WO2023072108A1 - 一种电池 - Google Patents

一种电池 Download PDF

Info

Publication number
WO2023072108A1
WO2023072108A1 PCT/CN2022/127488 CN2022127488W WO2023072108A1 WO 2023072108 A1 WO2023072108 A1 WO 2023072108A1 CN 2022127488 W CN2022127488 W CN 2022127488W WO 2023072108 A1 WO2023072108 A1 WO 2023072108A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexafluoropropylene
negative electrode
battery according
lithium
battery
Prior art date
Application number
PCT/CN2022/127488
Other languages
English (en)
French (fr)
Inventor
张祖来
母英迪
李素丽
赵君义
李俊义
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2023072108A1 publication Critical patent/WO2023072108A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure belongs to the technical field of batteries, and in particular relates to a battery.
  • lithium-ion batteries have been widely used in smartphones, tablet computers, smart wearables, power tools, and electric vehicles. With the widespread application of lithium-ion batteries, consumers' demands on the service life of lithium-ion batteries continue to increase, which requires lithium-ion batteries to have a long cycle life.
  • the purpose of the present disclosure is to solve the problem of serious attenuation of the adhesive force between the separator and the pole piece during the use of the existing battery, and to provide a battery that has the properties of high voltage, long cycle life and low expansion.
  • a battery comprising a positive electrode sheet, a negative electrode sheet, a separator placed between the positive electrode sheet and the negative electrode sheet, and a non-aqueous electrolyte;
  • the diaphragm includes a base material, a heat-resistant layer and a glue layer, the heat-resistant layer is relatively arranged on both sides of the base material, and the glue layer is arranged on the heat-resistant layer;
  • the glue layer includes An adhesive comprising hexafluoropropylene-vinylidene fluoride copolymer;
  • the non-aqueous electrolytic solution comprises a non-aqueous organic solvent, wherein the non-aqueous organic solvent comprises at least ethyl propionate;
  • the ratio of the mass proportion of ethyl propionate in the non-aqueous electrolyte to the mass proportion of hexafluoropropylene (HFP) in the hexafluoropropylene-vinylidene fluoride copolymer is 0.2 to 60, exemplarily 0.2, 0.26, 0.5, 1, 2.4, 5.8, 9.2, 11.3, 13.7, 15, 20, 30, 35, 36.7, 40, 50, 60 or any point value within the range consisting of two pairs of the above point values.
  • the change rate of the adhesive force between the adhesive layer and the positive electrode sheet or the negative electrode sheet is within 10% in the first 100 cycles (including the 100th cycle) of the battery cycle, that is, when the battery When the cycle is ⁇ 100 cycles (for example, the battery cycle is 1 week, 5 weeks, 10 weeks, 50 weeks or 100 weeks), the change rate of the adhesive force between the adhesive layer and the positive electrode sheet or the negative electrode sheet Within 10%.
  • the ratio of the mass proportion of ethyl propionate in the non-aqueous electrolyte to the mass proportion of hexafluoropropylene (HFP) in the hexafluoropropylene-vinylidene fluoride copolymer is 0.5-35.
  • the number average molecular weight of the hexafluoropropylene-vinylidene fluoride copolymer is 500,000 Da-2.5 million Da, exemplarily 500,000 Da, 600,000 Da, 700,000 Da, 800,000 Da, 1 million Da, 2,000,000 Da, 2,500,000 Da, or any point value within the range composed of two pairs of the above point values.
  • the sum of the molecular weights of vinylidene fluoride units is 500,000 Da to 2 million Da, exemplarily 500,000 Da, 600,000 Da, and 700,000 Da .
  • the mass proportion of hexafluoropropylene (HFP) is 1wt.% to 25wt.%, exemplarily 1wt.%, 1.5wt.%, 2wt.% .%, 2.5wt.%, 3wt.%, 3.5wt.%, 5wt.%, 6.5wt.%, 9wt.%, 10wt.%, 15wt.%, 20wt.%, 23wt.%, 25wt.% or It is any point value within the range composed of the aforementioned pairwise numerical values; preferably 1.5wt.% ⁇ 15wt.%.
  • the mass proportion of the hexafluoropropylene refers to the mass percentage of the sum of all hexafluoropropylene units in the hexafluoropropylene-vinylidene fluoride copolymer.
  • the hexafluoropropylene-vinylidene fluoride copolymer is, for example, polyvinylidene fluoride-hexafluoropropylene copolymer.
  • the "polyvinylidene fluoride-hexafluoropropylene copolymer" refers to polyvinylidene fluoride modified by hexafluoropropylene.
  • the number average molecular weight of the polyvinylidene fluoride (PVDF) is 500,000 Da to 2 million Da, exemplarily 500,000 Da, 600,000 Da, 700,000 Da, 800,000 Da, 1 million Da, 2,000,000 Da or any point value within the range of pairwise values above.
  • the amount of ethyl propionate added is 5wt.% to 60wt.%, Exemplary 5wt.%, 6wt.%, 10wt.%, 12wt.%, 15wt.%, 20wt.%, 22wt.%, 23wt.%, 25wt.%, 30wt.%, 34wt.% , 35wt.%, 38wt.%, 40wt.%, 48wt.%, 50wt.%, 55wt.%, 60wt.%, or any value within the range of the aforementioned pairwise numerical values; preferably 10wt.% ⁇ 40wt .%.
  • the non-aqueous electrolytic solution may further include additives.
  • the additive is selected from the group consisting of tris(trimethylsilyl)phosphite, tris(trimethylsilyl)borate, lithium bistrifluoromethanesulfonyl imide, lithium bisfluorosulfonyl imide, 1 , at least one of 3-propene sultone, vinyl sulfite, vinyl sulfate, vinylene carbonate, lithium dioxalate borate, lithium difluorooxalate phosphate, and vinyl vinyl carbonate.
  • the mass proportion of the additive is 0wt.% to 10wt.%, exemplarily 0wt.%, 1wt.%, 2wt.%, 5wt.%, 8wt.%. %, 10wt.%, or any value within the range composed of the aforementioned pairwise values.
  • the non-aqueous organic solvent also includes ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propyl propionate (PP) and at least one of propyl acetate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • PP propyl propionate
  • the nonaqueous organic solvent includes ethylene carbonate (EC), propylene carbonate (PC), and propyl propionate (PP).
  • EC ethylene carbonate
  • PC propylene carbonate
  • PP propyl propionate
  • the mass ratio of the ethylene carbonate (EC), the propylene carbonate (PC) and the propyl propionate (PP) is 2:(1-2):2, for example 2:1.5 :2.
  • the non-aqueous electrolytic solution further includes a lithium salt.
  • the lithium salt is selected from at least one of lithium bistrifluoromethylsulfonyl imide, lithium bisfluorosulfonyl imide and lithium hexafluorophosphate (LiPF 6 ), preferably lithium hexafluorophosphate (LiPF 6 ).
  • the mass proportion of the lithium salt is 13wt.% to 20wt.%, exemplarily 13wt.%, 14wt.%, 15wt.%, 16wt.%, 17wt. .%, 18wt.%, 19wt.%, 20wt.%, or any value within the range composed of the aforementioned pairwise values.
  • the heat-resistant layer includes ceramic and adhesive.
  • the mass proportion of the ceramic is 20wt.%-99wt.%, exemplarily 20wt.%, 30wt.%, 40wt.%, 60wt.%, 80wt.% , 90wt.%, 95wt.%, 99wt.%, or any value within the range of the aforementioned pairwise values.
  • the mass proportion of the binder is 1wt.% to 80wt.%, exemplarily 1wt.%, 5wt.%, 10wt.%, 20wt.%, 30wt.% .%, 50wt.%, 60wt.%, 80wt.%, or any value within the range of the aforementioned pairwise values.
  • the ceramic is selected from one, two or more of alumina, boehmite, magnesia, boron nitride and magnesium hydroxide.
  • the binder in the heat-resistant layer is selected from polytetrafluoroethylene, polyvinylidene fluoride, hexafluoropropylene-vinylidene fluoride copolymer (such as polyvinylidene fluoride-hexafluoropropylene copolymer) , polyimide, polyacrylonitrile and polymethyl methacrylate, two or more.
  • the thickness of the glue layer is 0.5 ⁇ m ⁇ 2 ⁇ m, exemplarily 0.5 ⁇ m, 1 ⁇ m or 2 ⁇ m.
  • the solvent used in the heat-resistant layer and the adhesive layer is selected from acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, cyclohexane , methanol, ethanol, isopropanol and water at least one.
  • the battery is, for example, a Li-ion battery.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on one or both sides of the positive electrode current collector.
  • the positive active material layer includes a positive active material, a conductive agent and a binder.
  • a mixing mass ratio of the positive active material, the conductive agent, and the binder is 98:1.0:1.0.
  • the positive electrode active material is selected from lithium cobalt oxide (LiCoO 2 ) or lithium cobalt oxide (LiCoO 2 ), the chemical formula of the lithium cobalt oxide that has been doped and coated with two or more elements in Al, Mg, Mn, Cr, Ti, Zr is Li x Co 1-y1-y2-y3-y4 A y1 B y2 C y3 D y4 O 2 ; wherein, 0.95 ⁇ x ⁇ 1.05, 0.01 ⁇ y1 ⁇ 0.1, 0.01 ⁇ y2 ⁇ 0.1, 0 ⁇ y3 ⁇ 0.1, 0 ⁇ y4 ⁇ 0.1, A, B, C, D are selected from Two or more elements in Al, Mg, Mn, Cr, Ti, Zr.
  • the conductive agent in the positive electrode active material layer is selected from acetylene black.
  • the binder in the positive electrode active material layer is selected from polyvinylidene fluoride (PVDF).
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer coated on one or both sides of the negative electrode current collector, and the negative electrode active material layer includes a negative electrode active material, a conductive agent and a binding agent. agent.
  • the negative electrode active material is selected from graphite.
  • the negative active material further optionally contains SiO x /C or Si/C, where 0 ⁇ x ⁇ 2.
  • the negative electrode active material also contains 1wt.% ⁇ 15wt.% SiO x /C or Si/C, exemplarily 1wt.%, 2wt.%, 5wt.%, 8wt.%, 10wt.%, 12wt .%, 15wt.%, or any value within the range composed of the aforementioned pairwise values.
  • the charging cut-off voltage of the battery is 4.45V or above.
  • the present disclosure provides a battery, which is prepared through the synergistic effect of the separator and the non-aqueous electrolyte, and is used in combination with positive and negative electrode materials, which can effectively improve the cycle life of the battery and reduce the battery life. cycle expansion.
  • the battery of the present disclosure includes a positive electrode sheet, a negative electrode sheet, a diaphragm placed between the positive electrode sheet and the negative electrode sheet, and a non-aqueous electrolyte.
  • the ratio of the mass proportion of hexafluoropropylene (HFP) in the vinylidene fluoride copolymer is controlled in the range of 0.2 to 60, wherein: ethyl propionate non-aqueous organic solvent has a strong effect on polyvinylidene fluoride (PVDF) in the diaphragm
  • PVDF polyvinylidene fluoride
  • the swelling effect of the diaphragm can be enhanced by the synergistic effect of ethyl propionate non-aqueous organic solvent and hexafluoropropylene (HFP).
  • the present disclosure can not only improve the adhesion between the separator and the positive and negative electrodes, but also ensure the adhesion between the separator coating and the positive and negative electrodes
  • the change rate of the force in the first 100 cycles of the battery cycle (including the 100th cycle) is within 10%, and it can also make the positive and negative electrodes of the battery have a better interface to reduce cycle expansion, thereby reducing the damage and reorganization of the CEI film, thereby improving The stability of cathode materials at high temperature and high voltage.
  • the lithium-ion batteries of Comparative Examples 1-2 and Examples 1-8 were prepared according to the following preparation methods, the only difference being the choice of diaphragm and non-aqueous electrolyte, the specific differences are shown in Table 1.
  • the positive electrode active material LiCoO 2 LiCoO 2
  • the binder polyvinylidene fluoride (PVDF) the binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the positive electrode slurry is evenly coated on an aluminum foil with a thickness of 10 ⁇ m; after the above-mentioned coated aluminum foil is baked in an oven with 5 different temperature gradients, Dry in an oven at 120° C. for 8 hours, and then roll and cut to obtain the desired positive electrode sheet.
  • a 1% sodium carboxymethylcellulose (CMC) binder and a 1.1% styrene-butadiene rubber (SBR) binder were made into a slurry by a wet process, and coated on the negative electrode collector with a thickness of 6 ⁇ m
  • the surface of the copper foil was dried (temperature: 85° C., time: 5 h), rolled and die-cut to obtain a negative electrode sheet.
  • a layer of alumina ceramics with a thickness of 2 ⁇ m is coated on both sides of a polyethylene substrate with a thickness of 5 ⁇ m, and then polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP) and dimethylacetamide (DMAC ) according to the proportion of 6% solid content at a stirring speed of 1500rpm for 120min to obtain a slurry L, uniformly coat the slurry L on the surface of alumina ceramics, and obtain a glue coating layer of 1 ⁇ m on both sides after drying over water,
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • DMAC dimethylacetamide
  • the above-mentioned prepared positive electrode sheet, separator and negative electrode sheet are wound to obtain a bare cell without liquid injection; the bare cell is placed in the outer packaging foil, and the above-mentioned prepared non-aqueous electrolyte is injected into the dried bare cell, After vacuum packaging, standing, formation, secondary sealing, sorting and other processes, the required lithium-ion batteries are obtained.
  • Electrochemical performance test is carried out to the battery obtained in the above-mentioned comparative examples and examples, and the relevant instructions are as follows:
  • 25°C cycle test Place the batteries obtained in the above examples and comparative examples in an environment of (25 ⁇ 2)°C, and let them stand for 2-3 hours.
  • the battery body reaches (25 ⁇ 2)°C, the battery will be charged at a constant current of 1C.
  • the current is 0.05C, and the battery is fully charged and left for 5 minutes, and then discharged at a constant current of 1C to a cut-off voltage of 3.0V.
  • the highest discharge capacity of the first three cycles is recorded as the initial capacity Q.
  • the number of cycles reaches 1000, the last time of the battery is recorded.
  • the discharge capacity Q 1 of the battery record the initial thickness T of the battery cell, and record the thickness when it is cycled to 1000 times as T 1 , and record the results as shown in Table 2.
  • Thickness change rate (%) (T 1 -T)/T ⁇ 100%.
  • the rate of change (%) of the adhesive force between the separator adhesive layer and the negative electrode (N1-N2)/N1 ⁇ 100%.
  • the lithium-ion battery prepared by the present disclosure through the synergistic effect of the separator and the non-aqueous electrolyte and combined use of the positive and negative electrode materials can effectively improve the cycle life of the battery and reduce the battery life. Cycle expansion of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本公开公开了一种电池,其包括正极片、负极片、隔膜以及非水电解液;所述隔膜包括基材、耐热层和涂胶层,所述耐热层相对设置于基材的两面,涂胶层设置于耐热层上;所述非水电解液包括非水有机溶剂,所述非水有机溶剂至少包括丙酸乙酯;所述非水电解液中丙酸乙酯的质量占比与涂胶层的粘接剂中六氟丙烯-偏氟乙烯共聚物中六氟丙烯的质量占比的比值为0.2~60。本公开通过隔膜与非水电解液的协同作用,并在正负极材料组合下联用后制备得到的电池,在有效提高电池循环寿命的同时还能有效降低电池的循环膨胀、减少CEI膜的破坏和重组,提高正极材料在高温高电压下的稳定性。

Description

一种电池 技术领域
本公开属于电池技术领域,具体涉及一种电池。
背景技术
近年来,锂离子电池在智能手机、平板电脑、智能穿戴、电动工具和电动汽车等领域得到了广泛的应用。随着锂离子电池的广泛应用,消费者对锂离子电池的使用寿命需求不断提高,这就要求锂离子电池能够具有长循环寿命。
目前,锂离子电池在使用过程中存在安全隐患,例如当电池使用时间较长后,电池会出现厚度膨胀增加等问题,进而容易引发严重的安全事故,例如起火甚至爆炸。造成上述问题的主要原因是随着电池循环时间的增加,隔膜与极片之间界面变差,而导致隔膜与极片之间界面变差的主要原因是随着循环时间的增加隔膜的粘接力下降。
基于此现状,急需开发具有长循环寿命且低膨胀的高电压锂离子电池。
发明内容
本公开的目的是为了解决现有的电池在使用过程中隔膜与极片之间的粘接力衰减严重的问题,提供一种电池,其兼具高电压、长循环寿命和低膨胀的性能。
为实现上述目的,本公开采用如下的技术方案:
一种电池,所述电池包括正极片、负极片、置于所述正极片和所述负极片之间的隔膜,以及非水电解液;
所述隔膜包括基材、耐热层和涂胶层,所述耐热层相对设置于所述基材的两面,所述涂胶层设置于所述耐热层上;所述涂胶层包括粘接剂,所述粘接剂包括六氟丙烯-偏氟乙烯共聚物;
所述非水电解液包括非水有机溶剂,其中,所述非水有机溶剂至少包括丙 酸乙酯;
所述非水电解液中丙酸乙酯的质量占比与所述六氟丙烯-偏氟乙烯共聚物中六氟丙烯(HFP)的质量占比的比值为0.2~60,示例性为0.2、0.26、0.5、1、2.4、5.8、9.2、11.3、13.7、15、20、30、35、36.7、40、50、60或者是上述点值两两数值组成的范围内的任一点值。
在一实例中,所述涂胶层与所述正极片或所述负极片之间的粘接力在电池循环前100周(包括第100周)的变化率在10%以内,即,当电池循环≤100周(例如,电池循环1周、5周、10周、50周或100周)时,所述涂胶层与所述正极片或所述负极片之间的粘接力的变化率在10%以内。
在一实例中,所述非水电解液中丙酸乙酯的质量占比与所述六氟丙烯-偏氟乙烯共聚物中六氟丙烯(HFP)的质量占比的比值为0.5~35。
在一实例中,所述六氟丙烯-偏氟乙烯共聚物的数均分子量为50万Da-250万Da,示例性为50万Da、60万Da、70万Da、80万Da、100万Da、200万Da、250万Da或者是上述点值两两数值组成的范围内的任一点值。
在一实例中,在所述六氟丙烯-偏氟乙烯共聚物中,偏氟乙烯单元的分子量之和为50万Da~200万Da,示例性为50万Da、60万Da、70万Da、80万Da、100万Da、200万Da或者是上述点值两两数值组成的范围内的任一点值。
在一实例中,所述六氟丙烯-偏氟乙烯共聚物中,六氟丙烯(HFP)的质量占比为1wt.%~25wt.%,示例性为1wt.%、1.5wt.%、2wt.%、2.5wt.%、3wt.%、3.5wt.%、5wt.%、6.5wt.%、9wt.%、10wt.%、15wt.%、20wt.%、23wt.%、25wt.%或者是前述两两数值组成的范围内的任一点值;优选为1.5wt.%~15wt.%。
在本公开中,所述六氟丙烯的质量占比是指在所述六氟丙烯-偏氟乙烯共聚物中,所有六氟丙烯单元之和的质量的百分含量。
在一实例中,所述六氟丙烯-偏氟乙烯共聚物例如为聚偏氟乙烯-六氟丙烯 共聚物。所述“聚偏氟乙烯-六氟丙烯共聚物”是指六氟丙烯改性的聚偏氟乙烯。
在一实例中,所述聚偏氟乙烯(PVDF)的数均分子量为50万Da~200万Da,示例性为50万Da、60万Da、70万Da、80万Da、100万Da、200万Da或者是上述点值两两数值组成的范围内的任一点值。
在一实例中,所述非水电解液中,丙酸乙酯的添加量为非水电解液总质量(即所述非水电解液中丙酸乙酯的质量占比)的5wt.%~60wt.%,示例性为5wt.%、6wt.%、10wt.%、12wt.%、15wt.%、20wt.%、22wt.%、23wt.%、25wt.%、30wt.%、34wt.%、35wt.%、38wt.%、40wt.%、48wt.%、50wt.%、55wt.%、60wt.%或者是前述两两数值组成的范围内的任一点值;优选为10wt.%~40wt.%。
在一实例中,所述非水电解液中还可以包括添加剂。例如,所述添加剂选自三(三甲基硅烷)亚磷酸酯、三(三甲基甲硅烷基)硼酸酯、双三氟甲烷磺酰亚胺锂、双氟磺酰亚胺锂、1,3-丙烯磺酸内酯、亚硫酸乙烯酯、硫酸乙烯酯、碳酸亚乙烯酯、二草酸硼酸锂、二氟草酸磷酸锂和乙烯基碳酸乙烯酯中的至少一种。
在一实例中,所述非水电解液中,所述添加剂的质量占比为0wt.%~10wt.%,示例性为0wt.%、1wt.%、2wt.%、5wt.%、8wt.%、10wt.%或者是前述两两数值组成的范围内的任一点值。
在一实例中,所述非水有机溶剂还包括碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、丙酸丙酯(PP)和乙酸丙酯中的至少一种。
根据本公开一个示例性的实施方案,所述非水有机溶剂包括碳酸乙烯酯(EC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)。示例性地,所述碳酸乙烯酯(EC)、所述碳酸丙烯酯(PC)和所述丙酸丙酯(PP)的质量比为2:(1~2):2,例如为2:1.5:2。
在一实例中,所述非水电解液中还包括锂盐。
在一实例中,所述锂盐选自双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂和六氟磷酸锂(LiPF 6)中的至少一种,优选为六氟磷酸锂(LiPF 6)。
在一实例中,所述非水电解液中,所述锂盐的质量占比为13wt.%~20wt.%,示例性为13wt.%、14wt.%、15wt.%、16wt.%、17wt.%、18wt.%、19wt.%、20wt.%或者是前述两两数值组成的范围内的任一点值。
在一实例中,所述耐热层包括陶瓷和粘结剂。
在一实例中,所述耐热层中,所述陶瓷的质量占比为20wt.%~99wt.%,示例性为20wt.%、30wt.%、40wt.%、60wt.%、80wt.%、90wt.%、95wt.%、99wt.%或者是前述两两数值组成的范围内的任一点值。
在一实例中,所述耐热层中,所述粘结剂的质量占比为1wt.%~80wt.%,示例性为1wt.%、5wt.%、10wt.%、20wt.%、30wt.%、50wt.%、60wt.%、80wt.%或者是前述两两数值组成的范围内的任一点值。
在一实例中,所述陶瓷选自氧化铝、勃姆石、氧化镁、氮化硼和氢氧化镁中的一种、两种或更多种。
在一实例中,所述耐热层中的粘结剂选自聚四氟乙烯、聚偏氟乙烯、六氟丙烯-偏氟乙烯共聚物(例如为聚偏氟乙烯-六氟丙烯共聚物)、聚酰亚胺、聚丙烯腈和聚甲基丙烯酸甲酯中的一种、两种或更多种。
在一实例中,所述涂胶层的厚度为0.5μm~2μm,示例性为0.5μm、1μm或2μm。
在一实例中,所述耐热层和所述涂胶层所采用的溶剂选自丙酮、四氢呋喃、二氯甲烷、氯仿、二甲基甲酰胺、N-甲基-2-吡咯烷酮、环己烷、甲醇、乙醇、异丙醇和水中的至少一种。
在一实例中,所述电池例如为锂离子电池。
在一实例中,所述正极片包括正极集流体和涂覆在所述正极集流体一侧或两侧表面的正极活性物质层。
在一实例中,所述正极活性物质层包括正极活性物质、导电剂和粘结剂。
根据本公开一个示例性的实施方案,在所述正极活性物质层中,所述正极活性物质、所述导电剂和所述粘结剂的混合质量比为98:1.0:1.0。
在一实例中,所述正极活性物质选自钴酸锂(LiCoO 2)或经过Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素掺杂包覆处理的钴酸锂(LiCoO 2),所述经过Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素掺杂包覆处理的钴酸锂的化学式为Li xCo 1-y1-y2-y3-y4A y1B y2C y3D y4O 2;其中,0.95≤x≤1.05,0.01≤y1≤0.1,0.01≤y2≤0.1,0≤y3≤0.1,0≤y4≤0.1,A、B、C、D选自Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素。
在一实例中,所述正极活性物质层中的导电剂选自乙炔黑。
在一实例中,所述正极活性物质层中的粘结剂选自聚偏氟乙烯(PVDF)。
在一实例中,所述负极片包括负极集流体和涂覆在所述负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂和粘结剂。
在一实例中,所述负极活性物质选自石墨。
在一实例中,所述负极活性物质还任选地含有SiO x/C或Si/C,其中0<x<2。例如,所述负极活性物质还含有1wt.%~15wt.%的SiO x/C或Si/C,示例性为1wt.%、2wt.%、5wt.%、8wt.%、10wt.%、12wt.%、15wt.%或者是前述两两数值组成的范围内的任一点值。
在一实例中,所述电池的充电截止电压在4.45V及以上。
本公开的有益效果:
(1)本公开提供一种电池,通过隔膜与非水电解液的协同作用,并在正负极材料组合下联用后制备得到的电池,在有效提高电池循环寿命的同时还能有效降低电池的循环膨胀。
(2)本公开的电池包括正极片、负极片、置于正极片和负极片之间的隔膜以及非水电解液,将非水电解液中丙酸乙酯的质量占比与六氟丙烯-偏氟乙烯共聚物中六氟丙烯(HFP)的质量占比的比值控制在0.2~60范围之间,其中: 丙酸乙酯非水有机溶剂对于隔膜中聚偏氟乙烯(PVDF)具有较强的溶胀效果,通过丙酸乙酯非水有机溶剂与六氟丙烯(HFP)的协同作用可对隔膜溶胀起到加强的效果。基于此,本公开通过控制丙酸乙酯和六氟丙烯(HFP)的含量比,不仅可以提升隔膜与正负极片的粘接力,保证了隔膜涂层与正负极之间的粘接力在电池循环前100周(包括第100周)的变化率在10%以内,还能使电池正负极拥有更好的界面,以降低循环膨胀,进而减少CEI膜的破坏和重组,从而提高正极材料在高温高电压下的稳定性。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
对比例1-2和实施例1-8
对比例1-2和实施例1-8的锂离子电池均按照下述制备方法进行制备,区别仅在于隔膜和非水电解液的选择不同,具体区别如表1所示。
(1)正极片制备
将正极活性物质LiCoO 2、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照重量比98:1.0:1.0进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极浆料;将正极浆料均匀涂覆于厚度为10μm的铝箔上;将上述涂覆好的铝箔在5段不同温度梯度的烘箱烘烤后,再将其在120℃的烘箱干燥8h,然后经过辊压、分切得到所需的正极片。
(2)负极片制备
将质量占比为97%的人造石墨负极材料,质量占比为0.1%的单壁碳纳米管(SWCNT)导电剂、质量占比为0.8%的导电炭黑(SP)导电剂、质量占比为1%的羧甲基纤维素钠(CMC)粘结剂及质量占比为1.1%的丁苯橡胶(SBR)粘结剂 以湿法工艺制成浆料,涂覆于负极集流体厚度6μm铜箔的表面,经烘干(温度:85℃,时间:5h)、辊压和模切得到负极片。
(3)非水电解液制备
在充满氩气的手套箱(水分<10ppm,氧分<1ppm)中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、丙酸丙酯(PP)以2:1.5:2质量比混合均匀,在混合溶液中缓慢加入基于非水电解液总质量14wt.%的LiPF 6、基于非水电解液总质量5wt.%~60wt.%的丙酸乙酯(丙酸乙酯的具体用量如表1所示),搅拌均匀得到非水电解液。
(4)隔膜的制备
在厚度为5μm的聚乙烯基材的双面各涂覆一层厚度为2μm的氧化铝陶瓷,然后将聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)与二甲基乙酰胺(DMAC)按照6%固含量的比例在1500rpm的搅拌速度下搅拌120min,得到浆料L,将浆料L均匀涂覆在氧化铝陶瓷表面,过水烘干后得到双面各1μm的涂胶层,聚偏氟乙烯-六氟丙烯共聚物中六氟丙烯(HFP)的质量占比和聚偏氟乙烯(PVDF)的分子量详见表1。
(5)锂离子电池的制备
将上述准备的正极片、隔膜和负极片通过卷绕得到未注液的裸电池;将裸电池置于外包装箔中,将上述制备好的非水电解液注入到干燥后的裸电池中,经过真空封装、静置、化成、二封、分选等工序,获得所需的锂离子电池。
表1 对比例1-2和实施例1-8制备得到的锂离子电池
Figure PCTCN2022127488-appb-000001
Figure PCTCN2022127488-appb-000002
对上述对比例和实施例所得电池进行电化学性能测试,相关说明如下:
25℃循环实验:将上述实施例和对比例所得电池置于(25±2)℃环境中,静置2-3h,待电池本体达到(25±2)℃时,电池按照1C恒流充电截止电流为0.05C,电池充满电后搁置5min,再以1C恒流放电至截止电压3.0V,记录前3次循环的最高放电容量为初始容量Q,当循环次数达到1000次时,记录电池最后一次的放电容量Q 1;记录电芯初始厚度T,当循环至1000次的厚度记为T 1,记录结果如表2。
其中用到的计算公式如下:
容量保持率(%)=Q 1/Q×100%;
厚度变化率(%)=(T 1-T)/T×100%。
隔膜涂胶层与负极之间粘接力的测量方法:
将上述实施例和对比例所得电池置于(25±2)℃环境中,静置2-3h,待电池本体达到(25±2)℃时,将电池按照0.7C恒流充电,截止电流为0.05C,当电池端电压达到充电限制电压时,改为恒压充电,直到充电电流≤截止电流,停止充电搁置5min,将充满电的电池进行解剖,沿着极耳方向选择长*宽为30mm*15mm的隔膜与负极整体样品,将隔膜与负极呈180度夹角在万能拉伸机上以100mm/min的速度、测试位移为50mm进行测试,测试结果记为隔膜与负极之间的粘接力N(单位N/m),新鲜电池(电池制备完成后未进行循环)测试的粘接力为N1(单位N/m),循环100次电池测试的粘接力为N2(单位N/m);
其中用到的计算公式如下:
隔膜涂胶层与负极之间粘接力的变化率(%)=(N1-N2)/N1×100%。
表2 对比例1-2和实施例1-8所得电池实验测试结果
Figure PCTCN2022127488-appb-000003
由表2结果可以看出:本公开通过隔膜与非水电解液的协同作用,并在正负极材料组合下联用后制备得到的锂离子电池,在有效提高电池循环寿命的同时还能降低电池的循环膨胀。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种电池,其特征在于,所述电池包括正极片、负极片、置于所述正极片和所述负极片之间的隔膜,以及非水电解液;
    所述隔膜包括基材、耐热层和涂胶层,所述耐热层相对设置于所述基材的两面,所述涂胶层设置于所述耐热层上;所述涂胶层包括粘接剂,所述粘接剂包括六氟丙烯-偏氟乙烯共聚物;
    所述非水电解液包括非水有机溶剂,其中所述非水有机溶剂至少包括丙酸乙酯;
    所述非水电解液中丙酸乙酯的质量占比与所述六氟丙烯-偏氟乙烯共聚物中六氟丙烯的质量占比的比值为0.2~60。
  2. 根据权利要求1所述的电池,其特征在于,所述非水电解液中丙酸乙酯的质量占比与所述六氟丙烯-偏氟乙烯共聚物中六氟丙烯的质量占比的比值为0.5~35。
  3. 根据权利要求1或2所述的电池,其特征在于,所述六氟丙烯-偏氟乙烯共聚物的数均分子量为50万Da-250万Da;
    优选地,在所述六氟丙烯-偏氟乙烯共聚物中,偏氟乙烯单元的分子量之和为50万Da~200万Da。
  4. 根据权利要求1-3任一项所述的电池,其特征在于,所述六氟丙烯-偏氟乙烯共聚物中六氟丙烯的质量占比为1wt.%~25wt.%。
  5. 根据权利要求1-4任一项所述的电池,其特征在于,所述非水电解液中丙酸乙酯的质量占比为5wt.%~60wt.%。
  6. 根据权利要求1-5任一项所述的电池,其特征在于,所述非水电解液中还包括添加剂;
    优选地,所述添加剂选自三(三甲基硅烷)亚磷酸酯、三(三甲基甲硅烷基)硼酸酯、双三氟甲烷磺酰亚胺锂、双氟磺酰亚胺锂、1,3-丙烯磺酸内酯、亚硫酸乙烯酯、硫酸乙烯酯、碳酸亚乙烯酯、二草酸硼酸锂、二氟草酸磷酸锂和乙烯基碳酸乙烯酯中的至少一种;
