WO2023072140A1 - 量子控制装置、量子控制系统和量子计算机 - Google Patents

量子控制装置、量子控制系统和量子计算机 Download PDF

Info

Publication number
WO2023072140A1
WO2023072140A1 PCT/CN2022/127663 CN2022127663W WO2023072140A1 WO 2023072140 A1 WO2023072140 A1 WO 2023072140A1 CN 2022127663 W CN2022127663 W CN 2022127663W WO 2023072140 A1 WO2023072140 A1 WO 2023072140A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
control
module
signal
measurement
Prior art date
Application number
PCT/CN2022/127663
Other languages
English (en)
French (fr)
Inventor
李雪白
范良晨
王锦涛
汤志林
孔伟成
Original Assignee
合肥本源量子计算科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111274743.4A external-priority patent/CN116090566B/zh
Priority claimed from CN202111472916.3A external-priority patent/CN116227608A/zh
Priority claimed from CN202210113240.7A external-priority patent/CN116562382A/zh
Application filed by 合肥本源量子计算科技有限责任公司 filed Critical 合肥本源量子计算科技有限责任公司
Publication of WO2023072140A1 publication Critical patent/WO2023072140A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control

Definitions

  • the present application relates to the field of quantum computing, in particular to a quantum control device, a quantum control system and a quantum computer.
  • Quantum computer is a kind of physical device that follows the laws of quantum mechanics to perform high-speed mathematical and logical operations, store and process quantum information.
  • the quantum chip is the core of the quantum computer.
  • a quantum control system needs to be built to provide various control signals for each qubit through various devices in the quantum control system. , such as frequency control signals, quantum state control signals; in addition, reading measurements are also required for the results of quantum calculations performed by qubits.
  • the purpose of this application is to provide a quantum control device, a quantum control system and a quantum computer to solve the deficiencies in the prior art.
  • the structure of the control device of this application adopts a modular design and includes qubit control for quantum chips All functional units of measurement and measurement facilitate the integration and expansion of the quantum control system.
  • a quantum control device including:
  • routing module at least one quantum state control module, at least one frequency control module, at least one measurement module;
  • the quantum state control module, the frequency control module, the measurement module and the routing module are arranged in corresponding slots on the backplane to form a measurement and control integrated backplane for quantum chips;
  • the quantum state control module, the frequency control module, and the measurement module are all in communication connection with the routing module, and the external data is exchanged through the routing module, so that the quantum state control module outputs an initial quantum state control signal,
  • the frequency control module outputs an initial frequency control signal and the measurement module outputs an initial measurement signal.
  • the number of qubits that can be adjusted by the quantum state control module and the frequency control module is greater than or equal to the number of qubits that can be read by the measurement module.
  • the quantum state control module, the frequency control module and the measurement module are all provided with multiple output channels.
  • the quantum state regulation module includes a first DAC (Digital-to-Analog Convert, digital-to-analog conversion) unit or a first AWG (Arbitrary Waveform Generator, arbitrary waveform generator) unit
  • the frequency regulation module includes a first Two DAC units or the second AWG unit
  • the measurement module includes ADC/DAC (Analog-to-Digital Convert/Digital-to-Analog Convert, analog-to-digital conversion/digital-to-analog conversion) unit or includes the third DAC unit or the third
  • the routing module includes field programmable logic gate array.
  • each of the quantum state control modules, each of the frequency control modules, and each of the measurement modules is distributed and arranged in slots on the backplane around the routing module.
  • the trigger signal transmission lines from each of the quantum state regulation modules, each of the frequency regulation modules, and each of the measurement modules to the routing module are respectively equal in length.
  • the routing module is arranged at the center of the backplane, and each of the measurement modules is arranged next to the routing module.
  • the device further includes a control module, the control module is arranged in the slot of the backplane, and the control module is used to obtain each of the quantum state regulation modules, each of the frequency regulation modules, each of the frequency regulation modules, and each The signal delay data of the measurement module is output through the routing module, wherein the signal delay data comes from each of the quantum state control modules, each of the frequency control modules, and each of the measurement modules.
  • the control module is arranged in the slot of the backplane, and the control module is used to obtain each of the quantum state regulation modules, each of the frequency regulation modules, each of the frequency regulation modules, and each The signal delay data of the measurement module is output through the routing module, wherein the signal delay data comes from each of the quantum state control modules, each of the frequency control modules, and each of the measurement modules.
  • the device further includes a heat dissipation component, the heat dissipation component is connected to the control module, and the control module sends a temperature control command to the heat dissipation component according to temperature information in the device, so as to control the heat dissipation component work in different states.
  • a clock synchronization circuit is set on the quantum state regulation module, the frequency regulation module, the measurement module, the routing module and the backplane, and all the clock synchronization circuits use the same clock synchronization reference, It is used to perform clock synchronization control on the quantum state regulation module, the frequency regulation module, the measurement module and the routing module.
  • the device further includes a chassis, and the backplane, the quantum state regulation module, the frequency regulation module, the measurement module and the routing module are all arranged in the chassis.
  • the device further includes a power supply, and the power supply is arranged in the case.
  • the embodiment of the second aspect of the present application provides a quantum control system, including at least one quantum control device as described in any one of the above items.
  • the system further includes auxiliary peripheral equipment, and the auxiliary peripheral equipment includes several local oscillator microwave sources, radio frequency (Radio Frequency, RF) transmitting components, radio frequency (Radio Frequency, RF) transceiver components and voltage sources, so
  • the local oscillator microwave source and the RF transmitting component cooperate with the control device to generate a quantum state control signal for quantum state information regulation of the qubit
  • the voltage source cooperates with the control device to generate a frequency control signal for the qubit Frequency regulation signal
  • the local oscillator microwave source and the RF transceiver component cooperate with the control device to generate a measurement signal for reading the state of the qubit and receive a read return signal returned by the quantum chip.
  • the system further includes several microwave sources, and the microwave sources cooperate with the voltage source to generate pumping signals for driving the Josephson parametric amplifier.
  • the voltage source may be a high-precision voltage source in subsequent embodiments.
  • system further includes at least one central control device, and the central control device is communicatively connected to the routing module of the control device.
  • system further includes a server, and the central control device, the auxiliary peripheral device, the routing module and the control module of the control device are all communicatively connected to the server.
  • the embodiment of the third aspect of the present application provides a quantum computer, including the quantum control device described in the embodiment of the first aspect, or the quantum control system described in the embodiment of the second aspect.
  • the quantum control device proposed by the present application includes at least one quantum state regulation module, at least one frequency regulation module, at least one measurement module and routing module, wherein the quantum state regulation module, the frequency regulation module
  • the module and the measurement module include all functional units for the regulation and measurement of the qubits in the quantum chip.
  • the entire control device adopts a modular structure design.
  • Each of the quantum state regulation modules, each of the frequency regulation modules and each of the The measurement module and the routing module are all arranged in corresponding slots on a backboard, and the integration degree is high; and each of the quantum state regulation module, the frequency regulation module, and the measurement module are connected Communication connection, through the routing module for external data interaction, so that the wiring in the device is simple, clear, and easy to expand; the quantum control device of the application is used to build a quantum control system dedicated to quantum chips, which is highly integrated and scalable. And the cost will be greatly reduced, and the number of controlled qubits can be flexibly configured to meet the measurement and control requirements of high-qubit quantum chips.
  • the purpose of this application is also to provide a quantum control system and quantum computer to solve the deficiencies in the prior art, which can be used to completely realize the high-precision measurement and control operation of superconducting quantum chips, system scalability and overall coordination good.
  • a quantum control system comprising:
  • each of the signal processing devices includes a first backplane, and a plurality of first signal processing boards and a plurality of second signal processing boards are plugged into the backplane connector of the first backplane.
  • the board and a routing board form a measurement and control integrated backplane for the quantum chip, and the plurality of first signal processing boards and the plurality of second signal processing boards are connected to the routing board;
  • the second signal processing board is used to generate a low-frequency signal, and the low-frequency signal is a frequency regulation signal;
  • At least one radio frequency (Radio Frequency, RF) transceiver device communicates with the first signal processing board through the routing board, and the radio frequency transceiver device cooperates with the first signal connected to the communication
  • the processing board is used to generate and receive high-frequency signals, which are quantum state control signals and measurement signals.
  • each of the plurality of first signal processing boards and the plurality of second signal processing boards has multiple signal output channels and/or multiple signal input channels
  • the number of signal output channels of each radio frequency transceiver device is not less than the sum of the number of signal output channels of the plurality of first signal processing boards connected to it.
  • the routing board is plugged into the backplane connector located at the center of the first backplane.
  • the high-frequency signal includes a quantum state control signal and a measurement signal for controlling the qubit
  • the measurement signal includes a read input signal for reading the qubit and a read input signal for reading the qubit. Take the output signal.
  • the first signal processing board includes a first AWG (Arbitrary Waveform Generator, arbitrary waveform generator) board and a DAQ (Data Acquisition, data acquisition) board.
  • AWG Arbitr Waveform Generator
  • DAQ Data Acquisition, data acquisition
  • the low frequency signal includes a pulse signal used for frequency control of qubits and/or adjustable couplers.
  • each of the signal processing devices further includes a plurality of third signal processing boards, and the plurality of third signal processing boards are used to generate DC signals, and the DC The signals include frequency drive signals for frequency control of qubits and/or tunable couplers.
  • the third signal processing board includes a DC source board ("DC board" for short).
  • the second signal processing board includes:
  • a second AWG board the second AWG board is used to generate the low frequency signal.
  • the quantum control system as described above, wherein, optionally, the quantum control system further includes a plurality of multi-channel microwave sources;
  • the microwave signal generated by the microwave source is used to drive the pumping signal of the parametric amplifier
  • the DC signal generated by the third signal processing board further includes a frequency control signal for the parametric amplifier.
  • each of the radio frequency transceivers includes a plurality of radio frequency transmitting components, a plurality of radio frequency receiving components and a plurality of microwave local oscillator sources;
  • the radio frequency transmitting component is connected to the first signal processing board and the microwave local oscillator source for generating the high frequency signal;
  • the radio frequency receiving component is connected to the first signal processing board and the microwave local oscillator source, and is used for performing frequency conversion processing on the received high-frequency signal and then transmitting it to the first signal processing board.
  • both the radio frequency transmitting component and the radio frequency receiving component include an IQ mixer.
  • the microwave local oscillator source is a microwave point frequency source or an adjustable local oscillator frequency source.
  • each of the radio frequency transceiver devices further includes a second backplane, and the plurality of radio frequency transmitting components and the plurality of radio frequency components of each of the radio frequency transceiver devices The receiving components are all inserted into the backplane connectors of the second backplane.
  • both the first backplane and the second backplane are provided with control boards and power supply boards;
  • the control board on the first backplane is connected to the first signal processing board, the second signal processing board and the routing board, and the power board on the first backplane
  • the card supplies power to the first backplane and the devices on it;
  • the control board on the second backplane is connected to the radio frequency transmitting component and the radio frequency receiving component, and the power supply board on the second backplane is the second backplane and the The device is powered.
  • the quantum control system as described above, wherein, optionally, the quantum control system further includes a clock synchronization device;
  • Each of the signal processing devices and each of the radio frequency transceiver devices is connected to the clock synchronization device, and the clock synchronization device is used to provide the same reference clock for the signal processing device and the radio frequency transceiver devices.
  • the quantum control system as described above, wherein, optionally, the quantum control system further includes a central control device, all the routing boards are connected to the central control device, and the central control device is used to pass through each of the routing boards.
  • the boards synchronously control the multiple first signal processing boards and the multiple second signal processing boards.
  • the quantum control system further includes a server, and the central control device and/or the routing board communicates with the server.
  • the quantum control system further includes a server and a network switch, each of the radio frequency transceivers communicates with the server through the network switch, and the routing board communicates with the server The server communicates.
  • the embodiment of the fifth aspect of the present application provides a quantum computer, including the quantum control system described in any one of the embodiments of the fourth aspect.
  • the quantum control system proposed by the present application is provided with at least one signal processing device, each of which includes a first backplane, and the backplane connector on the first backplane passes through the plug-in card
  • a plurality of first signal processing boards, a plurality of second signal processing boards and a routing board are inserted in a manner. Connecting all the first signal processing boards and the second signal processing boards to the routing boards, through the routing boards for unified external data interaction, using the multiple first signal processing boards, The multiple second signal processing boards combine with the routing board to implement the core control function of the quantum control system.
  • the quantum control system of the present application has a simpler structure and wiring complexity, and a higher system integration level;
  • the signal processing board is connected to the radio frequency transceiver device, and the radio frequency transceiver device cooperates with the first signal processing board connected to it to generate and receive high-frequency signals, and the second signal processing board generates low-frequency signals, wherein, the high-frequency signal and the low-frequency signal are used for regulating and reading qubits, so that the quantum control system of the present application has all the functions of regulating and reading qubits.
  • all the first signal processing boards and the second signal processing boards perform data interaction with the outside through the routing boards, which effectively improves the overall coordination of the system, so that the superconducting quantum chip can be completely realized.
  • High-precision measurement and control operation the number of the first signal processing board and the second signal processing board as well as the number of the signal processing device and the radio frequency transceiver device can be set according to the measurement and control requirements of the number of qubits of the quantum chip,
  • the system has strong scalability, and because the backplane connector is used as the high-speed interface to realize the plug-in card expansion, the core performance of the system can be avoided while expanding, the system is easy to maintain and use, and the overall coordination of the system is good.
  • the purpose of the present application is also to provide a quantum control device and a quantum control system to solve the defects and deficiencies in the prior art.
  • the embodiments of the present application can realize accurate control of the selection of different functional modules on the backplane.
  • the embodiment of the sixth aspect of the present application provides a quantum control device for controlling the measurement and control integrated backplane of the quantum chip, including:
  • a trigger module configured to output a trigger signal
  • a switch module electrically connected to the trigger module, for gating the working channel of the microcontroller according to the trigger signal
  • a microcontroller electrically connected to the switch module, is used to set and output a corresponding control signal according to the selected working channel, wherein the control signal is used to control the measurement and control integrated backplane to enter a corresponding working mode.
  • the measurement and control integrated backplane includes multiple functional boards
  • the switch module includes a plurality of self-locking non-reset switches, which are respectively used to control the reset of the measurement and control integrated backplane and the reset of each of the functional boards through the working channel gated by the microcontroller.
  • a first output module is further included, electrically connected to the microcontroller, and used to forward the control signal to the measurement and control integrated backplane.
  • a temperature control module which is electrically connected to the microcontroller and the measurement and control integrated backplane, and is used to monitor the real-time temperature of the measurement and control integration backplane, and control the temperature of the measurement and control integration backplane according to the target temperature.
  • the real-time temperature of the plate is adjusted.
  • the temperature control module includes a plurality of temperature sensors and a plurality of radiators, and the temperature sensors and the radiators are respectively electrically connected to the microcontroller;
  • a plurality of the temperature sensors are respectively arranged on the integrated measurement and control backplane, and the temperature sensors are used to detect the real-time temperature of the integrated measurement and control backplane, and transmit the temperature data to the microcontroller;
  • the radiator is used to receive the temperature data sent by the microcontroller to generate a temperature adjustment signal, and adjust the real-time temperature of the measurement and control integrated backplane according to the temperature adjustment signal and the target temperature.
  • it also includes a second output module and a terminal device connected to each other through communication;
  • the second output module is electrically connected to the microcontroller, and is used to upload the working status information of the microcontroller, the switch module, the measurement and control integrated backplane and the temperature control module to the terminal device;
  • the terminal device is used to receive the working status information of the microcontroller, the switch module, the measurement and control integrated backplane and the temperature control module, and monitor their working status.
  • the second output module uses at least one of a WIFI module, an Ethernet interface, a type-c interface or a 4G module to establish communication with the terminal device.
  • the terminal device includes one or more of a computer, a mobile phone, or a multimedia playback device.
  • a power supply module is also included for supplying power to the microcontroller, the switch module, the trigger module and the temperature control module.
  • the microcontroller is an STM series chip, an STC series chip or an ARM series chip.
  • the embodiment of the seventh aspect of the present application provides a quantum control system, including the quantum control device as described in the embodiment of the sixth aspect.
  • the embodiment of the eighth aspect of the present application proposes a quantum computer, including the quantum control device described in any one of the embodiments of the sixth aspect, or the quantum control device described in any one of the embodiments of the seventh aspect system.
  • the quantum control device includes a trigger module, a switch module and a microcontroller
  • the trigger module is electrically connected to the switch module, and is used to output a trigger signal to the switch module
  • the switch module is electrically connected to the microcontroller
  • It is used to gate the working channel of the microcontroller according to the trigger signal
  • the microcontroller is used to set and output the corresponding control signal according to the selected working channel.
  • the microcontroller The controller is connected to the control port of the measurement and control integrated backplane.
  • the microcontroller After receiving the control signal, the microcontroller will enter the corresponding working mode according to the control signal, wherein the control signal is used to control the measurement and control
  • the integrated backplane enters the corresponding working mode.
  • the working channel of the microcontroller is selected through the switch module, and then the control signal is output from the selected working channel to the measurement and control integrated backplane, and the measurement and control integration backplane enters the control signal according to the control signal.
  • the corresponding working mode so as to realize the accurate control and free control of the working mode of the measurement and control integrated backplane.
  • Fig. 1 shows a schematic structural diagram of a quantum control device provided by an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of another quantum control device provided by an embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of a control device including a control module and a heat dissipation assembly provided by an embodiment of the present application;
  • FIG. 4 shows a schematic structural diagram of a control device including a clock synchronization circuit provided by an embodiment of the present application
  • Fig. 5 shows a schematic structural diagram of a control device including a chassis and a power supply provided by an embodiment of the present application
  • FIG. 6 shows a first structural diagram of a quantum control system provided by an embodiment of the present application
  • Fig. 7 shows the second structural diagram of the quantum control system provided by an embodiment of the present application.
  • Figure 8 shows a composition diagram of the internal structure of a superconducting quantum chip provided by an embodiment of the present application
  • Fig. 9 shows a schematic structural diagram III of a quantum control system provided by an embodiment of the present application.
  • Fig. 10 shows a schematic structural diagram of a quantum control system including a third signal processing board provided by an embodiment of the present application
  • Fig. 11 shows a schematic diagram 4 of the quantum control system provided by an embodiment of the present application.
  • Figure 12 shows a schematic diagram of the fifth structure of the quantum control system provided by an embodiment of the present application.
  • Fig. 13 shows a schematic structural diagram of a quantum control system including a clock synchronization device provided by an embodiment of the present application
  • Fig. 14 shows a schematic structural diagram of a quantum control system including a central control device and a server provided by an embodiment of the present application;
  • Fig. 15 shows a schematic structural diagram of a quantum control system including a server and a network switch provided by an embodiment of the present application.
  • Fig. 16 shows a schematic structural diagram of another quantum control device provided by an embodiment of the present application.
  • 10-control device 20-local oscillator microwave source, 30-RF transmitting component, 40-high precision voltage source, 50-RF transceiver component, 60-central control device, 70-network switch, 80-cabinet, 90-server, 1-quantum control system; 120-backplane, 130-routing module, 140-quantum state control module, 150-frequency control module, 160-measurement module, 1401-first DAC unit, 1501-second AWG unit, 1601- ADC/DAC unit, 170-control module, 180-heat dissipation component, 190-power supply, 110-chassis;
  • 100-trigger module 100-trigger module; 200-switch module; 300-microcontroller; 400-measurement and control integrated backplane; 500-temperature control module; 600-terminal equipment; 700-power supply module.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a quantum chip is provided with a plurality of qubits (also referred to as qubits) and data transmission lines, and each qubit includes a detector and a qubit device coupled to each other, wherein the qubit device can be used
  • An artificial superconducting qubit composed of a superconducting Josephson junction and a capacitance to ground, and the detector can be a resonant cavity.
  • the qubit device is provided with a first control signal line and a second control signal line, and a detector coupled to the qubit device is provided with a third control signal line, wherein the first control signal line is used to transmit a signal to the qubit device.
  • the quantum state control signal for quantum state information control is used to transmit the frequency control signal for frequency parameter control of the qubit device
  • the third control signal line is used to transmit the measurement signal for measuring the detector It is also used to output the reading return signal returned by the detector to realize the indirect reading measurement of the state of the qubit device. Therefore, the quantum control system used for the regulation and measurement of qubits in the quantum chip needs to generate and output three kinds of control signals for the first to third control signal lines respectively, so as to realize the regulation and measurement of the qubits in the quantum chip.
  • an embodiment of the present application provides a quantum control device.
  • the control device 10 includes a backplane 120, a routing module 130, at least one quantum state control module 140, at least one frequency control module 150, at least one A measurement module 160 , the quantum state regulation module 140 , the frequency regulation module 150 , the measurement module 160 and the routing module 130 are arranged in slots on the backplane 120 .
  • the quantum state regulation module 140 , the frequency regulation module 150 , the measurement module 160 , the routing module 130 and the backplane 120 can form a measurement and control integrated backplane for quantum chips.
  • the quantum state control module 140, the frequency control module 150, and the measurement module 160 are all connected in communication with the routing module 130, through which the routing module 130 interacts with external data, so that the quantum state control module 140 and The frequency regulation module 150 outputs the initial quantum state regulation signal and the initial frequency regulation signal respectively and controls the measurement module 160 to output the initial measurement signal.
  • the quantum state control module 140, the frequency control module 150, and the measurement module 160 in the quantum control device proposed in the embodiment of the present application are all functional units for the control and measurement of qubits in the quantum chip.
  • Embodiments can provide all functional signals for qubit control and measurement in quantum chips; the entire control device adopts a modular structure design, each of the quantum state control modules 140, each of the frequency control modules 150 and each of the measurement
  • the module 160 and the routing module 130 are all arranged in corresponding slots on a backplane 120, and the integration degree is high; each of the quantum state control module 140, the frequency control module 150, and the measurement module 160 are all connected to the
  • the routing module 130 is connected by communication, and the routing module 130 interacts with external data, so that the wiring between the modules is simple, clear, and easy to expand.
  • control device 10 includes all functional units to complete the regulation and measurement of qubits on the quantum chip, it is based on low cost, easy integration and expansion, easy maintenance, and high reliability of the output signal. Considering factors such as reliability, in terms of hardware architecture, the control device 10 is designed as a control core unit of a quantum control system that performs control operations on quantum chips, and is not completely equivalent to a complete quantum control system. Therefore, the control device in the embodiment of the present application needs to be matched with relevant auxiliary peripheral equipment to form a complete quantum control system to complete qubit control and measurement operations on the quantum chip.
  • the routing module 130 sends qubit regulation instructions and data to the quantum state regulation module 140 and the frequency regulation module 150 that need to participate in the execution of the quantum computing task, and sends qubit regulation instructions and data to the
  • the measurement module 160 sends qubit read instructions and data, so that the quantum state control module 140 generates and outputs an initial quantum state control signal that includes quantum state control parameters, and the frequency control module 150 generates and outputs an initial quantum state control signal that includes qubit parameters.
  • the measurement module 160 For an initial frequency regulation signal of a frequency regulation parameter, the measurement module 160 generates and outputs an initial measurement signal including qubit state reading parameters.
  • the initial quantum state control signal is sent to the auxiliary peripheral equipment used in conjunction with the control device to be processed into a quantum state control signal and provided to the quantum chip through the first control signal line to realize the control of the quantum state information of the qubit device
  • the initial frequency regulation signal is sent to the auxiliary peripheral equipment used in conjunction with the control device to be processed into a frequency regulation signal and provided to the quantum chip through the second control signal line to realize the frequency parameter regulation of the qubit device
  • the initial measurement signal is sent to the auxiliary peripheral equipment used in cooperation with the control device to be processed into a measurement signal and provided to the quantum chip through the third control signal line to read and measure the state of the qubit device; at the same time, the measurement module 160 is also used to collect the read return signal of the qubit device output by the third control signal line, and send it to the routing module 130 for processing and then output it to an external server.
  • the frequency control module 150 can also be used for the control of tunable coupled qubits in quantum chips, therefore, the number of qubits that can be controlled by the quantum state control module 140 and the frequency control module 150 is greater than or equal to the The measurement module 160 is capable of reading the measured number of qubits.
  • the number of each module in the control device in Fig. 1 is one, and in actual application, the number of each module in the control device can be set to be more according to needs, which is not limited here, Fig. 1
  • the schematic diagrams are only for the convenience of those skilled in the art to better understand the technical solutions of the present application, and should not be regarded as any limitation to the present application.
  • the quantity of the quantum state control module 140, the frequency control module 150, and the measurement module 160 needs to be combined with the number of qubits of the quantum chip that needs to be regulated and measured according to the number of signal output channels of each module. For setting, if necessary, it is also necessary to consider the situation that there are tunable coupling qubits in the quantum chip.
  • the third control signal line can correspond to the detectors one by one, but in order to simplify the data transmission line structure of the quantum chip, one of the said control signal lines can also be used in the design of the quantum chip structure.
  • the third control signal line corresponds to a plurality of the detectors.
  • one of the third control signal lines corresponds to five of the detectors, so that one of the third control signal lines can be used to realize state reading and measurement of five of the qubit devices.
  • one of the measurement modules 160 can be used to read and measure the state of five qubits in the quantum chip.
  • one signal output channel of the measurement module 160 is to output an initial measurement signal.
  • the synthesis and decomposition technology of the initial measurement signal does not belong to the protection content of this application, and will not be introduced in detail here.
  • each of the quantum state regulation module 140, the frequency regulation module 150 and the measurement module 160 Each of the signal output channels is set to multiple channels, that is, the signal output channels of each of the quantum state control module 140, the frequency control module 150, and the measurement module 160 are respectively 2 or more than 2 channels.
  • the number of signal channels that can be output by the quantum state regulation module 140 , the frequency regulation module 150 and the measurement module 160 can reach the maximum number of signal output channels of each module. For example, when the signal output channels of the single quantum state control module 140, the frequency control module 150 and the measurement module 160 are each 5 channels, then at this time the control device can regulate the qubits in the quantum chip.
  • the quantity will be 5 times of the quantity when the single quantum state control module 140 , the frequency control module 150 and the measurement module 160 have one signal output channel. In this case, the degree of integration and scalability of the control device is also effectively improved.
  • the quantum state control module 140 includes a first DAC unit 1401 or a first AWG unit
  • the frequency control module 150 includes a second DAC unit or a second AWG unit 1501
  • the measurement module 160 includes an ADC/DAC unit 1601 or a combination of a third DAC unit or a third AWG unit and a DAQ unit; wherein the first DAC unit 1401 or the first AWG unit is used to generate the initial quantum state control signal; the second DAC unit or the second AWG unit 1501 is used to generate the initial frequency control signal; the ADC/DAC unit 1601 or the third DAC unit or the third AWG unit is used to generate the initial frequency Measure signals and receive readback signals.
  • the quantum state control module 140 includes a first DAC unit 1401
  • the frequency control module 150 includes a second AWG unit 1501
  • the measurement module 160 includes an ADC/DAC unit 1601.
  • An example is given in an implementation manner.
  • the signal generation units of the quantum state control module 140, the frequency control module 150 and the measurement module 160 in the control device can select different functional units according to needs. Realization is not limited here.
  • FIG. 2 is only a schematic diagram for those skilled in the art to better understand the technical solution of the present application, and cannot be regarded as any limitation to the present application.
  • the first control signal line used to regulate the quantum state information of the qubit needs to receive the microwave pulse signal containing the quantum state regulation information, and the microwave pulse signal is based on the output of the DAC unit 1401.
  • the initial quantum state regulation signal is generated.
  • the second control signal line used for adjusting the frequency parameter of the qubit needs to receive a microwave pulse signal, and the microwave pulse signal is generated based on the initial frequency adjustment signal output by the second AWG unit 1501 .
  • the third control signal line used for reading the state of the qubit needs to receive a read pulse signal, and the read pulse signal is generated based on the initial measurement signal output by the ADC/DAC unit 1601 . Therefore, the quantum state control module 140, the frequency control module 150, and the measurement module 160 include all functional units for the control and measurement of qubits in the quantum chip.
  • the routing module 130 as a device for exchanging data between the quantum state control module 140, the frequency control module 150 and the measurement module 160, needs to have data forwarding and processing functions and have high data transmission timeliness.
  • FPGA Field Programmable Gate Array
  • MCU Microcontroller Unit
  • MPU Microprocessor Unit
  • DSP Digital Signal Processor
  • the routing module 130 includes a field programmable logic gate array (FPGA), and the FPGA is used as a central processing unit to ensure that the routing module 130 has a higher degree of functional integration and data processing speed.
  • efficient and reliable data interaction between the quantum state control module 140 , the frequency control module 150 and the measurement module 160 can also be achieved by using a high-speed interface circuit.
  • the number of qubits that need to participate is also increasing, that is, the output channels of the quantum control system are also increasing.
  • a plurality of the initial quantum state control signals and the initial frequency control signals are required, that is, a plurality of the quantum state control modules 140 and the frequency control modules 150 are required to work together.
  • the signals output by all modules need to be triggered synchronously to accurately complete quantum computing tasks.
  • the quantum state regulation module 140 , the frequency regulation module 150 and the measurement module 160 are all communicatively connected to the routing module 130 through the communication line on the backplane 120 .
  • the trigger signal transmission lines from each of the quantum state control modules 140, each of the frequency control modules 150, and each of the measurement modules 160 to the routing module 130 The lengths are respectively equal, that is, the trigger signal transmission lines from each module of the same function type to the routing module 130 are equal in length, such as the trigger signal transmission lines from each quantum state control module 140 to the routing module 130, etc. long.
  • each of the quantum state control module 140, the frequency control module 150, and the measurement module 160 is connected to the routing module 130, and the routing module 130 is used as a data transceiver station for external data interaction, each set The length of the trigger signal transmission line from the module of the functional type to the routing module 130 is equal in length, which can effectively ensure that the routing module 130 is simultaneously sent to a plurality of the quantum state regulation modules 140, the frequency regulation module 150, the measurement
  • the trigger signal of the module 160 is synchronized, so that the quantum state control module 140, the frequency control module 150, and the measurement module 160 are related to the quantum state control, frequency control, and qubit state reading of multiple qubits.
  • the operation signal can be triggered synchronously, which improves the accuracy of the execution result of the quantum computing task.
  • each of the quantum state control modules 140, each of the frequency control modules 150, and each of the measurement modules 160 are distributed and arranged in the Each slot on the backplane 120.
  • the length of the trigger signal transmission line from each of the quantum state control modules 140, each of the frequency control modules 150 and each of the measurement modules 160 to the routing module 130 is the shortest, which can effectively improve the signal timeliness sex.
  • such a location layout design also makes the length of the total communication line in the control device the shortest, which can effectively save hardware costs.
  • the routing module 130 is arranged at the central position of the backplane 120, which can further facilitate the realization of each of the quantum state control modules 140 and each of the frequency control modules. 150 and each of the measurement modules 160 to the routing module 130, the length of the trigger signal transmission line is minimized.
  • qubits perform quantum computing tasks, they have strict timing requirements for the quantum state control signals and measurement signals imposed by the quantum chip, and due to the short coherence time of the qubits, the qubits have strict timing requirements for the quantum state control signals and measurement signals.
  • each of the measurement modules 160 is arranged next to the routing module 130, Each of the quantum state regulation modules 140 is arranged on both sides of the routing module 130 and/or the measurement module 160, and each of the frequency regulation modules 150 is arranged on both sides of the quantum state regulation module 140.
  • the communication line between the routing module 130 and each of the quantum state control modules 140 and the measurement module 160 is the shortest, and it can also ensure that each of the quantum state control modules 140, the measurement module 160 and the The routing module 130 is in the same temperature zone, the line delay during data exchange between the two is short and the signal is less affected by the ambient temperature.
  • the hardware design can realize the synchronization of signals output by each module for the manipulation, measurement and reading operations of multiple qubits triggered.
  • the hardware design can realize the synchronization of signals output by each module for the manipulation, measurement and reading operations of multiple qubits triggered.
  • due to various uncontrollable influences such as the temperature change of the working environment of the device and the plugging and unplugging of the connectors, there will still be errors in the delay of the signal, so that the simultaneous output of the control device for multiple quantum
  • the synchronous triggering also can be understood as the calibration of line delay
  • the backplane 120 acquires the signal delay data of each of the quantum state control modules 140 , each of the frequency control modules 150 and each of the measurement modules 160 , and outputs them to the outside.
  • the centralized summary processing is performed by the central control device arranged outside the control device. For example, the central control device can judge the delay of each module to obtain the trigger signal according to the delay data, so as to coordinate the signal delay of different modules, so that all modules obtain the trigger signal with equal delay.
  • module clock synchronization can also be used to ensure trigger synchronization, as shown in Figure 4, the quantum state control module 140, the frequency control module 150, the measurement module 160, the routing module 130 and the Clock synchronization circuits are all arranged on the backplane 120, and all the clock synchronization circuits use the same clock synchronization reference.
  • the clock synchronization circuit located on the backplane 120 is used as a clock synchronization master, and is located in the quantum state control module 140, the frequency control module 150, the measurement module 160, and the routing module 130.
  • Each of the clock synchronization circuits on the circuit is a clock synchronization slave, and the clock synchronization master manages each clock synchronization slave to control the quantum state control module 140, the frequency control module 150, the measurement module 160 and the routing module. 130 performs clock synchronization control. By performing clock synchronization control on each module in the control device, it can effectively ensure that the timing of signal output is synchronous.
  • the control device may also include a heat dissipation assembly 180, and the heat dissipation assembly 180 Connect the control module 170, the control module 170 receives temperature information from multiple places in the control device, and sends temperature control instructions to the heat dissipation assembly 180 according to the temperature information, so as to control the heat dissipation assembly 180
  • Working in different states is to provide a better working environment temperature for the internal components of the control device, and at the same time effectively avoid the influence of signal delay caused by temperature changes in the working environment of the components.
  • the device further includes a chassis 110, and the backplane 120, the quantum state control module 140, the frequency control module 150, the The measurement module 160 and the routing module 130 are integrated in the chassis 110 .
  • the entire control device is assembled in a case 110, the whole machine occupies a small space and is easy to expand.
  • the chassis 110 can be a VPX chassis 110, a CPCI chassis 110 or a PXIE chassis 110, all of which can realize the quantum control function requirements of the embodiment of the present application in terms of functional module integration.
  • each of the quantum state control module 140, the frequency control module 150, the measurement module 160 and the routing module 130 can be respectively integrated on a board, and insert each board into the corresponding slot to realize the connection between each quantum state control module 140, the frequency control module 150, the measurement module 160 and the routing module 130 in the control device.
  • integrated assembly Exemplary, described quantum state control module 140 preferably adopts the DAC board card based on FMC (The FPGA Mezzanine Card), described frequency control module 150 preferably adopts the AWG board card based on FMC, and described measuring module 160 preferably adopts the board card based on FMC ADC/DAC boards.
  • control device may further include a power supply 190 , and the power supply 190 is disposed in the chassis 110 .
  • the power supply 190 is integrally assembled in the slot dedicated to the power supply 190 of the backplane 120 .
  • the power supply 190 is a linear power supply or a switching power supply.
  • an embodiment of the present application also proposes a quantum control system 1, including at least one quantum control device as proposed in some of the above embodiments and a plurality of auxiliary peripheral devices, the auxiliary The peripheral equipment is used to cooperate with the control device to generate the quantum state control signal, the frequency control signal and the measurement signal and receive the read return signal, so as to realize the control and control of the qubits in the quantum chip. measurement operation.
  • the auxiliary peripheral equipment includes, but is not limited to, a microwave source, a high-precision voltage source 40 , a local oscillator microwave source 20 , an RF transmitting component 30 and an RF transceiver component 50 .
  • a multi-channel quantum state control module 140 combined with a said local oscillator microwave source 20 and a multi-channel RF transmitting assembly 30 can generate multiple channels of said quantum state control signals; a multi-channel said frequency control module 150 combines A multi-channel high-precision voltage source 40 can produce a multi-channel frequency control signal; a multi-channel measurement module 160 can produce a multi-channel RF transceiver assembly 50 in combination with a described local oscillator microwave source 20. measurement signal; at the same time, the measurement module 160 can receive multiple channels of the read return signal through the multi-channel RF transceiver component 50 .
  • the pumping signal required for the Josephson Parametric Amplifier can also be generated by cooperating with the high-precision voltage source through the microwave source.
  • the Josephson parametric amplifier is arranged on the third control signal line, and is used to amplify the read return signal, so as to ensure that the control device acquires a high-precision read return signal, Ensure the accuracy of the execution results of quantum computing tasks.
  • the quantum control system 1 may also include at least one cabinet 80, at least one of the control device 10 and a plurality of auxiliary peripheral devices are arranged in one of the cabinets 80, wherein, the quantity of the auxiliary peripheral equipment in each of the cabinets 80 is set according to the requirements of a plurality of the control devices 10, so as to realize the connection with each of the quantum state control modules of each of the control devices 10 140 , the joint action of the frequency regulation module 150 , the measurement module 160 and the routing module 130 .
  • the quantum control system 1 may also include at least one central control device 60, and the central control device 60 is communicatively connected to the routing module 130 of each control device 10 located in each cabinet 80, so as to To realize the function of signal synchronous triggering, its communication line can be realized by any one or several combinations of network switch, high-frequency cable or network cable direct connection.
  • the quantum control system 1 may also include a server 90, and the server 90 may be a single server or a server group.
  • the server group can be centralized or distributed, for example, the server 90 can be a distributed system.
  • the server 90 is used to generate and output quantum computing tasks.
  • the server 90 is communicatively connected with the routing module 130 of each of the control devices 10 located in each of the cabinets 80 and the central control device 60, and the communication line can be a network switch, a high-frequency cable or a network cable. Any one or a combination of direct connections can be implemented.
  • the quantum control system may also include at least one network switch 70, at least one network switch 70 is arranged in each of the cabinets 80, and each of the auxiliary peripheral devices communicates with the network switch 70 through the network switch 70.
  • the server 90 is connected in communication.
  • the control device 10 when realizing the quantum control system, can be used as the control core unit for expansion, and the control device 10 can regulate and measure
  • the number of qubits can also be expanded on demand, and the quantum chip measurement and control function of the quantum control system 1 can be realized by setting the auxiliary peripheral equipment, the central control device 60 and the network switch 70 in combination with the server 90 as needed .
  • the volume and cost of the quantum control system dedicated to quantum chips will be greatly reduced, with high integration and scalability, and the number of controlled qubits can be flexibly configured to meet the measurement and control requirements of high-qubit quantum chips.
  • an embodiment of the present application also proposes a quantum computer, including the above-mentioned quantum control system 1 .
  • Quantum computer is a kind of physical device that follows the laws of quantum mechanics to perform high-speed mathematical and logical operations, store and process quantum information.
  • the quantum chip is the core of a quantum computer.
  • a quantum control system needs to be built to provide various control signals for each qubit through various devices in the quantum control system. , such as frequency control signals, quantum state control signals; in addition, reading measurements are also required for the results of qubits running quantum computing tasks.
  • the core functions required by quantum control systems need to be scalable.
  • the existing quantum control system built with commercial instruments has poor scalability, and the core performance and overall coordination of the system are not good.
  • the embodiment of the present application also provides a quantum control system and a quantum computer to solve the deficiencies in the prior art. It can be used to completely realize the high-precision measurement and control operation of the superconducting quantum chip, and the system scalability and overall Good coordination.
  • Fig. 8 is the internal structure of a superconducting quantum chip provided by an exemplary embodiment of the present application, a superconducting quantum chip is provided with multi-bit qubits and data transmission lines, each qubit includes a mutual coupling connection detectors and qubit devices.
  • the qubit device is provided with a bit control signal line and a magnetic flux modulation signal line, and a detector coupled with the qubit device is provided with a reading bus.
  • the bit control signal line is used to transmit the quantum state control signal for regulating the quantum state information of the qubit device
  • the magnetic flux modulation signal line is used to transmit the pulse signal for frequency control of the qubit device
  • the read bus is used for both
  • the measurement signal transmitted to measure the detector is used to output the reading feedback signal fed back by the detector, so as to realize the indirect reading measurement of the state of the qubit device.
  • the measurement signal for measuring the detector is the read input signal for reading the qubit
  • the read return signal fed back by the detector is the read output signal for reading the qubit.
  • the quantum control system used for qubit control and reading measurement in superconducting quantum chips needs to generate and output quantum state control signals, frequency control signals, and read input signals to provide bit control signal lines and magnetic flux modulation signal lines respectively. and read the bus. At the same time, it is necessary to read the read output signal of the qubit from the read bus, so as to realize the regulation and read measurement of the qubit in the superconducting quantum chip.
  • FIG. 9 is a quantum control system provided by an exemplary embodiment of the present application.
  • the quantum control system includes at least one signal processing device and at least one radio frequency transceiver device.
  • each of the signal processing devices includes a first backplane, and a plurality of first signal processing boards, a plurality of second signal processing boards and a A routing board, the plurality of first signal processing boards and the plurality of second signal processing boards are all connected to the routing board; the second signal processing board is used to generate low-frequency signals.
  • the radio frequency transceiver is connected to the first signal processing board, and the radio frequency transceiver cooperates with the connected first signal processing board to generate and receive high-frequency signals.
  • the first backplane and a plurality of first signal processing boards, a plurality of second signal processing boards and a routing board plugged into the backplane connector of the first backplane can form a measurement and control board for quantum chips. Integrated backplane.
  • the high-frequency signal and the low-frequency signal are used for regulating and reading qubits.
  • the high-frequency signal includes a quantum state control signal for controlling the qubit, a read input signal for reading the qubit, and a read output signal
  • the low-frequency signal includes a signal for the qubit and/or an adjustable coupler. Pulse signal for frequency control.
  • the quantum control system of the present application has all the functions of qubit regulation and reading measurement.
  • the low-frequency signal may be a frequency regulation signal.
  • the high frequency signal may be a quantum state control signal and a measurement signal.
  • the adjustable coupler in order to realize the operation of the two-bit quantum logic gate (referred to as "two-bit gate") between the two qubits, the adjustable coupler is used to realize the operation of the two qubits.
  • two qubits realize quantum state conversion through the virtual photon in the adjustable coupler, thereby realizing two-bit quantum logic gate operation.
  • the working principle of the adjustable coupler is to adjust the frequency of the adjustable coupler, and the pulse signal used for the frequency control of the adjustable coupler is also transmitted to the corresponding magnetic flux modulation signal line.
  • the low-frequency signal generated by the second signal processing board includes a pulse signal used for frequency control of the qubit and a pulse signal used to control the frequency of the qubit.
  • the frequency-controlled pulse signal of the coupler is adjusted to meet the functional requirements of the frequency control of different objects; so that the quantum control system of the present application has a wider scope of application.
  • all the first signal processing boards, the second signal processing boards, and the routing boards are plugged into the backplane connectors of the first backplane by plugging in cards, and use
  • the plurality of first signal processing boards and the plurality of second signal processing boards combine with the routing board to implement the core control function of the quantum control system.
  • the structure and wiring complexity of the quantum control system of the present application are more streamlined, and the system integration degree is high.
  • the first signal processing board is connected to the radio frequency transceiver device, and the first signal processing board connected to it is coordinated by the radio frequency transceiver device Generate and receive high-frequency signals, generate low-frequency signals through the second signal processing board, and use the high-frequency signals and the low-frequency signals for the regulation and reading of qubits, thereby enabling the quantum control system of the present application to have It realizes the full function of qubit regulation and reading measurement.
  • the routing board is provided with an external data interaction interface, and all the first signal processing boards and the second signal processing boards perform data interaction through the routing board, and the routing board.
  • the routing board is plugged into the backplane connector located at the center of the first backplane.
  • the plurality of first signal processing boards and the plurality of second signal processing boards are distributed on the first backplane centering on the routing board.
  • the length of the signal line from the first signal processing board and the second signal processing board to the routing board can be minimized, effectively saving system costs, and effectively ensuring that the first signal processing
  • the signal line delay of the data exchanged between the board and the second signal processing board and the routing board is minimized when the signal line is transmitted.
  • the routing board as a unified allocation device for the external data interaction between the first signal processing board and the second signal processing board, needs to have data forwarding and processing functions, and have high data transmission timeliness.
  • FPGA Field Programmable Gate Array
  • MCU Microcontroller Unit
  • MPU Microprocessor Unit
  • DSP Digital Signal Processor
  • the routing board includes a field programmable logic gate array (FPGA), and the FPGA is used as the central processing unit to ensure that the routing board has a higher degree of functional integration and data processing speed.
  • FPGA field programmable logic gate array
  • efficient and reliable data interaction between the first signal processing board and the second signal processing board can also be achieved by using a high-speed interface circuit together.
  • the backplane connector adopts high-speed signal transmission connectors, such as signal connectors used by buses such as VPX, CPCI, and PXIe.
  • the data transmission bandwidth can be as high as 10Gb/s, and can support multiple parallel and serial transmission protocols. To a certain extent, the timeliness of signal transmission on the signal processing device can be effectively guaranteed.
  • the number of the signal processing device and the radio frequency transceiver device is one.
  • the number of the first signal processing board and the number of the second signal processing board are three respectively.
  • the number of the first signal processing board and the second signal processing board in the signal processing device, the radio frequency transceiver device, and the signal processing device can be set to be more according to needs. This is not limited.
  • FIG. 9 is only a schematic diagram for those skilled in the art to better understand the technical solution of the present application, and cannot be regarded as any limitation to the present application.
  • the output signal of the second signal processing board can directly have a DC bias, and can be directly used for frequency control of qubits and/or adjustable couplers, which not only simplifies the system structure but also to a certain extent Increased reliability while reducing system cost.
  • the frequency control of the qubit and/or the adjustable coupler is not used jointly by the low frequency signal and the direct current signal, the obtained frequency control accuracy is not ideal. Therefore, referring to FIG.
  • each of the signal processing devices further includes a plurality of third signal processing boards, and the plurality of third signal processing boards are plugged into On the backplane connector, for generating a direct current signal including a frequency drive signal for frequency control of qubits and/or tunable couplers.
  • the frequency driving signal and the low frequency signal used for the frequency control of the qubit and/or the adjustable coupler are both sent to the superconducting quantum chip through the magnetic flux modulation signal line.
  • the number of the third signal processing boards can be set according to actual application requirements, and there is no limitation here.
  • each of the plurality of first signal processing boards, the plurality of second signal processing boards and the third signal processing board has multiple signal output channels and/or multiple signal input channels, Each signal output channel can output one signal, and each signal input channel can input one signal.
  • the number of signal output channels of each radio frequency transceiver device is not less than the sum of the number of signal output channels of the plurality of first signal processing boards connected thereto.
  • the first signal processing board includes a first AWG board and a DAQ board.
  • the first AWG board is used to generate a low frequency signal and transmit it to the radio frequency transceiver device, and the radio frequency transceiver device generates and outputs the high frequency signal based on the low frequency signal.
  • the low frequency signal includes an initial quantum state control signal and an initial read input signal
  • the high frequency signal generated based on the low frequency signal includes a quantum state control signal and a read input signal.
  • the radio frequency transceiver device receives the high-frequency signal output by the read bus, performs frequency conversion processing, and transmits it to the DAQ board.
  • the high-frequency signal output by the read bus is the read output signal
  • the DAQ board is used to collect the low-frequency signal generated based on the frequency conversion of the read output signal, and the frequency conversion based on the read output signal
  • the generated low frequency signal is an initial read output signal.
  • the first AWG board includes an FPGA, which is designed and implemented using the FPGA as a central processing unit, and the first AWG board has multiple signal output channels. Wherein, one signal output channel outputs one low-frequency signal for generating the quantum state control signal or the read input signal.
  • the DAQ board has multiple signal input channels, wherein one signal input channel receives one low frequency signal generated based on frequency conversion of the read output signal.
  • the read bus can be in one-to-one correspondence with the detectors, but in order to simplify the data transmission line structure of the superconducting quantum chip, it is also possible to use a
  • the read bus corresponds to a plurality of the detectors. For example, one read bus corresponds to five detectors, so that one read bus can be used to read and measure the states of five qubit devices.
  • one of the first AWG boards and one of the DAQ boards connected to one of the reading buses can be used to read and measure the state of five qubits in the superconducting quantum chip.
  • one signal output channel of the first AWG board is to output one initial reading input signal
  • one signal input channel of the DAQ board is to input one initial reading output signal.
  • the number of the first AWG board is at least two, and the number of the DAQ board may be one.
  • the number of the first AWG board and the number of the DAQ board can be set to be more as required, and there is no limitation here.
  • FIG. 11 is only a schematic diagram for those skilled in the art to better understand the technical solution of the present application, and should not be regarded as any limitation to the present application.
  • the first signal processing board can also include an ADDA (Analog-to-Digital Convert/Digital-to-Analog Convert, analog-to-digital conversion/digital-to-analog conversion) board, using one ADDA board to replace several The first AWG board and one of the DAQ boards.
  • the ADDA board is used to generate low-frequency signals on the one hand and transmit them to the radio frequency transceiver device, generate and output the read input signal at the radio frequency transceiver device, and on the other hand, it is used to collect the signals generated by the radio frequency transceiver device.
  • the read output signal is a low-frequency signal generated after frequency conversion processing.
  • the ADDA board has multiple signal input channels and multiple signal output channels.
  • the second signal processing board includes a second AWG board, and the second AWG board is used to generate the low-frequency signal.
  • the low frequency signals include pulsed signals for frequency control of qubits and/or tunable couplers.
  • the second AWG board includes an FPGA, which is designed and implemented using the FPGA as a central processing unit.
  • the third signal processing board includes a DC board, the DC board is used to generate the DC signal, and the DC board has multiple signal input channels and/or Multiple signal output channels. Wherein, one signal output channel outputs one said direct current signal.
  • the DC board has the function of a high-precision voltage source.
  • each of the read buses of the superconducting quantum chip is provided with a parametric amplifier for amplifying the read output signal, so as to realize high-fidelity read state information of qubits.
  • the quantum control system further includes multiple multi-channel microwave sources.
  • the microwave signal generated by the multi-channel microwave source is used to drive the pump signal of the parametric amplifier.
  • One channel of the microwave source outputs one microwave signal, and one microwave signal can be used to drive one parametric amplifier.
  • the DC signal generated by the third signal processing board is also used as a frequency control signal of the parametric amplifier, so as to modulate the working frequency of the parametric amplifier to a proper frequency position.
  • the parametric amplifier may be a Josephson parametric amplifier, an impedance matching parametric amplifier, and the like.
  • each of the radio frequency transceivers includes a plurality of radio frequency transmitting components, a plurality of radio frequency receiving components and a plurality of microwave local oscillator sources, and the radio frequency transmitting components are connected to the first signal processing board and the microwave local oscillator source for generating the high-frequency signal.
  • the radio frequency receiving component is connected to the first signal processing board and the microwave local oscillator source, and is used for performing frequency conversion processing on the received high-frequency signal and then transmitting it to the first signal processing board.
  • each of the radio frequency transmitting components is connected to one of the first AWG boards, and the low frequency signal output by the first AWG board and the microwave signal output by the microwave local oscillator source are in the radio frequency
  • the high-frequency signal is generated in the transmitting component.
  • the high frequency signal includes the quantum state control signal and the read input signal
  • the low frequency signal includes the initial quantum state control signal and the initial read input signal.
  • the radio frequency receiving component is connected to the DAQ board, and the radio frequency receiving component receives the high frequency signal and performs frequency conversion processing with the microwave signal output by the microwave local oscillator source in the radio frequency receiving component to form a low frequency signal
  • the DAQ board collects the low frequency signal generated by the radio frequency receiving component.
  • the high-frequency signal is the read output signal
  • the low-frequency signal is the initial read output signal.
  • the radio frequency transmitting component generates the high-frequency signal by using double frequency conversion technology or IQ mixing technology
  • the radio frequency receiving component uses double frequency conversion technology or IQ mixing technology to process the received high-frequency signal Frequency conversion processing.
  • both the radio frequency transmitting component and the radio frequency receiving component include an IQ mixer.
  • Each of the radio frequency transmitting components and each of the radio frequency receiving components has multiple signal output channels and/or multiple signal input channels, and one signal input channel or one signal input channel of the radio frequency transmitting component and the radio frequency receiving component
  • Each output channel is provided with one said IQ mixer.
  • the output port of the first AWG board is connected to the I port and the Q port of the IQ mixer of the radio frequency transmission component, and the microwave local oscillator source is connected to the IQ mixer of the radio frequency transmission component.
  • the input port of the bit control signal line and the read bus is connected to the RF port of the IQ mixer of the radio frequency transmitting component; the low frequency signal output by the first AWG board and the microwave The microwave signal output by the local oscillator is mixed in the IQ mixer of the radio frequency transmitting component to generate the high frequency signal.
  • the input port of the DAQ board is connected to the I port and the Q port of the IQ mixer of the radio frequency receiving component
  • the microwave local oscillator source is connected to the LO port of the IQ mixer of the radio frequency receiving component
  • the read The output port of the bus is connected to the RF port of the IQ mixer of the radio frequency receiving component; the high frequency signal output by the read bus and the microwave signal output by the microwave local oscillator source are received at the radio frequency
  • the low frequency signal is produced by mixing in the component's IQ mixer.
  • the microwave local oscillator source may be a microwave point frequency source, and the microwave point frequency source can output multiple microwave point frequency signals.
  • the microwave local oscillator source may be an adjustable local oscillator frequency source.
  • each of the radio frequency transceiver devices further includes a second backplane, and the plurality of radio frequency transmitters of each of the radio frequency transceiver devices The component and the plurality of radio frequency receiving components are all inserted into the backplane connector of the second backplane.
  • both the first backplane and the second backplane are provided with control boards and power supply boards.
  • the control board on the first backplane is connected to the first signal processing board, the second signal processing board and the routing board, and the functions of the control board include but are not limited to Used to monitor the working environment temperature of the signal processing device, the power supply board on the first backplane supplies power to the first backplane and devices on it.
  • the control board on the second backplane is connected to the radio frequency transmitting component and the radio frequency receiving component, and the functions of the control board include but are not limited to monitoring the working environment temperature of the radio frequency transceiver device,
  • the power board on the second backplane supplies power to the second backplane and devices on it.
  • the quantum control system further includes a card-type chassis, each of the first backplane and each of the second backplanes respectively installed in one of the card-type chassis.
  • the signal processing device based on the first backplane and the radio frequency transceiver device based on the second backplane are respectively assembled in a card-type chassis, so that the quantum control system occupies a small space, Easy to expand.
  • the card-type chassis can adopt a chassis with high-speed signal transmission functions such as a VPX chassis, a CPCI chassis, or a PXIE chassis, all of which can realize the quantum control function requirements of the embodiments of the present application in terms of functional module integration.
  • the quantum control system further includes a clock synchronization device, configured to provide each of the signal processing devices and each of the radio frequency transceiver devices with the same reference clock.
  • setting the clock synchronization device can also realize the function that the output signals of the signal processing device and the radio frequency transceiver device have the same phase to a certain extent.
  • the clock synchronization device includes a clock source and at least one multiplex frequency multiplication reference.
  • the clock source provides a reference clock signal for each of the multi-channel frequency multiplication references, and each of the multi-channel frequency multiplication references is connected to one of the signal processing devices and one of the radio frequency transceiver devices to provide each of the signal The processing device and each of the radio frequency transceiving devices send multiple channels of the same reference clock signal.
  • the same reference clock is provided for the signal processing device and the radio frequency transceiver device, so that the first signal processing board, the second signal processing board, the routing board and the radio frequency transceiver have the same The working clock at the starting point.
  • the clock source may be a high-precision rubidium clock.
  • the rubidium clock is used to generate a 10MHz reference clock signal, and the multi-channel frequency multiplication reference is processed by 5, 10, 20 or even more frequency multiplication according to actual application requirements to output multiple channels of the same reference clock signal.
  • the quantum control system further includes a central control device, All the routing boards are connected to the central control device, and the central control device is used to synchronously control the plurality of first signal processing boards and the plurality of second signal processing boards through each of the routing boards .
  • dedicated signal lines for signal trigger synchronization control are provided between the routing board and the first signal processing board and between the routing board and the second signal processing board.
  • the routing board transmits the synchronization control instruction through the signal line dedicated to the signal trigger synchronization control to realize the signal trigger synchronization between each of the first signal processing boards and between each of the second signal processing boards control.
  • the central control device sends a trigger instruction to each of the routing boards, and the routing boards send a synchronous control instruction through the signal line dedicated to triggering synchronous control so that the plurality of first signal processing boards or all The multiple second signal processing boards operate synchronously.
  • the routing board and the first signal processing board and between the routing board and the second signal processing board are set to be equal in length.
  • the quantum control system further includes a server, and the central control device and/or the routing board communicates with the server.
  • the information exchange between the central control device and the server includes but not limited to synchronization control instructions, and the information exchange between the routing board and the server includes but not limited to quantum computing task data.
  • the quantum control system further includes a server and a network switch, each of the radio frequency transceivers communicates with the server through the network switch, and the routing board communicates with the server.
  • the information exchange between the radio frequency transceiving device and the server includes but not limited to the working state control of the radio frequency transceiving device.
  • the DC board and the clock synchronization device also communicate with the server through the network switch.
  • an embodiment of the present application also proposes a quantum computer, including the above-mentioned quantum control system.
  • a quantum computer is a physical device that performs high-speed mathematical and logical operations, stores and processes quantum information in accordance with the laws of quantum mechanics.
  • the characteristics of quantum computers mainly include fast operation speed, strong ability to process information, and wide application range. Compared with ordinary computers, the more information processed, the more beneficial it is for quantum computers to perform calculations, and the accuracy of calculations can be ensured.
  • a quantum chip is to a quantum computer what a CPU is to a traditional computer, and it is the core component of a quantum computer.
  • a dedicated quantum measurement and control system needs to be built.
  • the embodiment of the present application also provides a quantum control device and a quantum control system to solve the defects and deficiencies in the prior art.
  • the present application can realize accurate control of selection of different functional modules on the backplane.
  • the core idea of the present application is to provide a quantum control device and a quantum control system.
  • the working channel of the microcontroller is selected through the switch module, and then the control signal is output from the selected working channel to
  • the integrated measurement and control backplane the integrated measurement and control backplane enters the corresponding working mode according to the control signal, so as to realize accurate control and free control of the working mode of the integrated measurement and control backplane.
  • the present application provides a quantum control device for controlling the measurement and control integrated backplane of the quantum chip, please refer to FIG. 16, the quantum control device includes a trigger module 100, a switch module 200 and a microcontroller 300, The trigger module 100 is electrically connected to the switch module 200 for outputting a trigger signal to the switch module 200, and the switch module 200 is electrically connected to the microcontroller 300 for outputting a trigger signal according to the trigger signal Gate the working channel of the microcontroller 300, and the microcontroller 300 is used to set and output the corresponding control signal according to the working channel of the gate.
  • the microcontroller 300 is connected to the control port of the integrated measurement and control backplane 400.
  • the integrated measurement and control backplane 400 After receiving the control signal, the integrated measurement and control backplane 400 will enter a corresponding working mode according to the control signal.
  • the control signal is used to control the measurement and control integrated backplane 400 to enter a corresponding working mode.
  • the measurement and control integrated backplane 400 may be the measurement and control integrated backplane provided in the foregoing embodiments of the present application.
  • the switch module 200 instead of directly controlling the selection of the working mode of the measurement and control integrated backplane 400 through the microcontroller 300, the switch module 200 is added, specifically the working channel of the microcontroller 300 is selected through the switch module 200, and then The control of the working mode of the measurement and control integrated backplane 400 by the microcontroller 300 through the selected working channel is completed.
  • the control mode can be edited arbitrarily, for example, by setting the time interval between the trigger module 100 outputting the trigger signal and the switch module 200 to realize the timing selection of the working mode of the measurement and control integrated backplane 400,
  • restarting and switching of the working mode of the measurement and control integrated backplane 400 can be realized by setting the wiring channel of the switch module 200 .
  • the wiring channel of the switch module 200 generally includes two wiring channels of the switch module 200 ground wire and the switch module 200 contact trigger module 100 .
  • the microcontroller 300 is an STM series chip, an STC series chip or an ARM series chip.
  • the measurement and control integrated backplane 400 includes a plurality of functional boards
  • the switch module 200 includes a plurality of self-locking non-resetting switches, wherein one self-locking non-resetting switch is used to control the measurement and control integrated backplane 400
  • the power-on and power-off of the entire backplane, and the remaining self-locking non-reset switches are used to control the power-on and power-off of each functional board on the integrated measurement and control backplane 400, so as to control the integrated measurement and control backplane 400 to enter different Operating mode.
  • the self-locking non-reset switch controls the reset mode of the functional board on the measurement and control integrated backplane 400 through the microcontroller 300 (that is, power-on and power-off) including two reset modes: hot reset and cold reset.
  • a group of general-purpose input and output pins of the microcontroller 300 are connected to the enabling pins of the switching power supply chip of the functional board to realize the automatic reset of the functional board from power-on to power-on, That is, cold reset, when a group of general-purpose input and output pins of the microcontroller 300 is connected to the enabling pin of the main power supply chip of the functional board, to realize that the functional board is powered on, The reset performed after receiving the reset signal is hot reset.
  • the self-locking non-resetting switch is a toggle switch.
  • the quantum control device further includes a first output module (not shown in the figure), the first output module is electrically connected to the microcontroller 300, and is used to forward the control signal to the measurement and control integration Backplane 400.
  • the first output module includes connection ports for connecting with various functional boards on the measurement and control integrated backplane 400.
  • the quantum control device is connected to the The control of the working mode of the measurement and control integrated backplane 400 can be realized by connecting the connection ports of each functional board on the measurement and control integrated backplane 400. It can be seen that the quantum control device provided by this embodiment is simple to assemble and has a high degree of integration. Small footprint.
  • the quantum control device further includes a temperature control module 500, the temperature control module 500 is electrically connected to the microcontroller 300 and the measurement and control integrated backplane 300, and is used to monitor the measurement and control integration backplane 400, and adjust the real-time temperature of the measurement and control integrated backplane 400 according to the target temperature.
  • the temperature control module 500 is electrically connected to the microcontroller 300 and the measurement and control integrated backplane 300, and is used to monitor the measurement and control integration backplane 400, and adjust the real-time temperature of the measurement and control integrated backplane 400 according to the target temperature.
  • the temperature control module 500 includes a plurality of temperature sensors and a plurality of radiators, the temperature sensors and the radiators are respectively electrically connected to the microcontroller 300, and the plurality of temperature sensors are respectively arranged on the
  • the temperature sensor is used to detect the real-time temperature of the measurement and control integrated backplane 400 and transmit the temperature data to the microcontroller 300 .
  • the radiator is used to receive the temperature data sent by the microcontroller 300 to generate a temperature adjustment signal, and adjust the real-time temperature of the measurement and control integrated backplane 400 according to the temperature adjustment signal and the target temperature.
  • the temperature sensors are respectively arranged on the measurement and control integrated backplane 400 at positions close to the main heat source, so as to ensure the accuracy of the real-time temperature detected by the temperature sensors.
  • the radiator is a silent fan with speed regulation function.
  • the set number of the silent fan is the same as the set number of the temperature sensor, and the corresponding temperature adjustment signal is specifically a signal for adjusting the speed of the silent fan, and the silent fan receives the temperature adjustment signal Afterwards, adjust its own rotation speed correspondingly, so as to realize the adjustment of the real-time temperature of the measurement and control integrated backplane 400 .
  • the temperature adjustment signal performs closed-loop adjustment on the silent fan, and when the real-time temperature differs greatly from the target temperature, the speed of the silent fan is set to increase, and when the real-time temperature is different from the target temperature
  • the temperature difference is small or the same, set to reduce the speed of the silent fan or set a fixed-rotation process, so as to reduce the noise of the silent fan and prolong the service life of the silent fan.
  • the quantum control device further includes a second output module (not shown in the figure) and a terminal device 600 that are connected to each other in communication, and the second output module is electrically connected to the microcontroller 300 for uploading the The working status information of the microcontroller 300, the switch module 200, the measurement and control integrated backplane 400, and the temperature control module 500 is sent to the terminal device 600, and the terminal device 600 is used to receive the microcontroller 300.
  • the working status information of the switch module 200, the measurement and control integrated backplane 400 and the temperature control module 500 and monitor their working status, so as to realize remote monitoring and control of their working status.
  • the second output module uses at least one of a WIFI module, an Ethernet interface, a type-c interface or a 4G module to establish communication with the terminal device, and the terminal device 600 includes a computer, a mobile phone, or a multimedia player one or more of the devices.
  • the quantum control device further includes a power supply module 700 for supplying power to the microcontroller 300 , the switch module 200 , the trigger module 100 and the temperature control module 500 .
  • this embodiment also provides a quantum control system, which includes the quantum control device shown in FIG. 16 .
  • this embodiment also provides a quantum computer, including the quantum control device shown in FIG. 16 , or a quantum control system including the quantum control device shown in FIG. 16 .
  • the quantum control device shown in Figure 16 the quantum control system including the quantum control device shown in Figure 16, and the quantum computer provided by this application have the following advantages:
  • the quantum control device includes a trigger module, a switch module and Microcontroller, the trigger module is electrically connected to the switch module, and is used to output a trigger signal to the switch module, and the switch module is electrically connected to the microcontroller, and is used to select according to the trigger signal
  • the microcontroller is used to set and output the corresponding control signal according to the selected working channel.
  • the microcontroller is integrated with the measurement and control The control port of the board is connected, and the microcontroller will enter the corresponding working mode according to the control signal after receiving the control signal, wherein the control signal is used to control the measurement and control integrated backplane to enter the corresponding working mode .
  • the working channel of the microcontroller is selected through the switch module, and then the control signal is output from the selected working channel to the measurement and control integrated backplane, and the measurement and control integration backplane enters the control signal according to the control signal.
  • the corresponding working mode so as to realize the accurate control and free control of the working mode of the measurement and control integrated backplane.
  • description with reference to the terms “one embodiment”, “some embodiments”, “example” or “specific example” means that a specific feature, structure, material or characteristic described in connection with the embodiment or example Included in at least one embodiment or example of the present application.
  • the schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments.
  • those skilled in the art can combine and combine different embodiments or examples described in this specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

