WO2023073909A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2023073909A1
WO2023073909A1 PCT/JP2021/039975 JP2021039975W WO2023073909A1 WO 2023073909 A1 WO2023073909 A1 WO 2023073909A1 JP 2021039975 W JP2021039975 W JP 2021039975W WO 2023073909 A1 WO2023073909 A1 WO 2023073909A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
electronic device
ventilation holes
heat
region
Prior art date
Application number
PCT/JP2021/039975
Other languages
English (en)
French (fr)
Inventor
孝弘 増山
宏和 高林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21962451.7A priority Critical patent/EP4424539A1/en
Priority to JP2023556016A priority patent/JP7408031B2/ja
Priority to PCT/JP2021/039975 priority patent/WO2023073909A1/ja
Publication of WO2023073909A1 publication Critical patent/WO2023073909A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption

Definitions

  • This disclosure relates to electronic equipment.
  • Some electronic devices have a cooling part that is thermally connected to the electronic parts that are heating elements, in order to prevent damage to the electronic parts due to heat generated when energized.
  • An electronic device mounted on a railroad vehicle such as a power conversion device, cools the electronic component by dissipating heat generated in the electronic component through a cooling unit to wind generated by running of the vehicle.
  • An example of this type of electronic device is disclosed in Japanese Patent Application Laid-Open No. 2002-200012.
  • the power conversion device disclosed in Patent Literature 1 is mounted on the roof of a railroad vehicle and has fins attached to the top and side surfaces of a housing.
  • the power conversion device disclosed in Patent Document 1 cools electronic components, such as semiconductor elements, housed inside the housing of the power conversion device by allowing running wind generated when a railroad vehicle travels between fins. do.
  • a power conversion device that supplies power to air conditioners, lighting equipment, and the like operates not only when the railway vehicle is running but also when it is stopped. Therefore, the electronic components included in the power converter generate heat even when the railway vehicle is stopped.
  • the electronic components that generate heat even when the railway vehicle is stopped are not sufficiently cooled in the power conversion device disclosed in Patent Document 1 when the railway vehicle is stopped.
  • the power conversion device disclosed in Patent Document 1 has low cooling performance due to natural convection. This problem is not limited to power conversion devices that supply power to air conditioners, lighting equipment, and the like mounted on railroad vehicles, but may occur in electronic devices that include electronic components that generate heat not only when the vehicle is running but also when it is stopped.
  • the present disclosure has been made in view of the circumstances described above, and aims to provide an electronic device capable of cooling electronic components even when the vehicle is stopped.
  • the electronic device of the present disclosure is an electronic device mounted on a vehicle and includes a heat-conducting heat-receiving block, a heat-transfer member, and one or more fins.
  • An electronic component is attached to the first main surface of the heat receiving block.
  • the heat transfer member is attached to a second main surface opposite to the first main surface of the heat receiving block, extends in a direction away from the second main surface, and transfers heat transferred from the electronic component via the heat receiving block to the second main surface. Transmit in the direction away from the main surface.
  • One or more fins are attached to the heat transfer member and radiate heat transferred from the electronic component through the heat receiving block and the heat transfer member to the surrounding air.
  • At least one of the fins is formed with at least one vent for directing air away from the second major surface.
  • the ratio of the opening area of the ventilation holes in the first region including the center in the traveling direction or the width direction of the vehicle is the same area as the first region located on either side of the first region. It is higher than the ratio occupied by the opening area of the ventilation holes in the two regions.
  • the ratio of the opening area of the ventilation holes in the first region including the center in the traveling direction or the width direction of the vehicle is the ratio in the second region. Higher than the ratio occupied by the opening area of the ventilation holes.
  • FIG. 2 is a diagram showing an example of mounting an electronic device according to an embodiment on a vehicle;
  • Cross-sectional view taken along line IV-IV in FIG. 3 of the electronic device according to the embodiment 1A and 1B are top views of electronic devices according to embodiments;
  • 4A and 4B are diagrams illustrating examples of natural convection flow in the electronic device according to the embodiment
  • 4A and 4B are diagrams illustrating examples of natural convection flow in the electronic device according to the embodiment
  • FIG. 10 is a diagram showing an example of natural convection in the first modification of the electronic device according to the embodiment
  • FIG. 10 is a diagram showing an example of natural convection in the second modified example of the electronic device according to the embodiment;
  • the top view of the 3rd modification of the electronic device which concerns on embodiment The top view of the 4th modification of the electronic device which concerns on embodiment Sectional view of the fifth modification of the electronic device according to the embodiment
  • the top view of the 6th modification of the electronic device which concerns on embodiment FIG. 10 is a diagram showing another example of a method of mounting an electronic device in a vehicle according to an embodiment; Cross-sectional view taken along line XX-XX in FIG. 19 of the electronic device according to the embodiment
  • An example of an electronic device is a power conversion device that is mounted on a railway vehicle, converts AC power supplied from an AC power supply into AC power for supplying a load, and supplies the converted AC power to the load.
  • An example is a power converter that is mounted on the roof of a railroad car and uses natural convection to cool electronic components.
  • the electronic device 1 shown in FIG. 1 is mounted on an AC feeding type railway vehicle, and converts the supplied AC power into AC power suitable for each of an electric motor 61 and an air conditioner 62, which are examples of loads, and converts The generated AC power is supplied to the electric motor 61 and the air conditioner 62 .
  • the electric motor 61 is, for example, a three-phase induction motor that generates a propulsion force for a railway vehicle.
  • the electronic device 1 supplies power to the electric motor 61 to generate propulsion of the railroad vehicle.
  • the air-conditioning equipment 62 is an air-conditioning equipment in the railway vehicle. During operation of the railroad vehicle, specifically, when the railroad vehicle is running or stopped, the electronic device 1 supplies power to the air conditioner 62 to operate the air conditioner 62, and the air conditioner 62 is operated. The temperature is adjusted to the desired temperature.
  • the electronic device 1 includes a positive terminal 1a connected to a power supply and a negative terminal 1b grounded.
  • the electronic device 1 further includes a transformer 11 for stepping down the AC power supplied from the power supply connected to the positive terminal 1a, a converter 12 for converting the AC power stepped down by the transformer 11 into DC power, and the converter 12. It includes a capacitor C1 that is charged with the output DC power, and inverters 13 and 14 that convert the DC power input via the capacitor C1 into AC power.
  • the positive terminal 1a is electrically connected, for example, to a current collector that acquires AC power supplied from a substation via a power supply line.
  • the current collector corresponds to a power source that supplies power to the electronic device 1 .
  • the power supply line is, for example, an overhead line or a third rail.
  • Current collectors are pantographs or current collecting shoes.
  • the negative terminal 1b is grounded by being short-circuited to the rail via a grounding brush, an earthing ring, a wheel, etc. (not shown).
  • the transformer 11 has a primary winding with one end connected to the positive terminal 1 a and the other end connected to the negative terminal 1 b, and a secondary winding connected to the converter 12 .
  • the transformer 11 steps down the 25 kV single-phase AC power supplied from the current collector to 1520 V single-phase AC power, and supplies the stepped-down AC power to the converter 12 .
  • the converter 12 has two sets of two switching elements SW1 connected in series. One set of switching elements SW1 is connected in parallel to the other set of switching elements SW1. One end of the secondary winding of the transformer 11 is connected to the connection point of the two switching elements SW1 of one set, and the secondary winding of the transformer 11 is connected to the connection point of the two switching elements SW1 of the other set. ends are connected.
  • Each switching element SW1 has an IGBT (Insulated Gate Bipolar Transistor) and a free wheel diode whose anode is connected to the emitter terminal of the IGBT and whose cathode is connected to the collector terminal of the IGBT.
  • a gate signal from a control unit (not shown) is supplied to the gate terminal of the IGBT of each switching element SW1 provided in the converter 12 to control on/off of the IGBT, that is, on/off of each switching element SW1.
  • the converter 12 converts AC power supplied from the transformer 11 into DC power.
  • the capacitor C1 is charged with the DC power output by the converter 12.
  • One end of the capacitor C1 is connected to a connection point between the positive terminal of the converter 12 and the positive terminals of the inverters 13 and 14 on the primary side.
  • the other end of capacitor C1 is connected to a connection point between the negative terminal of converter 12 and the primary side negative terminals of inverters 13 and 14 .
  • the inverter 13 has three sets of two switching elements SW2 connected in series.
  • the three sets of switching elements SW2 respectively correspond to the U-phase, V-phase and W-phase of the three-phase AC power.
  • a switching element SW2 corresponding to the U phase, a switching element SW2 corresponding to the V phase, and a switching element SW2 corresponding to the W phase are connected in parallel between the primary side positive terminal and the primary side negative terminal of the inverter 13. be.
  • a connection point of the two switching elements SW2 corresponding to the U phase, a connection point of the two switching elements SW2 corresponding to the V phase, and a connection point of the two switching elements SW2 corresponding to the W phase are each connected to the electric motor 61. be.
  • Each switching element SW2 has an IGBT and a freewheeling diode, like the switching element SW1.
  • a gate signal from a control unit (not shown) is supplied to the gate terminals of the IGBTs of the switching elements SW2 of the inverter 13 to control on/off of the IGBTs, that is, on/off of the switching elements SW2.
  • the switching operation of each switching element SW2 causes the inverter 13 to convert the DC power into three-phase AC power and supply the three-phase AC power to the electric motor 61 .
  • the inverter 14 has three sets of two switching elements SW3 connected in series.
  • the three sets of switching elements SW3 respectively correspond to the U-phase, V-phase and W-phase of the three-phase AC power.
  • the switching element SW3 corresponding to the U phase, the switching element SW3 corresponding to the V phase, and the switching element SW3 corresponding to the W phase are connected in parallel between the primary side positive terminal and the primary side negative terminal of the inverter 14. be.
  • Each switching element SW3 has an IGBT and a free wheel diode, like the switching element SW1.
  • a gate signal from a control unit (not shown) is supplied to the gate terminal of the IGBT of each switching element SW3 of the inverter 14 to control the on/off of the IGBT, that is, the on/off of each switching element SW3.
  • the switching operation of each switching element SW3 causes the inverter 14 to convert the DC power into three-phase AC power.
  • the inverter 14 further has a transformer 15 that steps down the voltage of the three-phase AC power converted from the DC power to a voltage suitable for the air conditioner 62 .
  • a connection point of the two switching elements SW3 corresponding to the U phase, a connection point of the two switching elements SW3 corresponding to the V phase, and a connection point of the two switching elements SW3 corresponding to the W phase are each connected to the transformer 15. be done.
  • the three-phase AC power stepped down by the transformer 15 is supplied to the air conditioner 62 .
  • the switching elements SW1, SW2 and SW3 are repeatedly turned on and off, that is, perform switching operations and generate heat.
  • the air conditioner 62 must be operated while the railway vehicle is stopped. Therefore, while the railway vehicle is stopped, inverter 13 is stopped and converter 12 and inverter 14 are in operation.