    优选地,所述非水电解液中,所述添加剂的质量占比为0wt.%~10wt.%。
  7. 根据权利要求1-6任一项所述的电池,其特征在于,所述非水有机溶剂还包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、 丙酸丙酯和乙酸丙酯中的至少一种。
  8. 根据权利要求1-7任一项所述的电池,其特征在于,所述非水有机溶剂包括碳酸乙烯酯、碳酸丙烯酯和丙酸丙酯,其中,所述碳酸乙烯酯、所述碳酸丙烯酯和所述丙酸丙酯的质量比为2:(1~2):2。
  9. 根据权利要求1-8任一项所述的电池,其特征在于,所述非水电解液中还包括锂盐;
    优选地,所述锂盐选自双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂和六氟磷酸锂中的至少一种;
    优选地,所述非水电解液中,所述锂盐的质量占比为13wt.%~20wt.%。
  10. 根据权利要求1-9任一项所述的电池,其特征在于,所述耐热层包括陶瓷和粘结剂。
  11. 根据权利要求10任一项所述的电池,其特征在于,所述耐热层中,所述陶瓷的质量占比为20wt.%~99wt.%;
    优选地,所述耐热层中,所述粘结剂的质量占比为1wt.%~80wt.%;
    优选地,所述陶瓷选自氧化铝、勃姆石、氧化镁、氮化硼和氢氧化镁中的一种、两种或更多种;
    优选地,所述耐热层中的粘结剂选自聚四氟乙烯、聚偏氟乙烯、六氟丙烯-偏氟乙烯共聚物、聚酰亚胺、聚丙烯腈和聚甲基丙烯酸甲酯中的一种、两种或更多种。
  12. 根据权利要求1-11任一项所述的电池,其特征在于,所述涂胶层的厚度为0.5μm~2μm。
  13. 根据权利要求1-12任一项所述的电池,其特征在于,所述正极片包括正极集流体和涂覆在所述正极集流体一侧或两侧表面的正极活性物质层,所述正极活性物质层包括正极活性物质、导电剂和粘结剂;
    优选地,所述正极活性物质选自钴酸锂或经过Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素掺杂包覆处理的钴酸锂,所述经过Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素掺杂包覆处理的钴酸锂的化学式为Li xCo 1-y1-y2-y3-y4A y1B y2C y3D y4O 2;0.95≤x≤1.05,0.01≤y1≤0.1,0.01≤y2≤0.1,0≤y3≤0.1,0≤y4≤0.1,A、B、C、D选自Al、Mg、Mn、Cr、Ti、Zr中两种或多种元素。
  14. 根据权利要求1-13任一项所述的电池,其特征在于,所述负极片包 括负极集流体和涂覆在所述负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂和粘结剂;
    优选地,所述负极活性物质为石墨;
    优选地,所述负极活性物质还任选地含有SiO x/C或Si/C,其中0<x<2。
  15. 根据权利要求14所述的电池,其特征在于,所述负极活性物质还含有1wt.%~15wt.%的SiO x/C或Si/C。
PCT/CN2022/127488 2021-10-25 2022-10-25 一种电池 WO2023072108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111252287.3 2021-10-25
CN202111252287.3A CN114024099B (zh) 2021-10-25 2021-10-25 一种电池

Publications (1)

Publication Number Publication Date
WO2023072108A1 true WO2023072108A1 (zh) 2023-05-04

Family

ID=80057724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127488 WO2023072108A1 (zh) 2021-10-25 2022-10-25 一种电池

Country Status (2)

Country Link
CN (1) CN114024099B (zh)
WO (1) WO2023072108A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024099B (zh) * 2021-10-25 2024-04-26 珠海冠宇电池股份有限公司 一种电池
CN114843706A (zh) * 2022-05-12 2022-08-02 珠海冠宇电池股份有限公司 一种电池及电子设备
KR20240086328A (ko) * 2022-12-09 2024-06-18 에스케이온 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891002A (zh) * 2011-10-21 2014-06-25 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
US20160118691A1 (en) * 2014-10-22 2016-04-28 Samsung Sdi Co., Ltd. Lithium secondary battery
CN108352484A (zh) * 2015-11-11 2018-07-31 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
CN111164819A (zh) * 2017-10-26 2020-05-15 株式会社东芝 非水电解质电池及电池包
CN114024099A (zh) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 一种电池
CN114024035A (zh) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 一种电池
CN114024034A (zh) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 一种电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470991B1 (ko) * 2015-12-18 2022-11-25 삼성에스디아이 주식회사 이차 전지
WO2017152089A1 (en) * 2016-03-03 2017-09-08 Apple Inc. Binders for wet and dry lamination of battery cells
CN107785522B (zh) * 2016-08-29 2021-05-14 比亚迪股份有限公司 一种锂离子电池隔膜和锂离子电池及其制备方法
US11289731B2 (en) * 2018-05-29 2022-03-29 Global Graphene Group, Inc. Fire-resistant lithium battery containing an electrode-protecting layer
TWI803648B (zh) * 2018-06-12 2023-06-01 南韓商Lg化學股份有限公司 含無機塗層的電化學裝置用之隔板及彼之製造方法
CN110635133B (zh) * 2019-08-30 2021-08-06 东莞赣锋电子有限公司 一种快充型锂离子电池及其制备方法
CN113410581A (zh) * 2021-06-07 2021-09-17 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891002A (zh) * 2011-10-21 2014-06-25 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
US20160118691A1 (en) * 2014-10-22 2016-04-28 Samsung Sdi Co., Ltd. Lithium secondary battery
CN108352484A (zh) * 2015-11-11 2018-07-31 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
CN111164819A (zh) * 2017-10-26 2020-05-15 株式会社东芝 非水电解质电池及电池包
CN114024099A (zh) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 一种电池
CN114024035A (zh) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 一种电池
CN114024034A (zh) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 一种电池

Also Published As

Publication number Publication date
CN114024099B (zh) 2024-04-26
CN114024099A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023072095A1 (zh) 一种电池
WO2023072108A1 (zh) 一种电池
WO2023083148A1 (zh) 一种锂离子电池
CN108539122A (zh) 一种正极片及包含该正极片的锂离子二次电池
WO2022257859A1 (zh) 一种锂离子电池
WO2023072110A1 (zh) 一种电池
WO2023072105A1 (zh) 一种电池
WO2021232904A1 (zh) 一种电化学装置隔离膜及其制备方法
TW200926479A (en) Electrolytic solution and lithium battery employing the same
WO2023093880A1 (zh) 一种锂离子电池
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN114006048B (zh) 一种电池
WO2021088718A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
KR20230029832A (ko) 전극시트 및 배터리
CN112103468A (zh) 一种负极片及包括该负极片的锂离子电池
WO2024146658A1 (zh) 电解液和锂离子电池
WO2022117086A1 (zh) 一种适用于硅碳体系锂离子电池的电解液
WO2023072107A1 (zh) 一种隔膜及含有该隔膜的电池
CN114024098B (zh) 一种电池
Soeda et al. Alginic acid as a new aqueous slurry-based binder for cathode materials of LIB
CN109309230B (zh) 一种二次电池极片,其制备方法及使用该极片的二次电池
WO2024099377A1 (zh) 一种电解液及包括该电解液的电池
WO2023098646A1 (zh) 一种隔膜和含有该隔膜的电池
WO2024083167A1 (zh) 一种电池
CN115312864B (zh) 一种电解液及包括该电解液的电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE