WO2023074174A1 - 炭化珪素基板および炭化珪素基板の製造方法 - Google Patents

炭化珪素基板および炭化珪素基板の製造方法 Download PDF

Info

Publication number
WO2023074174A1
WO2023074174A1 PCT/JP2022/034583 JP2022034583W WO2023074174A1 WO 2023074174 A1 WO2023074174 A1 WO 2023074174A1 JP 2022034583 W JP2022034583 W JP 2022034583W WO 2023074174 A1 WO2023074174 A1 WO 2023074174A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
main surface
less
carbide substrate
voids
Prior art date
Application number
PCT/JP2022/034583
Other languages
English (en)
French (fr)
Inventor
貴洋 椎原
直樹 梶
俊策 上田
宏樹 高岡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023074174A1 publication Critical patent/WO2023074174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present disclosure relates to a silicon carbide substrate and a method for manufacturing a silicon carbide substrate.
  • This application claims priority from Japanese Patent Application No. 2021-178510 filed on November 1, 2021. All the contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 Japanese National Publication of International Patent Application No. 2010-514648 (Patent Document 1) describes a method for manufacturing a silicon carbide crystal containing no micropipe defects.
  • a silicon carbide substrate according to the present disclosure includes a first main surface and a second main surface opposite to the first main surface. Voids exist in the silicon carbide substrate.
  • the surface density of voids on the first main surface is 0.7/cm 2 or less.
  • the width of the void is 10 ⁇ m or more and 80 ⁇ m or less when viewed in a direction perpendicular to the first main surface. In a cross section perpendicular to the first principal surface, the width of the void decreases from the first principal surface to the second principal surface when viewed in a direction parallel to the first principal surface.
  • the depth of the void When viewed in a direction parallel to the first main surface, the depth of the void is equal to or greater than the width of the void in the first main surface and less than the thickness of the silicon carbide substrate.
  • the first main surface is a silicon surface or a surface inclined in the off direction with respect to the silicon surface.
  • a method for manufacturing a silicon carbide substrate according to the present disclosure includes the following steps.
  • a silicon carbide raw material and a seed substrate are prepared.
  • a silicon carbide crystal is grown on the seed substrate by sublimating a silicon carbide raw material.
  • the silicon carbide crystal is cooled.
  • the cooling rate of the silicon carbide crystal in the temperature range of 1400° C. or more and 1600° C. or less is 23° C./min or more and 36° C./min or less.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide substrate according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of FIG. 3 is an enlarged plan view of area III of FIG. 1.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV of FIG.
  • FIG. 5 is an enlarged plan view of region V in FIG.
  • FIG. 6 is an enlarged plan view of area VI in FIG.
  • FIG. 7 is a schematic cross-sectional view taken along line VII--VII of FIG.
  • FIG. 8 is a schematic partial cross-sectional view showing the configuration of the silicon carbide crystal manufacturing apparatus according to the present embodiment.
  • FIG. 9 is a flow diagram schematically showing a method for manufacturing a silicon carbide substrate according to this embodiment.
  • FIG. 10 is a schematic diagram showing the relationship between temperature and time.
  • FIG. 11 is a flowchart schematically showing the cooling step of the method for manufacturing a silicon carbide substrate according to this embodiment.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the silicon carbide crystal after the cooling step.
  • FIG. 13 is an enlarged schematic diagram showing the configuration of region XIII in FIG.
  • FIG. 14 is a diagram showing the relationship between the surface density of voids and the cooling rate of silicon carbide crystals.
  • FIG. 15 is a diagram showing the relationship between the device yield and the area density of voids.
  • An object of the present disclosure is to provide a silicon carbide substrate and a method for manufacturing a silicon carbide substrate that can reduce the areal density of voids while suppressing the occurrence of cracks.
  • Advantageous Effects of Invention According to the present disclosure, it is possible to provide a silicon carbide substrate and a method for manufacturing a silicon carbide substrate that can reduce the areal density of voids while suppressing the occurrence of cracks.
  • a silicon carbide substrate 100 according to the present disclosure includes a first main surface 1 and a second main surface 2 opposite to the first main surface 1 .
  • Voids 10 are present in silicon carbide substrate 100 .
  • the surface density of voids 10 on first main surface 1 is 0.7/cm 2 or less.
  • void 10 has a width of 10 ⁇ m or more and 80 ⁇ m or less.
  • the width of the void 10 decreases from the first major surface 1 toward the second major surface 2 .
  • the first main surface 1 is a silicon surface or a surface inclined in the off direction with respect to the silicon surface.
  • the surface density of voids 10 in first main surface 1 may be 0.2/cm 2 or more.
  • micropipe defect 20 may be present in silicon carbide substrate 100 .
  • the areal density of the micropipe defects 20 on the first major surface 1 may be 0.3/cm 2 or less.
  • first main surface 1 may have a diameter of 150 mm or more.
  • the off angle of the surface inclined in the off direction with respect to the silicon surface may be 8° or less.
  • the method for manufacturing silicon carbide substrate 100 includes the following steps. Silicon carbide source material 53 and seed substrate 50 are prepared. Silicon carbide crystal 110 is grown on seed substrate 50 by sublimating silicon carbide source material 53 . After the step of growing silicon carbide crystal 110, silicon carbide crystal 110 is cooled. In the step of cooling silicon carbide crystal 110, the cooling rate of silicon carbide crystal 110 in the temperature range of 1400° C. or more and 1600° C. or less is 23° C./min or more and 36° C./min or less.
  • the temperature of silicon carbide crystal 110 may be 2100° C. or higher and 2300° C. or lower.
  • the temperature of silicon carbide crystal 110 is in a temperature range of 1000° C. or more and less than 1400° C. may be less than 23° C./min.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide substrate 100 according to this embodiment.
  • silicon carbide substrate 100 has first main surface 1 and outer peripheral side surface 9 .
  • First main surface 1 extends along each of first direction 101 and second direction 102 .
  • the first direction 101 is, but not limited to, the ⁇ 11-20> direction, for example.
  • the second direction 102 is, but not limited to, the ⁇ 1-100> direction, for example.
  • the off direction is the first direction 101, for example.
  • Silicon carbide substrate 100 is made of, for example, hexagonal silicon carbide. A polytype of hexagonal silicon carbide is, for example, 4H. Silicon carbide substrate 100 contains n-type impurities such as nitrogen.
  • the first main surface 1 is a silicon surface or a surface inclined in the off direction with respect to the silicon surface.
  • the first main surface 1 is the (0001) plane or a plane inclined in the off direction with respect to the (0001) plane.
  • the second main surface 2 (see FIG. 2) is a carbon surface or a surface inclined in the off direction with respect to the carbon surface.
  • the second main surface 2 is the (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
  • the outer peripheral side surface 9 has an orientation flat portion 7 and an arcuate portion 8 .
  • the arcuate portion 8 continues to the orientation flat portion 7 .
  • the orientation flat portion 7 extends along the first direction 101 when viewed from the direction perpendicular to the first main surface 1 .
  • a diameter W1 of the first main surface 1 is, for example, 150 mm.
  • the diameter W1 may be 150 mm or more, or may be 200 mm or more.
  • the diameter W1 is not particularly limited, but may be, for example, 300 mm or less.
  • the diameter W1 is the longest linear distance between two different points on the outer peripheral side surface 9 when viewed in a direction perpendicular to the first main surface 1 .
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • the cross section shown in FIG. 2 is perpendicular to the first main surface 1 and parallel to the first direction 101 .
  • silicon carbide substrate 100 according to the present embodiment has second main surface 2 .
  • the second major surface 2 is opposite the first major surface 1 .
  • Thickness E1 of silicon carbide substrate 100 is, for example, not less than 300 ⁇ m and not more than 700 ⁇ m.
  • a third direction 103 is a direction perpendicular to each of the first direction 101 and the second direction 102 .
  • the thickness direction of silicon carbide substrate 100 is the same as third direction 103 .
  • the off angle ⁇ of the surface inclined in the off direction with respect to the silicon surface may be 8° or less.
  • the off angle ⁇ is not particularly limited, it may be, for example, 6° or less, or 4° or less.
  • the off angle ⁇ is not particularly limited, it may be, for example, 1° or more, or 2° or more.
  • the off-direction of the surface inclined in the off-direction with respect to the silicon surface is not particularly limited, but is, for example, the ⁇ 11-20> direction.
  • FIG. 3 is an enlarged plan view of region III in FIG.
  • One or more voids 10 are present in silicon carbide substrate 100 according to the present embodiment.
  • the shape of the opening 11 of the void 10 when viewed in the direction perpendicular to the first main surface 1 is not particularly limited, but is, for example, hexagonal.
  • the shape of the opening 11 of the void 10 may be a shape other than a hexagon.
  • Voids 10 do not involve threading screw dislocations. From another point of view, voids 10 are not connected to threading screw dislocations.
  • the width of the void 10 (first width A1) is 10 ⁇ m or more and 80 ⁇ m or less.
  • the width of the void 10 is the maximum width between any two points in the opening 11 of the void 10 .
  • the width of void 10 may be, for example, the width along the off direction.
  • the value of the first width A1 is not particularly limited, but may be, for example, 20 ⁇ m or more, or may be 30 ⁇ m or more.
  • the value of the first width A1 is not particularly limited, but may be, for example, 70 ⁇ m or less, or 60 ⁇ m or less.
  • the surface density of voids 10 in first main surface 1 is 0.7/cm 2 or less.
  • the surface density of the voids 10 is not particularly limited, but may be, for example, 0.6/cm 2 or less, or 0.5/cm 2 or less.
  • the surface density of voids 10 is, for example, 0.2/cm 2 or more.
  • the surface density of the voids 10 is not particularly limited, but may be, for example, 0.25/cm 2 or more, or may be 0.3/cm 2 or more.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • the cross-section shown in FIG. 4 is perpendicular to the first major surface 1 and parallel to the first direction 101 .
  • the width of the void 10 (first width A1) decreases from the first main surface 1 toward the second main surface 2.
