却室14で冷却される。冷却は所望の熱処理内容に応じて、自然冷却してもよいし、冷却手段を用いて強制冷却してもよい。また、この冷却工程においても、冷却室14の室内雰囲気を前述の変成ガスとしてもよい。
 (実施例1-実施例4)
 実施例の被熱処理物としてS45C(JIS G 4051)を準備し、所定の熱処理を実施した。熱処理工程においては、熱処理温度は950℃(±10℃)とし、熱処理時間は30分とした。また、この熱処理工程においては、雰囲気ガスとして、プロパンガス又は13A都市ガスを燃料ガスとして使用し、5vol%の酸素ガスを含む窒素ガスを支燃性ガスとして使用した変成ガスを使用した。また、比較例として、雰囲気ガスとしてプロパンガス又は13A都市ガスを燃料ガスとして使用し、空気を支燃性ガスとして使用した発熱性変性ガス(DXガス)又は吸熱性変性ガス(RXガス)を使用した以外は実施例と同様の方法で、熱処理を実施した。表1に、使用した変成ガスの変成条件について示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、比較例1及び比較例2は、従来の発熱性変性ガス(DXガス)を使用した例であり、実施例1及び実施例2は、この従来のDXガスを使用した例との比較のために実施した実施例である。また、比較例3及び比較例4は、従来の吸熱性ガス(RXガス)を使用した例であり、実施例3及び実施例4は、この従来のRXガスを使用した例との比較のために実施した実施例である。また、表1には、参考のために、熱処理を実施していない被熱処理物のデータについても示している。
 (評価)
 評価については、先ず、熱処理済みの各試料について、表面から50μm、100μm、200μm、300μm、400μm、500μm、600μmの表面深さ位置において、ビッカース硬さを測定した。なお、本明細書においてビッカース硬さは、JIS Z 2244に準拠して測定したものである。
 また、熱処理炉の炉内雰囲気ガスの組成について、各ガス種のセンサを用いて算出し、熱処理炉内の一酸化炭素分圧pCO及び二酸化炭素分圧pCO2から、鋼の脱炭及び浸炭の指標となるカーボンポテンシャル値について算出した。
 さらに、各試料について、走査型電子顕微鏡(SEM)を用いた表面組織観察し、浸炭深さ、フェライト脱炭が見受けられる表面深さ、全脱炭が見受けられる表面深さについて算出した。
 上記各種測定結果についても、表1に合わせて示している。
 実施例1及び実施例2の試料と、比較例1乃至比較例2の試料とを比較した場合、全ての試料で脱炭が起きているが、5vol%の酸素を含む窒素ガスを支燃性ガスとして使用した実施例1及び実施例2の試料は、フェライト脱炭が起きておらず、また、全脱炭深さも小さかった。また、硬度についても、実施例1及び実施例2の試料は、比較例1及び比較例2の試料と同程度の軟化であった。
 また、炉内雰囲気については、一酸化炭素及び二酸化炭素の排出量は、全ての試料において、実施例の試料が比較例の試料に対して少なくなった。
 このことから、炭化水素ガスの支燃性ガスとして1%以上15%以下の酸素ガスを有する窒素ガスを使用することで、従来のDXガスと同等以上の熱処理が可能であることがわかった。
 一方、実施例3及び実施例4の試料と、比較例3乃至比較例4の試料とを比較した場合、本実施形態の燃焼域内においては、全ての試料で浸炭しないことを確認できた。脱炭については、実施例及び比較例の試料のいずれの試料においても全脱炭が見受けられたが、エンリッチガス供給等のカーボンポテンシャル値の制御により抑制可能な範囲であった。
 硬度については、全ての実施例において、比較例と比較して軟化していたが、許容範囲内であった。
 また、炉内雰囲気については、一酸化炭素及び二酸化炭素の排出量は、全ての試料において、実施例の試料が比較例の試料に対して少なくなった。
 このことから、炭化水素ガスの支燃性ガスとして1%以上15%以下の酸素ガスを有する窒素ガスを使用することで、従来のRXガスと同等程度の熱処理が可能であることがわかった。
 (実施例5-9)
 モーターコアを焼鈍する工程において、浸炭を防止することを確認した実施例について、下記に詳細に説明する。実施例の被熱処理物として、長さ×幅×高さで10mm×20mm×0.3mmの大きさのFe-4%Si-100ppmCを4枚準備し、これらを積層して所定の熱処理を実施した。熱処理工程においては、熱処理温度は850℃とし、熱処理時間は20分とした。また、この熱処理工程においては、雰囲気ガスとして、プロパンガスを燃料ガスとして使用し、1vol%(実施例5)、3vol%(実施例6)、5vol%(実施例7)、10vol%(実施例8)、15vol%(実施例9)の酸素ガスを含む窒素ガス又は空気(酸素含有量=20.9vol%:比較例5)を支燃性ガスとして使用した変成ガスを使用した。なお、5vol%、10vol%、15vol%の酸素ガスを含む窒素ガス及び空気を支燃性ガスとして使用した実施例については、2度同様の熱処理を実施した。
 (評価)
 評価については、4枚積層した熱処理済みの試料における中心側の2枚の試料について、炭素量を測定した。また、参考例として、熱処理前の試料についても、同様に炭素量を測定した。図3に、支燃性ガスの酸素量に対する熱処理後の試料の炭素量を示す棒グラフを示す。なお、炭素量の測定は、赤外線吸収法を採用する固体中炭素・硫黄分析装置EMIA(登録商標)-Pro(株式会社堀場製作所製)で行った。
 一般的に、モーターコアの炭素量は少ないほど鉄損に良いと言われており、通常30-50ppm程度であれば問題なしと言われている。図3に示すように、炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを使用した実施例については、炭素量が30-50ppmの基準内となっている。一方、空気(酸素含有量=20.9vol%)を使用した比較例については、その平均炭素量が30-50ppmの基準外となっていることがわかった。このことから、炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスを使用することで、浸炭を防止することができることがわかった。
 以上、本発明の代表的な実施形態などについて説明したが、本発明は上記実施形態などに限定されない。本願の請求の範囲によって定義される本発明の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。例えば、本発明に係る熱処理炉及び該熱処理炉を使用した熱処理方法は、モーターコア、炭素鋼など種々の鋼の熱処理に用いることができる。この炭素鋼の炭素量は、例えば0.50mass%以下であるとよく、0.25mass%以下であってもよく、更に200ppm以下であってもよく、この場合、100ppm以下であってもよく、例えば50ppm以下であってもよく、その下限値は極微少量であってもよい。例えば、この炭素鋼は、炭素量が0.50mass%以下の鋼であり得、炭素量が10ppm以上100ppm以下の鋼も含むとよい。
10 熱処理炉
11 予熱室
12 加熱室
14 冷却室
16 雰囲気ガス供給装置(変成ガス供給装置)
18 変成炉
20 窒素発生装置
22 炭化水素供給装置
24 その他のガス供給装置
26 混合器
,V,V 制御弁