量子控制装置、量子控制系统及量子计算机,量子控制装置(10)包括背板(120)、路由模块(130)、至少一个量子态调控模块(140)、至少一个频率调控模块(150)和至少一个测量模块(160),量子态调控模块(140)、频率调控模块(150)、测量模块(160)和路由模块(130)设置在背板(120)上的插槽中;量子态调控模块(140)、频率调控模块(150)、测量模块(160)均与路由模块(130)通信连接,通过路由模块(130)对外数据交互。利用量子控制装置构建量子芯片专用的量子控制系统的体积和成本将大大缩减,易于实现量子控制系统的集成和扩展,并且控制的量子比特数量可灵活配置,能够满足高量子位量子芯片的测控需求。

Description

量子控制装置、量子控制系统和量子计算机 技术领域
本申请涉及量子计算领域,尤其是涉及一种量子控制装置、量子控制系统和量子计算机。
背景技术
量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子芯片是量子计算机的核心,量子芯片上集成有多位量子比特,为了保证量子比特的正常工作,需要搭建量子控制系统,通过量子控制系统中各种设备为每个量子比特提供各种控制信号,例如频率控制信号、量子态控制信号;此外对于量子比特运行完量子计算的结果,也需要进行读取测量。可想而知,当量子芯片上的量子比特的位数提高至几百位、甚至几千万位,运行更多更复杂的量子计算任务时,量子测量系统内需要的信号的数量也对应增加,走线更加复杂,系统的体积更加庞大。因此量子控制系统的集成和扩展是迫切需要解决的问题。
需要说明的是,公开于本申请背景技术部分的信息仅仅旨在加深对本申请一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本申请的目的在于提供一种量子控制装置、量子控制系统和量子计算机,以解决现有技术中的不足,本申请的控制装置结构采用模块化设计,并包括了用于量子芯片的量子比特调控和测量的全部功能单元,便于实现量子控制系统的集成和扩展。
为达到上述目的,本申请第一方面实施例提出了一种量子控制装置,包括:
背板、路由模块、至少一个量子态调控模块、至少一个频率调控模块、至少一个测量模块;
所述量子态调控模块、所述频率调控模块、所述测量模块和所述路由模块设置在所述背板上的对应插槽中,形成用于量子芯片的测控集成背板;
所述量子态调控模块、所述频率调控模块、所述测量模块均与所述路由模块通信连接,通过所述路由模块对外数据交互,以使所述量子态调控模块输出初始量子态调控信号、所述频率调控模块输出初始频率调控信号以及所述测量模块输出初始测量信号。
可选地,所述量子态调控模块和所述频率调控模块能够调控的量子比特位数大于等于所述测量模块能够读取测量的量子比特位数。
可选地,所述量子态调控模块、所述频率调控模块和所述测量模块均设置有多路输出通道。
可选地,所述量子态调控模块包括第一DAC(Digital-to-Analog Convert,数字模拟转换)单元或第一AWG(Arbitrary Waveform Generator,任意波形发生器)单 元,所述频率调控模块包括第二DAC单元或第二AWG单元,所述测量模块包括ADC/DAC(Analog-to-Digital Convert/Digital-to-Analog Convert,模拟数字转换/数字模拟转换)单元或包括第三DAC单元或第三AWG单元和DAQ(Data Acquisition,数据采集)单元的组合,所述路由模块包括现场可编程逻辑门阵列。
可选地,各所述量子态调控模块、各所述频率调控模块和各所述测量模块均以所述路由模块为中心分布设置在所述背板上的插槽中。
可选地,各所述量子态调控模块、各所述频率调控模块、各所述测量模块到所述路由模块的触发信号传输线路长度分别相等。
可选地,所述路由模块设置在所述背板的中央位置,各所述测量模块紧邻所述路由模块设置。
可选地,所述装置还包括控制模块,所述控制模块设置在所述背板的插槽中,所述控制模块用于获取各所述量子态调控模块、各所述频率调控模块、各所述测量模块的信号延时数据,并通过所述路由模块对外输出,其中,所述信号延时数据来源于各所述量子态调控模块、各所述频率调控模块、各所述测量模块。
可选地,所述装置还包括散热组件,所述散热组件连接所述控制模块,所述控制模块根据所述装置内的温度信息发送温度控制指令至所述散热组件,以控制所述散热组件工作于不同状态。
可选地,所述量子态调控模块、所述频率调控模块、所述测量模块、所述路由模块和所述背板上均设置时钟同步电路,所有所述时钟同步电路采用同一时钟同步基准,用于对所述量子态调控模块、所述频率调控模块、所述测量模块和所述路由模块进行时钟同步控制。
可选地,所述装置还包括机箱,所述背板、所述量子态调控模块、所述频率调控模块、所述测量模块和所述路由模块均设置在机箱内。
可选地,所述装置还包括电源,所述电源设置在机箱内。
本申请的第二方面实施例提出了一种量子控制系统,包括至少一个如上任一项所述的量子控制装置。
可选地,所述系统还包括辅助外围设备,所述辅助外围设备包括若干个本振微波源、射频(Radio Frequency,RF)发射组件、射频(Radio Frequency,RF)收发组件和电压源,所述本振微波源和所述RF发射组件配合所述控制装置产生用于量子比特的量子态信息调控的量子态调控信号,所述电压源配合所述控制装置产生用于量子比特的频率调控的频率调控信号,所述本振微波源和所述RF收发组件配合所述控制装置产生用于量子比特的状态读取的测量信号以及接收量子芯片返回的读取回传信号。
可选地,所述系统还包括若干个微波源,所述微波源配合所述电压源产生用于驱动约瑟夫森参量放大器的泵浦信号。
可选地,所述电压源可以是后续实施例中的高精度电压源。
可选地,所述系统还包括至少一个中控装置,所述中控装置与所述控制装置的所述路由模块通信连接。
可选地,所述系统还包括服务器,所述中控装置、所述辅助外围设备、所述控制装置的所述路由模块和所述控制模块均与所述服务器通信连接。
本申请的第三方面实施例提出了一种量子计算机,包括第一方面实施例所述的量子控制装置,或者,第二方面实施例所述的量子控制系统。
基于上述第一方面实施例,本申请提出的量子控制装置包括至少一个量子态调控模块、至少一个频率调控模块、至少一个测量模块和路由模块,其中,所述量子态调控模块、所述频率调控模块和所述测量模块包括了对量子芯片中量子比特的调控和测量的全部功能单元,整个控制装置采用了模块化结构设计,各所述量子态调控模块、各所述频率调控模块和各所述测量模块和所述路由模块均设置在一块背板上的对应插槽中,集成度高;并且各所述量子态调控模块、所述频率调控模块、所述测量模块均与所述路由模块通信连接,通过所述路由模块对外数据交互,以使装置内布线简单、清晰,易于实现扩展;利用本申请的量子控制装置构建量子芯片专 用的量子控制系统具有高度集成和可扩展性,其体积和成本将大大缩减,并且控制的量子比特数量可灵活配置,能够满足高量子位量子芯片的测控需求。
本申请的目的还在于提供一种量子控制系统和量子计算机,以解决现有技术中的不足,它能够用于完整实现对超导量子芯片的高精度测控操作,系统可扩展性和整体协调性好。
为了实现上述目的,本申请第四方面实施例采用的技术方案如下:
一种量子控制系统,包括:
至少一个信号处理装置,每个所述信号处理装置包括一个第一背板,所述第一背板的背板连接器上插接有多个第一信号处理板卡、多个第二信号处理板卡和一个路由板卡,形成用于量子芯片的测控集成背板,所述多个第一信号处理板卡以及所述多个第二信号处理板卡均连接所述路由板卡;所述第二信号处理板卡用于产生低频信号,所述低频信号为频率调控信号;
至少一个射频(Radio Frequency,RF)收发装置,所述射频收发装置通过所述路由板卡通信连接所述第一信号处理板卡,所述射频收发装置配合与通信之连接的所述第一信号处理板卡用于产生和接收高频信号,所述高频信号为量子态控制信号和测量信号。
如上所述的量子控制系统,其中,可选的,所述多个第一信号处理板卡和所述多个第二信号处理板卡均具有多路信号输出通道和/或多路信号输入通道,每个所述射频收发装置的信号输出通道数量不少于与之连接的所述多个第一信号处理板卡信号输出通道的数量总和。
如上所述的量子控制系统,其中,可选的,所述路由板卡插接在位于所述第一背板中央位置的所述背板连接器上。
如上所述的量子控制系统,其中,可选的,所述高频信号包括用于控制量子比特的量子态控制信号和测量信号,所述测量信号包括读取量子比特的读取输入信号以及读取输出信号。
如上所述的量子控制系统,其中,可选的,所述第一信号处理板卡包括第一AWG(Arbitrary Waveform Generator,任意波形发生器)板卡以及DAQ(Data Acquisition,数据采集)板卡。
如上所述的量子控制系统,其中,可选的,所述低频信号包括用于量子比特和/或可调耦合器的频率控制的脉冲信号。
如上所述的量子控制系统,其中,可选的,各所述信号处理装置还包括多个第三信号处理板卡,所述多个第三信号处理板卡用于产生直流信号,所述直流信号包括用于量子比特和/或可调耦合器的频率控制的频率驱动信号。
如上所述的量子控制系统,其中,可选的,所述第三信号处理板卡包括直流电源(DC Source)板卡(简称“DC板卡”)。
所述第二信号处理板卡包括:
第二AWG板卡,所述第二AWG板卡用于产生所述低频信号。
如上所述的量子控制系统,其中,可选的,所述量子控制系统还包括多个多通道微波源;
所述微波源产生的微波信号用于驱动参量放大器的泵浦信号;
所述第三信号处理板卡产生的所述直流信号还包括用于所述参量放大器的频率控制信号。
如上所述的量子控制系统,其中,可选的,每个所述射频收发装置包括多个射频发射组件、多个射频接收组件和多个微波本振源;
所述射频发射组件连接所述第一信号处理板卡和所述微波本振源,用于产生所述高频信号;
所述射频接收组件连接所述第一信号处理板卡和所述微波本振源,用于对接收的所述高频信号进行变频处理后传输给所述第一信号处理板卡。
如上所述的量子控制系统,其中,可选的,所述射频发射组件和所述射频接收 组件均包括IQ混频器。
如上所述的量子控制系统,其中,可选的,所述微波本振源采用微波点频频率源或可调本振频率源。
如上所述的量子控制系统,其中,可选的,每个所述射频收发装置还包括一个第二背板,每个所述射频收发装置的所述多个射频发射组件和所述多个射频接收组件均插接在所述第二背板的背板连接器上。
如上所述的量子控制系统,其中,可选的,所述第一背板和所述第二背板上均设有控制板卡和电源板卡;
所述第一背板上的所述控制板卡连接所述第一信号处理板卡、所述第二信号处理板卡和所述路由板卡,所述第一背板上的所述电源板卡为所述第一背板及其上的设备供电;
所述第二背板上的所述控制板卡连接所述射频发射组件和所述射频接收组件,所述第二背板上的所述电源板卡为所述第二背板及其上的设备供电。
如上所述的量子控制系统,其中,可选的,所述量子控制系统还包括时钟同步装置;
每个所述信号处理装置和每个所述射频收发装置连接所述时钟同步装置,所述时钟同步装置用于为所述信号处理装置和所述射频收发装置提供同一参考时钟。
如上所述的量子控制系统,其中,可选的,所述量子控制系统还包括中控装置,所有所述路由板卡连接所述中控装置,所述中控装置用于通过各所述路由板卡同步控制所述多个第一信号处理板卡和所述多个第二信号处理板卡。
如上所述的量子控制系统,其中,可选的,所述量子控制系统还包括服务器,所述中控装置和/或所述路由板卡与所述服务器通信。
如上所述的量子控制系统,其中,可选的,所述量子控制系统还包括服务器和网络交换机,每个所述射频收发装置通过所述网络交换机与所述服务器通信,所述路由板卡与所述服务器通信。
基于同一发明构思,本申请第五方面实施例提出了一种量子计算机,包括第四方面实施例任一项所述的量子控制系统。
基于以上任一方面,本申请提出的量子控制系统通过设置至少一个信号处理装置,每个所述信号处理装置包括一个第一背板,所述第一背板上的背板连接器通过插卡的方式插接有多个第一信号处理板卡、多个第二信号处理板卡和一个路由板卡。将所有所述第一信号处理板卡和所述第二信号处理板卡与所述路由板卡连接,通过所述路由板卡统一对外数据交互,利用所述多个第一信号处理板卡、所述多个第二信号处理板卡结合所述路由板卡实现量子控制系统的核心控制功能。相比于现有采用商用仪器构建方式搭建的量子控制系统,本申请的量子控制系统结构和布线复杂度更为精简,系统的集成度高;并设置至少一个射频收发装置,将所述第一信号处理板卡连接所述射频收发装置,通过所述射频收发装置配合与之连接的所述第一信号处理板卡产生和接收高频信号,通过所述第二信号处理板卡产生低频信号,其中,所述高频信号、所述低频信号用于量子比特的调控和读取,由此使得本申请的量子控制系统具备了量子比特调控和读取测量的全部功能。另外,所有所述第一信号处理板卡和所述第二信号处理板卡均通过所述路由板卡对外进行数据交互,有效提高了系统整体协调性,从而能够完整实现对超导量子芯片的高精度测控操作。此外,所述第一信号处理板卡和所述第二信号处理板卡的数量以及所述信号处理装置和所述射频收发装置的数量均能够根据量子芯片的量子比特位数测控需求进行设置,系统的可扩展性强,并由于采用了以背板连接器为高速接口实现了插卡式扩展,在扩展的同时可避免系统核心性能的降低,系统易于维护使用且系统整体协调性好。
本申请的目的还在于提供一种量子控制装置及量子控制系统,以解决现有技术中的缺陷和不足,本申请实施例能够实现对背板上不同功能模块选用的准确控制。
为实现上述目的,本申请第六方面实施例提供了一种量子控制装置,用于对量子芯片的测控集成背板进行控制,包括:
触发模块,用于输出触发信号;
开关模块,电连接所述触发模块,用于依据所述触发信号选通微控制器的工作通道;
微控制器,电连接所述开关模块,用于根据选通的工作通道设定对应的控制信号并输出,其中,所述控制信号用于控制所述测控集成背板进入对应的工作模式。
可选的,所述测控集成背板包括多个功能板卡;
所述开关模块包括多个自锁非复位开关,分别用于通过所述微控制器选通的工作通道控制所述测控集成背板的复位以及各个所述功能板卡的复位。
可选的,还包括第一输出模块,电连接所述微控制器,用于转发所述控制信号至所述测控集成背板。
可选的,还包括温控模块,分别电性连接所述微控制器和所述测控集成背板,用于监测所述测控集成背板的实时温度,并根据目标温度对所述测控集成背板的实时温度进行调节。
可选的,所述温控模块包括多个温度传感器和多个散热器,所述温度传感器和所述散热器分别电性连接所述微控制器;
多个所述温度传感器分别设置在所述测控集成背板上,所述温度传感器用于检测所述测控集成背板的实时温度,并将温度数据传输至所述微控制器;
所述散热器用于接收所述微控制器发送的所述温度数据生成温度调节信号,并根据所述温度调节信号和所述目标温度调节所述测控集成背板的实时温度。
可选的,还包括相互通讯连接的第二输出模块和终端设备;
所述第二输出模块电连接所述微控制器,用于上传所述微控制器、所述开关模块、所述测控集成背板以及所述温控模块的工作状态信息至所述终端设备;
所述终端设备用于接收所述微控制器、所述开关模块、所述测控集成背板以及所述温控模块的工作状态信息,并监控其工作状态。
可选的,所述第二输出模块采用WIFI模块、以太网接口、type-c接口或4G模块中的至少一种与所述终端设备建立通讯。
可选的,所述终端设备包括计算机、手机或者多媒体播放设备中的一种或者多种。
可选的,还包括电源模块,用于向所述微控制器、所述开关模块、所述触发模块以及所述温控模块供电。
可选的,所述微控制器为STM系列芯片、STC系列芯片或ARM系列芯片。
本申请第七方面实施例提供了一种量子控制系统,包括如第六方面实施例所述的量子控制装置。
基于同一发明构思,本申请第八方面实施例提出了一种量子计算机,包括第六方面实施例任一项所述的量子控制装置,或者,第七方面实施例任一项所述的量子控制系统。
与现有技术相比,本申请第六方面实施例提供的量子控制装置、第七方面实施例提供的量子控制系统以及第八方面实施例提供的量子计算机,具有以下有益效果:所述量子控制装置包括触发模块、开关模块以及微控制器,所述触发模块与所述开关模块电性连接,用于输出触发信号至所述开关模块,所述开关模块与所述微控制器电性连接,用于依据所述触发信号选通微控制器的工作通道,所述微控制器用于根据选通的工作通道设定对应的控制信号并输出,本实施例中,具体应用时,将所述微控制器与所述测控集成背板的控制端口连接,所述微控制器接收到所述控制信号后会根据所述控制信号进入对应的工作模式,其中,所述控制信号用于控制所述测控集成背板进入对应的工作模式。本发明通过增设开关模块和微控制器,具体通过开关模块选通微控制器的工作通道,然后控制信号从选通的工作通道输出至测控集成背板,测控集成背板根据所述控制信号进入对应的工作模式,从而实现对测控集成背板的工作模式的准确控制和自由控制。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一实施例所提供的一种量子控制装置结构示意图;
图2示出了本申请一实施例所提供的另一种量子控制装置结构示意图;
图3示出了本申请一实施例所提供的包括控制模块和散热组件的控制装置的结构示意图;
图4示出了本申请一实施例所提供的包括时钟同步电路的控制装置的结构示意图;
图5示出了本申请一实施例所提供的包括机箱和电源的控制装置的结构示意图;
图6示出了本申请一实施例所提供的量子控制系统结构示意图一;
图7示出了本申请一实施例所提供的量子控制系统结构示意图二;
图8示出了本申请一实施例提供的超导量子芯片内部结构组成图;
图9示出了本申请一实施例提供的量子控制系统的结构示意图三;
图10示出了本申请一实施例提供的包括第三信号处理板卡的量子控制系统的结构示意图;
图11示出了本申请一实施例提供的量子控制系统的结构示意图四;
图12示出了本申请一实施例提供的量子控制系统的结构示意图五;
图13示出了本申请一实施例提供的包括时钟同步装置的量子控制系统的结构示意图;
图14示出了本申请一实施例提供的包括中控装置和服务器的量子控制系统的结构示意图;
图15示出了本申请一实施例提供的包括服务器和网络交换机的量子控制系统的结构示意图。
图16示出了本申请一实施例提供的再一种量子控制装置的结构示意图。
附图标记说明:
10-控制装置,20-本振微波源,30-RF发射组件,40-高精度电压源,50-RF收发组件,60-中控装置,70-网络交换机,80-机柜,90-服务器,1-量子控制系统;120-背板,130-路由模块,140-量子态调控模块,150-频率调控模块,160-测量模块,1401-第一DAC单元,1501-第二AWG单元,1601-ADC/DAC单元,170-控制模块,180-散热组件,190-电源,110-机箱;
100-触发模块;200-开关模块;300-微控制器;400-测控集成背板;500-温控模块;600-终端设备;700-电源模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解,本申请中附图仅起到说明和描述的目的,并不用于限定本申请的保护范围。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
一般地,一个量子芯片上设有多个量子比特(也可称之为量子位)以及数据传输线,每个量子比特包括相互耦合连接的探测器和量子比特装置,其中,量子比特装置可以为利用超导约瑟夫森结和对地电容构成的人造超导量子比特,探测器可以为谐振腔。量子比特装置上设置有第一控制信号线和第二控制信号线,与量子比特装置耦合连接的探测器上设有第三控制信号线,其中,第一控制信号线用于传输对 量子比特装置进行量子态信息调控的量子态调控信号,第二控制信号线用于传输对量子比特装置进行频率参数调控的频率调控信号,而第三控制信号线既用于传输对探测器进行测量的测量信号又用于将探测器返回的读取回传信号输出,以实现对量子比特装置状态的间接读取测量。因此,用于量子芯片中量子比特调控和测量的量子控制系统需要生成并输出三种控制信号分别提供给第一至第三控制信号线,以实现对量子芯片中量子比特的调控和测量。
如图1所示,本申请的一个实施例提供了一种量子控制装置,所述控制装置10包括背板120、路由模块130和至少一个量子态调控模块140、至少一个频率调控模块150、至少一个测量模块160,所述量子态调控模块140、所述频率调控模块150、所述测量模块160和所述路由模块130设置在所述背板120上的插槽中。所述量子态调控模块140、所述频率调控模块150、所述测量模块160、所述路由模块130以及所述背板120可以形成用于量子芯片的测控集成背板。所述量子态调控模块140、所述频率调控模块150、所述测量模块160均与所述路由模块130通信连接,通过所述路由模块130对外数据交互,以使所述量子态调控模块140和所述频率调控模块150分别输出初始量子态调控信号和初始频率调控信号以及控制所述测量模块160输出初始测量信号。
本申请实施例提出的量子控制装置中的所述量子态调控模块140、所述频率调控模块150、所述测量模块160是对量子芯片中量子比特的调控和测量的全部功能单元,通过本申请实施例可以提供用于量子芯片中量子比特调控和测量的全部功能信号;整个控制装置采用了模块化结构设计,各所述量子态调控模块140、各所述频率调控模块150和各所述测量模块160和所述路由模块130均设置在一块背板120上的对应插槽中,集成度高;各所述量子态调控模块140、所述频率调控模块150、所述测量模块160均与所述路由模块130通信连接,通过所述路由模块130对外数据交互,使得模块间的布线简单、清晰,易于扩展。
需要说明的是,本申请实施例的所述控制装置虽包括了完成量子芯片上的量子比特调控和测量的全部功能单元,但基于低成本、易集成和扩展、易维护、输出信号的高可靠性等因素考虑,在硬件架构方面,将所述控制装置10设计成为对量子芯片执行控制操作的量子控制系统的控制核心单元,而并不完全等同于完整的量子控制系统。因此本申请实施例的所述控制装置需要配套使用相关的辅助外围设备以形成完整的量子控制系统来完成量子芯片上的量子比特调控和测量操作。
具体的,所述路由模块130接收到外部服务器发送的量子计算任务后,向需要参与执行量子计算任务的所述量子态调控模块140和所述频率调控模块150发送量子比特调控指令和数据以及向所述测量模块160发送量子比特读取指令和数据,以使所述量子态调控模块140生成并输出包含量子态调控参数的初始量子态调控信号,所述频率调控模块150生成并输出包含量子比特频率调控参数的初始频率调控信号,所述测量模块160生成并输出包含量子比特状态读取参数的初始测量信号。
所述初始量子态调控信号发送至与所述控制装置配合使用的辅助外围设备处理成量子态调控信号并通过所述第一控制信号线提供给量子芯片以实现对量子比特装置的量子态信息调控;所述初始频率调控信号发送至与所述控制装置配合使用的辅助外围设备处理成频率调控信号并通过所述第二控制信号线提供给量子芯片以实现对量子比特装置的频率参数调控;所述初始测量信号发送至与所述控制装置配合使用的辅助外围设备处理成测量信号并通过所述第三控制信号线提供给量子芯片以对量子比特装置的状态读取测量;同时所述测量模块160还用于采集由所述第三控制信号线输出的量子比特装置的读取回传信号,并发送至所述路由模块130进行处理后输出至外部服务器。
另外,所述频率调控模块150还可以用于量子芯片中可调谐耦合量子比特的调控,因此,所述量子态调控模块140和所述频率调控模块150能够调控的量子比特位数大于等于所述测量模块160能够读取测量的量子比特位数。
需要注意的是,在图1中所述控制装置中各模块的数量为一个,在实际应用时, 所述控制装置中各模块的数量可根据需要设置更多,在此不做限制,图1仅是为了便于本领域技术人员更好理解本申请技术方案所做的示意简图,不能视为对本申请的任何限制。在实际应用时,所述量子态调控模块140、所述频率调控模块150、所述测量模块160的数量需要根据各模块的信号输出通道的数量结合需要调控和测量的量子芯片的量子比特位数进行设定,必要时也需要考虑量子芯片中存在可调谐耦合量子比特的情形。
需要补充的是,在实际应用中,所述第三控制信号线可以与所述探测器一一对应,但为了简化量子芯片的数据传输线结构,在量子芯片结构设计时也可以利用一根所述第三控制信号线对应多个所述探测器。例如,将一根所述第三控制信号线对应五个所述探测器,从而可以使用一根所述第三控制信号线实现对五个所述量子比特装置的状态读取测量。此种情况下,可以将一个所述测量模块160用于对量子芯片中五个量子比特的状态读取测量,此时,所述测量模块160的一路信号输出通道是输出一路初始测量信号,关于所述初始测量信号的合成与分解技术并不属于本申请保护的内容,在这里并不做详细介绍。
为了进一步提升所述控制装置所能调控的量子芯片中量子比特的数量,在本申请的一个实施例中,每个所述量子态调控模块140、所述频率调控模块150和所述测量模块160的信号输出通道各设置为多路,即每个所述量子态调控模块140、所述频率调控模块150、所述测量模块160的信号输出通道各为2路或2路以上,此时所述量子态调控模块140、所述频率调控模块150、所述测量模块160可以输出的信号路数最大可达到各模块的信号输出通道数量。例如,当单个所述量子态调控模块140、所述频率调控模块150和所述测量模块160的信号输出通道各为5路时,则此时所述控制装置能够调控的量子芯片中量子比特的数量将是单个所述量子态调控模块140、所述频率调控模块150和所述测量模块160的信号输出通道为1路时数量的5倍。此时也有效提高了所述控制装置的集成度和可扩展性。
如图2所示,作为本申请实施例的具体实施,所述量子态调控模块140包括第一DAC单元1401或第一AWG单元,所述频率调控模块150包括第二DAC单元或第二AWG单元1501,所述测量模块160包括ADC/DAC单元1601或包括第三DAC单元或第三AWG单元和DAQ单元的组合;其中,所述第一DAC单元1401或第一AWG单元用于生成所述初始量子态调控信号;所述第二DAC单元或第二AWG单元1501用于生成所述初始频率调控信号;所述ADC/DAC单元1601或第三DAC单元或第三AWG单元用于生成所述初始测量信号并接收读取回传信号。需要注意的是,在图2中仅以所述量子态调控模块140包括第一DAC单元1401,所述频率调控模块150包括第二AWG单元1501,所述测量模块160包括ADC/DAC单元1601这一种实施方式进行示例说明,在实际应用时,所述控制装置中所述量子态调控模块140、所述频率调控模块150和所述测量模块160的信号产生单元可根据需要选择不同的功能单元实现,在此不做限制,图2仅是为了便于本领域技术人员更好理解本申请技术方案所做的示意简图,不能视为对本申请的任何限制。
在量子控制系统中,用于对量子比特的量子态信息调控的第一控制信号线需要接收到包含量子态调控信息的微波脉冲信号,而该微波脉冲信号是基于所述DAC单元1401输出的所述初始量子态调控信号产生。用于对量子比特的频率参数调控的第二控制信号线需要接收到微波脉冲信号,该微波脉冲信号是基于所述第二AWG单元1501输出的所述初始频率调控信号产生。用于对量子比特的状态读取的第三控制信号线需要接收到读取脉冲信号,所述读取脉冲信号是基于所述ADC/DAC单元1601输出的所述初始测量信号产生。因此,所述量子态调控模块140、所述频率调控模块150、所述测量模块160包括了对量子芯片中量子比特的调控和测量的全部功能单元。
所述路由模块130作为所述量子态调控模块140、所述频率调控模块150和所述测量模块160对外数据交互的器件,需要具有数据转发与处理功能,并具备较高的数据传输时效性。一般可选用FPGA(Field Programmable Gate Array)、MCU(Microcontroller Unit))、MPU(Microprocessor Unit)或DSP(Digital Signal Processor) 等。作为本申请实施例的具体实施,所述路由模块130包括现场可编程逻辑门阵列(FPGA),利用FPGA作为中央处理器,以此保证所述路由模块130具有较高的功能集成度和数据处理速度。另外还可以通过配套使用高速接口电路与所述量子态调控模块140、所述频率调控模块150和所述测量模块160之间数据的高效、可靠地交互。
对于量子计算机中需要执行的量子计算任务来说,随着量子计算任务的种类和复杂度的提升,需要参与的量子比特数量也越来越多,即量子控制系统的输出通道也越来越多。针对需要执行的复杂量子计算任务,需要多个所述初始量子态调控信号和所述初始频率调控信号,即需要多个所述量子态调控模块140、所述频率调控模块150共同作用,共同作用的所有模块输出的信号需要保持同步触发才能精准完成量子计算任务。
在本申请的一个实施例中,所述量子态调控模块140、所述频率调控模块150和所述测量模块160均通过所述背板120上的通信线路与所述路由模块130通信连接。为了便于实现信号同步触发,在本申请的一个实施例中,各所述量子态调控模块140、各所述频率调控模块150、各所述测量模块160到所述路由模块130的触发信号传输线路长度分别相等,即属于同种功能类型的每个模块到所述路由模块130的触发信号传输线路等长,如每个所述量子态调控模块140到所述路由模块130的触发信号传输线路等长。由于各个所述量子态调控模块140、所述频率调控模块150、所述测量模块160均与所述路由模块130连接,并由所述路由模块130作为数据收发站对外进行数据交互,因此设置各功能类型的模块到所述路由模块130的触发信号传输线路长度等长,可以有效保证所述路由模块130同时发送到多个所述量子态调控模块140、所述频率调控模块150、所述测量模块160的触发信号同步,以使这些所述量子态调控模块140、所述频率调控模块150、所述测量模块160对多个量子比特的量子态调控、频率调控及量子比特状态读取的相关操作信号可以同步触发,提高了量子计算任务执行结果的精确性。
可选的,在本申请的一个实施例中,各所述量子态调控模块140、各所述频率调控模块150和各所述测量模块160均以所述路由模块130为中心分布设置在所述背板120上的各个插槽中。通过这样一种位置布局可以保证各个所述量子态调控模块140、各所述频率调控模块150和各所述测量模块160到所述路由模块130的触发信号传输线路长度最短,可有效提高信号时效性。另外,这样一种位置布局设计也使得所述控制装置中总的通信线路的长度最短,可以有效节约硬件成本。
可选的,在本申请的一个实施例中,所述路由模块130设置在所述背板120的中央位置,这样可进一步有利于实现各所述量子态调控模块140、各所述频率调控模块150和各所述测量模块160到所述路由模块130的触发信号传输线路长度最短化。此外,量子比特在执行量子计算任务时,对量子芯片施加的量子态调控信号、测量信号具有严格的时序要求,并且由于量子比特的相干时间短,量子比特对所述量子态调控信号、测量信号和采集信号的时效性比较敏感,因此,对所述量子态调控模块140输出的所述初始量子态调控信号和所述测量模块160输出的所述初始测量信号的时效性要求高,并且所述测量模块160在使用过程中一般不做校准。为了确保所述量子态调控模块140和所述测量模块160输出的信号具有长期稳定的高时效性,作为本申请实施例的具体实施,将各所述测量模块160紧邻所述路由模块130设置,将各所述量子态调控模块140环绕设置在所述路由模块130和/或所述测量模块160的两侧,而将各所述频率调控模块150环绕设置在所述量子态调控模块140的两侧,这样使得所述路由模块130和各所述量子态调控模块140、所述测量模块160之间的通信线路最短,同时也可确保各所述量子态调控模块140、所述测量模块160与所述路由模块130处于同一温区,两者之间数据交互时的线路延时短且信号受环境温度影响小。
通过前面对所述控制装置中各个器件的硬件结构的各种设计,在理想状态下通过硬件设计即可以实现保证各模块输出的对于多个量子比特的操控、测量和读取操 作的信号同步触发了。然而在实际应用过程中,由于器件工作环境的温度变化、接插件的插拔等各种不可控的影响,依然会导致信号的延时出现误差,使得所述控制装置同时输出的对于多个量子比特的操控、测量和读取操作的信号同步触发难以保证,因此需要在每次任务开始前对同步触发进行校准(也可以理解为线路延时的校准)。为了实现对信号同步触发的校准,如图3所示,所述装置还包括控制模块170,所述控制模块170设置在所述背板120的插槽中,所述控制模块170用于通过所述背板120获取各所述量子态调控模块140、各所述频率调控模块150和各所述测量模块160的信号延时数据,并对外输出。由设置在所述控制装置外部的中控装置进行统一汇总处理。例如,所述中控装置可以根据延时数据情况,判断各个模块获得触发信号的延时情况,以协调不同模块的信号延时,使得所有的模块获得触发信号是等延时的。
此外,还可以使用模块时钟同步的方式来保证触发同步,如图4所示,所述量子态调控模块140、所述频率调控模块150、所述测量模块160、所述路由模块130和所述背板120上均设置时钟同步电路,所有所述时钟同步电路采用同一时钟同步基准。其中,将位于所述背板120上的所述时钟同步电路作为时钟同步主控,将位于所述量子态调控模块140、所述频率调控模块150、所述测量模块160、所述路由模块130上的各所述时钟同步电路作为时钟同步从属,由时钟同步主控管理各时钟同步从属以对所述量子态调控模块140、所述频率调控模块150、所述测量模块160和所述路由模块130进行时钟同步控制,通过对所述控制装置中各模块进行时钟同步控制,可有效保证信号输出的时序是同步的。
可选的,如图3所示,在本申请的一个实施例中,为了确保所述控制装置内各器件能够稳定可靠地工作,所述控制装置还可以包括散热组件180,所述散热组件180连接所述控制模块170,所述控制模块170收到来自于所述控制装置内多处的温度信息,并根据温度信息来发送温度控制指令至所述散热组件180,以控制所述散热组件180工作于不同状态,以为所述控制装置内部器件提供较佳的工作环境温度,同时也有效避免器件工作环境的温度变化导致信号延时的影响。
可选的,如图5所示,在本申请的一个实施例中,所述装置还包括机箱110,将所述背板120、所述量子态调控模块140、所述频率调控模块150、所述测量模块160和所述路由模块130集成设置在所述机箱110内。将整个所述控制装置装配在一个机箱110中,整机占用空间小,便于扩展。具体的,所述机箱110可以采用VPX机箱110、CPCI机箱110或者PXIE机箱110,在功能模块集成方面均能实现本申请实施例的量子控制功能需求。另外,为了进一步提高所述控制装置的集成度,可以将各所述量子态调控模块140、所述频率调控模块150、所述测量模块160和所述路由模块130分别集成在一个板卡上,并将各板卡插入对应的所述插槽中,实现所述控制装置内的各所述量子态调控模块140、所述频率调控模块150、所述测量模块160和所述路由模块130之间的集成组装。示例性的,所述量子态调控模块140优选采用基于FMC(The FPGA Mezzanine Card)的DAC板卡,所述频率调控模块150优选采用基于FMC的AWG板卡,所述测量模块160优选采用基于FMC的ADC/DAC板卡。
可选的,在本申请的一个实施例中,所述控制装置还可以包括电源190,所述电源190设置在所述机箱110内。具体的,将所述电源190集成装配在所述背板120的电源190专用插槽中。优选地,所述电源190采用线性电源或开关电源。
如图6所示,基于同一发明构思,本申请的一个实施例还提出了一种量子控制系统1,包括至少一个如上述一些实施例提出的量子控制装置和多个辅助外围设备,所述辅助外围设备用于与所述控制装置配合以生成所述量子态调控信号、所述频率调控信号和所述测量信号以及接收所述读取回传信号,从而实现对量子芯片中量子比特的调控和测量操作。在本实施例中,所述辅助外围设备包括但不限于微波源、高精度电压源40、本振微波源20、RF发射组件30和RF收发组件50。其中,一个多通道所述量子态调控模块140结合一个所述本振微波源20和一个多通道RF发射 组件30能够产生多路所述量子态调控信号;一个多通道所述频率调控模块150结合一个多通道高精度电压源40能够产生一个多路所述频率调控信号;一个多通道所述测量模块160结合一个所述本振微波源20和一个多通道RF收发组件50能够产生多路所述测量信号;同时,所述测量模块160能够通过所述多通道RF收发组件50接收多路所述读取回传信号。此外,还可以通过所述微波源配合所述高精度电压源产生约瑟夫森参量放大器(Josephson Parametric Amplifier,JPA)工作所需的泵浦信号。所述约瑟夫森参量放大器设置在所述第三控制信号线上,用于对所述读取回传信号进行放大处理,以保证所述控制装置获取到的是高精准的读取回传信号,确保量子计算任务执行结果的精确性。
如图7所示,在本申请的一个实施例中,所述量子控制系统1还可以包括至少一个机柜80,至少一个所述控制装置10和多个所述辅助外围设备设置在一个所述机柜80内,其中,每个所述机柜80中的所述辅助外围设备的数量根据多个所述控制装置10的需求设置,以实现与每个所述控制装置10的各所述量子态调控模块140、所述频率调控模块150、所述测量模块160和所述路由模块130的共同作用。另外,所述量子控制系统1还可以包括至少一个中控装置60,所述中控装置60与位于每个所述机柜80的每个所述控制装置10的所述路由模块130通信连接,以实现信号同步触发的功能,其通信线路可以选用网络交换机、高频线缆或网线直连的任一种或几种组合方式实现。
此外,所述量子控制系统1还可以包括服务器90,服务器90可以是单个服务器,也可以是一个服务器组。服务器组可以是集中式的,也可以是分布式的,例如,服务器90可以是分布式系统。所述服务器90用于产生并输出量子计算任务。所述服务器90与位于每个所述机柜80的每个所述控制装置10的所述路由模块130和所述中控装置60通信连接,其通信线路可以选用网络交换机、高频线缆或网线直连的任一种或几种组合方式实现。可选的,所述量子控制系统还可以包括至少一个网络交换机70,在每个所述机柜80内设置至少一个所述网络交换机70,各所述辅助外围设备通过所述网络交换机70与所述服务器90通信连接。
由此可见,随着量子芯片上量子比特位数的增加,在实现所述量子控制系统时,可以以所述控制装置10作为控制核心单元进行扩展即可,所述控制装置10能够调控和测量的量子比特位数也可按需扩展,通过按需设置所述辅助外围设备、所述中控装置60和所述网络交换机70结合所述服务器90实现所述量子控制系统1的量子芯片测控功能。由此使得构建的量子芯片专用的量子控制系统的体积和成本将大大缩减,具备高度集成和可扩展性,并且控制的量子比特数量可灵活配置,能够满足高量子位量子芯片的测控需求。
基于同一发明构思,本申请的一个实施例还提出了一种量子计算机,包括上述的量子控制系统1。
量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子芯片是量子计算机的核心,量子芯片上集成有多位量子比特,为了保证量子比特的正常工作,需要搭建量子控制系统,通过量子控制系统中各种设备为每位量子比特提供各种控制信号,例如频率控制信号、量子态控制信号;此外对于量子比特运行完量子计算任务的结果,也需要进行读取测量。考虑到量子芯片必然持续扩展的性质,量子控制系统所需具备的核心功能是需要可扩展的。但是现有采用商用仪器搭建的量子控制系统的可扩展性差,系统的核心性能和整体协调性不佳。
为此,本申请实施例还提供一种量子控制系统和量子计算机,以解决现有技术中的不足,它能够用于完整实现对超导量子芯片的高精度测控操作,系统可扩展性和整体协调性好。
请参考图8,图8为本申请一示例性实施例提供的一个超导量子芯片的内部结构,一个超导量子芯片上设有多位量子比特以及数据传输线,每位量子比特包括相互耦 合连接的探测器和量子比特装置。其中,量子比特装置上设置有比特调控信号线和磁通调制信号线,与量子比特装置耦合连接的探测器上设有读取总线。其中,比特调控信号线用于传输对量子比特装置进行量子态信息调控的量子态控制信号,磁通调制信号线用于传输对量子比特装置进行频率控制的脉冲信号,而读取总线既用于传输对探测器进行测量的测量信号又用于将探测器反馈的读取回传信号输出,以实现对量子比特装置状态的间接读取测量。其中,对探测器进行测量的测量信号为读取量子比特的读取输入信号,探测器反馈的读取回传信号为读取量子比特的读取输出信号。因此,用于超导量子芯片中量子比特调控和读取测量的量子控制系统需要生成并输出量子态控制信号、频率控制信号、读取输入信号分别提供给比特调控信号线、磁通调制信号线和读取总线。同时需要从读取总线中读取量子比特的读取输出信号,以实现对超导量子芯片中量子比特的调控和读取测量。
请参考图9,图9是本申请一示例性实施例提供的一种量子控制系统,所述量子控制系统包括至少一个信号处理装置和至少一个射频收发装置。其中,每个所述信号处理装置包括一个第一背板,所述第一背板的背板连接器上插接有多个第一信号处理板卡、多个第二信号处理板卡和一个路由板卡,所述多个第一信号处理板卡以及所述多个第二信号处理板卡均连接所述路由板卡;所述第二信号处理板卡用于产生低频信号。所述射频收发装置连接所述第一信号处理板卡,所述射频收发装置配合与之连接的所述第一信号处理板卡用于产生和接收高频信号。所述第一背板以及第一背板的背板连接器上插接的多个第一信号处理板卡、多个第二信号处理板卡和一个路由板卡可以形成用于量子芯片的测控集成背板。
其中,所述高频信号和所述低频信号用于量子比特的调控和读取。具体的,所述高频信号包括控制量子比特的量子态控制信号、读取量子比特的读取输入信号以及读取输出信号,所述低频信号包括用于量子比特和/或可调耦合器的频率控制的脉冲信号。由此使得本申请的量子控制系统具备了量子比特调控和读取测量的全部功能。可选地,所述低频信号可以为频率调控信号。可选地,所述高频信号可以为量子态控制信号和测量信号。
目前,在基于可调耦合器的超导量子芯片架构中,为了在两个量子比特间实现两比特量子逻辑门(简称“两比特门”)操作,利用可调耦合器实现两个量子比特的间接耦合,这种方案中两个量子比特通过可调耦合器中的虚光子实现量子态转换,从而实现两比特量子逻辑门操作。其中,可调耦合器的工作原理是通过调节可调耦合器的频率,用于可调耦合器的频率控制的脉冲信号亦是传输至相应的所述磁通调制信号线中。因此,对于基于可调耦合器的超导量子芯片的量子比特调控和读取,所述第二信号处理板卡产生的所述低频信号包括用于量子比特的频率控制的脉冲信号和用于可调耦合器的频率控制的脉冲信号,以满足不同对象的频率控制的功能需求;以使得本申请的量子控制系统具备更广泛的适用范围。
另外,所有所述第一信号处理板卡、所述第二信号处理板卡和所述路由板卡均通过插卡的方式插接在所述第一背板的背板连接器上,并利用所述多个第一信号处理板卡、所述多个第二信号处理板卡结合所述路由板卡实现量子控制系统的核心控制功能。
相比于现有采用商用仪器构建方式搭建的量子控制系统,本申请的量子控制系统结构和布线复杂度更为精简,系统的集成度高。通过所述信号处理装置和所述射频收发装置的配合,将所述第一信号处理板卡连接所述射频收发装置,通过所述射频收发装置配合与之连接的所述第一信号处理板卡产生和接收高频信号,通过所述第二信号处理板卡产生低频信号,所述高频信号和所述低频信号用于量子比特的调控和读取,由此使得本申请的量子控制系统具备了量子比特调控和读取测量的全部功能。所述路由板卡上设有对外的数据交互接口,所有所述第一信号处理板卡和所述第二信号处理板卡均通过所述路由板卡对外进行数据交互,由所述路由板卡进行统一调配,有效提高了系统整体协调性,从而能够完整实现对超导量子芯片的高精度测控操作。
可选的,请继续参见图9,本申请一示例实施例的所述量子控制系统中,所述路由板卡插接在位于所述第一背板中央位置的所述背板连接器上。所述多个第一信号处理板卡和所述多个第二信号处理板卡以所述路由板卡为中心分布在所述第一背板上。这样可以使得所述第一信号处理板卡和所述第二信号处理板卡到所述路由板卡上的信号线路长度最短化,有效节约系统成本的同时,可有效保证所述第一信号处理板卡和所述第二信号处理板卡与所述路由板卡交互的数据在信号线路传输时的信号线路延时最小化。
所述路由板卡作为所述第一信号处理板卡和所述第二信号处理板卡对外数据交互的统一调配器件,需要具有数据转发与处理功能,并具备较高的数据传输时效性。一般可选用FPGA(Field Programmable Gate Array)、MCU(Microcontroller Unit))、MPU(Microprocessor Unit)或DSP(Digital Signal Processor)等。作为本申请实施例的具体实施,所述路由板卡包括现场可编程逻辑门阵列(FPGA),利用FPGA作为中央处理器,以此保证所述路由板卡具有较高的功能集成度和数据处理速度。另外还可以通过配套使用高速接口电路与所述第一信号处理板卡和所述第二信号处理板卡之间数据的高效、可靠地交互。
此外,所述背板连接器采用高速信号传输连接器,诸如VPX、CPCI、PXIe等总线使用的信号连接器,数据传输带宽可以高达10Gb/s,可以支持多种并行和串行传输协议,这在一定程度上也能够有效保证了所述信号处理装置上信号传输的时效性。
需要注意的是,在图9中所述信号处理装置和所述射频收发装置的数量为一个。其中,所述第一信号处理板卡、所述第二信号处理板卡的数量各为三个。在实际应用时,所述信号处理装置和所述射频收发装置以及所述信号处理装置中所述第一信号处理板卡、所述第二信号处理板卡的数量可根据需要设置更多,在此不做限制。图9仅是为了便于本领域技术人员更好理解本申请技术方案所做的示意简图,不能视为对本申请的任何限制。
可选的,所述第二信号处理板卡的输出信号可以直接带有直流偏置,可以直接用于量子比特和/或可调耦合器的频率控制,这样既简化了系统结构也一定程度上提高了可靠性,同时降低了系统成本。然而经申请人的研究发现,在不采用由低频信号和直流信号共同用于量子比特和/或可调耦合器的频率控制时,所获得的频率控制精度不甚理想。因此,请参见图10,本申请一示例实施例的所述量子控制系统中,各所述信号处理装置还包括多个第三信号处理板卡,所述多个第三信号处理板卡插接在所述背板连接器上,用于产生直流信号,所述直流信号包括用于量子比特和/或可调耦合器的频率控制的频率驱动信号。示例性的,所述用于量子比特和/或可调耦合器的频率控制的频率驱动信号和低频信号均通过所述磁通调制信号线送入超导量子芯片中。另外,所述第三信号处理板卡的数量可根据实际应用需要设置,在此不做限制。
可选的,所述多个第一信号处理板卡、所述多个第二信号处理板卡和所述第三信号处理板卡均具有多路信号输出通道和/或多路信号输入通道,每路信号输出通道能够输出一路信号,每路信号输入通道能够输入一路信号。每个所述射频收发装置的信号输出通道数量不少于与之连接的所述多个第一信号处理板卡信号输出通道的数量总和。通过增加信号输出通道和/或信号输入通道的数量,提高了每个所述信号处理装置的集成度,也有效提升了所述量子控制系统能够调控和读取测量的量子比特位数,以满足高量子位量子芯片的测控需求。
可选的,请参见图11,所述第一信号处理板卡包括第一AWG板卡以及DAQ板卡。其中,所述第一AWG板卡用于产生低频信号并传输至所述射频收发装置,所述射频收发装置基于所述低频信号产生并输出所述高频信号。所述低频信号包括初始量子态控制信号和初始读取输入信号,基于所述低频信号产生的所述高频信号包括量子态控制信号和读取输入信号。同时所述射频收发装置接收由所述读取总线输出的所述高频信号并进行变频处理后传输至所述DAQ板卡。所述读取总线输出的所述高频信号即为所述读取输出信号,所述DAQ板卡用于采集基于所述读取输出信号 变频产生的低频信号,基于所述读取输出信号变频产生的所述低频信号为初始读取输出信号。
需要说明的是,所述第一AWG板卡包括FPGA,利用FPGA作为中央处理器设计实现,所述第一AWG板卡具有多路信号输出通道。其中,一路信号输出通道输出一路用于产生所述量子态控制信号或所述读取输入信号的所述低频信号。所述DAQ板卡具有多路信号输入通道,其中,一路信号输入通道接收一路基于所述读取输出信号变频产生的所述低频信号。需要补充的是,在实际应用中,所述读取总线可以与所述探测器一一对应,但为了简化超导量子芯片的数据传输线结构,在超导量子芯片结构设计时也可以利用一根所述读取总线对应多个所述探测器。例如,将一根所述读取总线对应五个所述探测器,以使用一根所述读取总线实现对五个所述量子比特装置的状态读取测量。
此种情况下,可以将与一根所述读取总线连接的一个所述第一AWG板卡和一个所述DAQ板卡用于对超导量子芯片中五个量子比特的状态读取测量。此时,所述第一AWG板卡的一路信号输出通道是输出一路所述初始读取输入信号,所述DAQ板卡的一路信号输入通道是输入一路所述初始读取输出信号。关于所述初始读取输入信号的合成与所述初始读取输出信号的分解技术并不属于本申请保护的内容,在这里并不做详细介绍。
需要说明的是,由于所述第一AWG板卡需要产生并输出所述初始量子态控制信号和所述初始读取输入信号两种类型的低频信号,而所述DAQ板卡只需接收所述初始读取输出信号。因此,所述第一AWG板卡的数量至少为两个,所述DAQ板卡的数量可以为一个。在图11中所述第一AWG板卡设置为两个以及所述DAQ板卡设置为一个。而在实际应用时,所述第一AWG板卡以及所述DAQ板卡的数量可根据需要设置更多,在此不做限制。图11仅是为了便于本领域技术人员更好理解本申请技术方案所做的示意简图,不能视为对本申请的任何限制。
此外,所述第一信号处理板卡还可以包括ADDA(Analog-to-Digital Convert/Digital-to-Analog Convert,模拟数字转换/数字模拟转换)板卡,利用一个所述ADDA板卡替代若干个所述第一AWG板卡和一个所述DAQ板卡。所述ADDA板卡一方面用于产生低频信号并传输至所述射频收发装置,在所述射频收发装置产生并输出所述读取输入信号,另一方面用于采集由所述射频收发装置对所述读取输出信号进行变频处理后产生的低频信号。所述ADDA板卡具有多路信号输入通道和多路信号输出通道。
可选的,请继续参见图11,所述第二信号处理板卡包括第二AWG板卡,所述第二AWG板卡用于产生所述低频信号。所述低频信号包括用于量子比特和/或可调耦合器的频率控制的脉冲信号。所述第二AWG板卡包括FPGA,利用FPGA作为中央处理器设计实现。
可选的,请继续参见图11,所述第三信号处理板卡包括DC板卡,所述DC板卡用于产生所述直流信号,所述DC板卡具有多路信号输入通道和/或多路信号输出通道。其中,一路信号输出通道输出一路所述直流信号。所述DC板卡具有高精度电压源的功能。
可选的,超导量子芯片的每根所述读取总线上设有一个所述参量放大器,用于放大所述读取输出信号,从而实现高保真度的读取量子比特的状态信息。请继续参见图11,所述量子控制系统还包括多个多通道微波源。所述多通道微波源产生的微波信号用于驱动参量放大器的泵浦信号。所述微波源的一个通道输出一路所述微波信号,一路所述微波信号可以用于驱动一个所述参量放大器。此外,所述第三信号处理板卡产生的所述直流信号还用于所述参量放大器的频率控制信号,以将所述参量放大器的工作频率调制到合适的频率位置。示例的,所述参量放大器可以为约瑟夫森参量放大器、阻抗匹配参量放大器等。
可选的,请参见图12,每个所述射频收发装置包括多个射频发射组件、多个射频接收组件和多个微波本振源,所述射频发射组件连接所述第一信号处理板卡和所 述微波本振源,用于产生所述高频信号。所述射频接收组件连接所述第一信号处理板卡和所述微波本振源,用于对接收的所述高频信号进行变频处理后传输给所述第一信号处理板卡。示例性的,每个所述射频发射组件连接一个所述第一AWG板卡,由所述第一AWG板卡输出的所述低频信号和所述微波本振源输出的微波信号在所述射频发射组件中产生所述高频信号。其中,所述高频信号包括所述量子态控制信号和所述读取输入信号,所述低频信号包括所述初始量子态控制信号和所述初始读取输入信号。
所述射频接收组件连接所述DAQ板卡,由所述射频接收组件接收所述高频信号并和所述微波本振源输出的微波信号在所述射频接收组件中进行变频处理形成低频信号,所述DAQ板卡采集由所述射频接收组件产生的所述低频信号。其中,所述高频信号为所述读取输出信号,所述低频信号为所述初始读取输出信号。示例性的,所述射频发射组件采用二次变频技术或IQ混频技术产生所述高频信号,所述射频接收组件采用二次变频技术或IQ混频技术对接收的所述高频信号进行变频处理。
可选的,所述射频发射组件和所述射频接收组件均包括IQ混频器。每个所述射频发射组件和每个所述射频接收组件均具有多路信号输出通道和/或多路信号输入通道,所述射频发射组件和所述射频接收组件的一路信号输入通道或一路信号输出通道上均设有一个所述IQ混频器。示例性的,所述第一AWG板卡的输出端口连接所述射频发射组件的IQ混频器的I端口和Q端口,所述微波本振源连接所述射频发射组件的IQ混频器的LO端口,所述比特调控信号线和所述读取总线的输入端口连接所述射频发射组件的IQ混频器的RF端口;所述第一AWG板卡输出的所述低频信号和所述微波本振源输出的所述微波信号在所述射频发射组件的IQ混频器中混频产生所述高频信号。所述DAQ板卡的输入端口连接所述射频接收组件的IQ混频器的I端口和Q端口,所述微波本振源连接所述射频接收组件的IQ混频器的LO端口,所述读取总线的输出端口连接所述射频接收组件的IQ混频器的RF端口;所述读取总线输出的所述高频信号和所述微波本振源输出的所述微波信号在所述射频接收组件的IQ混频器中混频产生所述低频信号。
可选的,为了降低系统成本,所述微波本振源可以采用微波点频频率源,所述微波点频频率源能够输出多个微波点频频率信号。而为了提高系统集成度,所述微波本振源可以采用可调本振频率源。
可选的,请继续参见图12,为了进一步提高系统集成度和可扩展性,每个所述射频收发装置还包括一个第二背板,每个所述射频收发装置的所述多个射频发射组件和所述多个射频接收组件均插接在所述第二背板的背板连接器上。
可选的,请继续参见图12,为了进一步提高系统集成度和可扩展性,所述第一背板和所述第二背板上均设有控制板卡和电源板卡。所述第一背板上的所述控制板卡连接所述第一信号处理板卡、所述第二信号处理板卡和所述路由板卡,所述控制板卡的功能包括但不限于为用于监控所述信号处理装置的工作环境温度,所述第一背板上的所述电源板卡为所述第一背板及其上的设备供电。所述第二背板上的所述控制板卡连接所述射频发射组件和所述射频接收组件,所述控制板卡的功能包括但不限于用于监控所述射频收发装置的工作环境温度,所述第二背板上的所述电源板卡为所述第二背板及其上的设备供电。
可选的,请继续参见图12,为了进一步提高系统集成度和可扩展性,所述量子控制系统还包括插卡式机箱,每个所述第一背板和每个所述第二背板分别安装在一个所述插卡式机箱中。将基于所述第一背板的所述信号处理装置和基于所述第二背板的所述射频收发装置分别装配在一个插卡式机箱中,使得所述量子控制系统整机占用空间小,便于扩展。具体的,所述插卡式机箱可以采用VPX机箱、CPCI机箱或者PXIE机箱等具有高速信号传输功能的机箱,在功能模块集成方面均能实现本申请实施例的量子控制功能需求。
可选的,请参见图13,所述量子控制系统还包括时钟同步装置,用于为每个所述信号处理装置和每个所述射频收发装置提供同一参考时钟。此外,设置所述时钟 同步装置还能够在一定程度上实现所述信号处理装置和所述射频收发装置的输出信号具有同一相位的功能。
示例性的,请继续参见图13,所述时钟同步装置包括一个时钟源和至少一个多路倍频基准。所述时钟源为每个所述多路倍频基准提供基准时钟信号,每个所述多路倍频基准连接一个所述信号处理装置和一个所述射频收发装置,以向每个所述信号处理装置和每个所述射频收发装置发送多路同一参考时钟信号。以为所述信号处理装置和所述射频收发装置提供同一参考时钟,使得所述第一信号处理板卡、所述第二信号处理板卡和所述路由板卡以及所述射频收发装置具有相同起始时刻点的工作时钟。示例性的,所述时钟源可以采用高精度的铷钟。利用铷钟产生10MHz的基准时钟信号,所述多路倍频基准根据实际应用需要进行5倍频、10倍频、20倍频甚至更多倍频处理后输出多路同一参考时钟信号。
对于量子计算机中需要执行的量子计算任务来说,随着量子计算任务的种类和复杂度的提升,需要参与的量子比特数量也越来越多,即量子控制系统的输出通道也越来越多。针对需要执行的复杂量子计算任务,需要多个所述初始量子态调控信号和所述初始频率调控信号,即需要多个所述第一信号处理板卡和多个所述第二信号处理板卡共同作用,共同作用的所有模块输出的信号需要保持同步触发才能精准完成量子计算任务。
可选的,请参见图14,为了实现多个所述第一信号处理板卡和多个所述第二信号处理板卡输出的信号能够同步触发,所述量子控制系统还包括中控装置,所有所述路由板卡连接所述中控装置,所述中控装置用于通过各所述路由板卡同步控制所述多个第一信号处理板卡和所述多个第二信号处理板卡。
此外,在所述路由板卡与所述第一信号处理板卡之间以及所述路由板卡与所述第二信号处理板卡之间均设有信号触发同步控制专用的信号线路。由所述路由板卡通过所述信号触发同步控制专用的信号线路传输同步控制指令以实现各所述第一信号处理板卡之间和各所述第二信号处理板卡之间的信号触发同步控制。所述中控装置发送一个触发指令至各所述路由板卡,所述路由板卡通过所述信号触发同步控制专用的信号线路发送同步控制指令使得所述多个第一信号处理板卡或所述多个第二信号处理板卡同步动作。并为了确保信号在所述信号触发同步控制专用的信号线路上的线路延时相等,进一步将所述路由板卡与所述第一信号处理板卡之间以及所述路由板卡与所述第二信号处理板卡之间的所述信号触发同步控制专用的信号线路设置为等长。由此使得所述量子控制系统的信号同步性能大幅提高,有利于实现高精确度执行大规模的量子计算任务。
可选的,请继续参见图14,所述量子控制系统还包括服务器,所述中控装置和/或所述路由板卡与所述服务器通信。所述中控装置与所述服务器之间的信息交互包括但不限于同步控制指令,所述路由板卡与所述服务器之间的信息交互包括但不限于量子计算任务数据。
可选的,请参见图15,所述量子控制系统还包括服务器和网络交换机,每个所述射频收发装置通过所述网络交换机与所述服务器通信,所述路由板卡与所述服务器通信。所述射频收发装置与所述服务器之间的信息交互包括但不限于所述射频收发装置的工作状态控制。此外,所述DC板卡和所述时钟同步装置也通过所述网络交换机与所述服务器通信。
基于同一发明构思,本申请的一个实施例还提出了一种量子计算机,包括上述的量子控制系统。
量子计算机是一类遵循量子力学规律进行的高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机的特点主要有运行速度较快、处置信息能力较强、应用范围较广等。与一般计算机相比较起来,信息处理量愈多,对于量子计算机实施运算也就愈加有利,也就更能确保运算具备精准性。
量子芯片之于量子计算机就相当于CPU之于传统计算机,是量子计算机的核心 部件。量子芯片上设置有多个量子比特,为了保证量子比特的正常工作,需要搭建专用的量子测控系统,在量子测控系统内设有多个功能模块以实现基于量子比特进行的量子计算,且多个功能模块集成在背板上。随着量子计算相关技术的不断研究推进,量子芯片上的量子比特位数也会逐渐增加,当量子芯片上的量子比特的位数提高至几百位、甚至几千万位,运行更多更复杂的量子计算任务时,背板上集成的功能模块也对应增加,导致对不同功能模块选用的控制难度增加,并且容易出错。因此,如何实现对背板上不同功能模块选用的准确控制是目前亟需解决的问题。
为此,本申请实施例还提供一种量子控制装置及量子控制系统,以解决现有技术中的缺陷和不足,本申请能够实现对背板上不同功能模块选用的准确控制。
本申请的核心思想在于提供一种量子控制装置及量子控制系统,通过增设开关模块和微控制器,具体通过开关模块选通微控制器的工作通道,然后控制信号从选通的工作通道输出至测控集成背板,测控集成背板根据所述控制信号进入对应的工作模式,从而实现对测控集成背板的工作模式的准确控制和自由控制。
为此,本申请提供了一种量子控制装置,用于对量子芯片的测控集成背板进行控制,请参阅图16,所述量子控制装置包括触发模块100、开关模块200以及微控制器300,所述触发模块100与所述开关模块200电性连接,用于输出触发信号至所述开关模块200,所述开关模块200与所述微控制器300电性连接,用于依据所述触发信号选通所述微控制器300的工作通道,所述微控制器300用于根据选通的工作通道设定对应的控制信号并输出,本实施例中,具体应用时,将所述微控制器300与所述测控集成背板400的控制端口连接,所述测控集成背板400接收到所述控制信号后会根据所述控制信号进入对应的工作模式。其中,所述控制信号用于控制所述测控集成背板400进入对应的工作模式。可选地,测控集成背板400可以是上述本申请实施例中提供的测控集成背板。
可见,本实施例中不是通过微控制器300直接控制所述测控集成背板400的工作模式选择,而是通过增设开关模块200,具体通过开关模块200选通微控制器300的工作通道,进而完成微控制器300通过选通的工作通道对测控集成背板400的工作模式的控制。这样,在对测控集成背板400进行控制时,可以任意编辑控制方式,例如,通过设置触发模块100输出触发信号至开关模块200的时间间隔实现对测控集成背板400的工作模式的定时选择,再例如,通过设置开关模块200的接线通道实现对测控集成背板400的工作模式的重启、切换等。其中,所述开关模块200的接线通道通常包括开关模块200接地线和开关模块200接触发模块100两种接线通道。
可选的,所述微控制器300为STM系列芯片、STC系列芯片或ARM系列芯片。
示例性的,所述测控集成背板400包括多个功能板卡,所述开关模块200包括多个自锁非复位开关,其中,一个自锁非复位开关用于控制所述测控集成背板400整个背板的上电、断电,其余自锁非复位开关分别用于控制所述测控集成背板400上各个功能板卡的上电、断电,以控制所述测控集成背板400进入不同工作模式。
可选的,所述自锁非复位开关通过微控制器300控制测控集成背板400上功能板卡的复位方式(即上、断电)包括热复位和冷复位两种复位方式,当所述微控制器300的一组通用输入输出引脚与所述功能板卡的开关电源芯片的使能引脚连接,实现所述功能板卡从没上电到加上电源,而自动产生的复位,即冷复位,当所述微控制器300的一组通用输入输出引脚与所述功能板卡的主供电芯片的使能引脚连接,实现所述功能板卡在已经上电的情况下,接收复位信号后进行的复位,即热复位。这样,在测控集成背板400出现故障时,可以通过开关模块200对测控集成背板400上各个功能模块进行自由的冷复位或者热复位。可选的,所述自锁非复位开关为钮子开关。
可选的,所述量子控制装置还包括第一输出模块(图中未示出),所述第一输出模块电连接所述微控制器300,用于转发所述控制信号至所述测控集成背板400。具体的,所述第一输出模块包括用于与所述测控集成背板400上各个功能板卡连接 的连接端口,在实际应用中,将所述量子控制装置通过所述第一输出模块与所述测控集成背板400上各个功能板卡的连接端口连接,即可实现对所述测控集成背板400的工作模式的控制,可见,本实施例提供的量子控制装置装配简单,集成度高,占地空间小。
示例性的,所述量子控制装置还包括温控模块500,所述温控模块500分别电性连接所述微控制器300和所述测控集成背板300,用于监测所述测控集成背板400的实时温度,并根据目标温度对所述测控集成背板400的实时温度进行调节。
具体的,所述温控模块500包括多个温度传感器和多个散热器,所述温度传感器和所述散热器分别电性连接所述微控制器300,多个所述温度传感器分别设置在所述测控集成背板400上,所述温度传感器用于检测所述测控集成背板400的实时温度,并将温度数据传输至所述微控制器300。所述散热器用于接收所述微控制器300发送的所述温度数据生成温度调节信号,并根据所述温度调节信号和所述目标温度调节所述测控集成背板400的实时温度。具体的,分别将所述温度传感器设置在所述测控集成背板400上靠近主发热源的位置处,以保证所述温度传感器检测到的实时温度的准确度。
可选的,所述散热器为静音风扇,具有调速功能。具体在应用中,所述静音风扇的设置数量与所述温度传感器的设置数量相同,对应的所述温度调节信号具体为对静音风扇转速调节的信号,所述静音风扇接收到所述温度调节信号后,对应调节自身转速,以实现对所述测控集成背板400的实时温度的调节。具体的,所述温度调节信号对所述静音风扇进行闭环调节,当所述实时温度与所述目标温度相差较大时,设置提高所述静音风扇的转速,当所述实时温度与所述目标温度相差较小或者持平时,设置降低所述静音风扇的转速或设置定转处理,以降低静音风扇的噪音及延长静音风扇的使用寿命。
可选的,所述量子控制装置还包括相互通讯连接的第二输出模块(图中未示出)和终端设备600,所述第二输出模块电连接所述微控制器300,用于上传所述微控制器300、所述开关模块200、所述测控集成背板400以及所述温控模块500的工作状态信息至所述终端设备600,所述终端设备600用于接收所述微控制器300、所述开关模块200、所述测控集成背板400以及所述温控模块500的工作状态信息,并监控其工作状态,以实现对其工作状态的远程监测和控制。可选的,所述第二输出模块采用WIFI模块、以太网接口、type-c接口或4G模块中的至少一种与所述终端设备建立通讯,所述终端设备600包括计算机、手机或者多媒体播放设备中的一种或者多种。
示例性的,所述量子控制装置还包括电源模块700,所述电源装置700用于向所述微控制器300、所述开关模块200、所述触发模块100以及所述温控模块500供电。
基于同一发明构思,本实施例还提供一种量子控制系统,所述量子控制系统包括图16所述的量子控制装置。
基于同一发明构思,本实施例还提供一种量子计算机,包括图16所述的量子控制装置,或者,包括图16所示量子控制装置的量子控制系统。
综上所述,本申请提供的图16所示的量子控制装置、包括图16所示量子控制装置的量子控制系统以及量子计算机,具有以下优点:所述量子控制装置包括触发模块、开关模块以及微控制器,所述触发模块与所述开关模块电性连接,用于输出触发信号至所述开关模块,所述开关模块与所述微控制器电性连接,用于依据所述触发信号选通微控制器的工作通道,所述微控制器用于根据选通的工作通道设定对应的控制信号并输出,本实施例中,具体应用时,将所述微控制器与所述测控集成背板的控制端口连接,所述微控制器接收到所述控制信号后会根据所述控制信号进入对应的工作模式,其中,所述控制信号用于控制所述测控集成背板进入对应的工作模式。本申请通过增设开关模块和微控制器,具体通过开关模块选通微控制器的工作通道,然后控制信号从选通的工作通道输出至测控集成背板,测控集成背板根据所述控制信号进入对应的工作模式,从而实现对测控集成背板的工作模式的准确 控制和自由控制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”或“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
上述仅为本申请的优选实施例而已,并不对本申请起到任何限制作用。任何所属技术领域的技术人员,在不脱离本申请的技术方案的范围内,对本申请揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本申请的技术方案的内容,仍属于本申请的保护范围之内。

Claims (38)

  1. 一种量子控制装置,其特征在于,包括:
    背板、路由模块、至少一个量子态调控模块、至少一个频率调控模块、至少一个测量模块;
    所述量子态调控模块、所述频率调控模块、所述测量模块和所述路由模块设置在所述背板上的对应插槽中,形成用于量子芯片的测控集成背板;
    所述量子态调控模块、所述频率调控模块、所述测量模块均与所述路由模块通信连接,通过所述路由模块对外数据交互,以使所述量子态调控模块输出初始量子态调控信号、所述频率调控模块输出初始频率调控信号以及所述测量模块输出初始测量信号。
  2. 如权利要求1所述的量子控制装置,其特征在于,所述量子态调控模块和所述频率调控模块能够调控的量子比特位数大于等于所述测量模块能够读取测量的量子比特位数。
  3. 如权利要求2所述的量子控制装置,其特征在于,所述量子态调控模块、所述频率调控模块和所述测量模块均设置有多路输出通道。
  4. 如权利要求3所述的量子控制装置,其特征在于,所述量子态调控模块包括第一DAC单元或第一AWG单元,所述频率调控模块包括第二DAC单元或第二AWG单元,所述测量模块包括ADC/DAC单元、或包括第三DAC单元、或包括第三AWG单元和DAQ单元的组合,所述路由模块包括现场可编程逻辑门阵列。
  5. 如权利要求1所述的量子控制装置,其特征在于,各所述量子态调控模块、各所述频率调控模块和各所述测量模块均以所述路由模块为中心分布设置在所述背板上的插槽中。
  6. 如权利要求5所述的量子控制装置,其特征在于,所述路由模块到各所述量子态调控模块、各所述频率调控模块以及各所述测量模块的触发信号传输线路长度分别相等。
  7. 如权利要求6所述的量子控制装置,其特征在于,所述路由模块设置在所述背板的中央位置,各所述测量模块紧邻所述路由模块设置。
  8. 如权利要求1所述的量子控制装置,其特征在于,所述装置还包括控制模块,所述控制模块设置在所述背板的插槽中,所述控制模块用于获取信号延时数据,并对外输出,其中,所述信号延时数据来源于各所述量子态调控模块、各所述频率调控模块、各所述测量模块。
  9. 如权利要求1所述的量子控制装置,其特征在于,所述装置还包括散热组件,所述散热组件连接控制模块,所述控制模块根据所述装置内的温度信息发送温度控制指令至所述散热组件,以控制所述散热组件工作于不同状态。
  10. 如权利要求1所述的量子控制装置,其特征在于,所述量子态调控模块、所述频率调控模块、所述测量模块、所述路由模块和所述背板上均设置时钟同步电路,所有所述时钟同步电路采用同一时钟同步基准,用于对所述量子态调控模块、所述频率调控模块、所述测量模块和所述路由模块进行时钟同步控制。
  11. 如权利要求1-10任一项所述的量子控制装置,其特征在于,所述装置还包括机箱,所述背板、所述量子态调控模块、所述频率调控模块、所述测量模块和所述路由模块均设置在机箱内。
  12. 如权利要求11所述的量子控制装置,其特征在于,所述装置还包括电源,所述电源设置在所述机箱内。
  13. 一种量子控制系统,其特征在于,包括至少一个如权利要求1-12任一项所述的量子控制装置。
  14. 如权利要求13所述的量子控制系统,其特征在于,所述系统还包括辅助外围设备,所述辅助外围设备包括若干个本振微波源、RF发射组件、RF收发组件和电压源,所述本振微波源和所述RF发射组件配合所述控制装置产生用于量子比特的 量子态信息调控的量子态调控信号,所述电压源配合所述控制装置产生用于量子比特的频率调控的频率调控信号,所述本振微波源和所述RF收发组件配合所述控制装置产生用于量子比特的状态读取的测量信号以及接收量子芯片返回的读取回传信号。
  15. 如权利要求14所述的量子控制系统,其特征在于,所述系统还包括若干个微波源,所述微波源配合所述电压源产生用于驱动约瑟夫森参量放大器的泵浦信号。
  16. 如权利要求15所述的量子控制系统,其特征在于,所述系统还包括至少一个中控装置,所述中控装置与所述控制装置的所述路由模块通信连接。
  17. 如权利要求16所述的量子控制系统,其特征在于,所述系统还包括服务器,所述中控装置、所述辅助外围设备、所述控制装置的所述路由模块均与所述服务器通信连接。
  18. 一种量子控制系统,其特征在于,包括:
    至少一个信号处理装置,每个所述信号处理装置包括一个第一背板,所述第一背板的背板连接器上插接有多个第一信号处理板卡、多个第二信号处理板卡和一个路由板卡,形成用于量子芯片的测控集成背板,所述多个第一信号处理板卡以及所述多个第二信号处理板卡均连接所述路由板卡;所述第二信号处理板卡用于产生低频信号,所述低频信号为频率调控信号;
    至少一个射频收发装置,所述射频收发装置通过所述路由板卡通信连接所述第一信号处理板卡,所述射频收发装置配合与通信之连接的所述第一信号处理板卡用于产生和接收高频信号,所述高频信号为量子态控制信号和测量信号。
  19. 根据权利要求18所述的量子控制系统,其特征在于,所述多个第一信号处理板卡和所述多个第二信号处理板卡均具有多路信号输出通道和/或多路信号输入通道,每个所述射频收发装置的信号输出通道数量不少于与之连接的所述多个第一信号处理板卡的信号输出通道的数量总和。
  20. 根据权利要求19所述的量子控制系统,其特征在于,所述路由板卡插接在位于所述第一背板中央位置的所述背板连接器上。
  21. 根据权利要求18所述的量子控制系统,其特征在于,所述高频信号包括用于控制量子比特的量子态控制信号和测量信号,所述测量信号包括读取量子比特的读取输入信号以及读取输出信号;
    或,所述第一信号处理板卡包括第一AWG板卡以及DAQ板卡;
    或,所述低频信号包括用于量子比特和/或可调耦合器的频率控制的脉冲信号;
    或,所述第二信号处理板卡包括:
    第二AWG板卡,所述第二AWG板卡用于产生所述低频信号。
  22. 根据权利要求18所述的量子控制系统,其特征在于,所述信号处理装置还包括多个第三信号处理板卡,所述多个第三信号处理板卡用于产生直流信号,所述直流信号包括用于量子比特和/或可调耦合器的频率控制的频率驱动信号;
    或,所述第三信号处理板卡包括直流电源板卡;
    或,所述量子控制系统还包括多个多通道微波源;
    所述微波源产生的微波信号用于驱动参量放大器的泵浦信号;
    所述第三信号处理板卡产生的所述直流信号还包括用于所述参量放大器的频率控制信号。
  23. 根据权利要求18所述的量子控制系统,其特征在于,每个所述射频收发装置包括多个射频发射组件、多个射频接收组件和多个微波本振源;
    所述射频发射组件连接所述第一信号处理板卡和所述微波本振源,用于产生所述高频信号;
    所述射频接收组件连接所述第一信号处理板卡和所述微波本振源,用于对接收的所述高频信号进行变频处理后传输给所述第一信号处理板卡;
    或,所述射频发射组件和所述射频接收组件均包括IQ混频器;
    或,所述微波本振源包括微波点频频率源或可调本振频率源;
    或,每个所述射频收发装置还包括一个第二背板,每个所述射频收发装置的所 述多个射频发射组件和所述多个射频接收组件均插接在所述第二背板的背板连接器上;
    或,所述第一背板和所述第二背板上均设有控制板卡和电源板卡;
    所述第一背板上的所述控制板卡连接所述第一信号处理板卡、所述第二信号处理板卡和所述路由板卡,所述第一背板上的所述电源板卡为所述第一背板及其上的设备供电;
    所述第二背板上的所述控制板卡连接所述射频发射组件和所述射频接收组件,所述第二背板上的所述电源板卡为所述第二背板及其上的设备供电。
  24. 根据权利要求18-23任一项所述的量子控制系统,其特征在于,所述量子控制系统还包括时钟同步装置;
    所述时钟同步装置用于为所述信号处理装置和所述射频收发装置提供同一参考时钟。
  25. 根据权利要求24所述的量子控制系统,其特征在于,所述量子控制系统还包括服务器和网络交换机,每个所述射频收发装置通过所述网络交换机与所述服务器通信,所述路由板卡与所述服务器通信。
  26. 根据权利要求25所述的量子控制系统,其特征在于,所述量子控制系统还包括中控装置,所有所述路由板卡连接所述中控装置,所述中控装置用于通过各所述路由板卡同步控制所述多个第一信号处理板卡和所述多个第二信号处理板卡;
    或,所述量子控制系统还包括服务器,所述中控装置和/或所述路由板卡与所述服务器通信。
  27. 一种量子控制装置,用于对量子芯片的测控集成背板进行控制,其特征在于,包括:
    触发模块,用于输出触发信号;
    开关模块,电连接所述触发模块,用于依据所述触发信号选通微控制器的工作通道;
    微控制器,电连接所述开关模块,用于根据选通的工作通道设定对应的控制信号并输出,其中,所述控制信号用于控制所述测控集成背板进入对应的工作模式。
  28. 如权利要求27所述的量子控制装置,其特征在于,所述测控集成背板包括多个功能板卡;
    所述开关模块包括多个自锁非复位开关,分别用于通过所述微控制器选通的工作通道控制所述测控集成背板的复位以及各个所述功能板卡的复位。
  29. 如权利要求27所述的量子控制装置,其特征在于,还包括:
    第一输出模块,电连接所述微控制器,用于转发所述控制信号至所述测控集成背板。
  30. 如权利要求27所述的量子控制装置,其特征在于,还包括:
    温控模块,分别电性连接所述微控制器和所述测控集成背板,用于监测所述测控集成背板的实时温度,并根据目标温度对所述测控集成背板的实时温度进行调节。
  31. 如权利要求30所述的量子控制装置,其特征在于,所述温控模块包括多个温度传感器和多个散热器,所述温度传感器和所述散热器分别电性连接所述微控制器;
    多个所述温度传感器分别设置在所述测控集成背板上,所述温度传感器用于检测所述测控集成背板的实时温度,并将温度数据传输至所述微控制器;
    所述散热器用于接收所述微控制器发送的所述温度数据生成温度调节信号,并根据所述温度调节信号和所述目标温度调节所述测控集成背板的实时温度。
  32. 如权利要求30所述的量子控制装置,其特征在于,还包括相互通讯连接的第二输出模块和终端设备;
    所述第二输出模块电连接所述微控制器,用于上传所述微控制器、所述开关模块、所述测控集成背板以及所述温控模块的工作状态信息至所述终端设备;
    所述终端设备用于接收所述微控制器、所述开关模块、所述测控集成背板以及 所述温控模块的工作状态信息,并监控其工作状态。
  33. 如权利要求32所述的量子控制装置,其特征在于,所述第二输出模块采用WIFI模块、以太网接口、type-c接口或4G模块中的至少一种与所述终端设备建立通讯。
  34. 如权利要求32所述的量子控制装置,其特征在于,所述终端设备包括计算机、手机或者多媒体播放设备中的一种或者多种。
  35. 如权利要求30所述的量子控制装置,其特征在于,还包括:
    电源模块,用于向所述微控制器、所述开关模块、所述触发模块以及所述温控模块供电。
  36. 如权利要求27所述的量子控制装置,其特征在于,所述微控制器为STM系列芯片、STC系列芯片或ARM系列芯片。
  37. 一种量子控制系统,其特征在于,包括如权利要求1-10任意一项所述的量子控制装置。
  38. 一种量子计算机,其特征在于,包括如权利要求1-12任一项所述的量子控制装置,或者,如权利要求13-17任一项所述的量子控制系统,或者,如权利要求18-26任一项所述的量子控制系统,或者,如权利要求27-36任一项所述的量子控制装置,或者,如权利要求37所述的量子控制系统。
PCT/CN2022/127663 2021-10-29 2022-10-26 量子控制装置、量子控制系统和量子计算机 WO2023072140A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111274743.4A CN116090566B (zh) 2021-10-29 2021-10-29 量子控制装置、量子控制系统和量子计算机
CN202111274743.4 2021-10-29
CN202111472916.3 2021-12-02
CN202111472916.3A CN116227608A (zh) 2021-12-02 2021-12-02 一种量子控制系统和量子计算机
CN202210113240.7 2022-01-29
CN202210113240.7A CN116562382A (zh) 2022-01-29 2022-01-29 一种量子控制装置及量子控制系统

Publications (1)

Publication Number Publication Date
WO2023072140A1 true WO2023072140A1 (zh) 2023-05-04

Family

ID=86160480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127663 WO2023072140A1 (zh) 2021-10-29 2022-10-26 量子控制装置、量子控制系统和量子计算机

Country Status (1)

Country Link
WO (1) WO2023072140A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409108A (zh) * 2002-09-10 2003-04-09 上海市计算技术研究所 基于片上系统的色谱数据采集装置及方法
CN109613876A (zh) * 2018-04-28 2019-04-12 合肥本源量子计算科技有限责任公司 一种多通道量子测控系统
US20200044749A1 (en) * 2017-03-30 2020-02-06 Notchway Solutions, Llc System and Method for Quantum State Measurement
US20200250568A1 (en) * 2019-02-02 2020-08-06 Alibaba Group Holding Limited Device, system, and method for qubit calibration, measurement and control
WO2020231795A1 (en) * 2019-05-10 2020-11-19 Google Llc Frequency tunable qubit control strategy
CN212302532U (zh) * 2020-05-29 2021-01-05 合肥本源量子计算科技有限责任公司 一种量子芯片结构
CN113330465A (zh) * 2018-11-26 2021-08-31 量子机械公司 具有模块化和动态脉冲生成和路由的量子控制器
CN216596285U (zh) * 2021-10-29 2022-05-24 合肥本源量子计算科技有限责任公司 一种量子控制装置和量子控制系统
CN216697325U (zh) * 2021-12-02 2022-06-07 合肥本源量子计算科技有限责任公司 一种量子控制系统及量子计算机
CN216772448U (zh) * 2022-01-29 2022-06-17 合肥本源量子计算科技有限责任公司 一种量子控制装置及量子控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409108A (zh) * 2002-09-10 2003-04-09 上海市计算技术研究所 基于片上系统的色谱数据采集装置及方法
US20200044749A1 (en) * 2017-03-30 2020-02-06 Notchway Solutions, Llc System and Method for Quantum State Measurement
CN109613876A (zh) * 2018-04-28 2019-04-12 合肥本源量子计算科技有限责任公司 一种多通道量子测控系统
CN113330465A (zh) * 2018-11-26 2021-08-31 量子机械公司 具有模块化和动态脉冲生成和路由的量子控制器
US20200250568A1 (en) * 2019-02-02 2020-08-06 Alibaba Group Holding Limited Device, system, and method for qubit calibration, measurement and control
WO2020231795A1 (en) * 2019-05-10 2020-11-19 Google Llc Frequency tunable qubit control strategy
CN212302532U (zh) * 2020-05-29 2021-01-05 合肥本源量子计算科技有限责任公司 一种量子芯片结构
CN216596285U (zh) * 2021-10-29 2022-05-24 合肥本源量子计算科技有限责任公司 一种量子控制装置和量子控制系统
CN216697325U (zh) * 2021-12-02 2022-06-07 合肥本源量子计算科技有限责任公司 一种量子控制系统及量子计算机
CN216772448U (zh) * 2022-01-29 2022-06-17 合肥本源量子计算科技有限责任公司 一种量子控制装置及量子控制系统

Similar Documents

Publication Publication Date Title
CN107168458B (zh) 一种用于数字化pet探测器的时钟分配装置
CN216596285U (zh) 一种量子控制装置和量子控制系统
CN110995388B (zh) 一种分布式的共享时钟触发调延系统
US20200051601A1 (en) Electronic device comprising storage devices transmitting reference clock via cascade coupling structure
WO2021018057A1 (zh) 基站多通道相位同步装置、方法及基站
WO2023072140A1 (zh) 量子控制装置、量子控制系统和量子计算机
CN216697325U (zh) 一种量子控制系统及量子计算机
KR20110115572A (ko) 메모리 요청과 데이터 전송 간 타이밍 교정을 포함하는 프로토콜
CN103107798A (zh) 时钟无缝切换系统
US20180284835A1 (en) Separate clock synchronous architecture
CN216772448U (zh) 一种量子控制装置及量子控制系统
CN106059599A (zh) 一种s频段收发一体化处理器系统
CN116090566B (zh) 量子控制装置、量子控制系统和量子计算机
CN115809210A (zh) 一种基于fpga的lvds高速数据交换机
CN102073365A (zh) 一种基于MicroTCA标准的媒体服务器
CN215768986U (zh) 数字雷达中频信号处理单元及数字相控阵雷达
CN111413913A (zh) 一种量子信息研究平台装置和操作方法
CN112946583A (zh) 中频信号处理单元及具有其的数字相控阵雷达
CN116050526B (zh) 量子测控系统以及量子计算机
CN211554716U (zh) 一种量子信息研究平台装置
CN116955258B (zh) 一种可灵活连接的触发连接器、信号采集控制设备及系统
CN116011574A (zh) 多片da通道间确定性延时及任意范围延时补偿调节架构
CN111123258A (zh) 一种高重频有源相控阵雷达的波束调度装置及方法
CN220173546U (zh) 本振功分组件装置、射频收发组件、量子测控一体机及量子计算机
CN214381427U (zh) 一种数字基带处理板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022886016

Country of ref document: EP

Effective date: 20240529