  • the void 10 has an opening 11 , a first side surface 12 and a bottom 13 .
  • the opening 11 is located on the first main surface 1 .
  • the bottom 13 is located between the first principal surface 1 and the second principal surface 2 .
  • the first side portion 12 is located between the opening portion 11 and the bottom portion 13 .
  • the first side surface portion 12 may be linear.
  • the void 10 when viewed in a direction parallel to the first main surface 1, the void 10 has a triangular shape, for example.
  • the base of the triangle is positioned at opening 11 .
  • the apex of the triangle corresponds to the bottom 13 of void 10 .
  • the direction perpendicular to the base of the triangle is the thickness direction of silicon carbide substrate 100 .
  • a triangle is, for example, an isosceles triangle.
  • the width of the opening 11 corresponds to the first width A1.
  • the first side surface portion 12 is inclined with respect to the third direction 103 (see FIG. 2).
  • the void 10 may be a hexagonal pyramid.
  • the depth of the void 10 (first depth B1) is equal to the width of the void 10 in the first main surface 1 (first depth B1). width A1) or more.
  • the first depth B1 may be the same as the first width A1 or may be greater than the first width A1.
  • the depth of the void 10 is not particularly limited, but may be, for example, three times or less the width of the void 10, or may be two times or less.
  • the depth of void 10 is less than the thickness of silicon carbide substrate 100 . In other words, void 10 does not penetrate silicon carbide substrate 100 . Voids 10 are exposed only on first principal surface 1 and not exposed on second principal surface 2 . Alternatively, the voids 10 may be exposed only on the second principal surface 2 and not exposed on the first principal surface 1 . In this case, the opening 11 of the void 10 is located on the second main surface 2 .
  • FIG. 5 is an enlarged plan view of region V in FIG.
  • the shape of the opening 11 of the void 10 may be circular, for example.
  • Three-dimensionally, void 10 may be conical.
  • the cross-sectional shape of the void 10 shown in FIG. 5 is similar to the shape shown in FIG.
  • the shape of the opening 11 of the void 10 is not particularly limited, but may be, for example, an ellipse or a polygonal shape other than a hexagon.
  • FIG. 6 is an enlarged plan view of area VI in FIG.
  • One or more micropipe defects 20 may exist in silicon carbide substrate 100 according to the present embodiment. As shown in FIG. 6, when viewed in a direction perpendicular to the first main surface 1, the shape of the micropipe defect 20 is, for example, hexagonal. Micropipe defects 20 involve threading screw dislocations.
  • the width (second width A2) of the micropipe defect 20 when viewed in the direction perpendicular to the first main surface 1 is, for example, 1 ⁇ m or more and 8 ⁇ m or less.
  • the width of the micropipe defect 20 is the maximum width between any two points in the first opening 21 of the micropipe defect 20 .
  • the width of micropipe defect 20 may be, for example, the width along the off direction.
  • the width (first width A1) of the void 10 may be five times or more the width (second width A2) of the micropipe defect 20, or may be ten times or more the second width A2.
  • surface density of micropipe defects 20 in first main surface 1 is, for example, 0.3/cm 2 or less.
  • the areal density of micropipe defects 20 is not particularly limited, but may be, for example, 0.25/cm 2 or less, or may be, for example, 0.2/cm 2 or less.
  • the areal density of micropipe defects 20 is not particularly limited, but may be, for example, 0.01/cm 2 or more, or may be, for example, 0.05/cm 2 or more.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG. The cross-section shown in FIG. 7 is perpendicular to the first major surface 1 and parallel to the first direction 101 . As shown in FIG. 7, micropipe defect 20 penetrates silicon carbide substrate 100 . A micropipe defect 20 opens into each of the first major surface 1 and the second major surface 2 .
  • the micropipe defect 20 has a first opening 21 , a second side surface 22 and a second opening 23 .
  • the first opening 21 is located on the first main surface 1 .
  • the second opening 23 is located on the second main surface 2 .
  • the second side surface portion 22 is located between the first opening portion 21 and the second opening portion 23 . When viewed in a direction parallel to the first major surface 1 , the second side surface portion 22 extends in a direction substantially perpendicular to the first major surface 1 .
  • the length (second length B2) of micropipe defect 20 in the direction perpendicular to first main surface 1 is substantially the same as thickness E1 of silicon carbide substrate 100 .
  • the second length B2 is greater than the second width A2.
  • the second length B2 may be 25 times or more the second width A2, or may be 50 times or more the second width A2.
  • FIG. 8 is a schematic partial cross-sectional view showing the configuration of the silicon carbide crystal manufacturing apparatus according to the present embodiment.
  • silicon carbide crystal manufacturing apparatus 200 mainly includes crucible 30 , first resistance heater 41 , second resistance heater 42 , and third resistance heater 43 .
  • the crucible 30 has a raw material storage portion 32 and a lid portion 31 .
  • the lid portion 31 is arranged on the raw material storage portion 32 .
  • the first resistance heater 41 is arranged above the lid portion 31 .
  • the second resistance heater 42 is arranged so as to surround the outer circumference of the raw material storage section 32 .
  • the third resistance heater 43 is arranged below the bottom surface of the raw material container 32 .
  • the crucible 30 is heated by applying power to the first resistance heater 41 , the second resistance heater 42 , and the third resistance heater 43 .
  • silicon carbide source material 53 is arranged in source material accommodating portion 32 .
  • Silicon carbide raw material 53 is, for example, powder of polycrystalline silicon carbide.
  • Seed substrate 50 is fixed to lid portion 31 using an adhesive (not shown), for example.
  • Seed substrate 50 has a growth surface 51 and a mounting surface 52 .
  • Mounting surface 52 is opposite growth surface 51 .
  • Growth surface 51 faces silicon carbide source material 53 .
  • the mounting surface 52 faces the lid portion 31 .
  • Growth surface 51 of seed substrate 50 is arranged to face the surface of silicon carbide source material 53 .
  • Seed substrate 50 is, for example, a hexagonal silicon carbide substrate with a polytype of 4H.
  • the diameter of growth surface 51 is, for example, 150 mm.
  • the diameter of the growth surface 51 may be 150 mm or more.
  • Growth plane 51 is, for example, the ⁇ 0001 ⁇ plane or a plane inclined at an off angle of about 8° or less with respect to the ⁇ 0001 ⁇ plane. As described above, seed substrate 50 and silicon carbide source material 53 are prepared.
  • FIG. 9 is a flowchart schematically showing a method for manufacturing silicon carbide substrate 100 according to this embodiment.
  • the method for manufacturing silicon carbide substrate 100 according to the present embodiment mainly includes a temperature raising step (S10), a growing step (S20), and a cooling step (S30). .
  • FIG. 10 is a schematic diagram showing the relationship between temperature and time.
  • the vertical axis indicates temperature and the horizontal axis indicates time.
  • the temperature of the growth surface 51 of the seed substrate 50 inside the crucible 30 increases from the first temperature C1 to the second temperature C1 from the first time T1 to the second time T2. It rises to temperature C2.
  • the first temperature C1 is 1100° C., for example.
  • the second temperature C2 is 2200° C., for example.
  • the pressure of the atmospheric gas in crucible 30 is maintained at, for example, about 80 kPa.
  • Atmospheric gas includes inert gas such as argon gas, helium gas, or nitrogen gas.
  • the growth step (S20) is performed.
  • the pressure in crucible 30 is reduced.
  • the pressure of the atmospheric gas in crucible 30 is reduced to, for example, 1.0 kPa.
  • silicon carbide source material 53 starts to sublimate, and the sublimated silicon carbide gas is recrystallized on growth surface 51 of seed substrate 50 .
  • silicon carbide crystal 110 begins to grow as a single crystal. While silicon carbide crystal 110 is growing, the pressure in crucible 30 is maintained, for example, at approximately 0.1 kPa or more and 3 kPa or less.
  • silicon carbide crystal 110 continues to grow on growth surface 51 of seed substrate 50 from second time T2 to third time T3. From second time point T2 to third time point T3, the temperature of silicon carbide crystal 110 is substantially maintained at second temperature C2.
  • the temperature of silicon carbide crystal 110 is the temperature of the portion of silicon carbide crystal 110 in contact with growth surface 51 of seed substrate 50 .
  • silicon carbide crystal 110 is grown on seed substrate 50 by sublimating silicon carbide source material 53 .
  • the temperature of silicon carbide crystal 110 is, for example, 2100° C. or more and 2300° C. or less. Although the temperature of silicon carbide crystal 110 is not particularly limited, it may be, for example, 2125° C. or higher or 2150° C. or higher. Although the temperature of silicon carbide crystal 110 is not particularly limited, it may be, for example, 2250° C. or lower or 2275° C. or lower.
  • FIG. 11 is a flowchart schematically showing the cooling step of the method for manufacturing silicon carbide substrate 100 according to the present embodiment.
  • the cooling step (S30) mainly includes a first cooling step (S31), a second cooling step (S32), and a third cooling step (S33).
  • the first cooling step (S31) is performed. As shown in FIG. 10, in the first cooling step (S31), silicon carbide crystal 110 is cooled from second temperature C2 to third temperature C3 from third time point T3 to fourth time point T4.
  • the third temperature C3 is 1600° C., for example.
  • the second cooling step (S32) is performed. As shown in FIG. 10, in the second cooling step (S32), silicon carbide crystal 110 is cooled from third temperature C3 to fourth temperature C4 from fourth time point T4 to fifth time point T5.
  • the fourth temperature C4 is 1400° C., for example.
  • the cooling rate of silicon carbide crystal 110 in the temperature range of 1400° C. or more and 1600° C. or less is 23° C./min or more and 36° C./min or less.
  • the cooling rate of silicon carbide crystal 110 in the second cooling step (S32) is 23° C./min or more and 36° C./min or less.
  • the cooling rate of silicon carbide crystal 110 in the second cooling step (S32) is a value obtained by dividing the temperature obtained by subtracting the fourth temperature C4 from the third temperature C3 by the time from the fourth time point T4 to the fifth time point T5. .
  • a cooling rate of silicon carbide crystal 110 in the second cooling step (S32) is not particularly limited, but may be, for example, 25° C./min or more, or may be 27° C./min or more.
  • the cooling rate of silicon carbide crystal 110 in second cooling step (S32) is not particularly limited, but may be, for example, 34° C./min or less, or may be 32° C./min or less.
  • the third cooling step (S33) is performed. As shown in FIG. 10, in the third cooling step (S33), silicon carbide crystal 110 is cooled from fourth temperature C4 to fifth temperature C5 from fifth time point T5 to sixth time point T6.
  • the fifth temperature C5 is 1000° C., for example.
  • the cooling rate of silicon carbide crystal 110 in the temperature range of 1000° C. or more and less than 1400° C. may be less than 23° C./min.
  • the cooling rate of silicon carbide crystal 110 in the third cooling step (S33) is less than 23° C./min.
  • the cooling rate of silicon carbide crystal 110 in the third cooling step (S33) is a value obtained by dividing the temperature obtained by subtracting fifth temperature C5 from fourth temperature C4 by the time from fifth time T5 to sixth time T6. .
  • the cooling rate of silicon carbide crystal 110 in the third cooling step (S33) is not particularly limited, but may be, for example, 1°C/min or more, or may be 5°C/min or more.
  • a cooling rate of silicon carbide crystal 110 in the third cooling step (S33) is not particularly limited, but may be, for example, 20° C./min or less, 15° C./min or less, or 10° C./min. minutes or less.
  • FIG. 12 is a schematic cross-sectional view showing the structure of silicon carbide crystal 110 after the cooling step. As shown in FIG. 12 , silicon carbide crystal 110 is formed below seed substrate 50 . The direction from seed substrate 50 toward silicon carbide source material 53 is the growth direction of silicon carbide crystal 110 .
  • FIG. 13 is an enlarged schematic diagram showing the configuration of region XIII in FIG.
  • void 10 is formed inside silicon carbide crystal 110 .
  • void 10 In a cross section parallel to the growth direction of silicon carbide crystal 110, void 10 has a triangular shape, for example.
  • the width of void 10 in the direction perpendicular to the growth direction of silicon carbide crystal 110 widens in the growth direction of silicon carbide crystal 110 . From another point of view, the width of void 10 in the direction perpendicular to the growth direction of silicon carbide crystal 110 increases from seed substrate 50 toward silicon carbide source material 53 .
  • silicon carbide crystal 110 is sliced. Specifically, silicon carbide crystal 110 is sliced along a plane perpendicular to the central axis of silicon carbide crystal 110 using, for example, a saw wire. Thereby, a plurality of silicon carbide substrates 100 are obtained (see FIG. 1).
  • Micropipe defects 20 involve threading screw dislocations. Therefore, by etching the vicinity of micropipe defect 20 with chlorine or the like, a pit having a unique shape is formed on the surface of silicon carbide substrate 100 . By calculating the number of pits per unit area, the areal density of micropipe defects 20 is calculated.
  • the inventor observed the surface of silicon carbide substrate 100 with an optical microscope after polishing silicon carbide substrate 100 .
  • a defect the defect is called a void 10
  • FIG. Further investigation revealed that the width of void 10 decreased from the front surface (first main surface 1) of silicon carbide substrate 100 toward the back surface (second main surface 2).
  • the depth of void 10 was equal to or greater than the width of void 10 on the surface (first main surface 1 ) and less than the thickness of silicon carbide substrate 100 .
  • the void 10 was not accompanied by threading screw dislocations. Therefore, it is considered that the voids 10 could not be detected by the etching method because the voids 10 were not expanded by etching with chlorine or the like.
  • the inventor has determined the position of the micropipe defect 20 on the surface of the silicon carbide substrate 100, the position of the void 10 on the surface, and the position (address) of the silicon carbide semiconductor device manufactured using the silicon carbide substrate 100. Upon detailed investigation of the relationship, it was confirmed that the address of the silicon carbide semiconductor device in which the failure occurred coincided with the position of silicon carbide substrate 100 where micropipe defect 20 or void 10 existed. That is, it was found that the void 10 newly discovered by the inventor is one of the causes of failure of the silicon carbide semiconductor device.
  • the inventor obtained the following knowledge and found a method for manufacturing the silicon carbide substrate 100 according to the present embodiment. Specifically, it was found that there is a strong correlation between the cooling rate in the cooling step of silicon carbide crystal 110 and the generation rate of voids 10 . In the step of cooling silicon carbide crystal 110 , it is considered that voids 10 are generated in silicon carbide crystal 110 by supersaturation of vacancies present in silicon carbide crystal 110 and precipitation of crystal defects.
  • the inventor came up with the idea of suppressing the generation of voids 10 by suppressing supersaturation of vacancies by increasing the cooling rate of silicon carbide crystal 110 .
  • the cooling rate of silicon carbide crystal 110 in the temperature range of 1400° C. or higher and 1600° C. or lower. is 23° C./min or more and 36° C./min or less.
  • the temperature of seed substrate 50 is 2100° C. in the step of growing silicon carbide crystal 110 on seed substrate 50 by sublimating silicon carbide source material 53 . It may be above 2300° C. or below.
  • the concentration of vacancies formed in silicon carbide crystal 110 increases as the temperature increases. It is considered that when the concentration of vacancies is high, the surface density of voids 10 caused by the vacancies increases. Therefore, by setting the temperature of seed substrate 50 to 2300° C. or less, it is possible to suppress an increase in surface density of voids 10 generated in silicon carbide crystal 110 formed on seed substrate 50 . Further, by setting the temperature of seed substrate 50 to 2100° C. or higher, deterioration of the quality of silicon carbide crystal 110 grown on seed substrate 50 can be suppressed.
  • silicon carbide crystal 110 in the step of cooling silicon carbide crystal 110, silicon carbide crystal 110 is cooled in a temperature range of 1000° C. or more and less than 1400° C.
  • the rate may be less than 23°C/min.
  • the surface density of voids 10 is 0.7/cm 2 or less. Therefore, the yield of silicon carbide semiconductor devices manufactured using silicon carbide substrate 100 according to the present embodiment can be improved.
  • Example 1 (Sample preparation) In Example 1, the group (first group) in which the growth temperature (second temperature C2) in the growth step (S20) is 2150° C. and the group (second group) in which the growth temperature (second temperature C2) is 2300° C. Silicon carbide crystal 110 was manufactured under the conditions of . Each group of silicon carbide crystals 110 was manufactured using the temperature profile shown in FIG. The first temperature C1 was set to 1100°C. The third temperature C3 was set to 1600°C. The fourth temperature C4 was set to 1400°C. The fifth temperature C5 was set to 1000°C.
  • the cooling rate in the second cooling step (S32) was changed between 2°C/minute and 33°C/minute.
  • the cooling rate in the second cooling step (S32) was varied between 3°C/min and 48°C/min.
  • silicon carbide substrates 100 were obtained from silicon carbide crystals 110 cooled at different cooling rates.
  • the surface density of voids 10 was measured in all silicon carbide substrates 100 .
  • the number of voids 10 was measured in first main surface 1 of silicon carbide substrate 100 .
  • Identification of voids 10 was performed using an optical microscope.
  • a bottomed hole having a width of 10 ⁇ m or more and 80 ⁇ m or less when viewed in a direction perpendicular to the first main surface 1 and whose width decreases from the first main surface 1 toward the second main surface 2 was specified as the void 10. .
  • a value obtained by dividing the number of voids 10 in the first main surface 1 by the area of the first main surface 1 was taken as the area density of the voids 10 .
  • FIG. 14 is a diagram showing the relationship between the areal density of voids 10 and the cooling rate of silicon carbide crystal 110 .
  • the areal density of voids 10 in silicon carbide substrate 100 manufactured at a low growth temperature (2150° C.) is higher than that at a high growth temperature ( 2300° C.) was confirmed to be lower than the areal density of voids 10 in silicon carbide substrate 100 manufactured at 2300° C.).
  • the surface density of voids 10 in silicon carbide substrate 100 manufactured at a high cooling rate is higher than the surface density of voids 10 in silicon carbide substrate 100 manufactured at a low cooling rate. It was confirmed to be lower than the density. From the above results, it was confirmed that the areal density of the voids 10 can be reduced by increasing the cooling rate in the second cooling step. Specifically, when the growth temperature is 2300° C., the surface density of voids 10 in silicon carbide substrate 100 is 0.7/cm 2 or less by setting the cooling rate in the second cooling step to 23° C./min or more. I was able to
  • cracks were confirmed in silicon carbide crystal 110 manufactured at a cooling rate of 40° C./min or higher in the second cooling step.
  • a crack is an elongated crack with a length of 100 ⁇ m or more.
  • Example 2 (Sample preparation) In Example 2, the silicon carbide substrate 100 of the group (third group) in which the surface density of the micropipe defects 20 is 0/cm 2 and the group in which the surface density of the micropipe defects 20 is 0.3/cm 2 (fourth group) of silicon carbide substrates 100 and a group (fifth group) of silicon carbide substrates 100 having an areal density of micropipe defects 20 of 0.8/cm 2 ;
  • silicon carbide substrates 100 of the third group the areal density of voids 10 was varied between 0.2/cm 2 and 2.0/cm 2 .
  • the areal density of voids 10 was varied between 0.3/cm 2 and 1.8/cm 2 .
  • silicon carbide substrates 100 of the fifth group the areal density of voids 10 was varied between 0.2/cm 2 and 1.6/cm 2 .
  • Silicon carbide epitaxial layers were formed on the silicon carbide substrates 100 of each group to fabricate devices.
  • the device was a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • FIG. 15 is a diagram showing the relationship between the device yield and the areal density of the voids 10. As shown in FIG. As shown in FIG. 15 , comparing silicon carbide substrates 100 having the same areal density of micropipe defects 20 , the yield of devices manufactured using silicon carbide substrates 100 having a low areal density of voids 10 is lower than that of voids 10 . It was confirmed that the yield was higher than that of devices manufactured using silicon carbide substrate 100 having a high surface density.
  • the yield of devices manufactured using silicon carbide substrates 100 having a low areal density of micropipe defects 20 is lower than that of silicon carbide having a high areal density of micropipe defects 20. It was confirmed that the yield of devices manufactured using the substrate 100 was higher.
  • the areal density of micropipe defects 20 should be 0.3/cm 2 or less, and the areal density of voids 10 should be 0.7/cm 2 or less. was confirmed to be desirable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

炭化珪素基板は、第1主面と、第1主面の反対にある第2主面とを有している。炭化珪素基板には、ボイドが存在している。第1主面におけるボイドの面密度は、0.7個/cm以下である。第1主面に垂直な方向に見て、ボイドの幅は、10μm以上80μm以下である。第1主面に垂直な断面において、第1主面に対して平行な方向に見て、ボイドの幅は、第1主面から第2主面に向かうにつれて小さくなる。第1主面に対して平行な方向に見て、ボイドの深さは、第1主面におけるボイドの幅以上であり、かつ、炭化珪素基板の厚み未満である。第1主面は、シリコン面またはシリコン面に対してオフ方向に傾斜した面である。

Description

炭化珪素基板および炭化珪素基板の製造方法
 本開示は、炭化珪素基板および炭化珪素基板の製造方法に関する。本出願は、2021年11月1日に出願した日本特許出願である特願2021-178510号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特表2010-514648号公報(特許文献1)には、マイクロパイプ欠陥を全く含まない炭化珪素結晶の製造方法が記載されている。
特表2010-514648号公報
 本開示に係る炭化珪素基板は、第1主面と、第1主面の反対にある第2主面とを備えている。炭化珪素基板には、ボイドが存在している。第1主面におけるボイドの面密度は、0.7個/cm以下である。第1主面に垂直な方向に見て、ボイドの幅は、10μm以上80μm以下である。第1主面に垂直な断面において、第1主面に対して平行な方向に見て、ボイドの幅は、第1主面から第2主面に向かうにつれて小さくなる。第1主面に対して平行な方向に見て、ボイドの深さは、第1主面におけるボイドの幅以上であり、かつ、炭化珪素基板の厚み未満である。第1主面は、シリコン面またはシリコン面に対してオフ方向に傾斜した面である。
 本開示に係る炭化珪素基板の製造方法は以下の工程を備えている。炭化珪素原料と種基板とが準備される。炭化珪素原料を昇華することにより種基板上に炭化珪素結晶を成長させる。炭化珪素結晶を成長させる工程後、炭化珪素結晶を冷却する。炭化珪素結晶を冷却する工程において、炭化珪素結晶の温度が1400℃以上1600℃以下の温度域における炭化珪素結晶の冷却速度は、23℃/分以上36℃/分以下である。
図1は、本実施形態に係る炭化珪素基板の構成を示す平面模式図である。 図2は、図1のII-II線に沿った断面模式図である。 図3は、図1の領域IIIの拡大平面図である。 図4は、図3のIV-IV線に沿った断面模式図である。 図5は、図1の領域Vの拡大平面図である。 図6は、図1の領域VIの拡大平面図である。 図7は、図6のVII-VII線に沿った断面模式図である。 図8は、本実施形態に係る炭化珪素結晶の製造装置の構成を示す一部断面模式図である。 図9は、本実施形態に係る炭化珪素基板の製造方法を概略的に示すフロー図である。 図10は、温度と時間との関係を示す模式図である。 図11は、本実施形態に係る炭化珪素基板の製造方法の冷却工程を概略的に示すフロー図である。 図12は、冷却工程後における炭化珪素結晶の構成を示す断面模式図である。 図13は、図12の領域XIIIの構成を示す拡大模式図である。 図14は、ボイドの面密度と炭化珪素結晶の冷却速度との関係を示す図である。 図15は、デバイスの歩留まりとボイドの面密度との関係を示す図である。
[本開示が解決しようとする課題]
 本開示の目的は、クラックの発生を抑制しつつ、ボイドの面密度を低減可能な炭化珪素基板および炭化珪素基板の製造方法を提供することである。
[本開示の効果]
 本開示によれば、クラックの発生を抑制しつつ、ボイドの面密度を低減可能な炭化珪素基板および炭化珪素基板の製造方法を提供することができる。
[本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。
 (1)本開示に係る炭化珪素基板100は、第1主面1と、第1主面1の反対にある第2主面2とを備えている。炭化珪素基板100には、ボイド10が存在している。第1主面1におけるボイド10の面密度は、0.7個/cm以下である。第1主面1に垂直な方向に見て、ボイド10の幅は、10μm以上80μm以下である。第1主面1に対して平行な方向に見て、ボイド10の幅は、第1主面1から第2主面2に向かうにつれて小さくなる。第1主面1に垂直な断面において、第1主面1に対して平行な方向に見て、ボイド10の深さは、第1主面1におけるボイド10の幅以上であり、かつ、炭化珪素基板100の厚み未満である。第1主面1は、シリコン面またはシリコン面に対してオフ方向に傾斜した面である。
 (2)上記(1)に係る炭化珪素基板100において、第1主面1におけるボイド10の面密度は、0.2個/cm以上であってもよい。
 (3)上記(1)または(2)に係る炭化珪素基板100において、炭化珪素基板100には、マイクロパイプ欠陥20が存在していてもよい。第1主面1におけるマイクロパイプ欠陥20の面密度は、0.3個/cm以下であってもよい。
 (4)上記(1)から(3)のいずれかに係る炭化珪素基板100において、第1主面1の直径は、150mm以上であってもよい。
 (5)上記(1)から(4)のいずれかに係る炭化珪素基板100において、シリコン面に対してオフ方向に傾斜した面のオフ角度は、8°以下であってもよい。
 (6)本開示に係る炭化珪素基板100の製造方法は以下の工程を備えている。炭化珪素原料53と種基板50とが準備される。炭化珪素原料53を昇華することにより種基板50上に炭化珪素結晶110を成長させる。炭化珪素結晶110を成長させる工程後、炭化珪素結晶110を冷却する。炭化珪素結晶110を冷却する工程において、炭化珪素結晶110の温度が1400℃以上1600℃以下の温度域における炭化珪素結晶110の冷却速度は、23℃/分以上36℃/分以下である。
 (7)上記(6)に係る炭化珪素基板100の製造方法によれば、炭化珪素原料53を昇華することにより種基板50上に炭化珪素結晶110を成長させる工程において、炭化珪素結晶110の温度は、2100℃以上2300℃以下であってもよい。
 (8)上記(6)または(7)に係る炭化珪素基板100の製造方法によれば、炭化珪素結晶110を冷却する工程において、炭化珪素結晶110の温度が1000℃以上1400℃未満の温度域における炭化珪素結晶110の冷却速度は、23℃/分未満であってもよい。
[本開示の実施形態の詳細]
 以下、図面に基づいて、本開示の実施形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 まず、本実施形態に係る炭化珪素基板100の構成について説明する。図1は、本実施形態に係る炭化珪素基板100の構成を示す平面模式図である。
 図1に示されるように、本実施形態に係る炭化珪素基板100は、第1主面1と、外周側面9とを有している。第1主面1は、第1方向101および第2方向102の各々に沿って拡がっている。第1方向101は、特に限定されないが、たとえば<11-20>方向である。第2方向102は、特に限定されないが、たとえば<1-100>方向である。オフ方向は、たとえば第1方向101である。炭化珪素基板100は、たとえば六方晶炭化珪素により構成されている。六方晶炭化珪素のポリタイプは、たとえば4Hである。炭化珪素基板100は、たとえば窒素などのn型不純物を含んでいる。
 第1主面1は、シリコン面またはシリコン面に対してオフ方向に傾斜した面である。言い換えれば、第1主面1は、(0001)面または(0001)面に対してオフ方向に傾斜した面である。同様に、第2主面2(図2参照)は、カーボン面またはカーボン面に対してオフ方向に傾斜した面である。言い換えれば、第2主面2は、(000-1)面または(000-1)面に対してオフ方向に傾斜した面である。
 図1に示されるように、外周側面9は、オリエンテーションフラット部7と、円弧状部8とを有している。円弧状部8は、オリエンテーションフラット部7に連なっている。図1に示されるように、第1主面1に垂直な方向から見て、オリエンテーションフラット部7は、第1方向101に沿って延在している。
 第1主面1の直径W1は、たとえば150mmである。直径W1は、150mm以上でもよいし、200mm以上でもよい。直径W1は、特に限定されないが、たとえば300mm以下であってもよい。第1主面1に垂直な方向に見て、直径W1は、外周側面9上の異なる2点間の最長直線距離である。
 図2は、図1のII-II線に沿った断面模式図である。図2に示される断面は、第1主面1に垂直であり、かつ第1方向101に平行である。図2に示されるように、本実施形態に係る炭化珪素基板100は、第2主面2を有している。第2主面2は、第1主面1の反対にある。炭化珪素基板100の厚みE1は、たとえば300μm以上700μm以下である。第3方向103は、第1方向101および第2方向102の各々に垂直な方向である。炭化珪素基板100の厚み方向は、第3方向103と同じである。
 第1主面1がシリコン面に対してオフ方向に傾斜している場合、シリコン面に対してオフ方向に傾斜した面のオフ角度θは、8°以下であってもよい。オフ角度θは、特に限定されないが、たとえば6°以下であってもよいし、4°以下であってもよい。オフ角度θは、特に限定されないが、たとえば1°以上であってもよいし、2°以上であってもよい。シリコン面に対してオフ方向に傾斜した面のオフ方向は、特に限定されないが、たとえば<11-20>方向である。
 図3は、図1の領域IIIの拡大平面図である。本実施形態に係る炭化珪素基板100には、1個以上のボイド10が存在している。図3に示されるように、第1主面1に垂直な方向に見て、ボイド10の開口部11の形状は、特に限定されないが、たとえば六角形である。ボイド10の開口部11の形状は、六角形以外の形状であってもよい。ボイド10は、貫通螺旋転位を伴わない。別の観点から言えば、ボイド10は、貫通螺旋転位に連なっていない。
 第1主面1に垂直な方向に見て、ボイド10の幅(第1幅A1)は、10μm以上80μm以下である。ボイド10の幅は、ボイド10の開口部11における任意の2点間における幅の最大値である。ボイド10の幅は、たとえばオフ方向に沿った幅であってもよい。第1幅A1の値は、特に限定されないが、たとえば20μm以上であってもよいし、30μm以上であってもよい。第1幅A1の値は、特に限定されないが、たとえば70μm以下であってもよいし、60μm以下であってもよい。
 本実施形態に係る炭化珪素基板100によれば、第1主面1におけるボイド10の面密度は、0.7個/cm以下である。ボイド10の面密度は、特に限定されないが、たとえば0.6個/cm以下であってもよいし、0.5個/cm以下であってもよい。ボイド10の面密度は、たとえば0.2個/cm以上である。ボイド10の面密度は、特に限定されないが、たとえば0.25個/cm以上であってもよいし、0.3個/cm以上であってもよい。
 図4は、図3のIV-IV線に沿った断面模式図である。図4に示される断面は、第1主面1に垂直であり、かつ第1方向101に平行である。図4に示されるように、第1主面1に対して平行な方向に見て、ボイド10の幅(第1幅A1)は、第1主面1から第2主面2に向かうにつれて小さくなる。ボイド10は、開口部11と、第1側面部12と、底部13とを有している。開口部11は、第1主面1に位置している。底部13は、第1主面1と第2主面2との間に位置している。第1側面部12は、開口部11と底部13との間に位置している。第1主面1に対して平行な方向に見て、第1側面部12は、直線状であってもよい。
 図4に示されるように、第1主面1に対して平行な方向に見て、ボイド10の形状は、たとえば三角形である。三角形の底辺が開口部11に位置している。三角形の頂点は、ボイド10の底部13に対応する。三角形の底辺に垂直な方向は、炭化珪素基板100の厚み方向である。三角形は、たとえば二等辺三角形である。開口部11の幅は、第1幅A1に対応する。第1側面部12は、第3方向103(図2参照)に対して傾斜している。三次元的には、ボイド10は、六角錐であってもよい。
 図4に示されるように、第1主面1に対して平行な方向に見て、ボイド10の深さ(第1深さB1)は、第1主面1におけるボイド10の幅(第1幅A1)以上である。言い換えれば、第1深さB1は、第1幅A1と同じであってもよいし、第1幅A1よりも大きくてもよい。ボイド10の深さは、特に限定されないが、たとえばボイド10の幅の3倍以下であってもよいし、2倍以下であってもよい。
 ボイド10の深さは、炭化珪素基板100の厚み未満である。言い換えれば、ボイド10は、炭化珪素基板100を貫通していない。ボイド10は、第1主面1にのみ露出し、かつ第2主面2には露出していない。別の態様として、ボイド10は、第2主面2にのみ露出し、かつ第1主面1には露出していなくてもよい。この場合、ボイド10の開口部11は第2主面2に位置する。
 図5は、図1の領域Vの拡大平面図である。図3に示されるように、第1主面1に垂直な方向に見て、ボイド10の開口部11の形状は、たとえば円形であってもよい。三次元的には、ボイド10は、円錐であってもよい。図5に示されるボイド10の断面形状は、図4に示される形状と同様である。ボイド10の開口部11の形状は、特に限定されないが、たとえば、楕円形であってもよいし、六角形以外の多角形であってもよい。
 図6は、図1の領域VIの拡大平面図である。本実施形態に係る炭化珪素基板100には、1個以上のマイクロパイプ欠陥20が存在していてもよい。図6に示されるように、第1主面1に垂直な方向に見て、マイクロパイプ欠陥20の形状は、たとえば六角形である。マイクロパイプ欠陥20は、貫通螺旋転位を伴う。
 第1主面1に垂直な方向に見て、マイクロパイプ欠陥20の幅(第2幅A2)は、たとえば1μm以上8μm以下である。マイクロパイプ欠陥20の幅は、マイクロパイプ欠陥20の第1開口部21における任意の2点間における幅の最大値である。マイクロパイプ欠陥20の幅は、たとえばオフ方向に沿った幅であってもよい。ボイド10の幅(第1幅A1)は、マイクロパイプ欠陥20の幅(第2幅A2)の5倍以上であってもよいし、第2幅A2の10倍以上であってもよい。
 本実施形態に係る炭化珪素基板100によれば、第1主面1におけるマイクロパイプ欠陥20の面密度は、たとえば0.3個/cm以下である。マイクロパイプ欠陥20の面密度は、特に限定されないが、たとえば0.25個/cm以下であってもよいし、たとえば0.2個/cm以下であってもよい。マイクロパイプ欠陥20の面密度は、特に限定されないが、たとえば0.01個/cm以上であってもよいし、たとえば0.05個/cm以上であってもよい。
 図7は、図6のVII-VII線に沿った断面模式図である。図7に示される断面は、第1主面1に垂直であり、かつ第1方向101に平行である。図7に示されるように、マイクロパイプ欠陥20は、炭化珪素基板100を貫通している。マイクロパイプ欠陥20は、第1主面1および第2主面2の各々に開口している。
 マイクロパイプ欠陥20は、第1開口部21と、第2側面部22と、第2開口部23とを有している。第1開口部21は、第1主面1に位置している。第2開口部23は、第2主面2に位置している。第2側面部22は、第1開口部21と第2開口部23との間に位置している。第1主面1に対して平行な方向に見て、第2側面部22は、第1主面1に対して実質的に垂直な方向に延びている。
 図7に示されるように、第1主面1に垂直な方向におけるマイクロパイプ欠陥20の長さ(第2長さB2)は、炭化珪素基板100の厚みE1と実質的に同じである。第2長さB2は、第2幅A2よりも大きい。第2長さB2は、第2幅A2の25倍以上であってもよいし、第2幅A2の50倍以上であってもよい。
 次に、本実施形態に係る炭化珪素結晶の製造装置の構成について説明する。
 図8は、本実施形態に係る炭化珪素結晶の製造装置の構成を示す一部断面模式図である。図8に示されるように、炭化珪素結晶の製造装置200は、坩堝30と、第1抵抗ヒータ41と、第2抵抗ヒータ42と、第3抵抗ヒータ43とを主に有している。坩堝30は、原料収容部32と、蓋部31とを有している。蓋部31は、原料収容部32上に配置される。
 第1抵抗ヒータ41は、蓋部31の上方に配置されている。第2抵抗ヒータ42は、原料収容部32の外周を取り囲むように配置されている。第3抵抗ヒータ43は、原料収容部32の底面の下方に配置されている。第1抵抗ヒータ41と、第2抵抗ヒータ42と、第3抵抗ヒータ43とに対して電力が印加されることにより、坩堝30が加熱される。
 次に、本実施形態に係る炭化珪素基板100の製造方法について説明する。
 図8に示されるように、炭化珪素原料53が原料収容部32に配置される。炭化珪素原料53は、たとえば多結晶炭化珪素の粉末である。種基板50は、たとえば接着剤(図示せず)を用いて蓋部31に固定される。種基板50は、成長面51と、取付面52とを有している。取付面52は、成長面51の反対にある。成長面51は、炭化珪素原料53に対向する。取付面52は、蓋部31に対向する。種基板50の成長面51は、炭化珪素原料53の表面に対向するように配置される。
 種基板50は、たとえばポリタイプが4Hである六方晶炭化珪素基板である。成長面51の直径は、たとえば150mmである。成長面51の直径は、150mm以上であってもよい。成長面51は、たとえば{0001}面または{0001}面に対して8°以下程度のオフ角だけ傾斜した面である。以上のように、種基板50と炭化珪素原料53とが準備される。
 図9は、本実施形態に係る炭化珪素基板100の製造方法を概略的に示すフロー図である。図9に示されるように、本実施形態に係る炭化珪素基板100の製造方法は、昇温工程(S10)と、成長工程(S20)と、冷却工程(S30)とを主に有している。
 図10は、温度と時間との関係を示す模式図である。図10において、縦軸は温度を示し、横軸は時間を示している。図10に示されるように、昇温工程(S10)において、第1時点T1から第2時点T2にかけて、坩堝30の内部において、種基板50の成長面51の温度が第1温度C1から第2温度C2まで上昇する。第1温度C1は、たとえば1100℃である。第2温度C2は、たとえば2200℃である。昇温工程(S10)においては、坩堝30に配置されている種基板50および炭化珪素原料53の温度が上昇している間、坩堝30内の雰囲気ガスの圧力はたとえば80kPa程度に維持される。雰囲気ガスは、たとえばアルゴンガス、ヘリウムガスまたは窒素ガスなどの不活性ガスを含んでいる。
 次に、成長工程(S20)が実施される。種基板50の成長面51の温度が炭化珪素原料53の温度よりも低い状態で、坩堝30内の圧力が低減される。坩堝30内の雰囲気ガスの圧力が、たとえば1.0kPaまで減圧される。これにより、炭化珪素原料53が昇華を開始し、昇華した炭化珪素ガスが種基板50の成長面51において再結晶化する。種基板50の成長面51上において、炭化珪素結晶110が単結晶成長し始める。炭化珪素結晶110が成長している間、坩堝30内の圧力は、たとえば0.1kPa以上3kPa以下程度に維持される。
 具体的には、第2時点T2から第3時点T3までの間、種基板50の成長面51上に炭化珪素結晶110が成長し続ける。第2時点T2から第3時点T3までの間、炭化珪素結晶110の温度は、実質的に第2温度C2で維持される。炭化珪素結晶110の温度は、種基板50の成長面51に接する炭化珪素結晶110の部分の温度とする。以上のように、炭化珪素原料53を昇華することにより種基板50上に炭化珪素結晶110を成長させる。成長工程(S20)において、炭化珪素結晶110の温度は、たとえば2100℃以上2300℃以下である。炭化珪素結晶110の温度は、特に限定されないが、たとえば2125℃以上であってもよいし、2150℃以上であってもよい。炭化珪素結晶110の温度は、特に限定されないが、たとえば2250℃以下であってもよいし、2275℃以下であってもよい。
 次に、冷却工程(S30)が実施される。種基板50上に炭化珪素結晶110を成長させた後、炭化珪素結晶110が冷却される。図11は、本実施形態に係る炭化珪素基板100の製造方法の冷却工程を概略的に示すフロー図である。図11に示されるように、冷却工程(S30)は、第1冷却工程(S31)と、第2冷却工程(S32)と、第3冷却工程(S33)とを主に有している。
 まず、第1冷却工程(S31)が実施される。図10に示されるように、第1冷却工程(S31)において、第3時点T3から第4時点T4にかけて炭化珪素結晶110が第2温度C2から第3温度C3まで冷却される。第3温度C3は、たとえば1600℃である。
 次に、第2冷却工程(S32)が実施される。図10に示されるように、第2冷却工程(S32)において、第4時点T4から第5時点T5にかけて炭化珪素結晶110が第3温度C3から第4温度C4まで冷却される。第4温度C4は、たとえば1400℃である。
 炭化珪素結晶110の温度が1400℃以上1600℃以下の温度域における炭化珪素結晶110の冷却速度は、23℃/分以上36℃/分以下である。言い換えれば、第2冷却工程(S32)における炭化珪素結晶110の冷却速度は、23℃/分以上36℃/分以下である。第2冷却工程(S32)における炭化珪素結晶110の冷却速度は、第3温度C3から第4温度C4を差し引いた温度を、第4時点T4から第5時点T5までの時間で割った値とする。
 第2冷却工程(S32)における炭化珪素結晶110の冷却速度は、特に限定されないが、たとえば25℃/分以上であってもよいし、27℃/分以上であってもよい。第2冷却工程(S32)における炭化珪素結晶110の冷却速度は、特に限定されないが、たとえば34℃/分以下であってもよいし、32℃/分以下であってもよい。
 次に、第3冷却工程(S33)が実施される。図10に示されるように、第3冷却工程(S33)において、第5時点T5から第6時点T6にかけて炭化珪素結晶110が第4温度C4から第5温度C5まで冷却される。第5温度C5は、たとえば1000℃である。
 炭化珪素結晶110の温度が1000℃以上1400℃未満の温度域における炭化珪素結晶110の冷却速度は、23℃/分未満であってもよい。言い換えれば、第3冷却工程(S33)における炭化珪素結晶110の冷却速度は、23℃/分未満である。第3冷却工程(S33)における炭化珪素結晶110の冷却速度は、第4温度C4から第5温度C5を差し引いた温度を、第5時点T5から第6時点T6までの時間で割った値とする。
 第3冷却工程(S33)における炭化珪素結晶110の冷却速度は、特に限定されないが、たとえば1℃/分以上であってもよいし、5℃/分以上であってもよい。第3冷却工程(S33)における炭化珪素結晶110の冷却速度は、特に限定されないが、たとえば20℃/分以下であってもよいし、15℃/分以下であってもよいし、10℃/分以下であってもよい。
 図12は、冷却工程後における炭化珪素結晶110の構成を示す断面模式図である。図12に示されるように、炭化珪素結晶110は、種基板50の下方に形成される。種基板50から炭化珪素原料53に向かう方向は、炭化珪素結晶110の成長方向である。
 図13は、図12の領域XIIIの構成を示す拡大模式図である。図13に示されるように、炭化珪素結晶110の内部においてボイド10が形成されている。炭化珪素結晶110の成長方向に平行な断面において、ボイド10の形状は、たとえば三角形である。炭化珪素結晶110の成長方向に垂直な方向におけるボイド10の幅は、炭化珪素結晶110の成長方向に向かって広がっている。別の観点から言えば、種基板50から炭化珪素原料53に向かうにつれて、炭化珪素結晶110の成長方向に垂直な方向におけるボイド10の幅は広がっている。
 次に、炭化珪素結晶110がスライスされる。具体的には、たとえばソーワイヤーを用いて、炭化珪素結晶110の中心軸に垂直な平面に沿って、炭化珪素結晶110がスライスされる。これにより、複数の炭化珪素基板100が得られる(図1参照)。
 次に、本実施形態に係る炭化珪素基板100および炭化珪素基板100の製造方法の作用効果について説明する。
 炭化珪素基板100におけるマイクロパイプ欠陥20の面密度を算出するために、エッチング法が一般的に用いられている。マイクロパイプ欠陥20は、貫通螺旋転位を伴う。そのため、塩素等によってマイクロパイプ欠陥20付近がエッチングされることにより、炭化珪素基板100の表面において特有の形状を有するピットが形成される。単位面積当たりのピットの数を算出することにより、マイクロパイプ欠陥20の面密度が算出される。
 通常、炭化珪素基板100におけるマイクロパイプ欠陥20の面密度が高い程、当該炭化珪素基板100を用いて作製された炭化珪素半導体デバイスの不良率は高くなる。しかしながら、炭化珪素基板100におけるマイクロパイプ欠陥20の面密度が低い(たとえば、0.1個/cm2以下)場合であっても、炭化珪素半導体デバイスの不良率が高くなることがあった。
 発明者は、上記現象の原因について詳細に調査するため、炭化珪素基板100を研磨した後、光学顕微鏡によって炭化珪素基板100の表面の観察を行った。その結果、炭化珪素基板100においてマイクロパイプ欠陥20とは異なる新たな欠陥(当該欠陥をボイド10と呼ぶ)が存在することを見出した。さらに調査を進めると、当該ボイド10の幅は、炭化珪素基板100の表面(第1主面1)から裏面(第2主面2)に向かうにつれて小さくなっていた。また当該ボイド10の深さは、表面(第1主面1)におけるボイド10の幅以上であり、かつ、炭化珪素基板100の厚み未満であった。さらにボイド10は、貫通螺旋転位が伴っていなかった。そのため、ボイド10は、塩素等によるエッチングでは拡張しないため、エッチング法では検出できなかったと考えられる。
 発明者は、炭化珪素基板100の表面におけるマイクロパイプ欠陥20の位置と、当該表面におけるボイド10の位置と、当該炭化珪素基板100を用いて製造された炭化珪素半導体デバイスの位置(アドレス)との関係について詳しく調査したところ、不良が発生した炭化珪素半導体デバイスのアドレスは、マイクロパイプ欠陥20またはボイド10が存在していた炭化珪素基板100の位置と一致することを確認した。つまり、発明者が新たに発見したボイド10が、炭化珪素半導体デバイスの不良を引き起こす原因の一つであることが判明した。
 発明者は、ボイド10が発生する原因について鋭意検討を行った結果、以下の知見を得て、本実施形態に係る炭化珪素基板100の製造方法を見出した。具体的には、炭化珪素結晶110の冷却工程における冷却速度とボイド10の発生率との間に強い相関関係があることが判明した。炭化珪素結晶110を冷却する工程において、炭化珪素結晶110に存在している空孔が過飽和となり結晶欠陥として析出することにより、炭化珪素結晶110にボイド10が発生すると考えられる。
 発明者は、炭化珪素結晶110の冷却速度を高くすることにより、空孔が過飽和になることを抑制することにより、ボイド10の発生を抑制することに着想した。一方、炭化珪素結晶110の冷却速度が高くなり過ぎると、炭化珪素結晶110における応力緩和が不十分となり、炭化珪素結晶110にクラックが発生することが判明した。
 本実施形態に係る炭化珪素基板100の製造方法によれば、炭化珪素結晶110を冷却する工程において、炭化珪素結晶110の温度が1400℃以上1600℃以下の温度域における炭化珪素結晶110の冷却速度は、23℃/分以上36℃/分以下である。これにより、クラックの発生を抑制しつつ、ボイド10の面密度を低減することができる。
 また本実施形態に係る炭化珪素基板100の製造方法によれば、炭化珪素原料53を昇華することにより種基板50上に炭化珪素結晶110を成長させる工程において、種基板50の温度は、2100℃以上2300℃以下であってもよい。炭化珪素結晶110に形成される空孔の濃度は、温度が高くなると高くなる。空孔の濃度が高いと、空孔に起因して発生するボイド10の面密度が高くなると考えられる。そのため、種基板50の温度を2300℃以下とすることにより、種基板50上に形成される炭化珪素結晶110に発生するボイド10の面密度が高くなることを抑制することができる。また種基板50の温度を2100℃以上とすることにより、種基板50上に成長する炭化珪素結晶110の品質が劣化することを抑制することができる。
 さらに本実施形態に係る炭化珪素基板100の製造方法によれば、炭化珪素結晶110を冷却する工程において、炭化珪素結晶110の温度が1000℃以上1400℃未満の温度域における炭化珪素結晶110の冷却速度は、23℃/分未満であってもよい。これにより、クラックの発生をさらに抑制することができる。
 さらに本実施形態に係る炭化珪素基板100によれば、ボイド10の面密度は、0.7個/cm以下である。これにより、本実施形態に係る炭化珪素基板100を用いて作製される炭化珪素半導体デバイスの歩留まりを向上することができる。
 (実施例1)
 (サンプル準備)
 実施例1においては、成長工程(S20)における成長温度(第2温度C2)が2150℃のグループ(第1グループ)と、成長温度(第2温度C2)が2300℃のグループ(第2グループ)との条件において、炭化珪素結晶110の製造を実施した。各グループの炭化珪素結晶110は、図10に示される温度プロファイルを用いて製造された。第1温度C1は、1100℃とした。第3温度C3は、1600℃とした。第4温度C4は、1400℃とした。第5温度C5は、1000℃とした。
 第1グループにおいては、第2冷却工程(S32)における冷却速度を、2℃/分から33℃/分の間で変化させた。第2グループにおいては、第2冷却工程(S32)における冷却速度を、3℃/分から48℃/分の間で変化させた。炭化珪素結晶110の製造が完了した後、ソーワイヤーを用いて炭化珪素結晶110をスライスされることにより、複数の炭化珪素基板100を切り出した。炭化珪素基板100の第1主面1および第2主面2の各々に対して機械研磨を実施した。
 (測定方法)
 第1グループおよび第2グループの各々において、異なる冷却速度で冷却された炭化珪素結晶110から炭化珪素基板100が得られた。全ての炭化珪素基板100において、ボイド10の面密度が測定された。具体的には、炭化珪素基板100の第1主面1において、ボイド10の数が測定された。ボイド10の特定は、光学顕微鏡を用いて行われた。第1主面1に垂直な方向に見た場合の幅が10μm以上80μm以下であり、第1主面1から第2主面2に向かうにつれて幅が小さくなる有底穴をボイド10として特定した。第1主面1におけるボイド10の数を第1主面1の面積で除した値は、ボイド10の面密度とした。
 (測定結果)
 図14は、ボイド10の面密度と炭化珪素結晶110の冷却速度との関係を示す図である。図14に示されるように、同じ冷却速度で製造された炭化珪素基板100を比較すると、低い成長温度(2150℃)で製造された炭化珪素基板100におけるボイド10の面密度は、高い成長温度(2300℃)で製造された炭化珪素基板100におけるボイド10の面密度よりも低いことが確かめられた。
 同じ成長温度で製造された炭化珪素基板100を比較すると、高い冷却速度で製造された炭化珪素基板100におけるボイド10の面密度は、低い冷却速度で製造された炭化珪素基板100におけるボイド10の面密度よりも低くなることが確かめられた。以上の結果より、第2冷却工程における冷却速度を高くすることにより、ボイド10の面密度を低減可能であることが確かめられた。具体的には、成長温度が2300℃の場合、第2冷却工程における冷却速度を23℃/分以上とすることにより、炭化珪素基板100におけるボイド10の面密度を0.7個/cm2以下とすることができた。
 一方、第2冷却工程における冷却速度を40℃/分以上として製造された炭化珪素結晶110においてはクラックの発生が確認された。クラックは、長さが100μm以上である細長い割れのことである。以上の結果より、第2冷却工程における冷却速度を23℃/分以上40℃/分未満とすることにより、クラックの発生が抑制され、かつ、ボイド10の面密度が低減された炭化珪素基板100が得られることが確認された。
 (実施例2)
 (サンプル準備)
 実施例2においては、マイクロパイプ欠陥20の面密度が0個/cm2のグループ(第3グループ)の炭化珪素基板100と、マイクロパイプ欠陥20の面密度が0.3個/cm2のグループ(第4グループ)の炭化珪素基板100と、マイクロパイプ欠陥20の面密度が0.8個/cm2のグループ(第5グループ)の炭化珪素基板100とに分けて、デバイスの歩留まりとボイド10の面密度との関係を調査した。
 第3グループの炭化珪素基板100においては、ボイド10の面密度を、0.2個/cm2から2.0個/cm2の間で変化させた。第4グループの炭化珪素基板100においては、ボイド10の面密度を、0.3個/cm2から1.8個/cm2の間で変化させた。第5グループの炭化珪素基板100においては、ボイド10の面密度を、0.2個/cm2から1.6個/cm2の間で変化させた。
 (測定方法)
 各グループの炭化珪素基板100に炭化珪素エピタキシャル層を形成し、デバイスを作成した。デバイスは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)とした。各グループの炭化珪素基板100において、逆方向電圧特性が要求スペックを満たすデバイスの歩留まりが算出された。
 (測定結果)
 図15は、デバイスの歩留まりとボイド10の面密度との関係を示す図である。図15に示されるように、マイクロパイプ欠陥20の面密度が同じ炭化珪素基板100を比較すると、ボイド10の面密度が低い炭化珪素基板100を用いて作製されたデバイスの歩留まりは、ボイド10の面密度が高い炭化珪素基板100を用いて作製されたデバイスの歩留まりよりも高いことが確かめられた。
 ボイド10の面密度が同じ炭化珪素基板100を比較すると、マイクロパイプ欠陥20の面密度が低い炭化珪素基板100を用いて作製されたデバイスの歩留まりは、マイクロパイプ欠陥20の面密度が高い炭化珪素基板100を用いて作製されたデバイスの歩留まりよりも高くなることが確かめられた。デバイスの歩留まりを90%以上とするためには、マイクロパイプ欠陥20の面密度を0.3個/cm2以下とし、かつ、ボイド10の面密度を0.7個/cm2以下とすることが望ましいことが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 第1主面、2 第2主面、7 オリエンテーションフラット部、8 円弧状部、9 外周側面、10 ボイド、11 開口部、12 第1側面部、13 底部、20 マイクロパイプ欠陥、21 第1開口部、22 第2側面部、23 第2開口部、30 坩堝、31 蓋部、32 原料収容部、41 第1抵抗ヒータ、42 第2抵抗ヒータ、43 第3抵抗ヒータ、50 種基板、51 成長面、52 取付面、53 炭化珪素原料、100 炭化珪素基板、101 第1方向、102 第2方向、103 第3方向、110 炭化珪素結晶、200 製造装置、A1 第1幅、A2 第2幅、B1 第1深さ、B2 第2長さ、C1 第1温度、C2 第2温度、C3 第3温度、C4 第4温度、C5 第5温度、E1 厚み、T1 第1時点、T2 第2時点、T3 第3時点、T4 第4時点、T5 第5時点、T6 第6時点、W1 直径、θ オフ角度。