 

Claims (7)

  1.  被熱処理物を加熱して熱処理を行う熱処理炉であって、
     前記熱処理炉は、雰囲気ガス供給装置が設けられており、
     前記雰囲気ガス供給装置は、炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを生成し、生成された前記変成ガスを雰囲気ガスとして前記熱処理炉内に供給するよう構成されている、
     熱処理炉。
  2.  前記雰囲気ガス供給装置は、窒素ガス発生装置と、炭化水素供給装置と、窒素ガスと炭化水素ガスとは異なるガスを供給するその他のガス供給装置と、ガスを混合するための混合器と、前記混合器で混合したガスから変成ガスを生成するための変成炉と、を有する、
     請求項1に記載の熱処理炉。
  3.  前記窒素ガス発生装置は、発生した窒素ガスの供給量を制御するための第1の制御弁と、前記窒素ガス発生装置で発生した窒素ガス中の酸素分圧を測定する酸素センサとを有し、
     前記その他のガス供給装置は、供給するガスの供給量を制御するための第2の制御弁を有し、
     前記その他のガス供給装置は、前記酸素分圧と前記窒素ガス発生装置から供給される窒素ガスの供給量とに基づいて、窒素ガス中の酸素ガスの濃度が所定の濃度となるように、前記その他のガス供給装置から供給するガスの供給量を制御するよう構成されている、請求項2に記載の熱処理炉。
  4.  前記その他のガス供給装置から供給するガスは、空気又は酸素を含む、請求項3に記載の熱処理炉。
  5.  前記被熱処理物は、モーターコア又は炭素鋼である、
    請求項1から4のいずれか一項に記載の熱処理炉。
  6.  被熱処理物を加熱して熱処理を行う熱処理方法であって、
     炭化水素ガスと、前記炭化水素ガスの支燃性ガスとして1vol%以上15vol%以下の酸素ガスを有する窒素ガスとを反応させて変成ガスを生成する第1工程と、
     被熱処理物を炉内雰囲気ガスとして前記変成ガスを用いて熱処理する第2工程とを有する熱処理方法。
  7.  前記被熱処理物は、モーターコア又は炭素鋼である、
    請求項6に記載の熱処理方法。

