WO2023071986A1 - 加氢催化剂的级配系统和应用以及加氢催化剂的级配方法 - Google Patents

加氢催化剂的级配系统和应用以及加氢催化剂的级配方法 Download PDF

Info

Publication number
WO2023071986A1
WO2023071986A1 PCT/CN2022/127053 CN2022127053W WO2023071986A1 WO 2023071986 A1 WO2023071986 A1 WO 2023071986A1 CN 2022127053 W CN2022127053 W CN 2022127053W WO 2023071986 A1 WO2023071986 A1 WO 2023071986A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation catalyst
hydrogenation
catalyst
grading
value
Prior art date
Application number
PCT/CN2022/127053
Other languages
English (en)
French (fr)
Inventor
杨占林
丁思佳
刘奕
彭绍忠
王会刚
姜虹
王继锋
王方朝
王平
Original Assignee
中国石油化工股份有限公司
中石化(大连)石油化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111242776.0A external-priority patent/CN116020477B/zh
Application filed by 中国石油化工股份有限公司, 中石化(大连)石油化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to CA3236446A priority Critical patent/CA3236446A1/en
Priority to CN202280071645.7A priority patent/CN118139694A/zh
Publication of WO2023071986A1 publication Critical patent/WO2023071986A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to the field of hydrogenation of oil products, and relates to a grading system and application of a hydrogenation catalyst and a gradation method of the hydrogenation catalyst.
  • hydrocracking refers to those hydrogenation processes in which more than 10% of macromolecular compounds in raw materials are converted into small molecular compounds through hydrogenation reaction. It has strong adaptability to raw materials, great flexibility in production schemes, Good product quality and other characteristics, can directly convert various heavy and inferior feed materials into high-quality jet fuel, diesel oil, lubricating oil base materials, chemical naphtha and tail oil steam cracking raw materials for ethylene production, etc., which are urgently needed by the market. It has become a modern oil refining It is one of the most important heavy oil deep processing technologies in the petrochemical industry and has been widely used at home and abroad.
  • the core of hydrocracking technology is catalyst, including pretreatment catalyst and cracking catalyst.
  • the main function of the hydrocracking pretreatment catalyst is to remove impurities such as sulfur, nitrogen, oxygen and heavy metals contained in the raw material by hydrogenation, and to hydrogenate saturated polycyclic aromatic hydrocarbons to improve the properties of oil products. Because the nitrogen compounds in the raw oil, especially the basic nitrogen compounds, can poison the acid centers of the cracking catalyst, therefore, the hydrodenitrogenation performance is an important index to measure the hydrocracking pretreatment catalyst.
  • the industrial device is an adiabatic reactor. As the reaction progresses, the reaction temperature increases greatly, the partial pressure of hydrogen decreases, the partial pressure of hydrogen sulfide and ammonia increases, the nitrogen content in the reactants decreases, and the remaining nitrogen-containing compounds are difficult to carry out.
  • Molecules for denitrogenation reactions generally have multi-side chain structures. There is a big difference between the reaction conditions of the upper and lower bed layers of the catalyst. In order to adapt to the different reaction environments, the catalyst gradation system can be developed to maximize the performance of the catalyst and prolong the service life.
  • CN112725014A discloses a method for grading hydrogenation catalysts.
  • the method is filled with N catalyst beds, where N is an integer greater than 2, wherein the catalyst loaded in the mth catalyst bed has the highest acid content at 250°C-500°C, m is an integer greater than 1 and less than N, wherein the acid content of catalysts packed in 1 to m catalyst beds tends to increase at 250°C-500°C, and the acid content of catalysts packed in m to N catalyst beds tends to decrease at 250°C-500°C, so
  • the reaction temperature of the catalyst bed shows an increasing trend along the stream.
  • the method can not only improve the total denitrification and desulfurization performance of the hydrogenation reactor, but also improve the performance stability of the catalyst system.
  • the catalyst system includes first and second catalyst beds; the first catalyst contains alumina, hydrodesulfurization catalytic active components and carboxylic acid; the second catalyst contains inorganic refractory components, hydrodesulfurization catalytic active components and carboxylic acid;
  • the second inorganic refractory component contains amorphous silica-alumina and/or molecular sieves and alumina; both the first and second catalysts have a pore diameter of 4-40nm and a pore diameter of 100-300nm, and the pore volume with a pore diameter of 4-40nm accounts for the total 60-95% of the pore volume, and the pore volume of 100-300nm accounts for 0.5-30% of the total pore volume.
  • the first and second catalysts have a pore diameter of 100-300
  • the hydrocracking catalyst grading method of the present invention comprises the following contents: the hydrocracking reactor is divided into 2-8 reaction zones equally along the material flow direction, and a hydrocracking catalyst and a regenerated catalyst are mixed and loaded in each reaction zone, The mass ratio of the hydrocracking catalyst to the regenerated catalyst in each reaction zone is 10:1-1:10, and along the material flow direction, the mass ratio of the hydrocracking catalyst to the regenerated catalyst in each reaction zone gradually decreases.
  • it provides a catalytic diesel hydroconversion process utilizing the above-mentioned catalyst gradation.
  • the method improves the hydrogenation selectivity of the diesel oil/gasoline component in the conversion process and improves the yield of high-octane gasoline products by grading and loading catalysts with different reaction performances in the cracking reactor.
  • the invention provides a hydrogenation catalyst grading system and application and a hydrogenation catalyst grading method. Applying the grading system of the hydrogenation catalyst provided by the invention to the oil hydrogenation process not only has improved total denitrogenation performance, but also has improved aromatic hydrocarbon saturation performance.
  • the first aspect of the present invention provides a hydrogenation catalyst grading system, the system includes M hydrogenation catalysts loaded sequentially along the flow direction, wherein M is an integer greater than 2;
  • the R value of the Nth hydrogenation catalyst is not less than the R value of the N-1th hydrogenation catalyst, and the R value of at least one Nth hydrogenation catalyst is greater than the R value of the N-1th hydrogenation catalyst, wherein, N is an integer greater than 2 and not greater than M;
  • the R value is the ratio of the molar content of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray photoelectron spectroscopy to the weight content of the Group VIII metal element in terms of oxides in the hydrogenation catalyst characterized by X-ray fluorescence spectroscopy.
  • the R value of the Nth hydrogenation catalyst is 1%-20% higher than the R value of the N-1th hydrogenation catalyst, preferably 2%-10% higher.
  • the second aspect of the present invention provides the application of the gradation system of the hydrogenation catalyst described in the first aspect in oil hydrotreating, preferably in oil hydrocracking, more preferably in oil hydrocracking pretreatment Applications.
  • the third aspect of the present invention provides a hydrogenation catalyst grading method, which is carried out in the hydrogenation catalyst grading system described in the first aspect.
  • the reaction temperature of the Nth hydrogenation catalyst bed is not lower than the reaction temperature of the first hydrogenation catalyst bed.
  • the hydrogenation catalyst grading system provided by the invention uses hydrogenation catalysts with different surface nickel atomic concentrations for gradation, which is beneficial to improving the overall denitrification effect of the device, and also improves the hydrogenation saturation performance of the catalyst system.
  • the first aspect of the present invention provides a hydrogenation catalyst grading system, the system includes M hydrogenation catalysts loaded sequentially along the flow direction, wherein M is an integer greater than 2;
  • the R value of the Nth hydrogenation catalyst is not less than the R value of the N-1th hydrogenation catalyst, and the R value of at least one Nth hydrogenation catalyst is greater than the R value of the N-1th hydrogenation catalyst, wherein, N is an integer greater than 2 and not greater than M;
  • the R value is the ratio of the molar content of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray photoelectron spectroscopy to the weight content of the Group VIII metal element in terms of oxides in the hydrogenation catalyst characterized by X-ray fluorescence spectroscopy.
  • the content of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray photoelectron spectroscopy refers to the mole of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray photoelectron spectroscopy percentage content.
  • the X-ray photoelectron spectroscopy (XPS) test is carried out on the MultiLab 2000 X-ray photoelectron spectrometer of Thermo Fisher Scientific Corporation, the excitation source MgK ⁇ , with C1s (284.8ev) as the internal standard, and the calibration charge electric effect.
  • XPS X-ray photoelectron spectroscopy
  • the content of Group VIII metal elements in hydrogenation catalysts characterized by X-ray fluorescence spectroscopy refers to the Group VIII metal elements in hydrogenation catalysts characterized by X-ray fluorescence spectroscopy (XRF) in terms of oxides weight percent content.
  • the X-ray fluorescence spectrum (XRF) characterization adopts the ZSX100e wavelength dispersive X-ray fluorescence spectrometer produced by Rigaku, uses PET spectroscopic crystals to analyze elements such as aluminum and silicon, and uses LiF1 spectroscopic crystals to analyze Ni, Co, Mo and W and other elements, and the results were normalized using the standard-free analysis software ZSX.
  • the grading system provided by the present invention includes M hydrogenation catalysts loaded sequentially along the flow direction, and there is no particular limitation on the specific loading method, and the M hydrogenation catalysts can be loaded in M In one hydrogenation catalyst bed, two or more hydrogenation catalysts can also be packed in one hydrogenation catalyst bed, as long as the stream is sequentially contacted with M hydrogenation catalysts.
  • the present invention also has no special limitation on the arrangement of the hydrogenation catalyst bed, which can be arranged in the same hydrogenation reactor, or in more than two hydrogenation reactors connected in series, as long as M The hydrogenation catalysts can be loaded sequentially along the flow direction.
  • the R value of the hydrogenation catalysts loaded sequentially along the flow direction shows a trend from low to high, that is, the R value of the Nth catalyst is not less than the R value of the N-1th hydrogenation catalyst.
  • the trend of R value from low to high means that the whole system shows a trend from low to high as a whole, but it is allowed that the R value of one or more loaded hydrogenation catalysts is different from the R value of the last hydrogenation catalyst same or similar.
  • the R value of at least one Nth hydrogenation catalyst is greater than the R value of the N-1th hydrogenation catalyst in the present invention means that there is at least one hydrogenation catalyst packed in the rear (Nth) in the whole system The R value of the hydrogen catalyst needs to be greater than the R value of the hydrogenation catalyst charged in the previous (N-1th) hydrogenation catalyst.
  • the present invention has no special limitation on the filling of the hydrogenation catalyst and the setting of the hydrogenation catalyst bed. Those skilled in the art can realize the solution of the present invention by any means, all within the protection scope of the grading system provided by the present invention .
  • the value range of M is selected relatively wide, that is, the range of selection of the number of hydrogenation catalysts loaded in the grading system is relatively wide, taking into account the effect and economical point of view, preferably, M is an integer of 3 or more, and can be It is an integer of 3-10, for example: 3, 4, 5, 6, 7, 8, 9 or 10, preferably 3-7.
  • the R value of the Nth hydrogenation catalyst is 1%-20% higher than the R value of the N-1th hydrogenation catalyst, preferably 2%-10% higher. Adopting this preferred embodiment is more conducive to improving the hydrodenitrogenation and aromatic hydrocarbon saturation capacity of the graded system.
  • the molar content of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray photoelectron spectroscopy is preferably 0.1-6%, more preferably 0.5-3%.
  • the content of Group VIII metal element in the hydrogenation catalyst characterized by X-ray fluorescence spectrum is preferably 1-15% by weight of oxide, more preferably 1.5-10%.
  • the R value of the hydrogenation catalyst is 3-150%, preferably 10-50%.
  • the reduction temperature of the N-1th hydrogenation catalyst is not lower than the reduction temperature of the Nth hydrogenation catalyst, and the reduction temperature of the hydrogenation catalyst is characterized by H 2 -TPR The peak top temperature of the resulting reduction peak.
  • the reduction temperature of the hydrogenation catalysts tends to be from high to low, wherein, the reduction temperature is from high to low.
  • the system as a whole presents a trend from high to low, but it is allowed that there are one or more hydrogenation catalysts whose reduction temperature is the same or close to the reduction temperature of the previous hydrogenation catalyst.
  • the reduction temperature of the N-1th hydrogenation catalyst is 5-150°C higher than the reduction temperature of the Nth hydrogenation catalyst bed, more preferably 10-50°C higher.
  • the reduction temperature of the hydrogenation catalyst is obtained by H 2 -TPR characterization.
  • the H 2 -TPR was characterized using a fully automatic chemical adsorption instrument (type AMI-200) from Altamira, USA.
  • the carrier gas is high-purity argon, 5 vol% H 2 -Ar is used as the reaction gas, and the temperature is programmed to 700° C., and the heating rate is 10° C./min.
  • the reduction temperature of the loaded first hydrogenation catalyst is 350-550°C.
  • the present invention has no special limitation on the loading amount of each hydrogenation catalyst, and those skilled in the art can carry out adaptive matching under the premise of the above disclosure.
  • the loading volume ratio of adjacent hydrogenation catalysts is 1:20-20:1, preferably 1:10-10:1, more preferably 1:5-5:1.
  • each hydrogenation catalyst can be the same or different.
  • the present invention has no special limitation on the composition of the hydrogenation catalyst, and any catalyst that can be used in hydrogenation reactions in the art is applicable to the present invention.
  • each hydrogenation catalyst independently comprises a support, a Group VIB metal active component, and a Group VIII metal active component.
  • the Group VIB metal active component is W and/or Mo
  • the Group VIII metal active component is Ni and/or Co.
  • the carrier can be various inorganic refractory oxides conventionally used in this field, preferably, the carrier is selected from alumina, silica, silica-alumina, magnesia, zirconia, boria and titania at least one of the
  • the carrier may also contain doping elements, such as one or more of phosphorus, silicon, boron, fluorine, sodium and other elements.
  • the addition amount of the doping element can be a conventional addition amount, preferably accounting for 0.5%-6% of the mass of the carrier.
  • the present invention has a wide selection range for the composition of each hydrogenation catalyst, and can be changed and adjusted within a wide range, as long as the above-mentioned trend in the gradation system is satisfied.
  • the contents of the Group VIB metal active components and the Group VIII metal active components in each hydrogenation catalyst may be the same or different.