Claims (8)

  1.  第1主面と、前記第1主面の反対にある第2主面とを備えた炭化珪素基板であって、
     前記炭化珪素基板には、ボイドが存在しており、
     前記第1主面における前記ボイドの面密度は、0.7個/cm以下であり、
     前記第1主面に垂直な方向に見て、前記ボイドの幅は、10μm以上80μm以下であり、
     前記第1主面に垂直な断面において、前記第1主面に対して平行な方向に見て、前記ボイドの幅は、前記第1主面から前記第2主面に向かうにつれて小さくなり、
     前記第1主面に対して平行な方向に見て、前記ボイドの深さは、前記第1主面における前記ボイドの幅以上であり、かつ、前記炭化珪素基板の厚み未満であり、
     前記第1主面は、シリコン面またはシリコン面に対してオフ方向に傾斜した面である、炭化珪素基板。
  2.  前記第1主面における前記ボイドの面密度は、0.2個/cm以上である、請求項1に記載の炭化珪素基板。
  3.  前記炭化珪素基板には、マイクロパイプ欠陥が存在しており、
     前記第1主面における前記マイクロパイプ欠陥の面密度は、0.3個/cm以下である、請求項1または請求項2に記載の炭化珪素基板。
  4.  前記第1主面の直径は、150mm以上である、請求項1から請求項3のいずれか1項に記載の炭化珪素基板。
  5.  前記オフ方向に傾斜した面のオフ角度は、8°以下である、請求項1から請求項4のいずれか1項に記載の炭化珪素基板。
  6.  炭化珪素原料と種基板とを準備する工程と、
     前記炭化珪素原料を昇華することにより前記種基板上に炭化珪素結晶を成長させる工程と、
     前記炭化珪素結晶を成長させる工程後、前記炭化珪素結晶を冷却する工程と、を備え、
     前記炭化珪素結晶を冷却する工程において、前記炭化珪素結晶の温度が1400℃以上1600℃以下の温度域における前記炭化珪素結晶の冷却速度は、23℃/分以上36℃/分以下である、炭化珪素基板の製造方法。
  7.  前記炭化珪素原料を昇華することにより前記種基板上に炭化珪素結晶を成長させる工程において、前記炭化珪素結晶の温度は、2100℃以上2300℃以下である、請求項6に記載の炭化珪素基板の製造方法。
  8.  前記炭化珪素結晶を冷却する工程において、前記炭化珪素結晶の温度が1000℃以上1400℃未満の温度域における前記炭化珪素結晶の冷却速度は、23℃/分未満である、請求項6または請求項7に記載の炭化珪素基板の製造方法。
PCT/JP2022/034583 2021-11-01 2022-09-15 炭化珪素基板および炭化珪素基板の製造方法 WO2023074174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021178510 2021-11-01
JP2021-178510 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023074174A1 true WO2023074174A1 (ja) 2023-05-04

Family

ID=86157853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034583 WO2023074174A1 (ja) 2021-11-01 2022-09-15 炭化珪素基板および炭化珪素基板の製造方法

Country Status (1)

Country Link
WO (1) WO2023074174A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190154A (ja) * 2010-03-16 2011-09-29 Sumitomo Electric Ind Ltd 結晶の製造方法、結晶の製造装置および積層膜
JP2012510951A (ja) * 2008-12-08 2012-05-17 トゥー‐シックス・インコーポレイテッド 向上した軸勾配輸送(agt)成長方法、及び抵抗加熱を利用した装置
JP2016064969A (ja) * 2014-09-24 2016-04-28 住友電気工業株式会社 炭化珪素単結晶の製造方法
JP2018043898A (ja) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2019528233A (ja) * 2016-08-31 2019-10-10 台州市一能科技有限公司 炭化ケイ素単結晶製造装置
WO2021215120A1 (ja) * 2020-04-22 2021-10-28 住友電気工業株式会社 炭化珪素単結晶および炭化珪素単結晶の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510951A (ja) * 2008-12-08 2012-05-17 トゥー‐シックス・インコーポレイテッド 向上した軸勾配輸送(agt)成長方法、及び抵抗加熱を利用した装置
JP2011190154A (ja) * 2010-03-16 2011-09-29 Sumitomo Electric Ind Ltd 結晶の製造方法、結晶の製造装置および積層膜
JP2016064969A (ja) * 2014-09-24 2016-04-28 住友電気工業株式会社 炭化珪素単結晶の製造方法
JP2019528233A (ja) * 2016-08-31 2019-10-10 台州市一能科技有限公司 炭化ケイ素単結晶製造装置
JP2018043898A (ja) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2021215120A1 (ja) * 2020-04-22 2021-10-28 住友電気工業株式会社 炭化珪素単結晶および炭化珪素単結晶の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDWARD K SANCHEZ, THOMAS KUHR, VOLKER D. HEYDEMANN, DAVID W. SNYDER, GREGORY S. ROHRER, AND MAREK SKOWRONSKI: "Formation of Thermal Decomposition Cavities in Physical Vapor Transport of Silicon Carbide", JOURNAL OF ELECTRONIC MATERIALS, SPRINGER-VERLAG, 1 March 2000 (2000-03-01), pages 347 - 352, XP055210910, ISBN: 1543186X, [retrieved on 20150902], DOI: 10.1007/s11664-000-0075-7 *

Similar Documents

Publication Publication Date Title
US10087549B2 (en) Method for producing sic single crystal having low defects by solution process
US9915011B2 (en) Low resistivity single crystal silicon carbide wafer
JP4603386B2 (ja) 炭化珪素単結晶の製造方法
US10066316B2 (en) Method for producing silicon carbide single-crystal ingot and silicon carbide single-crystal ingot
CN102337587A (zh) SiC单晶的生长方法和由该方法生长的SiC单晶
US20170152609A1 (en) Method of manufacturing silicon carbide substrate
JP2006508881A (ja) 単結晶ダイヤモンド
EP2933359B1 (en) Method for growing a beta-ga2o3-based single crystal
US9844893B2 (en) Method of manufacturing silicon carbide substrate
JP6120742B2 (ja) 単結晶インゴットの製造方法、単結晶基板の製造方法、および半導体装置の製造方法
KR101310292B1 (ko) 사파이어 시드 및 그 제조방법과 사파이어 단결정의 제조방법
JP7190841B2 (ja) SiCインゴットの製造方法及びSiCウェハの製造方法
US8642153B2 (en) Single crystal silicon carbide substrate and method of manufacturing the same
JP2010076967A (ja) 炭化ケイ素基板の製造方法および炭化ケイ素基板
JP4690906B2 (ja) 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶の製造方法
JP2018111639A (ja) 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
WO2023074174A1 (ja) 炭化珪素基板および炭化珪素基板の製造方法
JP2018104231A (ja) SiCウェハの製造方法及びSiCウェハ
JP4937967B2 (ja) 炭化珪素エピタキシャルウェハの製造方法
JP5370025B2 (ja) 炭化珪素単結晶インゴット
CN109957839B (zh) SiC单晶的加工方法及SiC锭的制造方法
US20210317597A1 (en) Nitride semiconductor substrate, method for manufacturing nitride semiconductor substrate, and laminate structure
JP2023111156A (ja) 基板、及び基板の製造方法
Avrov et al. Growth of 4 H-polytype silicon carbide ingots on (10 0) seeds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023556187

Country of ref document: JP

Kind code of ref document: A