  • the switching element SW2 does not generate heat, but the switching elements SW1 and SW3 repeatedly turn on and off and generate heat.
  • the electronic device 1 cools the electronic components including the switching elements SW1, SW2, and SW3 by running wind when the railroad vehicle is running, and cools the electronic components including the switching elements SW1 and SW3 by natural convection when the railroad vehicle is stopped.
  • the electronic device 1 is provided on the roof 100a of the vehicle 100.
  • FIG. 3 which is a cross-sectional view taken along line III-III in FIG.
  • a heat transfer member 22 is attached to the second main surface 21b and transfers heat transferred from the electronic component via the heat receiving block 21 in a direction away from the second main surface 21b.
  • the electronic device 1 further includes one or more fins 23 attached to the heat transfer member 22 and dissipating the heat transferred from the electronic component via the heat receiving block 21 and the heat transfer member 22 to the surrounding air. .
  • the electronic device 1 preferably further includes a housing 20 that is installed on the roof 100a and houses electronic components including the switching elements SW1, SW2, and SW3.
  • the heat receiving block 21 may be attached to the housing 20 while closing the opening 20a of the housing 20 .
  • the electronic device 1 preferably includes a cover 30 that covers the heat transfer member 22 and the fins 23 and is attached to the housing 20 .
  • the Z axis indicates the vertical direction with the vehicle 100 positioned horizontally.
  • the X-axis indicates the traveling direction of the vehicle 100 .
  • the Y-axis indicates the width direction of vehicle 100 .
  • the X-, Y-, and Z-axes are orthogonal to each other. The same applies to subsequent figures.
  • the housing 20 is attached to the upper part of the roof 100a in the vertical direction.
  • the housing 20 has such rigidity and strength that it does not deform even under the maximum expected vibration of the railway vehicle.
  • the housing 20 is made of a metal member such as iron or aluminum.
  • An opening 20a is formed in the upper portion of the housing 20 in the vertical direction.
  • the heat receiving block 21 is attached to the housing 20 while closing the opening 20a.
  • the heat receiving block 21 is a flat plate member made of a member having high thermal conductivity, such as a metal member such as iron or aluminum, and attached to the outer surface of the housing 20 while closing the opening 20a.
  • Electronic components that generate heat, specifically, switching elements SW1, SW2, and SW3 are attached to the first main surface 21a of the heat receiving block 21 .
  • a heat transfer member 22 is attached to a second main surface 21b located opposite to the first main surface 21a. With the vehicle 100 positioned horizontally, the first main surface 21a and the second main surface 21b are horizontal.
  • the heat transfer member 22 extends in a direction away from the second main surface 21b, and transfers heat transferred from the electronic component via the heat receiving block 21 in a direction away from the second main surface 21b.
  • the heat transfer member 22 has a heat pipe with a refrigerant sealed inside.
  • the heat transfer member 22 has, as a heat pipe, a mother pipe 24 attached to the heat receiving block 21 and a branch pipe 25 attached to the mother pipe 24 and communicating with the mother pipe 24 .
  • the main pipe 24 and the branch pipe 25 are filled with a refrigerant that exists in a gas-liquid two-phase state at room temperature.
  • the coolant is, for example, water.
  • the main pipe 24 and the branch pipes 25 are arranged symmetrically with respect to the XZ plane.
  • FIG. 3 and FIG. 4 which is a cross-sectional view taken along line IV-IV in FIG. 3, a plurality of mother pipes 24 extending in the X-axis direction are arranged side by side in the Y-axis direction.
  • twenty mother pipes 24 extending in the X-axis direction are arranged side by side in the Y-axis direction.
  • the mother pipe 24 is inserted into a groove formed in the second main surface 21b of the heat receiving block 21 and attached to the heat receiving block 21 by an attachment method such as bonding with an adhesive, brazing, or soldering.
  • the main pipe 24 is a pipe made of a member having a high thermal conductivity, such as a metal member such as iron or aluminum.
  • a plurality of branch pipes 25 are attached to each mother pipe 24 .
  • Each branch pipe 25 extends in a direction away from the heat receiving block 21, for example, in the Z-axis positive direction.
  • the branch pipe 25 is attached to the mother pipe 24 by an attachment method such as welding, brazing, or soldering, and communicates with the mother pipe 24 .
  • an attachment method such as welding, brazing, or soldering
  • eight branch pipes 25 arranged in the X-axis direction are attached to one mother pipe 24 .
  • illustration of the cover 30 is omitted.
  • the branch pipe 25 is a pipe made of a member having high thermal conductivity, such as a metal member such as iron or aluminum.
  • the length of the branch pipe 25 in the Z-axis direction is set within the vehicle limit on the cross section orthogonal to the traveling direction of the vehicle 100, that is, the YZ plane. Vehicle limits indicate the maximum dimensions of vehicle 100 .
  • the length in the Z-axis direction of the branch pipes 25 attached to the mother pipes 24 located at each of the two ends in the Y-axis direction is set at the center in the Y-axis direction. It is shorter than the length in the Z-axis direction of the branch pipes 25 attached to the eight mother pipes 24 located.
  • Four mother pipes 24 are provided between the eight mother pipes 24 positioned in the center in the Y-axis direction and the two mother pipes 24 positioned at the ends in the Y-axis direction.
  • the length in the Z-axis direction of the branch pipes 25 attached to the four mother pipes 24 is shorter than the length in the Z-axis direction of the branch pipes 25 attached to the eight mother pipes 24 described above. longer than the length in the Z-axis direction of the branch pipe 25 attached to the .
  • the fins 23 are attached to the heat transfer member 22 . Specifically, the fins 23 are attached to the heat transfer member 22 in a state in which the heat transfer member 22 is inserted through the through holes formed in the fins 23 .
  • the fins 23 attached to the heat transfer member 22 radiate the heat transferred from the electronic component through the heat receiving block 21 and the heat transfer member 22 to the surrounding air.
  • the fin 23 is a plate member made of a member having high thermal conductivity, such as a metal member such as iron or aluminum.
  • At least one of the fins 23 is formed with at least one ventilation hole 23a that guides air in a direction away from the second main surface 21b, for example, in the Z-axis positive direction.
  • the ratio of the opening area of the ventilation holes 23a in the first region including the center of the fin 23 in the X-axis direction or the Y-axis direction is the same as that in the second region having the same area as the first region located on either side of the first region. It is higher than the ratio occupied by the opening area of 23a.
  • the ratio of the opening area of the ventilation holes 23a in the first region including the center in the X-axis direction or the Y-axis direction on the main surface of the fin 23 is the first area located across the first region on the main surface. It is higher than the ratio occupied by the opening area of the ventilation holes 23a in the second area having the same area as the area.
  • a plurality of circular fins 23 are arranged linearly in the Y-axis direction in a first region R1 including the center of each fin 23 in the X-axis direction, which is a region surrounded by a dashed line. Ventilation holes 23a are formed. In each fin 23, the ventilation hole 23a is not formed in the second region R2, which is the region surrounded by the chain double-dashed lines located on both sides of the first region R1. The second region R2 is located across the first region R1 in the X-axis direction.
  • the ventilation holes 23a are formed in the first region R1, the ventilation holes 23a are not formed in the second region R2. is higher than the ratio occupied by the opening area of the ventilation holes 23a in the second region R2.
  • the main surface of the fins 23 is preferably parallel to the X-axis. Since the traveling wind generated when the vehicle 100 travels flows in the X-axis direction, the heat can be efficiently transferred from the fins 23 to the traveling wind flowing between the fins 23 by making the main surfaces of the fins 23 parallel to the X-axis. can be done.
  • the fins 23 are formed with the ventilation holes 23a as described above.
  • the air warmed by heat transfer from the fins 23 moves in the positive direction of the Z-axis through the ventilation holes 23a. Due to the air flow described above, air flows from the outside of the cover 30 into the inside of the cover 30 , and heat is transferred from the fins 23 to the inflowing air.
  • the ventilation holes 23a are formed in the first region R1 of the fins 23 in the X-axis direction instead of being formed over the entire surface of the fins 23. As shown in FIG.
  • a plurality of fins 23 are arranged side by side in the Y-axis direction and the Z-axis direction. As shown in FIG. 3, six fins 23 are arranged in the Y-axis direction. Four fins 23 are arranged in the Z-axis direction at both ends in the Y-axis direction. Five fins 23 are arranged in the Z-axis direction at positions adjacent to the fins 23 located at both ends in the Y-axis direction. Seven fins 23 are arranged in the Z-axis direction at the center in the Y-axis direction. Each of the fins 23 is attached to the heat transfer member 22, that is, the branch pipe 25, with its main surface horizontal when the vehicle 100 is positioned horizontally.
  • the cover 30 is attached to the housing 20 while covering the heat receiving block 21 , the heat transfer member 22 and the fins 23 .
  • the surface of the cover 30 along the X-axis direction is provided with a plurality of ventilators for allowing external air to flow into the cover 30 and for causing the air that has flowed near the heat transfer member 22 and the fins 23 to flow out of the cover 30.
  • a hole 30a is formed.
  • the surface of the cover 30 that intersects the X-axis direction allows external air to flow into the inside of the cover 30, and the air that has flowed near the heat transfer member 22 and the fins 23 is directed to the outside of the cover 30.
  • a plurality of ventilation holes 30b are formed to allow the air to flow out.
  • the cooling of the electronic components included in the electronic device 1 having the above configuration will be described below.
  • Heat generated by at least one of switching elements SW1, SW2, and SW3 is transferred to the refrigerant through heat receiving block 21 and main pipe 24.
  • the refrigerant vaporizes.
  • the vaporized refrigerant flows from the main pipe 24 into the branch pipe 25 and moves inside the branch pipe 25 in the positive Z-axis direction.
  • the refrigerant is cooled and liquefied by transferring heat to the air around the heat transfer member 22 via the branch pipes 25 and the fins 23 .
  • the liquefied refrigerant moves along the inner wall of the branch pipe 25 in the negative direction of the Z axis.
  • the heat generated by at least one of the switching elements SW1, SW2, and SW3 is transferred to the air around the heat transfer member 22, and the switching heat is generated.
  • the elements SW1, SW2, SW3 are cooled.
  • traveling wind is generated that flows in the negative direction of the X axis as indicated by an arrow AR1 in FIG.
  • Running wind passes between the fins 23 . As the running wind passes through the fins 23, heat is transferred from the fins 23 to the running wind to cool the switching elements SW1, SW2, and SW3.
  • the running wind shown in FIG. 6 is not generated while the vehicle 100 is stopped. Since the fins 23 included in the electronic device 1 are formed with ventilation holes 23a, the air heated by heat transfer from the fins 23 or the branch pipes 25 flows through the ventilation holes 23a as indicated by the arrow AR2 in FIG. Move in the positive direction of the Z-axis. In FIG. 7, only part of the air flow is shown to avoid complicating the drawing. The air that has moved in the positive direction of the Z-axis flows out of the cover 30 through the ventilation holes 30a formed in the vertical upper portion of the cover 30 .
  • the air that has flowed into the cover 30 through the ventilation holes 30b formed in the surface of the cover 30 on the negative side of the X-axis flows between the fins 23 in the positive direction of the X-axis. 23 reaches the first region R1 in the X-axis direction.
  • the air that has flowed into the cover 30 flows between the fins 23 as described above, is warmed by heat transferred from the fins 23, and reaches the first region R1 of the fins 23 in the X-axis direction.
  • the warmed air moves in the Z-axis positive direction through the ventilation holes 23a of the fins 23 and flows out of the cover 30 through the ventilation holes 30a. Since the ventilation holes 23a are formed in the fins 23, air flows in the positive direction of the Z-axis. In this manner, by utilizing natural convection, switching elements SW1, SW2, and SW3 can be cooled even when vehicle 100 is stopped.
  • the total area of the openings of the ventilation holes 23a in each fin 23 is increased, the heat radiation area is reduced and the cooling performance is degraded. It is preferably determined according to the required cooling performance. Specifically, the number of ventilation holes 23a and the shape of each ventilation hole 23a are preferably determined according to the cooling performance required when the vehicle is running and when the vehicle is stopped.
  • the electronic device 1 includes the fins 23 in which the ventilation holes 23a are formed.
  • the air warmed by heat transfer from the fins 23 inside the cover 30 moves in the positive direction of the Z-axis through the ventilation holes 23a.
  • the air inside the cover 30 moves in the Z-axis positive direction through the ventilation holes 23 a and flows out of the cover 30 through the ventilation holes 30 a of the cover 30 , the air outside the cover 30 moves inside the cover 30 .
  • influx As described above, since air flows even when vehicle 100 is stopped, electronic device 1 can cool electronic components including switching elements SW1, SW2, and SW3 using natural convection.
  • the present disclosure is not limited to the above embodiments.
  • only some of the fins 23 may have the ventilation holes 23a.
  • the configuration of the electronic device 2 is shown in FIG. 9 and FIG. 10, which is a cross-sectional view taken along line XX in FIG.
  • the electronic device 2 includes fins 23 arranged in the same manner as the electronic device 1 .
  • no ventilation holes 23a are formed in the four fins 23 located in the center in the Y-axis direction and on the positive side of the Z-axis.
  • the air warmed by heat transfer from the fins 23 moves in the positive direction of the Z axis through the ventilation holes 23a.
  • the air warmed by heat transfer from the fins 23 moves through the ventilation holes 23a in the positive direction of the Z-axis as indicated by the arrow AR5, forming the ventilation holes 23a. It reaches the fin 23 which is not covered.
  • the air that has reached the fins 23 without the ventilation holes 23a moves in the positive Z-axis direction, bypassing the fins 23 without the ventilation holes 23a, as indicated by an arrow AR6.
  • FIG. 12 shows the configuration of the electronic device 3 as another example.
  • the fin 23 located at the center in the Y-axis direction has a ventilation hole 23a, and the fins 23 located at both ends in the Y-axis direction do not have a ventilation hole 23a.
  • the fins 23 positioned at both ends in the Y-axis direction are arranged so that one of the ends in the Y-axis direction near the center of the vehicle 100 extends vertically when the vehicle 100 is positioned horizontally. is attached to the heat transfer member 22, specifically to the branch pipe 25, in such a direction that the position of is higher than the vertical position of the other end.
  • the air warmed by heat transfer from the fins 23 moves in the positive direction of the Z axis through the ventilation holes 23a.
  • the air warmed by heat transfer from the fins 23 moves along the fins 23 toward the center of the vehicle 100, and then travels between the fins 23 along the Z-axis. Move in the positive direction.
  • the shape and size of the ventilation holes 23a formed in each fin 23 are the same, but the shape and size of the ventilation holes 23a are not limited to the above example. Furthermore, the number of ventilation holes 23a is not limited to the above example. Specifically, in each fin 23, the ratio of the opening area of the ventilation holes 23a in the first region R1 in the X-axis direction or the Y-axis direction of the fin 23 is the same as that in the second region R2 located across the first region R1.
  • the shape, size, and number of the ventilation holes 23a are arbitrary as long as they are higher than the ratio of the opening area of the holes 23a.
  • the shape of the ventilation hole 23a is not limited to a circle, and may be oval or square.
  • the shape of each ventilation hole 23a may be different from each other.
  • FIG. 14 shows the configuration of the electronic device 4 as another example.
  • the ventilation holes 23a formed in the fins 23 have the same shape. More ventilation holes 23a are formed than in the second region R2, which is the region surrounded by the dashed-dotted lines sandwiched in the axial direction.
  • the illustration of the cover 30 and the heat transfer member 22 is omitted in order to avoid complication of the drawing. Since more ventilation holes 23a are formed in the first region R1 than in the second region R2, most of the air that has flowed in from the outside of the cover 30 moves from the second region R2 to the first region R1, It flows in the Z-axis positive direction through the ventilation hole 23a formed in R1.
  • FIG. 15 shows the configuration of an electronic device 5 as another example.
  • the ventilation holes 23a larger than the second region R2 are formed in the first region R1.
  • the illustration of the cover 30 and the heat transfer member 22 is omitted in order to avoid complication of the drawing. Since the first region R1 has a larger ventilation hole 23a, most of the air that has flowed in from the outside of the cover 30 moves from the second region R2 to the first region R1 and is formed in the first region R1. It flows in the Z-axis positive direction through the ventilation holes 23a.
  • the positions and shapes of the ventilation holes 23a in the fins 23 arranged in the Z-axis direction are the same, but the positions and shapes of the ventilation holes 23a in the fins 23 arranged in the Z-axis direction are different from each other.
  • the configuration of the electronic device 6 is shown in FIG. 16 and FIG. 17, which is a cross-sectional view taken along line XVII-XVII in FIG.
  • the total opening area of the ventilation holes 23a formed in the fins 23 adjacent to the heat receiving block 21 is equal to the total opening area of the ventilation holes 23a formed in the fins 23 provided farther from the heat receiving block 21 than the fins 23. It is smaller than the total opening area of the holes 23a.
  • the diameter of the ventilation holes 23a formed in the fins 23 adjacent to the heat receiving block 21 is the diameter of the ventilation holes 23a formed in the fins 23 provided farther from the heat receiving block 21 than the fins 23. less than Furthermore, in the central portion in the Y-axis direction, one ventilation hole 23a is formed in the fin 23 adjacent to the heat receiving block 21, whereas the ventilation hole 23a is provided at a position farther from the heat receiving block 21 than the fin 23.
  • the fin 23 is formed with three ventilation holes 23a.
  • ventilation holes 23a are formed in a first region R1 including the center in the X-axis direction, and are aligned in a straight line in the Y-axis direction. It is not limited to the above examples. An example of a case in which it is easier to take air into the cover 30 in the Y-axis direction than in the X-axis direction because another on-vehicle device is adjacent in the X-axis direction.
  • FIG. 18 shows the configuration of the electronic device 7 which is .
  • a plurality of circular ventilation holes are arranged linearly in the X-axis direction in a first region R1 including the center of each fin 23 in the Y-axis direction, which is a region surrounded by a dashed line. 23a is formed.
  • the ventilation hole 23a is not formed in the second region R2, which is the region surrounded by the two-dot chain line and located on both sides of the first region R1.
  • the first region R1 and the second region R2 are shown in some of the fins 23 in FIG.
  • the second region R2 is located across the first region R1 in the Y-axis direction.
  • the ventilation holes 23a are formed in the first region R1, whereas the ventilation holes 23a are not formed in the second region R2. 23 is higher than the ratio occupied by the opening area of the ventilation holes 23a in the second region R2.
  • Positioning across the first region R1 includes positioning around the first region R1.
  • the second region R2 may surround the outer periphery of the first region R1.
  • the mounting position of the electronic device 1-7 is not limited to the above example.
  • FIG. 19 and FIG. 20 which is a cross-sectional view taken along line XX-XX in FIG. good.
  • the accommodation portion 100b is a recess formed in the roof 100a of the vehicle 100 and having an open top in the vertical direction.
  • the opening surface of the housing portion 100b is positioned on the same plane as the upper end of the roof 100a of the vehicle 100 in the vertical direction.
  • the housing portion 100 b houses the housing 20 of the electronic device 1 .
  • the bottom surface of the housing 20 is attached to the bottom surface of the housing portion 100b.
  • At least part of the heat transfer member 22 and at least part of the fins 23 are preferably positioned vertically above the upper end of the roof 100a in the vertical direction.
  • the inverter 14 can supply power not only to the air conditioner 62 but also to any load device that is in operation when the vehicle 100 is stopped.
  • the inverter 14 can supply power to a lighting device, a door opening/closing device of the vehicle 100, and the like.
  • the shape of the housing 20 is arbitrary as long as it accommodates electronic components including the switching elements SW1, SW2, and SW3 inside and can be attached to the roof 100a.
  • the shape of the heat-receiving block 21 is not limited to the above-described example, and may be any shape as long as it closes the opening 20a of the housing 20 and allows electronic components including the switching elements SW1, SW2, and SW3 and the heat transfer member 22 to be attached.
  • the heat-receiving block 21 may be formed of a plate-like member having a non-uniform thickness.
  • the heat-receiving block 21 may be formed of a single plate-like member, or may be formed by combining a plurality of plate-like members.
  • the electronic parts attached to the heat receiving block 21 are not limited to the switching elements SW1, SW2, and SW3, and may be arbitrary electronic parts housed inside the housing 20, such as thyristors and diodes.
  • the heat transfer member 22 is not limited to a heat pipe, and may be any member as long as it transfers heat in a direction away from the second main surface 21b.
  • the heat transfer member 22 may be a rod-shaped member made of a member having high thermal conductivity, such as a metal member such as iron or aluminum.
  • the arrangement of the heat transfer members 22, specifically, the arrangement of the branch pipes 25 is not limited to the above example, and is arbitrary as long as it is possible to cool the electronic components using natural convection.
  • the shape of the heat transfer member 22, specifically, the shape of the main pipe 24 and the branch pipe 25 is not limited to the above example, and any shape can be used as long as it can transfer heat in a direction away from the second main surface 21b. is.
  • the main pipe 24 and the branch pipe 25 may be integrally formed to form the heat transfer member 22, which is a U-shaped or L-shaped heat pipe.
  • the shape of the cross section perpendicular to the extending direction of the main pipe 24 and the branch pipes 25 is not limited to a circular shape, and may be a flat shape.
  • a flattened shape is a shape obtained by deforming a part of a circle to have a narrower width than the original circle, and includes an ellipse, a streamlined shape, an ellipse, and the like.
  • An ellipse means an outer shape obtained by connecting the outer edges of two circles having the same diameter with two straight lines.
  • Each fin 23 may be made of the same material, or at least one of the fins 23 may be made of a material different from the other fins 23 .
  • the thermal conductivity of at least one of the fins 23 is different from that of the other fins 23 .
  • the thermal conductivity of the fins 23 located vertically upward is preferably higher than the thermal conductivity of the fins 23 located vertically downward.
  • the vertically upper fins 23 may be made of copper and the vertically lower fins 23 may be made of aluminum.
  • the number, shape, and arrangement position of the fins 23 are not limited to the above examples, and the fins 23 may be provided with ventilation holes 23a for guiding air in the positive direction of the Z-axis in the central portion of the fins 23 in the X-axis direction or the Y-axis direction.
  • the fin 23 may be a plate-like member having a curved surface, or may be a plate-like member having a non-uniform thickness.
  • the fins 23 may be flat plate members attached to the heat transfer members 22 such that the main surfaces thereof are inclined with respect to the horizontal plane when the vehicle 100 is horizontally positioned.
  • each fin 23 may have a different shape.
  • a plurality of fins 23 having different widths in the Y-axis direction may be arranged in the Z-axis direction.
  • the shape of the cover 30 is arbitrary as long as it covers the heat transfer member 22 and the fins 23 and allows air to flow inside.
  • the cover 30 may have a curved top surface in the vertical direction.
  • the cover 30 may have a flat top surface in the vertical direction.
  • the cover 30 preferably has a shape that maximizes internal space within the vehicle limits.
  • the electronic device 1-7 is not limited to an AC feeding type railway vehicle, and may be mounted on a DC feeding type railway vehicle.
  • the vehicle on which the electronic device 1-7 is mounted is not limited to a railroad vehicle, and may be any moving object such as a trolleybus or a streetcar that generates running wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

電子機器(1)は、受熱ブロック(21)と、伝熱部材(22)と、フィン(23)と、を備える。フィン(23)の少なくともいずれかに、空気を受熱ブロック(21)の第2主面(21b)から離れる方向に導く少なくとも1つの通風孔(23a)が形成される。通風孔(23a)が形成されるフィン(23)において、車両の進行方向または幅方向の中心を含む第1領域において通風孔(23a)の開口面積が占める比率は、第1領域を挟んで位置する第1領域と同面積の第2領域において通風孔(23a)の開口面積が占める比率より高い。

Description

電子機器
 本開示は、電子機器に関する。
 電子機器には、通電時の発熱による電子部品の損傷を防ぐため、発熱体である電子部品に熱的に接続された冷却部を有するものがある。鉄道車両に搭載される電子機器、例えば、電力変換装置は、電子部品で生じた熱を、冷却部を介して車両の走行によって生じる走行風に放熱することで、電子部品を冷却する。この種の電子機器の一例が特許文献1に開示されている。特許文献1に開示されている電力変換装置は、鉄道車両の屋根上に取り付けられ、筐体の上面および側面に取り付けられたフィンを有する。
特開2009-124038号公報
 特許文献1に開示される電力変換装置は、鉄道車両の走行時に生じる走行風をフィンの間に流すことで、電力変換装置の筐体内部に収容されている電子部品、例えば、半導体素子を冷却する。鉄道車両に搭載されている電子機器の内、例えば、空調機器、照明機器等に電力を供給する電力変換装置は、鉄道車両の走行時だけでなく停止時も動作する。このため、電力変換装置が備える電子部品は鉄道車両の停止中も発熱する。
 上述のように鉄道車両の停止時も発熱する電子部品は、特許文献1に開示される電力変換装置において、鉄道車両の停止時には十分に冷却されない。換言すれば、特許文献1に開示される電力変換装置の自然対流による冷却性能は低い。この課題は、鉄道車両に搭載される空調機器、照明機器等に電力を供給する電力変換装置に限られず、車両の走行時だけでなく停止時にも発熱する電子部品を備える電子機器において生じ得る。
 本開示は上述の事情に鑑みてなされたものであり、車両の停止時にも電子部品を冷却可能な電子機器を提供することを目的とする。
 上記目的を達成するために、本開示の電子機器は、車両に搭載される電子機器であって、伝熱性の受熱ブロックと、伝熱部材と、1つまたは複数のフィンと、を備える。受熱ブロックの第1主面に、電子部品が取り付けられる。伝熱部材は、受熱ブロックの第1主面の反対に位置する第2主面に取り付けられ、第2主面から離れる方向に延び、受熱ブロックを介して電子部品から伝達された熱を第2主面から離れる方向に伝達する。1つまたは複数のフィンは、伝熱部材に取り付けられ、受熱ブロックおよび伝熱部材を介して電子部品から伝達された熱を周囲の空気に放熱する。フィンの少なくともいずれかに、空気を第2主面から離れる方向に導く少なくとも1つの通風孔が形成される。通風孔が形成されるフィンにおいて、車両の進行方向または幅方向の中心を含む第1領域において通風孔の開口面積が占める比率は、第1領域を挟んで位置する第1領域と同面積の第2領域において通風孔の開口面積が占める比率より高い。
 本開示に係る電子機器が備えるフィンの内、通風孔が形成されるフィンにおいて、車両の進行方向または幅方向の中心を含む第1領域において通風孔の開口面積が占める比率は、第2領域において通風孔の開口面積が占める比率より高い。これにより、フィンから熱を伝達された空気は、第2領域から第1領域に移動し、第1領域の通風孔を通って受熱ブロックの第2主面から離れる方向に流れる。空気の対流が生じることで、車両の停止時にも電子部品を冷却可能な電子機器が得られる。
実施の形態に係る電子機器のブロック図 実施の形態に係る電子機器の車両への搭載例を示す図 実施の形態に係る電子機器の図2におけるIII-III線での矢視断面図 実施の形態に係る電子機器の図3におけるIV-IV線での矢視断面図 実施の形態に係る電子機器の上面図 実施の形態に係る電子機器における走行風の例を示す図 実施の形態に係る電子機器における自然対流の流れの例を示す図 実施の形態に係る電子機器における自然対流の流れの例を示す図 実施の形態に係る電子機器の第1変形例の断面図 実施の形態に係る電子機器の第1変形例の図9におけるX-X線での矢視断面図 実施の形態に係る電子機器に第1変形例における自然対流の例を示す図 実施の形態に係る電子機器の第2変形例の断面図 実施の形態に係る電子機器の第2変形例における自然対流の例を示す図 実施の形態に係る電子機器の第3変形例の上面図 実施の形態に係る電子機器の第4変形例の上面図 実施の形態に係る電子機器の第5変形例の断面図 実施の形態に係る電子機器の第5変形例の図16におけるXVII-XVII線での矢視断面図 実施の形態に係る電子機器の第6変形例の上面図 実施の形態に係る電子機器の車両への搭載方法の他の例を示す図 実施の形態に係る電子機器の図19におけるXX-XX線での矢視断面図
 以下、本開示の実施の形態に係る電子機器について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 電子機器の一例に、鉄道車両に搭載されて、交流電源から供給される交流電力を負荷に供給するための交流電力に変換し、変換した交流電力を負荷に供給する電力変換装置がある。鉄道車両の屋根に搭載され、鉄道車両の走行によって生じる鉄道車両の進行方向と反対方向に向かう空気の流れである走行風、および自然対流を利用して電子部品を冷却する電力変換装置を例にして、実施の形態に係る電子機器1について説明する。
 図1に示す電子機器1は、交流き電方式の鉄道車両に搭載され、供給される交流電力を、負荷の一例である電動機61および空調機器62のそれぞれに適した交流電力に変換し、変換した交流電力を電動機61および空調機器62に供給する。電動機61は、例えば、鉄道車両の推進力を生じさせる三相誘導電動機である。鉄道車両の走行時、具体的には、力行運転時に、電子機器1が電動機61に電力を供給することで、鉄道車両の推進力が生じる。空調機器62は、鉄道車両内の空調設備である。鉄道車両の運転中、具体的には、鉄道車両の走行時および停止時のいずれにおいても、電子機器1が空調機器62に電力を供給することで、空調機器62が動作し、鉄道車両内の温度が所望の温度に調節される。
 電子機器1の各部について以下に説明する。電子機器1は、電源に接続される正極端子1aと、接地される負極端子1bと、を備える。電子機器1はさらに、正極端子1aに接続される電源から供給される交流電力を降圧する変圧器11と、変圧器11で降圧された交流電力を直流電力に変換するコンバータ12と、コンバータ12が出力する直流電力で充電されるコンデンサC1と、コンデンサC1を介して入力される直流電力を交流電力に変換するインバータ13,14と、を備える。
 正極端子1aは、例えば、電力供給線を介して変電所から供給される交流電力を取得する集電装置に電気的に接続される。この場合、集電装置が電子機器1に電力を供給する電源に相当する。電力供給線は、例えば、架線または第三軌条である。集電装置は、パンタグラフまたは集電靴である。負極端子1bは、図示しない接地ブラシ、アースリング、車輪等を介してレールに短絡されることで、接地される。
 変圧器11は、一端が正極端子1aに接続され、他端が負極端子1bに接続される一次巻線と、コンバータ12に接続される二次巻線と、を有する。例えば、変圧器11は、集電装置から供給される25kVの単相交流電力を1520Vの単相交流電力に降圧し、降圧した交流電力をコンバータ12に供給する。
 コンバータ12は、直列に接続された2つのスイッチング素子SW1を2組備える。一方の組のスイッチング素子SW1は、他方の組のスイッチング素子SW1に並列に接続される。一方の組の2つのスイッチング素子SW1の接続点に変圧器11の二次巻線の一端が接続され、他方の組の2つのスイッチング素子SW1の接続点に変圧器11の二次巻線の他端が接続される。
 各スイッチング素子SW1は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)と、アノードがIGBTのエミッタ端子に接続されて、カソードがIGBTのコレクタ端子に接続される還流ダイオードと、を有する。図示しない制御部からのゲート信号が、コンバータ12が備える各スイッチング素子SW1が有するIGBTのゲート端子に供給されて、IGBTのオンオフ、すなわち、各スイッチング素子SW1のオンオフが制御される。各スイッチング素子SW1のスイッチング動作によって、コンバータ12は、変圧器11から供給される交流電力を直流電力に変換する。
 コンデンサC1は、コンバータ12が出力する直流電力によって充電される。コンデンサC1の一端は、コンバータ12の正極端子とインバータ13,14の一次側正極端子との接続点に接続される。コンデンサC1の他端は、コンバータ12の負極端子とインバータ13,14の一次側負極端子との接続点に接続される。
 インバータ13は、直列に接続された2つのスイッチング素子SW2を3組備える。3組のスイッチング素子SW2はそれぞれ、三相交流電力のU相、V相、およびW相に対応する。U相に対応するスイッチング素子SW2、V相に対応するスイッチング素子SW2、およびW相に対応するスイッチング素子SW2は、インバータ13の一次側正極端子と一次側負極端子との間に互いに並列に接続される。U相に対応する2つのスイッチング素子SW2の接続点、V相に対応する2つのスイッチング素子SW2の接続点、およびW相に対応する2つのスイッチング素子SW2の接続点はそれぞれ、電動機61に接続される。
 各スイッチング素子SW2は、スイッチング素子SW1と同様に、IGBTと、還流ダイオードと、を有する。図示しない制御部からのゲート信号が、インバータ13が備える各スイッチング素子SW2が有するIGBTのゲート端子に供給されて、IGBTのオンオフ、すなわち、各スイッチング素子SW2のオンオフが制御される。各スイッチング素子SW2のスイッチング動作によって、インバータ13は、直流電力を三相交流電力に変換し、三相交流電力を電動機61に供給する。
 インバータ14は、直列に接続された2つのスイッチング素子SW3を3組備える。3組のスイッチング素子SW3はそれぞれ、三相交流電力のU相、V相、およびW相に対応する。U相に対応するスイッチング素子SW3、V相に対応するスイッチング素子SW3、およびW相に対応するスイッチング素子SW3は、インバータ14の一次側正極端子と一次側負極端子との間に互いに並列に接続される。
 各スイッチング素子SW3は、スイッチング素子SW1と同様に、IGBTと、還流ダイオードと、を有する。図示しない制御部からのゲート信号が、インバータ14が備える各スイッチング素子SW3が有するIGBTのゲート端子に供給されて、IGBTのオンオフ、すなわち、各スイッチング素子SW3のオンオフが制御される。各スイッチング素子SW3のスイッチング動作によって、インバータ14は、直流電力を三相交流電力に変換する。
 インバータ14はさらに、直流電力から変換した三相交流電力の電圧を空調機器62に適した電圧まで降圧する変圧器15を有する。U相に対応する2つのスイッチング素子SW3の接続点、V相に対応する2つのスイッチング素子SW3の接続点、およびW相に対応する2つのスイッチング素子SW3の接続点はそれぞれ、変圧器15に接続される。変圧器15で降圧された三相交流電力が空調機器62に供給される。
 鉄道車両が走行している間は、コンバータ12およびインバータ13,14が動作しているため、スイッチング素子SW1,SW2,SW3はオンオフを繰り返し、すなわち、スイッチング動作を行い、発熱している。一方、鉄道車両が停止している間、電動機61に電力を供給する必要はないが、空調機器62は、鉄道車両が停止している間も稼動する必要がある。このため、鉄道車両が停止している間は、インバータ13は停止していて、コンバータ12およびインバータ14が動作している。換言すれば、スイッチング素子SW2は発熱していないが、スイッチング素子SW1,SW3はオンオフを繰り返し、発熱している。そこで、電子機器1は、鉄道車両の走行時には走行風によってスイッチング素子SW1,SW2,SW3を含む電子部品を冷却し、鉄道車両の停止時には自然対流によってスイッチング素子SW1,SW3を含む電子部品を冷却するための構造を有する。
 電子機器1の構造の詳細について以下に説明する。図2に示すように、電子機器1は、車両100の屋根100aに設けられる。図2におけるIII-III線での矢視断面図である図3に示すように、電子機器1は、電子部品が第1主面21aに取り付けられる伝熱性の受熱ブロック21と、受熱ブロック21の第2主面21bに取り付けられ、受熱ブロック21を介して電子部品から伝達された熱を第2主面21bから離れる方向に伝達する伝熱部材22と、を備える。電子機器1はさらに、伝熱部材22に取り付けられ、受熱ブロック21および伝熱部材22を介して電子部品から伝達された熱を周囲の空気に放熱する1つまたは複数のフィン23と、を備える。
 電子機器1はさらに、屋根100aに設置され、スイッチング素子SW1,SW2,SW3を含む電子部品を収容する筐体20を備えることが好ましい。この場合、受熱ブロック21は、筐体20の開口20aを塞いだ状態で筐体20に取り付けられればよい。伝熱部材22およびフィン23の破損を抑制するために、電子機器1は、伝熱部材22およびフィン23を覆って筐体20に取り付けられるカバー30を備えることが好ましい。
 図2および図3において、Z軸は、車両100が水平に位置している状態で、鉛直方向を示す。X軸は、車両100の進行方向を示す。Y軸は、車両100の幅方向を示す。X軸、Y軸、およびZ軸は互いに直交する。後続の図においても同様である。
 筐体20は屋根100aの鉛直方向上部に取り付けられる。筐体20は、鉄道車両の予想される最大振動を受けても変形しない程度の剛性と強度を有する。例えば、筐体20は、鉄、アルミニウム等の金属部材で形成される。筐体20の鉛直方向上部に開口20aが形成される。
 受熱ブロック21は、開口20aを塞いだ状態で筐体20に取り付けられる。実施の形態では、受熱ブロック21は、熱伝導率の高い部材、例えば、鉄、アルミニウム等の金属部材で形成され、開口20aを塞いだ状態で筐体20の外面に取り付けられる平板部材である。受熱ブロック21の第1主面21aに、発熱する電子部品、具体的には、スイッチング素子SW1,SW2,SW3が取り付けられる。第1主面21aの反対に位置する第2主面21bに伝熱部材22が取り付けられる。車両100が水平に位置している状態で、第1主面21aおよび第2主面21bは、水平になる。
 伝熱部材22は、第2主面21bから離れる方向に延び、受熱ブロック21を介して電子部品から伝達された熱を第2主面21bから離れる方向に伝達する。実施の形態では、伝熱部材22は、内部に冷媒が封入されているヒートパイプを有する。具体的には、伝熱部材22は、ヒートパイプとして、受熱ブロック21に取り付けられる母管24と、母管24に取り付けられ、母管24に連通する支管25と、を有する。母管24および支管25の内部には、常温で気液二相の状態で存在する冷媒が封入されている。冷媒は、例えば、水である。実施の形態では、母管24および支管25は、XZ平面に対して対称に配置される。
 図3および図3におけるIV-IV線での矢視断面図である図4に示すように、X軸方向に延びる複数の母管24がY軸方向に並べて設けられる。実施の形態では、X軸方向に延びる20本の母管24がY軸方向に並べて設けられる。母管24は、受熱ブロック21の第2主面21bに形成された溝に挿入されて、接着剤による接着、ろう付け、はんだ付け等の取付方法によって受熱ブロック21に取り付けられている。母管24は、熱伝導率の高い部材、例えば、鉄、アルミニウム等の金属部材で形成されるパイプである。各母管24に対して複数の支管25が取り付けられる。
 各支管25は、受熱ブロック21から離れる方向、例えば、Z軸正方向に延びる。支管25は、溶接、ろう付け、はんだ付け等の取付方法によって母管24に取り付けられ、母管24に連通する。図5に示すように、実施の形態では、1つの母管24に、X軸方向に並べられた8本の支管25が取り付けられる。図5において、カバー30の記載は省略されている。支管25は、熱伝導率の高い部材、例えば、鉄、アルミニウム等の金属部材で形成されるパイプである。
 支管25のZ軸方向の長さは、車両100の進行方向に直交する断面、すなわちYZ平面における車両限界内に設定される。車両限界は、車両100の最大寸法を示す。実施の形態では、図3に示すように、Y軸方向の両端部それぞれに2つずつ位置する母管24に取り付けられている支管25のZ軸方向の長さは、Y軸方向の中央に位置する8つの母管24に取り付けられている支管25のZ軸方向の長さより短い。Y軸方向の中央に位置する8つの母管24とY軸方向の端部に位置する2つの母管24との間に、4つの母管24が設けられている。この4つの母管24に取り付けられる支管25のZ軸方向の長さは、上述の8つの母管24に取り付けられている支管25のZ軸方向の長さより短く、上述の2つの母管24に取り付けられている支管25のZ軸方向の長さより長い。
 フィン23は、伝熱部材22に取り付けられる。詳細には、フィン23に形成された貫通孔に伝熱部材22が挿通された状態で、フィン23は伝熱部材22に取り付けられる。伝熱部材22に取り付けられたフィン23は、受熱ブロック21および伝熱部材22を介して電子部品から伝達された熱を周囲の空気に放熱する。実施の形態では、フィン23は、熱伝導率の高い部材、例えば、鉄、アルミニウム等の金属部材で形成される平板部材である。
 フィン23の少なくともいずれかに、空気を第2主面21bから離れる方向、例えば、Z軸正方向に導く少なくとも1つの通風孔23aが形成される。フィン23のX軸方向またはY軸方向の中心を含む第1領域において通風孔23aの開口面積が占める比率は、第1領域を挟んで位置する第1領域と同面積の第2領域において通風孔23aの開口面積が占める比率より高い。詳細には、フィン23の主面におけるX軸方向またはY軸方向の中心を含む第1領域において通風孔23aの開口面積が占める比率は、該主面における第1領域を挟んで位置する第1領域と同面積の第2領域において通風孔23aの開口面積が占める比率より高い。
 実施の形態では、図5に示すように、一点鎖線で囲まれた領域である各フィン23のX軸方向の中心を含む第1領域R1にY軸方向に直線状に並んで複数の円形の通風孔23aが形成される。各フィン23において、第1領域R1を挟んで位置する二点鎖線で囲まれた領域である第2領域R2には、通風孔23aは形成されない。第2領域R2は、第1領域R1をX軸方向に挟んで位置する。第1領域R1の面積と第1領域R1よりX軸正方向側に位置する第2領域R2の面積および第1領域R1よりX軸負方向側に位置する第2領域R2の面積の合計とは同じである。
 第1領域R1に通風孔23aが形成されるのに対し、第2領域R2には通風孔23aが形成されないため、フィン23の第1領域R1における通風孔23aの開口面積が占める比率、フィン23の第2領域R2における通風孔23aの開口面積が占める比率より高い。
 車両100の走行時における電子部品の冷却性能を高めるため、フィン23の主面は、X軸に平行であることが好ましい。車両100の走行時に生じる走行風はX軸方向に流れるため、フィン23の主面をX軸に平行にすることで、フィン23の間を流れる走行風にフィン23から熱を効率よく伝達することができる。
 車両100の停止時に自然対流によって電子部品を冷却するために、フィン23には、上述のように通風孔23aが形成されている。フィン23から熱を伝達されて暖められた空気は通風孔23aを通ってZ軸正方向に移動する。上述の空気の流れが生じることで、カバー30の外部からカバー30の内部に空気が流入し、流入した空気にフィン23から熱が伝達される。車載機器1において、フィン23の全面に亘って通風孔23aが形成されるのではなく、フィン23のX軸方向の第1領域R1に通風孔23aが形成されている。このため、外部から流入した空気がフィン23のX軸方向の第1領域R1に到達してから、Z軸正方向に移動する。上述の空気の流れが生じることで、車両100の停止時にも、スイッチング素子SW1,SW2,SW3を含む電子部品を冷却することが可能となる。
 実施の形態では、複数のフィン23が、Y軸方向およびZ軸方向に並べて設けられている。図3に示すように、Y軸方向に6つのフィン23が並べられている。Y軸方向の両端では、Z軸方向に4つのフィン23が並べられている。Y軸方向の両端に位置するフィン23に隣接する位置では、Z軸方向に5つのフィン23が並べられている。Y軸方向の中央では、Z軸方向に7つのフィン23が並べられている。フィン23はそれぞれ、車両100が水平に位置している状態で、主面が水平になる向きで伝熱部材22、すなわち、支管25に取り付けられる。
 カバー30は、受熱ブロック21、伝熱部材22、およびフィン23を覆って、筐体20に取り付けられる。カバー30のX軸方向に沿う面には、外部の空気をカバー30の内部に流入させ、伝熱部材22およびフィン23の近傍を流れた空気をカバー30の外部に流出させるための複数の通風孔30aが形成される。図4に示すように、カバー30のX軸方向に交差する面には、外部の空気をカバー30の内部に流入させ、伝熱部材22およびフィン23の近傍を流れた空気をカバー30の外部に流出させるための複数の通風孔30bが形成される。
 上記構成を有する電子機器1が備える電子部品の冷却について以下に説明する。スイッチング素子SW1,SW2,SW3の少なくともいずれかで生じた熱は、受熱ブロック21および母管24を介して冷媒に伝達される。この結果、冷媒は気化する。気化した冷媒は母管24から支管25に流入し、支管25の内部をZ軸正方向に移動する。冷媒は、Z軸正方向に移動しながら熱を支管25およびフィン23を介して、伝熱部材22の周囲の空気に伝達することで冷却され、液化する。液化した冷媒は支管25の内壁を伝ってZ軸負方向に移動する。上述のように冷媒が気化と液化を繰り返しながら循環することで、スイッチング素子SW1,SW2,SW3の少なくともいずれかで生じた熱が伝熱部材22の周囲の空気に伝達され、発熱しているスイッチング素子SW1,SW2,SW3が冷却される。
 例えば車両100がX軸正方向に走行する場合、図6に矢印AR1で示すようにX軸負方向に流れる走行風が生じる。図6において、図の複雑化を避けるために、一部の空気の流れについてのみ記載されている。走行風はフィン23の間を通る。走行風がフィン23の間を通ることで、フィン23から走行風に熱が伝達されて、スイッチング素子SW1,SW2,SW3が冷却される。
 車両100の停止中は、図6に示す走行風は生じない。電子機器1が備えるフィン23には通風孔23aが形成されているため、フィン23または支管25から熱を伝達されて暖められた空気は、図7に矢印AR2で示すように、通風孔23aを通ってZ軸正方向に移動する。図7において、図の複雑化を避けるために、一部の空気の流れについてのみ記載されている。Z軸正方向に移動した空気は、カバー30の鉛直方向上部に形成された通風孔30aを通ってカバー30の外部に流出する。
 カバー30の内部の空気が通風孔30aを通って流出すると、図8に矢印AR3,AR4で示すように、カバー30のX軸方向に交差する面に形成された通風孔30bを通ってカバー30の外部の空気がカバー30の内部に流入する。図8において、図の複雑化を避けるために、一部の空気の流れについてのみ記載されている。詳細には、矢印AR3で示すように、カバー30のX軸正方向側の面に形成される通風孔30bを通ってカバー30の内部に流入した空気は、フィン23の間をX軸負方向に流れ、フィン23のX軸方向の第1領域R1に到達する。矢印AR4で示すように、カバー30のX軸負方向側の面に形成される通風孔30bを通ってカバー30の内部に流入した空気は、フィン23の間をX軸正方向に流れ、フィン23のX軸方向の第1領域R1に到達する。
 カバー30の内部に流入した空気は、上述のようにフィン23の間を流れながらフィン23から熱を伝達されて暖められ、フィン23のX軸方向の第1領域R1に到達する。そして、暖められた空気は、フィン23の通風孔23aを通ってZ軸正方向に移動し、通風孔30aを通ってカバー30の外部に流出する。フィン23に通風孔23aが形成されているため、Z軸正方向に流れる空気の流れが生じる。このように自然対流を利用して、車両100の停止時にもスイッチング素子SW1,SW2,SW3を冷却することが可能となる。
 各フィン23における通風孔23aの開口面積の合計を増大させると、放熱面積の減少によって冷却性能が低下するため、通風孔23aの開口面積の合計は、車両の走行時および停止時のそれぞれで求められる冷却性能に応じて定められることが好ましい。具体的には、通風孔23aの個数および各通風孔23aの形状は、車両の走行時および停止時のそれぞれで求められる冷却性能に応じて定められることが好ましい。
 以上説明した通り、実施の形態に係る電子機器1は、通風孔23aが形成されるフィン23を備える。車両100の停止時に、カバー30の内部においてフィン23から熱を伝達されて暖められた空気が通風孔23aを通ってZ軸正方向に移動する。カバー30の内部の空気が通風孔23aを通ってZ軸正方向に移動し、カバー30の通風孔30aを通ってカバー30の外部に流出すると、カバー30の外部の空気がカバー30の内部に流入する。上述のように、車両100の停止時にも空気の流れが生じるため、電子機器1は、自然対流を利用して、スイッチング素子SW1,SW2,SW3を含む電子部品を冷却することが可能となる。
 本開示は、上述の実施の形態に限られない。例えば、一部のフィン23にのみ通風孔23aが形成されてもよい。一例として、図9および図9におけるX-X線での矢視断面図である図10に電子機器2の構成を示す。電子機器2は、電子機器1と同様に配置されたフィン23を備える。電子機器2において、Y軸方向の中央であって、Z軸正方向側に位置する4つのフィン23には通風孔23aが形成されていない。
 電子機器2において、図11に矢印AR2で示すように、フィン23から熱を伝達されて暖められた空気は、通風孔23aを通ってZ軸正方向に移動する。Y軸方向の第1領域R1において、フィン23から熱を伝達されて暖められた空気は、矢印AR5で示すように、通風孔23aを通ってZ軸正方向に移動し、通風孔23aが形成されていないフィン23に到達する。通風孔23aが形成されていないフィン23に到達した空気は、矢印AR6に示すように、通風孔23aが形成されていないフィン23を迂回してZ軸正方向に移動する。一部のフィン23に通風孔23aを形成しないことで、走行風による冷却性能の低下を抑制することが可能となる。
 他の一例である電子機器3の構成を図12に示す。電子機器3において、Y軸方向の中央に位置するフィン23に通風孔23aが形成され、Y軸方向の両端に位置するフィン23のそれぞれには通風孔23aが形成されていない。換言すれば、Y軸方向の両端に位置するフィン23は、車両100が水平に位置している状態で、Y軸方向の両端部の内、車両100の中央に近い一方の端部の鉛直方向の位置が他方の端部の鉛直方向の位置より高くなる向きで伝熱部材22、具体的には支管25に取り付けられる。
 電子機器3において、図13に矢印AR2で示すように、フィン23から熱を伝達されて暖められた空気は、通風孔23aを通ってZ軸正方向に移動する。Y軸方向の両端部において、矢印AR7で示すように、フィン23から熱を伝達されて暖められた空気は、フィン23に沿って車両100の中央に向かってから、フィン23の間をZ軸正方向に移動する。
 電子機器1において、各フィン23に形成される通風孔23aの形状および大きさは同一であるが、通風孔23aの形状および大きさは、上述の例に限られない。さらに、通風孔23aの個数は、上述の例に限られない。詳細には、各フィン23において、フィン23のX軸方向またはY軸方向の第1領域R1における通風孔23aの開口面積が占める比率が第1領域R1を挟んで位置する第2領域R2における通風孔23aの開口面積が占める比率より高いのであれば、通風孔23aの形状、大きさ、および個数は任意である。
 一例として、通風孔23aの形状は円形に限られず、楕円形でもよいし、方形でもよい。各通風孔23aの形状は互いに異なる形状であってもよい。
 他の一例である電子機器4の構成を図14に示す。電子機器4において、フィン23に形成される各通風孔23aの形状は互いに同じであるが、一点鎖線で囲まれた領域であるX軸方向の第1領域R1には、第1領域R1をX軸方向に挟んで位置する一点鎖線で囲まれた領域である第2領域R2よりも多くの通風孔23aが形成されている。図14において、図の複雑化を避けるため、カバー30および伝熱部材22の記載は省略されている。第1領域R1に、第2領域R2より多くの通風孔23aが形成されているため、カバー30の外部から流入した空気の多くは第2領域R2から第1領域R1に移動し、第1領域R1に形成される通風孔23aを通ってZ軸正方向に流れる。
 他の一例である電子機器5の構成を図15に示す。電子機器5において、第1領域R1には、第2領域R2より大きい通風孔23aが形成されている。図15において、図の複雑化を避けるため、カバー30および伝熱部材22の記載は省略されている。第1領域R1に、より大きい通風孔23aが形成されているため、カバー30の外部から流入した空気の多くは第2領域R2から第1領域R1に移動し、第1領域R1に形成される通風孔23aを通ってZ軸正方向に流れる。
 電子機器1において、Z軸方向に並べられた各フィン23における通風孔23aの位置および形状は同一であるが、Z軸方向に並べられた各フィン23の通風孔23aの位置および形状は互いに異なってもよい。一例として、図16および図16におけるXVII-XVII線での矢視断面図である図17に電子機器6の構成を示す。電子機器6において、受熱ブロック21に隣接した位置にあるフィン23に形成される通風孔23aの開口面積の合計は、該フィン23より受熱ブロック21から遠い位置に設けられるフィン23に形成される通風孔23aの開口面積の合計より小さい。
 詳細には、受熱ブロック21に隣接した位置にあるフィン23に形成される通風孔23aの直径は、該フィン23より受熱ブロック21から遠い位置に設けられるフィン23に形成される通風孔23aの直径より小さい。さらに、Y軸方向の中央部分において、受熱ブロック21に隣接した位置にあるフィン23には、1つの通風孔23aが形成されているのに対し、該フィン23より受熱ブロック21から遠い位置に設けられるフィン23には3つの通風孔23aが形成されている。
 電子機器1が備えるフィン23において、X軸方向の中心を含む第1領域R1に、Y軸方向に直線状に並んで通風孔23aが形成されているが、通風孔23aを形成する位置は、上述の例に限られない。X軸方向に他の車載機器が隣接しているために、X軸方向にカバー30の内部に空気を取り入れるよりもY軸方向にカバー30の内部に空気を取り入れることが容易である場合の例である電子機器7の構成を図18に示す。
 電子機器7が備えるフィン23において、一点鎖線で囲まれた領域である各フィン23のY軸方向の中心を含む第1領域R1に、X軸方向に直線状に並んで複数の円形の通風孔23aが形成される。第1領域R1を挟んで位置する二点鎖線で囲まれた領域である第2領域R2には、通風孔23aは形成されない。図の複雑化を避けるため、図18において一部のフィン23において、第1領域R1および第2領域R2が示されている。第2領域R2は、第1領域R1をY軸方向に挟んで位置する。第1領域R1の面積と第1領域R1よりY軸正方向側に位置する第2領域R2の面積および第1領域R1よりY軸負方向側に位置する第2領域R2の面積の合計とは同じである。
 第1領域R1に通風孔23aが形成されるのに対し、第2領域R2には通風孔23aが形成されないため、フィン23の第1領域R1における通風孔23aの開口面積が占める比率は、フィン23の第2領域R2における通風孔23aの開口面積が占める比率より高い。
 第1領域R1と第2領域R2の位置は、上述の例に限られない。第1領域R1を挟んで位置するとは、第1領域R1を囲んで位置することを含むものとする。例えば、第2領域R2は、第1領域R1の外周を囲んで位置してもよい。
 電子機器1-7の搭載位置は、上述の例に限られない。一例として、図19および図19におけるXX-XX線での矢視断面図である図20に示すように、電子機器1は、車両100の屋根100aに形成された収容部100bに設けられてもよい。収容部100bは、車両100の屋根100aに形成され、鉛直方向上部が開口している凹部である。収容部100bの開口面は、車両100の屋根100aの鉛直方向上端と同じ面に位置する。収容部100bは、電子機器1の筐体20を収容する。詳細には、収容部100bの底面に筐体20の底面が取り付けられる。
 電子機器1の冷却性能を高めるために、伝熱部材22の少なくとも一部およびフィン23の少なくとも一部は、屋根100aの鉛直方向上端より鉛直方向上側に位置することが好ましい。
 インバータ14は、空調機器62に限られず、車両100の停止時に稼動している任意の負荷装置に電力を供給することができる。一例として、インバータ14は、照明機器、車両100のドア開閉装置等に電力を供給することができる。
 筐体20の形状は、スイッチング素子SW1,SW2,SW3を含む電子部品を内部に収容し、屋根100aに取り付け可能な形状であれば、任意である。
 受熱ブロック21の形状は、上述の例に限られず、筐体20の開口20aを塞ぎ、スイッチング素子SW1,SW2,SW3を含む電子部品および伝熱部材22が取り付け可能な形状であれば任意である。一例として、受熱ブロック21は、厚さが一様でない板状部材で形成されてもよい。受熱ブロック21は、一枚の板状部材で形成されてもよいし、複数の板状部材を組み合わせることで形成されてもよい。
 受熱ブロック21に取り付けられる電子部品は、スイッチング素子SW1,SW2,SW3に限られず、例えば、サイリスタ、ダイオード等の筐体20の内部に収容されている任意の電子部品である。
 伝熱部材22は、ヒートパイプに限られず、第2主面21bから離れる方向に熱を伝達する部材であれば任意である。一例として、伝熱部材22は、熱伝導率の高い部材、例えば、鉄、アルミニウム等の金属部材で形成される棒状部材でもよい。
 伝熱部材22の配置、具体的には、支管25の配置は、上述の例に限られず、自然対流を利用して電子部品を冷却することが可能であれば、任意である。
 伝熱部材22の形状、具体的には、母管24および支管25の形状は、上述の例に限られず、第2主面21bから離れる方向に熱を伝達することができる形状であれば任意である。一例として、母管24および支管25は一体に形成されて、U字状またはL字状の形状のヒートパイプである伝熱部材22を形成してもよい。他の一例として、母管24および支管25の延伸方向に直交する断面の形状は、円形に限られず、扁平形状でもよい。扁平形状は、円の一部の幅を元の円より狭く変形することで得られる形状であり、楕円、流線形、長円等を含む。長円は、同一の直径である2つの円の外縁を2本の直線で繋いで得られる形状の外形を意味する。
 各フィン23は互いに同じ部材で形成されてもよいし、フィン23の少なくともいずれかは、他のフィン23と異なる部材で形成されてもよい。フィン23の少なくともいずれかが、他のフィン23と異なる部材で形成される場合、フィン23の少なくともいずれかの熱伝導率は、他のフィン23の熱伝導率と異なる。この場合、鉛直方向上部に位置するフィン23の熱伝導率は、鉛直方向下部に位置するフィン23の熱伝導率より高いことが好ましい。例えば、鉛直方向上部のフィン23が銅で形成され、鉛直方向下部のフィン23がアルミニウムで形成されてもよい。
 フィン23の個数、形状、および配置位置は、上述の例に限られず、フィン23のX軸方向またはY軸方向の中央部分に、空気をZ軸正方向に導く通風孔23aが形成されていれば任意である。一例として、フィン23は曲面を有する板状部材でもよいし、厚さが一様でない板状部材でもよい。他の一例として、フィン23は平板部材であって、車両100が水平に位置している状態で主面が水平面に対して傾いている向きで伝熱部材22に取り付けられてもよい。他の一例として、各フィン23の形状は互いに異なってもよい。例えば、Y軸方向の幅が異なる複数のフィン23がZ軸方向に並べられてもよい。
 カバー30の形状は、伝熱部材22およびフィン23を覆い、空気を内部に流入させることができる形状であれば任意である。一例として、カバー30は、鉛直方向上面が曲面の形状を有してもよい。また他の一例として、カバー30は、鉛直方向上面が平面の形状を有してもよい。カバー30は、車両限界内で内部のスペースを最大限にする形状を有することが好ましい。
 電子機器1-7は、交流き電方式の鉄道車両に限られず、直流き電方式の鉄道車両に搭載されてもよい。電子機器1-7が搭載される車両は、鉄道車両に限られず、トロリーバス、路面電車等の走行風が生じる任意の移動体である。
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。
 1,2,3,4,5,6,7 電子機器、1a 正極端子、1b 負極端子、11,15 変圧器、12 コンバータ、13,14 インバータ、20 筐体、20a 開口、21 受熱ブロック、21a 第1主面、21b 第2主面、22 伝熱部材、23 フィン、23a,30a,30b 通風孔、24 母管、25 支管、30 カバー、61 電動機、62 空調機器、100 車両、100a 屋根、100b 収容部、AR1,AR2,AR3,AR4,AR5,AR6,AR7 矢印、C1 コンデンサ、R1 第1領域、R2 第2領域、SW1,SW2,SW3 スイッチング素子。

Claims (10)

  1.  車両に搭載される電子機器であって、
     電子部品が第1主面に取り付けられる伝熱性の受熱ブロックと、
     前記受熱ブロックの前記第1主面の反対に位置する第2主面に取り付けられ、前記第2主面から離れる方向に延び、前記受熱ブロックを介して前記電子部品から伝達された熱を前記第2主面から離れる方向に伝達する伝熱部材と、
     前記伝熱部材に取り付けられ、前記受熱ブロックおよび前記伝熱部材を介して前記電子部品から伝達された熱を周囲の空気に放熱し、少なくともいずれかに、前記空気を前記第2主面から離れる方向に導く少なくとも1つの通風孔が形成される1つまたは複数のフィンと、を備え、
     前記通風孔が形成される前記フィンにおいて、前記車両の進行方向または幅方向の中心を含む第1領域において前記通風孔の開口面積が占める比率は、前記第1領域を挟んで位置する前記第1領域と同面積の第2領域において前記通風孔の開口面積が占める比率より高い、
     電子機器。
  2.  前記電子部品を収容し、鉛直方向上部に開口が形成され、前記車両の屋根に設置される筐体をさらに備え、
     前記受熱ブロックは、前記第1主面で前記筐体の前記開口を塞いだ状態で前記筐体に取り付けられる、
     請求項1に記載の電子機器。
  3.  前記フィンの前記進行方向の中心を含む前記第1領域に、前記幅方向に直線状に並んで前記通風孔が形成される、
     請求項1または2に記載の電子機器。
  4.  前記フィンの前記幅方向の中心を含む前記第1領域に、前記進行方向に直線状に並んで前記通風孔が形成される、
     請求項1または2に記載の電子機器。
  5.  前記幅方向に3つ以上の前記フィンが並べて設けられ、
     前記幅方向の中央に位置する前記フィンは、前記受熱ブロックに向く主面が平面である板状部材で形成され、前記車両が水平に位置している状態で、前記主面が水平な向きで前記伝熱部材に取り付けられる、
     請求項1から4のいずれか1項に記載の電子機器。
  6.  前記幅方向の両端に位置する前記フィンはそれぞれ、前記車両が水平に位置している状態で、前記幅方向の両端部の内、前記車両の中央に近い一方の端部の鉛直方向の位置が他方の端部の鉛直方向の位置より高くなる向きで前記伝熱部材に取り付けられる、
     請求項5に記載の電子機器。
  7.  前記幅方向の中央に位置する前記フィンに前記通風孔が形成され、前記幅方向の両端に位置する前記フィンのそれぞれには前記通風孔が形成されない、
     請求項5または6に記載の電子機器。
  8.  前記フィンは、前記受熱ブロックに向く主面が平面である板状部材で形成され、前記車両が水平に位置している状態で、前記主面が水平な向きで前記伝熱部材に取り付けられる、
     請求項1から5のいずれか1項に記載の電子機器。
  9.  前記受熱ブロックから離れる方向に複数の前記フィンが並べて設けられる、
     請求項1から8のいずれか1項に記載の電子機器。
  10.  前記受熱ブロックに隣接した位置に設けられる前記フィンに形成される前記通風孔の開口面積の合計は、該フィンより前記受熱ブロックから遠い位置に設けられる前記フィンに形成される前記通風孔の開口面積の合計より小さい、
     請求項9に記載の電子機器。
PCT/JP2021/039975 2021-10-29 2021-10-29 電子機器 WO2023073909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21962451.7A EP4424539A1 (en) 2021-10-29 2021-10-29 Electronic device
JP2023556016A JP7408031B2 (ja) 2021-10-29 2021-10-29 電子機器
PCT/JP2021/039975 WO2023073909A1 (ja) 2021-10-29 2021-10-29 電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039975 WO2023073909A1 (ja) 2021-10-29 2021-10-29 電子機器

Publications (1)

Publication Number Publication Date
WO2023073909A1 true WO2023073909A1 (ja) 2023-05-04

Family

ID=86157604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039975 WO2023073909A1 (ja) 2021-10-29 2021-10-29 電子機器

Country Status (3)

Country Link
EP (1) EP4424539A1 (ja)
JP (1) JP7408031B2 (ja)
WO (1) WO2023073909A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722551A (ja) * 1993-07-02 1995-01-24 Furukawa Electric Co Ltd:The ヒートパイプ式半導体冷却器
JPH1154680A (ja) * 1997-07-30 1999-02-26 Hitachi Ltd 放熱構造とこれを用いた電子装置
JP2009124038A (ja) 2007-11-16 2009-06-04 Toyo Electric Mfg Co Ltd 屋根置型電気車制御装置用半導体冷却装置
JP2012054316A (ja) * 2010-08-31 2012-03-15 Hitachi Ltd 車載用電力変換装置の冷却装置および鉄道車両用電力変換装置
JP2019029551A (ja) * 2017-08-01 2019-02-21 富士電機株式会社 鉄道車両用電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722551A (ja) * 1993-07-02 1995-01-24 Furukawa Electric Co Ltd:The ヒートパイプ式半導体冷却器
JPH1154680A (ja) * 1997-07-30 1999-02-26 Hitachi Ltd 放熱構造とこれを用いた電子装置
JP2009124038A (ja) 2007-11-16 2009-06-04 Toyo Electric Mfg Co Ltd 屋根置型電気車制御装置用半導体冷却装置
JP2012054316A (ja) * 2010-08-31 2012-03-15 Hitachi Ltd 車載用電力変換装置の冷却装置および鉄道車両用電力変換装置
JP2019029551A (ja) * 2017-08-01 2019-02-21 富士電機株式会社 鉄道車両用電力変換装置

Also Published As

Publication number Publication date
JP7408031B2 (ja) 2024-01-04
EP4424539A1 (en) 2024-09-04
JPWO2023073909A1 (ja) 2023-05-04

Similar Documents

Publication Publication Date Title
JP5504219B2 (ja) 電力変換装置
CA2688583C (en) Electric power converting apparatus
JP3469475B2 (ja) 鉄道車両用半導体冷却装置
JP5488540B2 (ja) 半導体モジュール
JP5407275B2 (ja) 電力変換装置
CN103907278A (zh) Dc-dc转换器装置和电力转换装置
US10021816B2 (en) Power converter arrangement and method for producing a power converter arrangement
JP5028822B2 (ja) パワーモジュールの冷却装置
JP6055868B2 (ja) 電力変換装置
JP6169187B2 (ja) 電力変換装置
EP2034602A1 (en) Power converter
WO2019021532A1 (ja) 電力変換装置
TW201601423A (zh) 電力變換裝置及車輛用控制裝置
WO2023073909A1 (ja) 電子機器
WO2023144914A1 (ja) 電子機器
JP2011019305A (ja) 鉄道車両電動機駆動用インバータ装置
CN221930482U (zh) 电子设备
WO2022264301A1 (ja) 電子機器
JP6081091B2 (ja) 鉄道車両用制御装置
CN218788733U (zh) 功率转换装置
JPH06163770A (ja) 電気車用インバータ装置の冷却装置
WO2023199445A1 (ja) 電子機器
JP4421132B2 (ja) 鉄道車両用電力変換装置
JP7504294B2 (ja) 電子機器
JP2015053775A (ja) 半導体電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556016

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18688738

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202427030598

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021962451

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021962451

Country of ref document: EP

Effective date: 20240529