  • the contents of Group VIII metal active components and Group VIB metal active components in different hydrogenation catalysts may independently show a trend from low to high, from high to low, stable or disordered, the present invention This is not particularly limited.
  • the content of the Group VIII metal active component and the Group VIB metal active component of the Nth hydrogenation catalyst is not less than the Group VIII metal active component and the Group VIB metal active component of the N-1 hydrogenation catalyst The content of metal active components.
  • the content of the active component of the Group VIB metal in terms of oxides is 9-50% by weight, and the content of the active component of the Group VIII metal in terms of oxides is 1-15% weight%.
  • the loaded hydrogenation catalyst can be commercially available, or can be prepared by any existing catalyst adjustment technology.
  • the inorganic additives can be one or more of fluorine, silicon, phosphorus, boron, magnesium, zirconium, etc.
  • the organic additives It can be one or more of nitrogen-containing organic compounds, sulfur-containing organic compounds and oxygen-containing organic compounds.
  • Inorganic additives or organic additives can be introduced at any step, such as any step or several steps before, simultaneously and after impregnating Group VIB and Group VIII metal components.
  • the nitrogen-containing organic compound can be an organic compound containing at least one covalently bonded nitrogen atom, such as: ethanolamine, diethanolamine, triethanolamine, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) and ethylenediamine Tetraacetic acid, etc.
  • the sulfur-containing organic compound may be an organic compound containing at least one covalently bonded sulfur atom, such as mercaptan (general formula R-SH), sulfide (general formula R-SR), disulfide (general formula R- S-S-R), R in these sulfur-containing organic compounds can be an alkyl group containing 1-10 carbon atoms, such as ethanethiol, ethyl propyl sulfide, dimethyl disulfide, etc.
  • mercaptan generally formula R-SH
  • sulfide generally formula R-SR
  • disulfide generally formula R- S-S-R
  • R in these sulfur-containing organic compounds can be an alkyl group containing 1-10 carbon atoms, such as ethanethiol, ethyl propyl sulfide, dimethyl disulfide, etc.
  • Sulfur-containing organic compounds may be substituted with one or more carboxyl, carbonyl, ester, ether, hydroxyl, or mercapto groups, such as mercaptoacetic acid, mercaptopropionic acid, dimercaptopropanol, and the like.
  • sulfur-containing organic compounds it may also include sulfone and sulfoxide compounds, such as dimethyl sulfoxide, dimethyl sulfone, and the like.
  • the oxygen-containing organic compound is an organic compound containing at least one carbon atom and one oxygen atom.
  • the oxygen-containing moieties can be carboxyl, carbonyl, hydroxyl moieties, or combinations thereof.
  • These substances can be acids, such as acetic acid, oxalic acid, malonic acid, tartaric acid, malic acid, citric acid, etc., or alcohols, such as ethylene glycol, propylene glycol, butylene glycol, glycerin, trimethylolethane, etc. , can be ethers, such as diethylene glycol, dipropylene glycol, triethylene glycol, tributylene glycol, tetraethylene glycol, polyethylene glycol, etc., can be sugars, such as glucose, fructose, lactose, maltose, sucrose, etc. Also ketones, phenols, aldehydes and lipids.
  • acids such as acetic acid, oxalic acid, malonic acid, tartaric acid, malic acid, citric acid, etc.
  • alcohols such as ethylene glycol, propylene glycol, butylene glycol, glycerin, trimethylolethane, etc.
  • the difference in drying and/or calcination heat treatment temperature also has an important influence on the concentration of Group VIII metal atoms on the surface of the hydrogenation catalyst.
  • concentration of nickel atoms on the surface of the hydrogenation catalyst with the same nickel element mass content is higher, and the reduction temperature of the obtained hydrogenation catalyst is relatively low;
  • concentration of nickel atoms is low, and the reduction temperature of the obtained hydrogenation catalyst is relatively high.
  • the low temperature and high temperature are relative, and the treatment temperature range is 80-700°C.
  • the heat treatment temperature can be defined as 80-300°C, preferably 120-200°C as low-temperature treatment; the heat treatment temperature is 350-800°C °C, preferably 400-600 °C, is regarded as high temperature treatment.
  • the second aspect of the present invention provides the application of the gradation system of the hydrogenation catalyst described in the first aspect in oil hydrotreating, preferably in oil hydrocracking, more preferably in oil hydrocracking pretreatment Applications.
  • the grading system provided by the present invention is used in oil hydrocracking pretreatment, which can remove impurities such as sulfur, nitrogen, oxygen and heavy metals contained in oil to a great extent, and can hydrogenate saturated polycyclic aromatic hydrocarbons, Improve the properties of oil products and play a better role in hydrocracking pretreatment.
  • the third aspect of the present invention provides a hydrogenation catalyst grading method, which is carried out in the hydrogenation catalyst grading system described in the first aspect.
  • the method includes introducing the oil product to be hydrotreated into the grading system for hydrogenation reaction.
  • the oil product to be hydrotreated is introduced into the grading system, contacts with the first hydrogenation catalyst loaded, and then successively contacts with the hydrogenation catalysts loaded in the grading system to react.
  • the conditions of the hydrogenation reaction include: the reaction pressure is 3-20MPa, the liquid hourly volume total space velocity is 0.2-4h -1 , and the reaction temperature is 260-430°C; further preferably, the hydrogenation reaction The conditions include: the reaction pressure is 8-17MPa, the liquid-hour volume total space velocity is 0.8-2h -1 , and the reaction temperature is 300-400°C.
  • the present invention provides that the method can process a variety of raw materials, including petroleum fractions, coal-based liquefied oil, biomass oil, shale oil, coal tar, etc., preferably petroleum fractions, including but not limited to diesel oil, VGO, CGO and DAO, etc. at least one of .
  • Its main properties preferably include: initial boiling point above 180°C, final boiling point below 600°C, density of 0.8-0.95g ⁇ cm -3 (20°C), nitrogen content of 100-6000 ⁇ g ⁇ g -1 , sulfur content 0.05-3% by weight, and the total aromatics content is 20-80% by weight.
  • the hydrogenation reaction includes but not limited to at least one of hydrodesulfurization, hydrodenitrogenation, hydrodeoxygenation and hydrogenation saturation.
  • the reaction temperature of the Nth hydrogenation catalyst bed is not lower than the reaction temperature of the first hydrogenation catalyst bed; more preferably, the reaction temperature of the Nth hydrogenation catalyst bed The temperature is not lower than the reaction temperature of the N-1th hydrogenation catalyst bed, preferably 5-50°C higher, such as 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, or any range formed by any two.
  • the inventors of the present invention found in the research process that the hydrogenation catalyst gradation system with specific Group VIII metal element distribution is more conducive to improving the hydrodenitrogenation and aromatic hydrocarbon hydrogenation of the gradation system under the above-mentioned reaction temperature variation trend saturation performance.
  • the Nth hydrogenation catalyst bed refers to the hydrogenation section formed by the Nth hydrogenation catalyst.
  • the reaction temperature refers to the average reaction temperature
  • hydrogenation is an exothermic reaction
  • the temperature of the hydrogenation catalyst bed gradually rises
  • the algebraic sum of the temperature of each stage of the catalyst is divided by the number of stages, Recorded as the average reaction temperature.
  • the reaction temperature is the fixed reaction temperature.
  • the reaction temperature of the last hydrogenation catalyst bed is not higher than 410°C, such as 370-410°C. Adopting this preferred embodiment is more conducive to ensuring the stability of the hydrogenation catalyst in the graded system.
  • the R value is the content of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray photoelectron spectroscopy and the content of the Group VIII metal element in the hydrogenation catalyst characterized by X-ray fluorescence spectrum ratio.
  • the X-ray photoelectron spectrum characterization and X-ray fluorescence spectrum characterization methods are as described above; the reduction temperature is measured by H 2 -TPR, and the specific method is as described above.
  • the preparation method of catalyst A impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volumes, the impregnation solution contains diethylene glycol and citric acid, and the molar ratio of nickel to nickel atoms is 0.5:0.5:1, and dried at 120°C for 3 hours. After calcination at 540°C for 2h, the obtained catalyst is designated as A.
  • the preparation method of catalyst B impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volumes, the impregnation solution contains diethylene glycol and citric acid, and the molar ratio of nickel to nickel atoms is 0.5:0.5:1, and then dried at 120°C for 3 hours. After calcination at 440°C for 2 h, the obtained catalyst is denoted as B.
  • the preparation method of catalyst C impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volumes, the impregnation solution contains diethylene glycol and citric acid, and the molar ratio of nickel to nickel atoms is 0.5:0.5:1, and dried at 120°C for 3 hours.
  • the obtained catalyst is designated as C.
  • the preparation method of catalyst D impregnate the alumina carrier Z with an impregnating solution containing Mo and Ni in equal volume, the impregnating solution contains diethylene glycol and citric acid, and the molar ratio of nickel to nickel atom is 0.5:0.5:1, and dry at 120°C for 3 hours,
  • the obtained catalyst is designated as D.
  • This embodiment is used to illustrate the grading system and grading method provided by the present invention.
  • the grading system includes three hydrogenation catalyst beds arranged along the flow direction, the bed volumes are 30mL, 30mL and 30mL respectively, and the controlled reaction temperatures are 340°C, 360°C, 380°C respectively.
  • test number is PS1: Three reaction beds along the flow direction of the reactants are filled with catalyst A, catalyst B and catalyst C in sequence.
  • the test number is PS2: three reaction beds along the flow direction of the reactant are filled with catalyst A, catalyst A and catalyst C in sequence.
  • the test number is PS3: three reaction beds along the flow direction of the reactants are filled with catalyst B, catalyst B and catalyst C in sequence.
  • test number is PS4: Three reaction beds along the flow direction of the reactant are filled with catalyst A, catalyst B and catalyst D in sequence.
  • This embodiment is used to illustrate the grading system and grading method provided by the present invention.
  • the grading system includes four hydrogenation catalyst beds arranged in the same fixed-bed hydrogenation reactor along the flow direction, and the four reaction beds are filled with catalyst A, catalyst B, catalyst D and catalyst C in sequence along the flow direction of the reactant , the bed volumes were 10mL, 20mL, 30mL and 30mL, respectively, and the reaction temperatures were controlled to be 330°C, 345°C, 360°C, and 380°C, respectively.
  • the grading system includes three hydrogenation catalyst beds arranged in the same fixed-bed hydrogenation reactor along the flow direction, the bed volumes are 30mL, 30mL and 30mL respectively, and the controlled reaction temperatures are 340°C, 360°C, 380°C.
  • test number is PD1: three reaction beds along the flow direction of the reactant are filled with catalyst C, catalyst B and catalyst A in sequence.
  • test number is PD2: three reaction beds along the reactant flow direction are filled with catalyst B, catalyst B and catalyst B in sequence.
  • the test number is PD3: three reaction beds along the flow direction of the reactant are filled with catalyst C, catalyst C and catalyst C in sequence.
  • This comparative example is used to illustrate the scheme of preparing and grading three kinds of catalysts by adopting the conventional method of arranging from low to high metal content.
  • the preparation method of the catalyst cat-21 impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volume, dry at 120°C for 3 hours, and calcinate at 500°C for 2 hours.
  • the obtained catalyst is designated as cat-21.
  • the preparation method of the catalyst cat-22 impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volume, dry at 120°C for 3 hours, and calcinate at 500°C for 2 hours.
  • the obtained catalyst is designated as cat-22.
  • the preparation method of the catalyst cat-23 impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volume, dry at 120°C for 3 hours, and calcinate at 500°C for 2 hours.
  • the obtained catalyst is designated as cat-23.
  • the catalysts were graded.
  • the properties, content and packing scheme of the catalysts used are shown in Table 3.
  • the scheme of grading is carried out by gradually increasing the content of Ni, and the catalyst is graded while keeping the content of Mo of the catalyst basically the same.
  • the properties and packing scheme of the catalyst used are shown in Table 4.
  • the preparation method of the catalyst cat-31 impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volume, dry at 120°C for 3 hours, and calcinate at 550°C for 2 hours.
  • the obtained catalyst is designated as cat-31.
  • the preparation method of the catalyst cat-32 impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volume, dry at 120°C for 3 hours, and calcinate at 550°C for 2 hours.
  • the obtained catalyst is designated as cat-32.
  • the preparation method of the catalyst cat-33 impregnate the alumina carrier Z with an impregnation solution containing Mo and Ni in equal volume, dry at 120°C for 3 hours, and calcinate at 550°C for 2 hours.
  • the obtained catalyst is designated as cat-33.
  • Catalyst number Cat-31 Cat-32 Cat-33 MoO 3 wt% 23.5 23.8 23.3 NiO, wt% 3.0 4.5 6.0 Specific surface area, m 2 /g 184 179 164 Pore volume, mL/g 0.44 0.43 0.41 R,% 26.6 22.7 19.1 filling position superior middle Down Filling volume, mL 30 30 30 30 30
  • This application example evaluates the performance of the grading system and grading method provided in the above examples and comparative examples.
  • the performance evaluation experiment is carried out on a small hydrogenation unit, and the catalyst is pre-sulfurized before the activity evaluation.
  • the sulfidation conditions include: sulfurized oil It is a straight-run jet fuel containing 3% by volume of dimethyl disulfide, vulcanization pressure 14.5MPa, liquid hourly total volume space velocity 2h -1 , hydrogen-oil volume ratio 1000:1, constant temperature at 230°C and 370°C for 8 hours respectively.
  • the evaluation conditions are the total reaction pressure of 14.5MPa, the liquid hourly total volume space velocity of 1h -1 , and the hydrogen-to-oil volume ratio of 1000:1.
  • the properties of the raw oil used in the performance evaluation experiment are shown in Table 5, and the activity evaluation results are shown in Table 6.
  • the denitrification activity described in Table 6 is calculated according to the first-order reaction, and the calculation formula is:
  • Relative denitrification activity ln(nitrogen content in product/nitrogen content in raw material)/ln(nitrogen content in PD1 product/nitrogen content in raw material) ⁇ 100%. Take the denitrification activity of test PD1 in Comparative Example 1 as 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及油品加氢领域,涉及一种加氢催化剂的级配系统和应用以及加氢催化剂的级配方法,该系统包括沿物流方向依次装填的M个加氢催化剂,其中,M为2以上的整数;其中,第N个加氢催化剂的R值不小于第N-1个加氢催化剂的R值,且至少一个第N个加氢催化剂的R值大于第N-1个加氢催化剂的R值,其中,N为2以上,且不大于M的整数;其中,R值为X射线光电子能谱表征的加氢催化剂中第VIII族金属元素的摩尔含量与X射线荧光光谱表征的加氢催化剂中以氧化物计第VIII族金属元素的重量含量的比值。本发明提供的加氢催化剂的级配系统,采用不同表面镍原子浓度的加氢催化剂进行级配,有利于提高装置的整体脱氮效果,而且也提高了催化剂体系的加氢饱和性能。

Description

加氢催化剂的级配系统和应用以及加氢催化剂的级配方法
相关申请的交叉引用
本申请要求2021年10月25日提交的中国专利申请202111243451.4的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及油品加氢领域,涉及一种加氢催化剂的级配系统和应用以及加氢催化剂的级配方法。
背景技术
现代炼油技术中,加氢裂化是指通过加氢反应使原料中有10%以上的大分子化合物变为小分子化合物的那些加氢工艺过程,它具有原料适应性强、生产方案灵活性大、产品质量好等特点,能够将各种重质劣质进料直接转化为市场急需的优质喷气燃料、柴油、润滑油基础料以及化工石脑油和尾油蒸汽裂解制乙烯原料等,已成为现代炼油和石油化学工业中最重要的重油深度加工工艺之一,在国内外获得了日益广泛的应用。
加氢裂化技术的核心是催化剂,包括预处理催化剂和裂化催化剂。其中加氢裂化预处理催化剂的主要作用是:加氢脱除原料中含有的硫、氮、氧和重金属等杂质以及加氢饱和多环芳烃,改善油品的性质。因为原料油中的氮化物尤其是碱性氮化物可以毒害裂化催化剂的酸中 心,因此,加氢脱氮性能是衡量加氢裂化预处理催化剂的重要指标。
工业装置为绝热反应器,随着反应进行,反应温度大幅度提高,氢分压有所降低,硫化氢、氨气分压增大,反应物中的氮含量降低,剩余的含氮化合物为难进行脱氮反应的分子,一般为多侧链结构。催化剂的上下床层反应条件存在很大区别。为适应这种反应环境的不同,可进行催化剂级配体系开发,最大限度提高催化剂的使用性能,延长使用周期。
CN112725014A公开一种加氢处理催化剂的级配方法,所述方法装填N个催化剂床层,N为大于2的整数,其中第m个催化剂床层装填的催化剂250℃-500℃酸含量最高,m为大于1小于N的整数,其中1至m催化剂床层装填的催化剂250℃-500℃酸含量呈增加趋势,m至N催化剂床层装填的催化剂250℃-500℃酸含量呈降低趋势,所述催化剂床层的反应温度沿着物流呈增加趋势。所述方法不仅能提高加氢处理反应器的总脱氮、脱硫性能,而且提高催化剂体系性能的稳定性。
CN109718867A涉及加氢精制催化剂领域,公开了加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法。催化剂体系包括第一和第二催化剂床层;第一催化剂含氧化铝、加氢脱硫催化活性组分和羧酸;第二催化剂含有无机耐火组分、加氢脱硫催化活性组分和羧酸;第二无机耐火组分含无定型硅铝和/或分子筛以及氧化铝;第一和第二催化剂均具有4-40nm的孔径和100-300nm的孔径,且孔径在4-40nm的孔体积占总孔体积的60-95%, 100-300nm的孔体积占总孔体积的0.5-30%。第一和第二催化剂具有100-300nm孔径,性能较好,制备流程缩短,且催化剂体系处理馏分油的能力得到了提升。
CN106669861A公开了一种加氢裂化催化剂级配方法及催化柴油加氢转化工艺。本发明的加氢裂化催化剂级配方法,包括以下内容:将加氢裂化反应器沿物料流动方向等分为2-8个反应区,每个反应区内混合装填加氢裂化催化剂和再生催化剂,各反应区内的加氢裂化催化剂与再生催化剂的质量比为10:1-1:10,沿物料流动方向,各反应区内的加氢裂化催化剂与再生催化剂的质量比逐渐减小。其同时提供一种利用上述催化剂级配的催化柴油加氢转化工艺。其通过在裂化反应器内级配装填不同反应性能的催化剂,提高了转化过程柴油/汽油组分加氢选择性,提高了高辛烷值汽油产品的收率。
发明内容
本发明提供一种加氢催化剂的级配系统和应用以及加氢催化剂的级配方法。将本发明提供的加氢催化剂的级配系统应用于油品加氢过程中,不仅具有提高的总脱氮性能,而且具有提高的芳烃饱和性能。
本发明第一方面提供一种加氢催化剂的级配系统,该系统包括沿物流方向依次装填的M个加氢催化剂,其中,M为2以上的整数;
其中,第N个加氢催化剂的R值不小于第N-1个加氢催化剂的R值,且至少一个第N个加氢催化剂的R值大于第N-1个加氢催化剂的R值,其中,N为2以上,且不大于M的整数;
其中,R值为X射线光电子能谱表征的加氢催化剂中第VIII族金属元素的摩尔含量与X射线荧光光谱表征的加氢催化剂中以氧化物计第VIII族金属元素的重量含量的比值。
优选地,所述第N个加氢催化剂的R值比第N-1个加氢催化剂的R值高1%-20%,优选高2%-10%。
本发明第二方面提供第一方面所述加氢催化剂的级配系统在油品加氢处理中的应用,优选在油品加氢裂化中的应用,更优选在油品加氢裂化预处理中的应用。
本发明第三方面提供一种加氢催化剂的级配方法,该方法在第一方面所述加氢催化剂的级配系统中进行。
优选地,第N个加氢催化剂床层的反应温度不低于第1个加氢催化剂床层的反应温度。
本发明提供的加氢催化剂的级配系统,采用不同表面镍原子浓度的加氢催化剂进行级配,有利于提高装置的整体脱氮效果,而且也提高了催化剂体系的加氢饱和性能。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种加氢催化剂的级配系统,该系统包括沿物流方向依次装填的M个加氢催化剂,其中,M为2以上的整数;
其中,第N个加氢催化剂的R值不小于第N-1个加氢催化剂的R值,且至少一个第N个加氢催化剂的R值大于第N-1个加氢催化剂的R值,其中,N为2以上,且不大于M的整数;
其中,R值为X射线光电子能谱表征的加氢催化剂中第VIII族金属元素的摩尔含量与X射线荧光光谱表征的加氢催化剂中以氧化物计第VIII族金属元素的重量含量的比值。
无特殊说明情况下,X射线光电子能谱表征的加氢催化剂中第VIII族金属元素的含量指的是通过X射线光电子能谱表征的加氢催化剂中以元素计的第VIII族金属元素的摩尔百分含量。
在本发明中,X射线光电子能谱(XPS)测试在赛默飞世尔科技公司MultiLab 2000型X射线光电子能谱仪上进行,激发源MgKα,以C1s(284.8ev)为内标,校正荷电效应。
无特殊说明情况下,X射线荧光光谱(XRF)表征的加氢催化剂中第VIII族金属元素的含量指的是通过X射线荧光光谱表征的加氢催化剂中以氧化物计的第VIII族金属元素的重量百分含量。
在本发明中,X射线荧光光谱(XRF)表征采用采用理学生产的ZSX100e波长色散型X射线荧光光谱仪,使用PET分光晶体分析铝,硅等元素,使用LiF1分光晶体分析Ni、Co、Mo和W等元素,并将结果使用无标样分析软件ZSX进行归一化处理。
根据本发明,可以理解的是,本发明提供的级配系统中包括沿物 流方向依次装填的M个加氢催化剂,对具体装填方式没有特别的限定,所述M个加氢催化剂可以装填于M个加氢催化剂床层中,也可以是将其中的两个或者多个加氢催化剂装填于1个加氢催化剂床层中,只要使得物流依次与M个加氢催化剂接触即可。本发明对所述加氢催化剂床层的设置也没有特别的限定,其可以设置于同一个加氢反应器中,也可以设置于串联的两个以上的加氢反应器中,同样只要保证M个加氢催化剂是按照沿物流方向依次装填即可。
在本发明中,沿物流方向依次装填的加氢催化剂的R值呈从低到高的趋势,即第N个催化剂的R值不小于第N-1个加氢催化剂的R值。其中,R值呈从低到高的趋势指的是整个系统整体上呈现从低到高的趋势,但允许存在一个或多个装填的加氢催化剂的R值与上一个加氢催化剂的R值相同或相近。
本发明所述的“至少一个第N个加氢催化剂的R值大于第N-1个加氢催化剂的R值”指的是整个系统中至少存在一个装填于在后(第N个)的加氢催化剂的R值需要大于装填于在先(第N-1个)的加氢催化剂的R值。
本发明对所述加氢催化剂的装填以及加氢催化剂床层的设置没有特别的限定,本领域技术人员可以以任何手段实现本发明的方案,均在本发明提供的级配系统保护范围之内。
本发明对M的取值范围选择较宽,也就是对于级配系统中装填的加氢催化剂的个数选择范围较宽,兼顾效果和经济角度考虑,优选地,M为3以上的整数,可以为3-10的整数,例如:3、4、5、6、7、 8、9或者10,优选为3-7。
根据本发明的一种优选实施方式,所述第N个加氢催化剂的R值比第N-1个加氢催化剂的R值高1%-20%,优选高2%-10%。采用该种优选实施方式更有利于提高级配系统的加氢脱氮和芳烃饱和能力。
根据本发明提供的级配系统,X射线光电子能谱表征的加氢催化剂中以摩尔含量计的第VIII族金属元素的含量优选为0.1-6%,进一步优选为0.5-3%。
根据本发明提供的级配系统,X射线荧光光谱表征的加氢催化剂中以氧化物重量计的第VIII族金属元素的含量优选为1-15%,进一步优选为1.5-10%。
根据本发明的一种优选实施方式,加氢催化剂的R值为3-150%,优选为10-50%。
根据本发明的一种优选实施方式,第N-1个加氢催化剂的还原温度不低于第N个加氢催化剂的还原温度,所述加氢催化剂的还原温度是指通过H 2-TPR表征得到的还原峰的峰顶温度。在该种优选实施方式下,沿物流方向依次装填的M个加氢催化剂中,加氢催化剂的还原温度呈从高到低的趋势,其中,还原温度呈从高到低的趋势指的是整个系统整体上呈现从高到低的趋势,但允许存在一个或多个加氢催化剂的还原温度与上一个加氢催化剂的还原温度相同或相近。
优选情况下,第N-1个加氢催化剂的还原温度比第N个加氢催化剂床层的还原温度高5-150℃,更优选高10-50℃。
在本发明中,所述加氢催化剂的还原温度通过H 2-TPR表征得到。具体地,所述H 2-TPR表征采用美国Altamira公司的全自动化学吸附仪(AMI-200型)。载气为高纯氩气,以5体积%H 2-Ar作为反应气并程序升温至700℃,升温速率为10℃/min。
优选地,装填的第1个加氢催化剂的还原温度为350-550℃。
本发明对各加氢催化剂的装填量没有特别的限定,本领域技术人员可以在上述公开的前提下进行适应性匹配。优选地,相邻加氢催化剂装填体积比为1:20-20:1,优选1:10-10:1,进一步优选1:5-5:1。
本发明提供的级配系统中,各加氢催化剂载体和活性组分可以相同,也可以不同。本发明对所述加氢催化剂的组成没有特别的限定,本领域中能够应用于加氢处理反应中的催化剂均可适用本发明。优选地,各加氢催化剂各自独立地包括载体、第ⅥB族金属活性组分和第Ⅷ族金属活性组分。
优选地,第ⅥB族金属活性组分为W和/或Mo,第Ⅷ族金属活性组分为Ni和/或Co。
所述载体可以为本领域常规使用的各种无机耐热氧化物,优选地,所述载体选自氧化铝、二氧化硅、二氧化硅-氧化铝、氧化镁、氧化锆、氧化硼和二氧化钛中的至少一种。
本发明中,所述载体中还可以含有掺杂元素,所述掺杂元素例如可以为磷、硅、硼、氟、钠等元素中的一种或几种。所述掺杂元素的添加量可以为常规添加量,优选占载体质量的0.5%-6%。
本发明对各加氢催化剂的组成选择范围较宽,可以在较大范围内 变化调整,只要满足上述级配系统中的趋势即可。各加氢催化剂中第ⅥB族金属活性组分、第Ⅷ族金属活性组分的含量可以相同,也可以不同。沿物流方向,不同加氢催化剂中第Ⅷ族金属活性组分和第ⅥB族金属活性组分的含量可以各自独立地呈现由低到高、由高到低、平稳或者无序的趋势,本发明对此没有特别的限定。优选情况下,第N个加氢催化剂的第Ⅷ族金属活性组分和第ⅥB族金属活性组分的含量不小于第N-1个加氢催化剂的第Ⅷ族金属活性组分和第ⅥB族金属活性组分的含量。
优选地,以加氢催化剂的总重量为基准,以氧化物计第ⅥB族金属活性组分的含量为9-50重量%,以氧化物计第Ⅷ族金属活性组分的含量为1-15重量%。
在本发明提供的级配系统中,装填的加氢催化剂可以采用市售商品,也可以采用现有的任何催化剂调节技术进行制备。如采用在载体及催化剂制备过程中引入不同无机或有机助剂,改变催化剂的热处理温度等改善第Ⅷ族金属原子分布和控制加氢催化剂的还原温度。以在载体及催化剂制备过程中引入不同无机或有机助剂为例,所述无机助剂可以为氟、硅、磷、硼、镁、锆等中的一种或几种,所述有机助剂可以为含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。无机助剂或有机助剂可以在任何步骤引入,如在浸渍第ⅥB族和第Ⅷ族金属组分之前、同时和之后的任一步或几步引入。所述含氮有机化合物可以为至少包含一个共价键氮原子的有机物,如:乙醇胺、二乙醇胺、三乙醇胺,乙二胺四乙酸(EDTA)、氮川三乙酸(NTA) 和环乙二胺四乙酸等。所述含硫有机化合物可以为至少包含一个共价键硫原子的有机物,如硫醇(通式R-SH)、硫醚(通式R-S-R)、二硫化物(通式R-S-S-R),这些含硫有机化合物中的R可以为含1-10个碳原子的烷基,如乙硫醇、乙丙基硫醚、二甲基二硫等。含硫有机化合物中可以含有一个或多个羧基、羰基、酯、醚、羟基、巯基的基团取代,如巯基乙酸、巯基丙酸、二巯基丙醇等。除上述含硫有机化合物外,还可以为包含砜和亚砜类化合物,如二甲基亚砜、二甲基砜等。所述含氧有机化合物为至少含有一个碳原子和一个氧原子的有机物。含氧部分可为羧基、羰基、羟基部分或它们的组合。这些物质可为酸类,如醋酸、草酸、丙二酸、酒石酸、苹果酸、柠檬酸等,可为醇类,如乙二醇、丙二醇、丁二醇、甘油、三羟甲基乙烷等,可为醚类,如二甘醇、二丙二醇、三甘醇、三丁二醇、四甘醇、聚乙二醇等,可为糖类,如葡萄糖、果糖、乳糖、麦芽糖、蔗糖等,也可为酮类、酚类、醛类和脂类。
干燥和/或焙烧热处理温度的不同对加氢催化剂表面第Ⅷ族金属原子浓度同样有重要影响。以Ni为例,在低温下处理,相同镍元素质量含量加氢催化剂表面镍原子浓度较高,得到的加氢催化剂还原温度相对较低;在高温下处理,相同镍元素质量含量加氢催化剂表面镍原子浓度较低,得到的加氢催化剂还原温度相对较高。所述低温和高温是相对的,处理的温度范围为80-700℃,例如可以自定义将热处理温度为80-300℃,优选为120-200℃视为低温下处理;热处理温度为350-800℃,优选为400-600℃视为高温下处理。
本发明第二方面提供第一方面所述加氢催化剂的级配系统在油品加氢处理中的应用,优选在油品加氢裂化中的应用,更优选在油品加氢裂化预处理中的应用。将本发明提供的级配系统用于油品加氢裂化预处理中,可以极大限度的脱除油品中含有的硫、氮、氧和重金属等杂质,并且能够加氢饱和多环芳烃,改善油品的性质,发挥了较好的加氢裂化预处理作用。
本发明第三方面提供一种加氢催化剂的级配方法,该方法在第一方面所述加氢催化剂的级配系统中进行。
优选地,该方法包括将待加氢处理油品引入所述级配系统中进行加氢反应。具体地,将待加氢处理油品引入所述级配系统中,与装填的第一个加氢催化剂接触,然后依次与级配系统中装填的加氢催化剂接触进行反应。
优选地,所述加氢反应的条件包括:反应压力为3-20MPa,液时体积总空速为0.2-4h -1,反应温度为260-430℃;进一步优选地,所述加氢反应的条件包括:反应压力为8-17MPa,液时体积总空速为0.8-2h -1,反应温度为300-400℃。
本发明提供所述方法能够处理多种原料,包括石油馏分、煤基液化油、生物质油、页岩油、煤焦油等,优选石油馏分,包括但不限于柴油、VGO、CGO和DAO等中的至少一种。其主要性质优选包括:初馏点在180℃以上,终馏点在600℃以下,密度为0.8-0.95g·cm -3(20℃),氮含量为100-6000μg·g -1,硫含量为0.05-3重量%,总芳烃含量20-80重量%。
根据本发明提供的方法,优选地,所述加氢反应包括但不限于加氢脱硫、加氢脱氮、加氢脱氧和加氢饱和中的至少一种。
根据本发明提供的方法,优选地,第N个加氢催化剂床层的反应温度不低于第1个加氢催化剂床层的反应温度;更优选地,第N个加氢催化剂床层的反应温度不低于第N-1个加氢催化剂床层的反应温度,优选高5-50℃,例如5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃,或者任意二者构成的任意范围。本发明的发明人在研究过程中发现,将具有特定第VIII族金属元素分布的加氢催化剂级配系统在上述反应温度变化趋势下更有利于提高级配系统的加氢脱氮和芳烃加氢饱和性能。
本发明中,第N个加氢催化剂床层指的是第N个加氢催化剂形成的加氢段。
在本发明中,在工业装置中,所述反应温度指的是平均反应温度,加氢为放热反应,加氢催化剂床层温度逐渐上升,取每段催化剂的温度代数和,除以段数,记为所述平均反应温度。实验室评价或者小型装置,如果是固定反应温度,等温操作,则反应温度为所述固定反应温度。
优选地,最后一个加氢催化剂床层的反应温度不高于410℃,例如为370-410℃。采用该种优选实施方式更有利于保证级配系统中加氢催化剂的稳定性。
下面结合实施例及对比例来进一步说明本发明提供的级配系统 和应用,但以下实施例不构成对本发明系统和方法的限制。
以下实施例和对比例加氢催化剂中,R值为X射线光电子能谱表征的加氢催化剂中第VIII族金属元素的含量与X射线荧光光谱表征的加氢催化剂中第VIII族金属元素的含量的比值。X射线光电子能谱表征和X射线荧光光谱表征方法如上文所述;还原温度通过H 2-TPR测得,具体方法如上文所述。
以下实施例及对比例中如无特殊的说明%均为质量百分数。
以下制备例用于说明加氢催化剂的制备。以下制备例中所用载体的性质如下表1所示。
表1 载体物化性质
项目 氧化铝载体Z
比表面积,m 2/g 305
孔容,mL/g 0.73
堆积密度,g/100mL 55
饱和吸液量,mL/100g 92
制备例1
催化剂A的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,浸渍液中含有二甘醇和柠檬酸,与镍原子摩尔比为0.5:0.5:1,经120℃干燥3h,540℃焙烧2h后,获得的催化剂记为A。
催化剂B的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,浸渍液中含有二甘醇和柠檬酸,与镍原子摩尔比为0.5:0.5:1,经120℃干燥3h,440℃焙烧2h后,获得的催化剂记为B。
催化剂C的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,浸渍液中含有二甘醇和柠檬酸,与镍原子摩尔比为0.5:0.5:1,经120℃干燥3h,获得的催化剂记为C。
催化剂D的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,浸渍液中含有二甘醇和柠檬酸,与镍原子摩尔比为0.5:0.5:1,经120℃干燥3h,获得的催化剂记为D。
制备例1制得的催化剂性质如下表2所示。
表2 催化剂物化性质
催化剂编号 A B C D
MoO 3,wt% 23.9 24.0 24.3 24.2
NiO,wt% 4.5 4.5 4.3 5.2
比表面积,m 2/g 175 173 172 170
孔容,mL/g 0.41 0.41 0.41 0.40
R,% 21.3 26.2 33.5 30.9
还原温度,℃ 435 403 381 378
实施例1
本实施例用于说明本发明提供的级配系统和级配方法。
所述级配系统包括沿物流方向设置的三个加氢催化剂床层,床层体积分别为30mL、30mL和30mL,控制反应温度分别为340℃、360℃、380℃。
试验编号为PS1:沿反应物流方向三个反应床层依次装填催化剂A、催化剂B和催化剂C。
试验编号为PS2:沿反应物流方向三个反应床层依次装填催化剂A、催化剂A和催化剂C。
试验编号为PS3:沿反应物流方向三个反应床层依次装填催化剂B、催化剂B和催化剂C。
试验编号为PS4:沿反应物流方向三个反应床层依次装填催化剂A、催化剂B和催化剂D。
实施例2
本实施例用于说明本发明提供的级配系统和级配方法。
所述级配系统包括沿物流方向设置在同一固定床加氢反应器中的四个加氢催化剂床层,沿反应物流方向四个反应床层依次装填催化剂A、催化剂B、催化剂D和催化剂C,床层体积分别为10mL、20mL、30mL和30mL,控制反应温度分别为330℃、345℃、360℃、380℃。
对比例1
所述级配系统包括沿物流方向设置在同一固定床加氢反应器中的三个加氢催化剂床层,床层体积分别为30mL、30mL和30mL,控制反应温度分别为340℃、360℃、380℃。
试验编号为PD1:沿反应物流方向三个反应床层依次装填催化剂C、催化剂B和催化剂A。
试验编号为PD2:沿反应物流方向三个反应床层依次装填催化剂B、催化剂B和催化剂B。
试验编号为PD3:沿反应物流方向三个反应床层依次装填催化剂C、催化剂C和催化剂C。
对比例2
本对比例用于说明采用常规金属含量由低到高排列的方法,制备3种催化剂,并进行级配的方案。
催化剂cat-21的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,经120℃干燥3h,500℃焙烧2h后,获得的催化剂记为cat-21。
催化剂cat-22的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,经120℃干燥3h,500℃焙烧2h后,获得的催化剂记为cat-22。
催化剂cat-23的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,经120℃干燥3h,500℃焙烧2h后,获得的催化剂记为cat-23。
根据金属含量由低到高的级配原则,对催化剂进行级配,所用的催化剂性质含量及填装方案如表3所示。
表3 总金属含量由低到高的级配方案
催化剂编号 Cat-21 Cat-22 Cat-23
MoO 3,wt% 18.4 24.0 28.2
NiO,wt% 3.9 4.6 5.3
比表面积,m 2/g 212 182 169
孔容,mL/g 0.45 0.42 0.40
R,% 25.1 23.0 20.4
填装位置
填装量,mL 30 30 30
对比例3
通过逐渐增加Ni的含量,来进行级配的方案,在保持催化剂Mo的含量基本相同的情况下,对催化剂进行级配,所用催化剂性质及填装方案如表4所示。
催化剂cat-31的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,经120℃干燥3h,550℃焙烧2h后,获得的催化剂记为cat-31。
催化剂cat-32的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,经120℃干燥3h,550℃焙烧2h后,获得的催化剂记为cat-32。
催化剂cat-33的制备方法:用含Mo、Ni的浸渍液等体积浸渍氧化铝载体Z,经120℃干燥3h,550℃焙烧2h后,获得的催化剂记为cat-33。
表4 镍含量由低到高的级配方案
催化剂编号 Cat-31 Cat-32 Cat-33
MoO 3,wt% 23.5 23.8 23.3
NiO,wt% 3.0 4.5 6.0
比表面积,m 2/g 184 179 164
孔容,mL/g 0.44 0.43 0.41
R,% 26.6 22.7 19.1
填装位置
填装量,mL 30 30 30
应用例
本应用例对上述实施例和对比例提供的级配系统和级配方法进 行性能评价,该性能评价实验在小型加氢装置上进行,活性评价前对催化剂进行预硫化,硫化条件包括:硫化油为含二甲基二硫醚3体积%的直馏航煤,硫化压力14.5MPa,液时总体积空速2h -1,氢油体积比1000:1,230℃和370℃分别恒温8小时。
评价条件为在反应总压14.5MPa,液时总体积空速1h -1,氢油体积比1000:1,性能评价实验所用原料油性质见表5,活性评价结果见表6。
表6中所述脱氮活性按1级反应计算,计算公式:
相对脱氮活性=ln(产品中氮含量/原料中氮含量)/ln(PD1产品中氮含量/原料中氮含量)×100%。取对比例1中试验PD1的脱氮活性为100%。
表5 原料油性质
原料油 VGO
密度(20℃),g/cm 3 0.9153
硫含量,wt% 1.83
氮含量,μg/g 1136
馏程,℃  
IBP/EBP 295/522
总芳烃含量,wt% 44.8
表6 500小时催化剂活性评价结果
Figure PCTCN2022127053-appb-000001
由表6的500小时催化剂活性评价结果可见,与对比例相比,用本发明提供的加氢催化剂的级配系统,脱氮活性有很大的提高,芳烃饱和性能也较好,可以为加氢裂化段提供优质进料。

Claims (11)

  1. 一种加氢催化剂的级配系统,其特征在于,该系统包括沿物流方向依次装填的M个加氢催化剂,其中,M为2以上的整数;
    其中,第N个加氢催化剂的R值不小于第N-1个加氢催化剂的R值,且至少一个第N个加氢催化剂的R值大于第N-1个加氢催化剂的R值,其中,N为2以上,且不大于M的整数;
    其中,R值为X射线光电子能谱表征的加氢催化剂中第VIII族金属元素的摩尔含量与X射线荧光光谱表征的加氢催化剂中以氧化物计第VIII族金属元素的重量含量的比值。
  2. 根据权利要求1所述的级配系统,其中,M为3以上的整数,优选为3-7。
  3. 根据权利要求1或2所述的级配系统,其中,所述第N个加氢催化剂的R值比第N-1个加氢催化剂的R值高1%-20%,优选高2%-10%。
  4. 根据权利要求1-3中任意一项所述的级配系统,其中,加氢催化剂的R值为3-150%,优选为10-50%。
  5. 根据权利要求1-4中任意一项所述的级配系统,其中,第N-1个加氢催化剂的还原温度不低于第N个加氢催化剂的还原温度,优 选高5-150℃,更优选高10-50℃,所述加氢催化剂的还原温度是指通过H 2-TPR表征得到的还原峰的峰顶温度;
    优选地,装填的第1个加氢催化剂的还原温度为350-550℃。
  6. 根据权利要求1-5中任意一项所述的级配系统,其中,相邻加氢催化剂装填体积比为1:20-20:1,优选1:10-10:1,进一步优选1:5-5:1。
  7. 根据权利要求1-6中任意一项所述的级配系统,其中,各加氢催化剂各自独立地包括载体、第ⅥB族金属活性组分和第Ⅷ族金属活性组分;
    优选地,第ⅥB族金属活性组分为W和/或Mo,第Ⅷ族金属活性组分为Ni和/或Co;
    优选地,以加氢催化剂的总重量为基准,以氧化物计第ⅥB族金属活性组分的含量为9-50重量%,以氧化物计第Ⅷ族金属活性组分的含量为1-15重量%;
    优选地,所述载体选自氧化铝、二氧化硅、二氧化硅-氧化铝、氧化镁、氧化锆、氧化硼和二氧化钛中的至少一种。
  8. 权利要求1-7中任意一项所述的加氢催化剂的级配系统在油品加氢处理中的应用,优选在油品加氢裂化中的应用,更优选在油品加氢裂化预处理中的应用。
  9. 一种加氢催化剂的级配方法,该方法在权利要求1-7中任意一项所述的级配系统中进行。
  10. 根据权利要求9所述的级配方法,其中,该方法包括将待加氢处理油品引入所述级配系统中进行加氢反应;
    优选地,所述加氢反应的条件包括:反应压力为3-20MPa,液时体积总空速为0.2-4h -1,反应温度为260-430℃;
    进一步优选地,所述加氢反应的条件包括:反应压力为8-17MPa,液时体积总空速为0.8-2h -1,反应温度为300-400℃;
    优选地,所述待加氢处理油品选自柴油、VGO、CGO和DAO中的至少一种;
    优选地,所述加氢反应包括加氢脱硫、加氢脱氮、加氢脱氧和加氢饱和中的至少一种。
  11. 根据权利要求9或10所述的级配方法,其中,
    第N个加氢催化剂床层的反应温度不低于第1个加氢催化剂床层的反应温度;
    优选地,第N个加氢催化剂床层的反应温度不低于第N-1个加氢催化剂床层的反应温度,优选高5-50℃;
    优选地,最后一个加氢催化剂床层的反应温度不高于410℃。
PCT/CN2022/127053 2021-10-25 2022-10-24 加氢催化剂的级配系统和应用以及加氢催化剂的级配方法 WO2023071986A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3236446A CA3236446A1 (en) 2021-10-25 2022-10-24 Grading system of hydrogenation catalyst and application thereof and grading method of hydrogenation catalyst
CN202280071645.7A CN118139694A (zh) 2021-10-25 2022-10-24 加氢催化剂的级配系统和应用以及加氢催化剂的级配方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111242776.0 2021-10-25
CN202111242776.0A CN116020477B (zh) 2021-10-25 一种加氢处理催化剂的级配方法

Publications (1)

Publication Number Publication Date
WO2023071986A1 true WO2023071986A1 (zh) 2023-05-04

Family

ID=86080003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127053 WO2023071986A1 (zh) 2021-10-25 2022-10-24 加氢催化剂的级配系统和应用以及加氢催化剂的级配方法

Country Status (4)

Country Link
CN (1) CN118139694A (zh)
CA (1) CA3236446A1 (zh)
TW (1) TWI835365B (zh)
WO (1) WO2023071986A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245418A (ja) * 2010-05-26 2011-12-08 Idemitsu Kosan Co Ltd 重質油水素化処理触媒及びその製造方法
CN106669861A (zh) 2015-11-11 2017-05-17 中国石油化工股份有限公司 加氢裂化催化剂级配方法及催化柴油加氢转化工艺
CN109718867A (zh) 2017-10-27 2019-05-07 中国石油化工股份有限公司 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法
CN112725014A (zh) 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种加氢处理催化剂的级配方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591566B (zh) * 2008-05-29 2012-12-12 中国石油化工股份有限公司 一种柴油深度加氢脱硫的催化剂级配方法
CN103805239B (zh) * 2012-11-07 2016-02-10 中国石油化工股份有限公司 一种利用催化剂级配技术生产加氢低凝柴油的方法
CN109988632B (zh) * 2017-12-29 2021-02-05 中国石油化工股份有限公司 一种催化剂级配技术生产汽油和柴油的方法
CN111690432B (zh) * 2019-03-12 2021-07-09 中国石油化工股份有限公司 一种沸腾床催化剂的级配方法
CN112852479B (zh) * 2019-11-28 2022-11-01 中国石油天然气股份有限公司 柴油加氢精制催化剂级配方法、柴油加氢处理方法
CN113122311B (zh) * 2019-12-31 2023-01-10 中国石油化工股份有限公司 一种加氢精制催化剂级配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245418A (ja) * 2010-05-26 2011-12-08 Idemitsu Kosan Co Ltd 重質油水素化処理触媒及びその製造方法
CN106669861A (zh) 2015-11-11 2017-05-17 中国石油化工股份有限公司 加氢裂化催化剂级配方法及催化柴油加氢转化工艺
CN109718867A (zh) 2017-10-27 2019-05-07 中国石油化工股份有限公司 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法
CN112725014A (zh) 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种加氢处理催化剂的级配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, XIAOLONG: "Reducing Polycyclic Aromatic Hydrocarbons in Diesel Fuel Using Catalyst Loading and Grading Technology", TIANJIN CHEMICAL INDUSTRY, no. 02, 30 March 2020 (2020-03-30), XP009545923 *

Also Published As

Publication number Publication date
CN118139694A (zh) 2024-06-04
CA3236446A1 (en) 2023-05-04
TW202327725A (zh) 2023-07-16
TWI835365B (zh) 2024-03-11
CN116020477A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US10596555B2 (en) Catalyst to attain low sulfur gasoline
US2880171A (en) Hydrodesulfurization of hydrocarbons with catalyst composed of molybdenum and two members of the iron group metals
CA2912544C (en) A hydroprocessing catalyst composition containing a heterocyclic polar compound, a method of making such a catalyst, and a process of using such catalyst
US4051021A (en) Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst
US4430443A (en) Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use
US7347931B2 (en) Partially coked catalysts that can be used in the hydrotreatment of fractions that contain sulfur-containing compounds and olefins
US9404053B2 (en) Low-pressure process utilizing a stacked-bed system of specific catalysts for the hydrotreating of a gas oil feedstock
US9546327B2 (en) Process for upgrading a high endpoint gas oil containing high concentrations of thiophenes and nitrogen and providing for a reduced hydrogen consumption rate
JP2003528972A (ja) 低金属量かつ一部失活された触媒を用いる高温ナフサ脱硫
EP2498906A1 (en) A composition useful in the hydroprocessing of a hydrocarbon feedstock
CA2686745A1 (en) Hydrodesulphurization nanocatalyst, its use and a process for its production
US4540482A (en) Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use
CN106147839A (zh) 一种降低汽油硫含量的方法
JPH08168676A (ja) リン酸塩によって促進された、炭素担持金属硫化物触媒を用いる炭化水素油の水素化脱芳香化の方法
Wiwel et al. Initial coking and deactivation of hydrotreating catalysts by real feeds
JP3378402B2 (ja) 接触分解ガソリンの脱硫方法
TWI835365B (zh) 加氫催化劑的級配系統和應用以及加氫催化劑的級配方法
JP4101545B2 (ja) 接触分解ガソリンの脱硫方法
CN103468309A (zh) 一种生产低硫汽油的方法
KR20240090893A (ko) 수소화 촉매의 등급화 시스템과 응용 및 수소화 촉매의 등급화 방법
WO2019236265A1 (en) Naphtah hydrodesulfurization
JPH1088152A (ja) 炭化水素油の水素化精製方法
JP4927323B2 (ja) 選択的水素化脱硫プロセスにおけるβ炭化ケイ素担体を含む触媒の使用
CN116020478A (zh) 一种加氢处理催化剂的级配方法
JP4272760B2 (ja) 炭化水素油の水素化分解及び脱硫用触媒並びに水素化分解及び脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3236446

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022885863

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247017255

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885863

Country of ref document: EP

Effective date: 20240521