     
PCT/JP2022/039635 2021-10-29 2022-10-25 熱処理炉及び熱処理方法 WO2023074660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023519369A JP7407495B2 (ja) 2021-10-29 2022-10-25 熱処理炉及び熱処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178156 2021-10-29
JP2021178156 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074660A1 true WO2023074660A1 (ja) 2023-05-04

Family

ID=86157814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039635 WO2023074660A1 (ja) 2021-10-29 2022-10-25 熱処理炉及び熱処理方法

Country Status (2)

Country Link
JP (1) JP7407495B2 (ja)
WO (1) WO2023074660A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443110A (en) * 1977-08-20 1979-04-05 Messer Griesheim Gmbh Process for producing protective gas for iron metal heat treating
JPS5582727A (en) * 1978-11-24 1980-06-21 Nisshin Steel Co Ltd Annealing method for stainless steel
JP2011074421A (ja) * 2009-09-29 2011-04-14 Ntn Corp 鋼の熱処理方法および機械部品の製造方法
JP2018162475A (ja) * 2017-03-24 2018-10-18 大陽日酸株式会社 浸炭炉の運転方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364476A (en) * 1993-11-08 1994-11-15 Surface Combustion, Inc. Industrial variable carbon potential gas generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443110A (en) * 1977-08-20 1979-04-05 Messer Griesheim Gmbh Process for producing protective gas for iron metal heat treating
JPS5582727A (en) * 1978-11-24 1980-06-21 Nisshin Steel Co Ltd Annealing method for stainless steel
JP2011074421A (ja) * 2009-09-29 2011-04-14 Ntn Corp 鋼の熱処理方法および機械部品の製造方法
JP2018162475A (ja) * 2017-03-24 2018-10-18 大陽日酸株式会社 浸炭炉の運転方法

Also Published As

Publication number Publication date
JP7407495B2 (ja) 2024-01-04
JPWO2023074660A1 (ja) 2023-05-04

Similar Documents

Publication Publication Date Title
CA2150971C (en) Process and apparatus for producing heat treatment atmospheres
KR102135521B1 (ko) 고로 샤프트부로의 수소 함유 환원 가스 공급 방법
CA1125011A (en) Inert carrier gas heat treating control process
CA1114656A (en) Process for sintering powder metal parts
WO2023074660A1 (ja) 熱処理炉及び熱処理方法
US4028100A (en) Heat treating atmospheres
KR20100016342A (ko) 일산화탄소 가스 발생 장치 및 방법 및 침탄용 분위기 가스 발생 장치 및 방법
JPS58123821A (ja) 熱処理方法
JPH04268062A (ja) 鋼の雰囲気浸炭法
JP4823670B2 (ja) 浸炭用雰囲気ガス発生方法
GB2044804A (en) Heat treatment method
EP2354655B1 (en) Method for combustion of a low-grade fuel
JPS6250457A (ja) 組成可変n↓2ガス浸炭処理法
EP1081094A3 (en) Process for reforming methane with carbon dioxide
JPS6372821A (ja) 金属処理方法
EP0603744A2 (en) Heat treating atmospheres from non-cryogenically generated nitrogen
JP2009235451A (ja) 熱処理方法
JP6604015B2 (ja) 金属材料の熱処理方法および改質炉
JP4180492B2 (ja) 浸炭処理装置
JP5634797B2 (ja) 熱処理雰囲気ガス発生方法及び装置並びに金属酸化物の熱処理方法
JP5648090B1 (ja) 浸炭方法
CA1036912A (en) Heat treatment of ferrous metals in controlled gas atmospheres
US20040231753A1 (en) Method for carburizing and carbonitriding steel by carbon oxide
SU1752788A1 (ru) Способ получени защитной экзотермической атмосферы при термообработке сталей и сплавов
JP5882258B2 (ja) 浸炭装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023519369

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE