WO2023071675A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2023071675A1
WO2023071675A1 PCT/CN2022/121897 CN2022121897W WO2023071675A1 WO 2023071675 A1 WO2023071675 A1 WO 2023071675A1 CN 2022121897 W CN2022121897 W CN 2022121897W WO 2023071675 A1 WO2023071675 A1 WO 2023071675A1
Authority
WO
WIPO (PCT)
Prior art keywords
throughput rate
downlink
uplink
information
access device
Prior art date
Application number
PCT/CN2022/121897
Other languages
English (en)
French (fr)
Inventor
杨勇
张亚伟
张健
孙铭扬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071675A1 publication Critical patent/WO2023071675A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method, device, device and storage medium.
  • the channel of the backhaul link will also change. changes, especially in the process of cell handover, the backhaul capability of the backhaul link has a mutation.
  • the data transmission capability between the vehicle terminal and the network device or the network provided by the vehicle terminal through the network The data transmission capability between terminals cannot meet business requirements, resulting in poor communication quality.
  • the communication connection between terminal equipment and network equipment is realized based on fixed access equipment, which cannot ensure the reliability of the backhaul link.
  • a communication method, device, device, and storage medium provided in the embodiments of the present application.
  • an embodiment of the present application provides a communication method, including: an access device determines a first throughput rate of a backhaul link at a first moment, where the first throughput rate includes an uplink throughput rate and/or a downlink throughput rate, The uplink throughput rate is used to determine the access device used by the terminal device for uplink transmission, and the downlink throughput rate is used to determine the access device used for the terminal device's downlink transmission; the access device sends the first throughput rate to the first routing device .
  • the access device determines the first throughput rate of the backhaul link at the first moment, and sends the first throughput rate to the first routing device, so that the first routing device
  • the uplink throughput rate of the road at the first moment determines the access device used for uplink transmission, realizes the dynamic adjustment of the backhaul link route, reduces the fluctuation of the wireless backhaul rate, and improves the reliability of the backhaul link.
  • the determining, by the access device, the first throughput rate of the backhaul link at the first moment includes: the access device determines the first throughput rate of the backhaul link at the first moment according to the reference signal received power of the backhaul link at the first moment. , to determine the first throughput rate.
  • the access device can accurately determine the first throughput rate at the first moment based on the received power of the reference signal.
  • the access device determines the first throughput rate according to the reference signal received power of the backhaul link at the first moment, including: the access device determines the first throughput rate according to the backhaul link at the first moment.
  • the reference signal received power at the first moment determines the modulation order; the access device determines the first throughput according to the modulation order, the code rate corresponding to the modulation order, and the resource element RE configured for the access device Rate.
  • the corresponding modulation order is obtained, and the code rate corresponding to the modulation order is obtained, and then the first throughput rate is determined, which improves the realization of the first throughput rate. accuracy.
  • the first moment is later than the current moment
  • the method further includes: the access device determines the reference signal at the first moment according to the reference signal received power and the path loss function measured at the current moment receive power.
  • the communication method provided in this embodiment it is possible to predict the received power of the reference signal at the first moment later than the current moment, and then determine the first throughput rate at the first moment based on the predicted reference signal power.
  • the first throughput Compared with the throughput rate at the current moment, the rate can more accurately reflect the backhaul capability of the backhaul link at the first moment.
  • the access device determines the modulation order according to the received power of the reference signal of the backhaul link at the first moment, including: the access device determines the first correspondence according to historical data , the first correspondence is the correspondence between reference signal received power and modulation order; the access device determines the corresponding modulation according to the reference signal received power of the backhaul link at the first moment and the first correspondence Order.
  • the modulation order corresponding to the received power of the reference signal determined by the access device based on historical data is more accurate, and then the first throughput is determined based on the modulation order and the modulation order, which improves the second A throughput accuracy.
  • the access device determines the first throughput rate according to the modulation order, the code rate corresponding to the modulation order, and the resource element RE configured for the access device, including: the access The input device calculates the product of the first number of REs, the number of data streams, the modulation order and the code rate corresponding to the modulation order, and then quotients the product with the duration of the time unit to obtain the uplink throughput rate; and/or, The access device calculates the product of the second number of REs, the number of data streams, the modulation order, and the code rate corresponding to the modulation order, and then quotients the product with the duration of the time unit to obtain the uplink throughput rate; wherein, The first number of REs is the difference between the number of REs configured on the access device and the number of uplink overhead REs, and the second number of REs is the difference between the number of REs configured on the access device and the number of downlink overhead REs.
  • the sending, by the access device, the first throughput rate to the routing device includes: sending, by the access device, the first throughput rate to the first routing device in a wired transmission manner.
  • the first throughput rate is transmitted between the access device and the first routing device through wired transmission, so that when the access device and the first routing device are installed on a mobile device such as a vehicle, The reliability of communication is higher.
  • sending the first throughput rate to the first routing device by the access device includes: generating the first information by the access device according to the label length value TLV format in the link discovery protocol LLDP,
  • the first information includes first indication information, where the first indication information is used to indicate whether the first information includes the uplink throughput rate and/or the downlink throughput rate, and when the first indication information indicates that the uplink throughput rate is included,
  • the first information also includes information about the uplink throughput rate, and when the first indication information indicates that the downlink throughput rate is included, the first information also includes information about the downlink throughput rate; the access device sends the first information to the first routing device.
  • the embodiment of the present application provides a communication method, including: the first routing device acquires the first throughput rate of the backhaul link at the first moment; the first throughput rate includes the uplink throughput rate, and the first routing device According to the uplink throughput rate, determine the access device used by the terminal device for uplink transmission; and/or, the first throughput rate includes a downlink throughput rate, and the first routing device sends the downlink throughput rate to the second routing device.
  • the obtaining the first throughput rate of the backhaul link at the first moment by the first routing device includes: the first routing device receives the first throughput rate sent by the access device in a wired transmission manner. Throughput rate.
  • the acquisition of the first throughput rate of the backhaul link at the first moment by the first routing device includes: the first routing device receives first information from the access device, and the first The information is information conforming to the TLV format in LLDP, the first information includes first indication information, and the first indication information is used to indicate whether the first information includes the uplink throughput rate and/or the downlink throughput rate, in the When the first indication information indicates that the uplink throughput rate is included, the first information also includes information about the uplink throughput rate, and when the first indication information indicates that the downlink throughput rate is included, the first information also includes information about the downlink throughput rate. information.
  • the first routing device sending the downlink throughput rate to the second routing device includes: the first routing device performs data encapsulation according to a routing encapsulation protocol to obtain a first data packet, and the first The header of the data packet includes the information of the downlink throughput; the first routing device sends the first data packet to the second routing device.
  • the method further includes: the first routing device determines that the service priority of multiple downlink data packets is a high priority; the first routing device, for the multiple received downlink data packets, The rearrangement is performed according to the sequence numbers of the downlink data packets; the first routing device sends the rearranged downlink data packets to the terminal device.
  • the embodiment of the present application provides a communication method, including: the second routing device acquires the downlink throughput rate of the backhaul link at the first moment; the second routing device determines the downlink transmission rate of the terminal device according to the downlink throughput rate The access device used.
  • the acquisition of the downlink throughput rate of the backhaul link at the first moment by the second routing device includes: the second routing device receiving the first data packet sent by the first routing device, and the first The packet header of the data packet includes the information of the downlink throughput rate.
  • the method further includes: the second routing device determines that the service priority of multiple uplink data packets is a high priority; the second routing device, for the multiple received uplink data packets, The rearrangement is performed according to the sequence numbers of the uplink data packets; the second routing device sends the rearranged uplink data packets to the network device.
  • an embodiment of the present application provides a communication device, including: a processing unit configured to determine a first throughput rate of a backhaul link at a first moment, where the first throughput rate includes an uplink throughput rate and/or a downlink throughput rate
  • the uplink throughput rate is used to determine the access device used by the terminal device for uplink transmission, and the downlink throughput rate is used to determine the access device used for the downlink transmission of the terminal device;
  • the transceiver unit is used to send the first throughput rate to the second A routing device.
  • the processing unit is specifically configured to: determine the first throughput rate according to the reference signal received power of the backhaul link at the first moment.
  • the processing unit is specifically configured to: determine a modulation order according to the reference signal received power of the backhaul link at the first moment;
  • the code rate and the resource element RE configured by the communication device determine the first throughput rate.
  • the processing unit is further configured to determine the reference signal received power at the first moment according to the measured reference signal received power at the current moment and the path loss function, where the first moment is later than the current moment.
  • the processing unit is specifically configured to: determine a first correspondence according to historical data, where the first correspondence is a correspondence between reference signal received power and modulation order; according to the backhaul link Based on the reference signal received power at the first moment and the first corresponding relationship, a corresponding modulation order is determined.
  • the processing unit is specifically configured to: calculate the product of the first RE number, the number of data streams, the modulation order, and the code rate corresponding to the modulation order, and then combine the product with the number of time units Calculate the quotient of the duration to obtain the uplink throughput rate; and/or, perform the product of the second RE number, the number of data streams, the modulation order and the code rate corresponding to the modulation order, and then calculate the product and the duration of the time unit quotient to obtain the uplink throughput rate; wherein, the first number of REs is the difference between the number of REs configured on the access device and the number of uplink overhead REs, and the second number of REs is the number of REs configured on the communication device and the number of downlink overheads The difference in RE numbers.
  • the transceiver unit is specifically configured to: send the first throughput rate to the first routing device in a wired transmission manner.
  • the transceiver unit is specifically configured to: generate first information according to the label length value TLV format in the Link Discovery Protocol LLDP, where the first information includes first indication information, and the first indication information uses When indicating whether the first information includes the uplink throughput rate and/or the downlink throughput rate, when the first indication information indicates that the uplink throughput rate is included, the first information further includes information about the uplink throughput rate, and in the second When the indication information indicates that the downlink throughput rate is included, the first information also includes information about the downlink throughput rate; and the first information is sent to the first routing device.
  • the first information includes first indication information
  • the first indication information uses When indicating whether the first information includes the uplink throughput rate and/or the downlink throughput rate, when the first indication information indicates that the uplink throughput rate is included, the first information further includes information about the uplink throughput rate, and in the second When the indication information indicates that the downlink throughput rate is included, the first information also includes information about the downlink throughput rate; and the first information is
  • the embodiment of the present application provides a communication device, including: a transceiver unit configured to acquire a first throughput rate of a backhaul link at a first moment; the processing unit configured to The uplink throughput rate determines the access device used by the terminal device for uplink transmission; and/or, the transceiver unit sends the downlink throughput rate in the first throughput rate to the second routing device.
  • the transceiver unit is specifically configured to: receive the first throughput rate sent by the access device in a wired transmission manner.
  • the transceiving unit is specifically configured to: receive first information from the access device, where the first information conforms to the TLV format in LLDP, and the first information includes a first indication information, the first indication information is used to indicate whether the first information includes the uplink throughput rate and/or the downlink throughput rate, and when the first indication information indicates that the uplink throughput rate is included, the first information also includes the uplink throughput rate Throughput rate information, when the first indication information indicates that the downlink throughput rate is included, the first information also includes the downlink throughput rate information.
  • the transceiver unit is specifically configured to: perform data encapsulation according to the routing encapsulation protocol to obtain a first data packet, the header of the first data packet includes the downlink throughput information; The packet is sent to the second routing device.
  • the processing unit is further configured to determine that the service priority of multiple downlink data packets is high priority; the processing unit is also configured to, according to each downlink The sequence numbers of the data packets are rearranged; the transceiver unit is also used to send the rearranged downlink data packets to the terminal device.
  • the embodiment of the present application provides a communication device, including: a transceiver unit, configured to obtain the downlink throughput rate of the backhaul link at the first moment; a processing unit, configured to determine the downlink throughput rate of the terminal device according to the downlink throughput rate The access device used for transmission.
  • the transceiving unit is specifically configured to: receive a first data packet sent by the first routing device, where a packet header of the first data packet includes the downlink throughput information.
  • the processing unit is further configured to determine that the service priority of multiple uplink data packets is a high priority; the processing unit is also configured to, according to each uplink The sequence numbers of the data packets are rearranged; the transceiver unit is also used to send the rearranged uplink data packets to the network equipment.
  • the embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory, and execute the communication device as described in the first aspect, The method in the second aspect, the third aspect, or each possible implementation manner.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and execute computer instructions from the memory, so that the device installed with the chip performs the first aspect, the second aspect, the third aspect or methods in each possible implementation.
  • the embodiments of the present application provide a computer-readable storage medium for storing computer program instructions, and the computer program causes the computer to execute the method described in the first aspect, the second aspect, the third aspect or each possible implementation manner. method.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, the third aspect or each possible implementation manner.
  • FIG. 1 is a schematic structural diagram of a wireless backhaul system 100 applied in an embodiment of the present application
  • Fig. 2 is a schematic diagram of a backhaul link connection method provided by the present application.
  • FIG. 3 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a reference signal received power provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of transmission of a downlink service data stream provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 8 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, for example: Long Term Evolution (Long Term Evolution, LTE) system, LTE frequency division duplex (freQuency division duPlex, FDD) system, LTE time division duplex (time division duPlex, TDD), universal mobile telecommunication system (universal mobile telecommunication system, UMTS), global interoperability microwave access (worldwide interoPerability for microwave access, WiMAX) communication system, future fifth generation (5th Generation, 5G) mobile communication system or new wireless Access technology (new radio access technology, NR) and three application scenarios of 5G mobile communication system enhanced mobile broadband (eMBB), ultra reliable low latency communications (uRLLC), And massive machine type communications (massive machine tyPe communications, mMTC), device-to-device (device-to-device, D2D) communication system, satellite communication system, Internet of things (Internet of things, IoT), narrowband Internet of things (narrow band internet of things, NB-IoT) system
  • the communication method provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system and the like. This application is not limited to this.
  • the communication method provided by the present application can be applied to any backhaul system in the scenario of any communication system mentioned above, and is especially suitable to a wireless backhaul system.
  • FIG. 1 is a schematic structural diagram of a wireless backhaul system 100 applied in an embodiment of the present application.
  • the wireless backhaul system 100 includes a vehicle-to-ground backhaul subsystem 110 , a vehicle access subsystem 120 and a core network subsystem 130 .
  • the vehicle-ground backhaul subsystem 110 is respectively connected with the vehicle-mounted access subsystem 120 and the core network subsystem 130 in a wireless manner, so as to realize the connection of the vehicle-mounted access system 120 to the network for uplink and downlink data return.
  • the vehicle-ground backhaul subsystem 110 includes an access device 111 and a backhaul base station 112 .
  • the access device 111 may include one or more train access units (Train Access Unit, TAU), such as TAU 111-1 and TAU 111-2 in FIG. 1 .
  • the backhaul base station 112 may include a base band processing unit (base band unit, BBU) 1121 and an active antenna processing unit (active antenna unit, AAU) 1122, and the number of AAU 1122 may be multiple, as shown in FIG. 1 1122-1 and 1122-2, and multiple AAU 1122 can be evenly distributed.
  • BBU base band processing unit
  • AAU active antenna unit
  • the AAU can be evenly deployed on the tunnel wall at intervals along the vehicle's driving direction.
  • multiple AAUs 1122 can be divided into multiple AAU groups, and multiple AAUs in the AAU group can correspond to multiple TAUs deployed in the vehicle.
  • AAU 1122-1 and 1122-2 are an AAU group.
  • AAU 1122-1 communicates with TAU 111-1 at the rear of the vehicle
  • AAU 1122 -2 can communicate with TAU 111-2 at the front.
  • the vehicle access subsystem 120 includes a vehicle backhaul router 121 , a vehicle base station 122 and a terminal device 123 .
  • the vehicle-mounted base station 122 provides network services for devices in the vehicle
  • the vehicle-mounted backhaul router 121 can select different access devices (such as the above-mentioned TAU 111-1 or TAU 111-2) for uplink data transmission.
  • the terminal device 123 may be any intelligent terminal that requires network services.
  • the terminal device 123 may include a vehicle controller deployed in a vehicle, a wireless terminal in self-driving (self driving), an intelligent display device, an intelligent monitoring device, etc.; for another example, the terminal device 123 may also include a Mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, vehicle equipment, wearable equipment, 5G network
  • VR virtual reality
  • AR augmented reality
  • 5G network The terminal equipment in the terminal equipment or the terminal equipment in the public land mobile network (public land mobile network, PLMN) which will evolve in the future, etc.
  • PLMN public land mobile network
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device 123 may also be a terminal device in an Internet of Things (Internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the terminal device 123 may also include sensors such as smart printers and vehicle detectors. Its main functions include collecting data (part of the terminal device), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices. etc.
  • the core network subsystem 130 includes a backhaul core network router 131 , a backhaul core network 132 and a vehicle base station core network 133 .
  • the backhaul core network router 131 can transparently transmit downlink data between the vehicle-mounted base station core network 133 and the backhaul core network 132, and select different access devices (such as TAU 131) for the downlink data to perform data backhaul.
  • the backhaul core network 132 establishes a connection with the access device 111 (such as the above-mentioned TAU 111-1 and/or TAU 111-1), manages the access device 111, and completes the establishment of a bearer for the service, and provides it to the external network as a bearer network. interface.
  • the access device 111 such as the above-mentioned TAU 111-1 and/or TAU 111-1
  • the backhaul core network 132 establishes a connection with the access device 111 (such as the above-mentioned TAU 111-1 and/or TAU 111-1), manages the access device 111, and completes the establishment of a bearer for the service, and provides it to the external network as a bearer network. interface.
  • the vehicle-mounted base station core network 133 provides a connection with the above-mentioned terminal equipment 123, manages the terminal equipment 123 and completes bearer establishment for services.
  • wireless backhaul system 100 is only an example, and the wireless backhaul system 100 may include more or less components than those shown in FIG. 1 .
  • the vehicle in the above wireless backhaul system 100 may also be a train, a car, an unmanned vehicle, etc., or the vehicle may also be replaced by any mobile device such as an airplane, a ship, or an intelligent robot.
  • the above-mentioned wireless backhaul system 100 in which the vehicle is driving in the tunnel is only an example, but this application should not be construed as any limitation.
  • the vehicle In the air, when the vehicle is replaced by a ship, it can travel on the water.
  • the above-mentioned AAU 1122 can also be deployed on land, in the air, on the water, etc. This application does not limit this.
  • Network devices such as any base station, routing device, gateway, etc. in Figure 1 and terminal devices and between terminal devices can communicate through licensed spectrum (licensed sPectrum), or through unlicensed spectrum (unlicensed sPectrum) for communication, and can also communicate through licensed spectrum and unlicensed spectrum at the same time.
  • Communication between network devices and terminal devices and between terminal devices can be performed through spectrum below 6G, or through spectrum above 6G, and can also use spectrum below 6G and spectrum above 6G for communication at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the network device and the terminal device.
  • the channel of the backhaul link between the TAU (such as TAU 111-1 or 111-2) and the backhaul base station 112 is Changes in real time.
  • the TAU such as TAU 111-1 or 111-2
  • the backhaul base station 112 is Changes in real time.
  • there is a sudden change in the backhaul capability When such a sudden change occurs, the transmission between the terminal device and the network device cannot meet the service requirements, resulting in poor communication quality of the terminal device.
  • the backhaul links of TAU1 and TAU2 are independent at present, and each TAU is connected to its own BBU, so rate fluctuations easily cause the data transmitted in the backhaul link to exceed the link carrying capacity.
  • the routing device is connected to each access device, and the access device reports the throughput rate of the backhaul link to the routing device, so that the routing device determines the data transmission according to the throughput rate reported by each access device.
  • the access devices used should make reasonable use of the transmission resources of the backhaul links corresponding to multiple access devices. For example, the rate fluctuations of TAU1 and TAU2 in Figure 2 compensate each other, so as to avoid the transmission data carried by some TAUs from being unsaturated while the other part of TAU The transmission data carried exceeds the carrying capacity, that is, the route of the backhaul link can be dynamically adjusted, thereby improving the reliability of the backhaul link.
  • the routing device determines the access device according to the throughput rate reported by each access device. It can also be expressed as the routing device selects an access device for data transmission according to the throughput rate reported by each access device.
  • confirmation and “select "Used interchangeably, the two have the same meaning.
  • the access device may be, for example, access device 111 in FIG. Backhaul core network router 131 in FIG. 1 .
  • the access device shown in the following embodiments may also be replaced with components in the access device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • the routing device can also be replaced with components in the routing device, such as a chip, a chip system, or other functional modules that can call programs and execute programs.
  • the first routing device may be integrated with the access device, in other words, the access device may be integrated with the first routing device.
  • FIG. 3 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application. As shown in Fig. 2, the method 200 may include S210 to S230-1. Each step in the method 200 will be described in detail below.
  • the access device determines the first throughput rate of the backhaul link at the first moment, the first throughput rate includes the uplink throughput rate and/or the downlink throughput rate, and the uplink throughput rate is used to determine the interface used by the terminal device for uplink transmission Incoming device, the downlink throughput rate is used to determine the access device used by the terminal device for downlink transmission;
  • the access device sends the first throughput rate to the first routing device.
  • the first routing device acquires the first throughput rate of the backhaul link at the first moment
  • the first routing device determines an access device used by the terminal device for uplink transmission according to the uplink throughput rate in the first throughput rate.
  • the backhaul link may be a transmission link between an access device and a network device
  • the network device may be a base station, a core network, and the like.
  • the uplink throughput rate can reflect the uplink backhaul rate capability of the backhaul link, and the downlink throughput rate can reflect the downlink backhaul rate capability of the backhaul link.
  • the first moment may be the current moment, or may be later than the current moment.
  • the first throughput rate may be a predicted result based on the current measured value.
  • both the access device and the first routing device are used to realize the communication between the terminal device and the network device, or the communication between the terminal device and other terminal devices through the network.
  • a routing device With the assistance of a routing device, it can send uplink data to the network device (that is, uplink transmission), or receive downlink data sent by the network device (that is, downlink transmission).
  • the access device may determine the first throughput rate according to the received power of the reference signal of the backhaul link at the first moment.
  • the reference signal received power can be obtained by measuring the access device at the first moment, and the reference signal received power can usually be represented by SSB RSRP, which is the reference signal measured on the synchronization signal block (SSB).
  • Signal received power reference signal receiving power, RSRP).
  • the access device may determine the modulation order according to the received power of the reference signal
  • the access device determines a first throughput rate according to the modulation order, the code rate corresponding to the modulation order, and the configured resource element (Resource element, RE) of the access device.
  • the access device may determine the modulation order corresponding to the reference signal received power according to the reference signal received power and the first correspondence, the first correspondence being the reference signal received power and the modulation order number correspondence.
  • the first correspondence may be preset and configured by the network device, or the first correspondence may be generated by the access device according to historical data.
  • the historical data can be stored by the access device itself, and the historical data includes SSB RSRP and modulation order during communication at multiple historical moments, as shown in Table 1, each SSB RSRP value corresponds to a modulation and a coding scheme (modulation and coding scheme, MCS) index (Inndex) I MCS , each MCS index has a unique corresponding modulation order (Modulation Order) Q m in the MCS mapping relationship.
  • MCS modulation and coding scheme
  • I MCS modulation and coding scheme
  • MCS index has a unique corresponding modulation order (Modulation Order) Q m in the MCS mapping relationship.
  • the MCS mapping relationship may include more or less items (columns) than the above Table 2, for example, may also include target code rate, spectrum utilization rate and so on.
  • the MCS index not only has a one-to-one correspondence with the modulation order, but also has a one-to-one correspondence with the code rate, and the modulation order has a one-to-one correspondence with the code rate. Then, the access device may determine the modulation order and code rate corresponding to the reference signal received power of the backhaul link at the first moment according to the first correspondence.
  • the access device may determine the first throughput rate according to the modulation order determined in S211, the code rate corresponding to the modulation order, and the RE configured for the access device.
  • the access device may calculate the product of the first number of REs, the number of data streams, the modulation order, and the code rate corresponding to the modulation order, and then quotient the product with the duration of the time unit to obtain the uplink throughput rate.
  • the formula as follows:
  • Uplink throughput rate number of first REs * number of data streams * code rate * modulation order / duration of time unit.
  • the access device may calculate the product of the second number of REs, the number of data streams, the modulation order, and the code rate corresponding to the modulation order, and then quotient the product with the duration of the time unit to obtain the uplink throughput rate.
  • the formula as follows:
  • Downlink throughput rate second RE number*data stream number*code rate*modulation order/time unit duration.
  • both the first number of REs and the second number of REs may be determined according to configured REs of the access device.
  • the first number of REs is the difference between the number of REs configured on the access device and the number of uplink overhead REs
  • the second number of REs is the difference between the number of REs configured on the access device and the number of downlink overhead REs.
  • the number of uplink overhead REs may include, for example, common channels and pilot signal overheads for uplink transmission
  • the number of downlink overhead REs may include, for example, common channels and pilot signal overheads for downlink transmission.
  • the number of uplink overhead REs may be a first preset value, for example, preset to be 25% of the configured number of REs.
  • the number of downlink overhead REs may be a second preset value, for example, preset to be configured 20% of the RE number.
  • the number of data streams which may also be referred to as a rank (RANK) number, may be determined according to channel condition measurement values.
  • the number of data streams may be a preset number of data streams, for example, the number of data streams is 2.
  • a time unit may be the duration of a slot, subframe, radio frame, or the like.
  • the time unit may be a time slot, and the duration of the time unit is the duration of each time slot, for example, may be 0.125ms.
  • the number of symbols in each slot is, for example, 14, the number of RBs per carrier is, for example, 66, the number of subcarriers in each RB is, for example, 12, and the number of carriers can be configured, for example, 1, 2, 4 or 8.
  • the access device determines the reference signal received power at the first moment according to the reference signal received power measured at the current moment and the path loss function;
  • the access device may determine the modulation order according to the received power of the reference signal
  • the access device determines a first throughput rate according to the modulation order, the code rate corresponding to the modulation order, and the configured REs of the access device.
  • the access device needs to predict the reference signal received power at the first moment based on the reference signal received power at the current moment.
  • the access device obtains the reference signal received power according to the preset period
  • the current time is t2
  • the first time is t3
  • the reference signal received power F(t3) at the first time satisfies the following formula:
  • F(t2) is the received power of the reference signal at the current moment
  • v is the speed of the vehicle
  • Pathloss is the path loss function of the wireless link of the vehicle.
  • the access device can determine that the F(t) function is a monotonically increasing function or a monotonically decreasing function according to the received power of the reference signal at historical moments, and according to whether the F(t) function is increasing or decreasing, predict the first The reference signal received power at a moment.
  • the access device determines the corresponding modulation order according to the predicted received power of the reference signal at the first moment, and then determines the first throughput rate.
  • S211 and S212 in the embodiment of the present application are the same as S211 and S212 in the above-mentioned manner 1 and the respective implementation manners, and details are not repeated here.
  • the access device and the routing device may be connected to the first routing device in a wired manner, and the access device sends the first throughput rate to the routing device in a wired transmission manner.
  • the access device generates the first information according to the tag length value (tag length value, TLV) format in the link discovery protocol (link layer discovery protocol, LLDP), the first information includes the first indication information, the first The indication information is used to indicate whether the first information includes the uplink throughput rate and/or the downlink throughput rate.
  • the first indication information indicates that the first information includes the uplink throughput rate information
  • the first information also includes the uplink throughput rate information.
  • the access device sends the first information to the first routing device.
  • the access device may write the uplink throughput rate information and/or the downlink throughput rate information into the LLDP newly added TLV information source (for example, the System Capabilities (System Capabilities) field). For example, the reserved bits in the TLV
  • the access device may send the first information at an LLDP sending interval, or may send the first information at a preset interval, for example, the preset sending interval may be 1s.
  • the throughput rate sent by the access device to the routing device according to LLDP is only an example, and does not constitute any limitation to this application.
  • the access device can also use other protocols or user-defined transmission to transmit information. This is not limited.
  • the embodiments of the present application are described by using a wired connection between the access device and the first routing device as an example, but this does not constitute any limitation to the present application.
  • the access device and the first routing device may still be connected in a wireless manner.
  • the first routing device can obtain the uplink throughput rates sent by each of the multiple access devices. Uplink throughput rate, and select the TAU with higher uplink throughput rate as the access device used by the terminal device for uplink transmission; or, the first routing device can use the uplink throughput rate sent by each access device as a judgment for access device selection Factor, together with judgment factors of other dimensions, comprehensively determines the access device used by the terminal device for uplink transmission.
  • the access device determines the first throughput rate of the backhaul link at the first moment, and sends the first throughput rate to the first routing device, so that the first routing device
  • the uplink throughput rate at a moment determines the access device used for uplink transmission, realizes the dynamic adjustment of the backhaul link route, reduces the fluctuation of the wireless backhaul rate, and improves the reliability of the backhaul link.
  • FIG. 5 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application. As shown in FIG. 5 , the method 300 may include S210 to S240. Each step in the method 300 will be described in detail below.
  • the access device determines the first throughput rate of the backhaul link at the first moment, the first throughput rate includes the uplink throughput rate and/or the downlink throughput rate, and the uplink throughput rate is used to determine the interface used by the terminal device for uplink transmission Incoming device, the downlink throughput rate is used to determine the access device used by the terminal device for downlink transmission;
  • the access device sends the first throughput rate to the first routing device.
  • the first routing device acquires the first throughput rate of the backhaul link at the first moment
  • the first routing device sends the downlink throughput rate in the first throughput rate to the second routing device.
  • the second routing device acquires the downlink throughput rate of the backhaul link at the first moment
  • the second routing device determines an access device used by the terminal device for downlink transmission according to the downlink throughput rate.
  • S210 and S220 are the same as S210 and S220 shown in FIG. 3 , and have the same implementation manners as S210 and S220 in FIG. 3 , which will not be repeated here.
  • the first routing device performs data encapsulation according to the routing encapsulation protocol to obtain the first data packet, the header of the first data packet includes downlink throughput information, and sends the first data packet to the second routing device.
  • the first routing device is connected to the second routing device in a wireless manner.
  • the first routing device may transmit the downlink throughput to the second routing device through a generic routing encapsulation (generic routing encapsulation, GRE) protocol.
  • GRE generic routing encapsulation
  • the first routing device may use the Reserved1 field of the GRE header to transmit the downlink throughput.
  • the first routing device After receiving the first throughput rate sent by the access device, the first routing device encapsulates the downlink throughput rate into the Reserved1 field in the GRE header of the uplink data packet (that is, the first data packet).
  • the second routing device extracts the downlink throughput rate from the GRE header of the received message.
  • the Reserved1 field is 16 bits.
  • the first routing device may send both the uplink throughput rate and the downlink throughput rate in the first throughput rate to the second routing device, and the encapsulation and transmission process thereof are similar to the above encapsulation and transmission process, which will not be repeated here.
  • the transmission of the downlink service data flow may include some or all of the following processes:
  • Step1 The core network of the vehicle base station provides encapsulation in accordance with the general packet radio service tunneling protocol userplain (GTP-U) format, and the encapsulated data packet includes the transmission address and port number.
  • GTP-U general packet radio service tunneling protocol userplain
  • Step2 The second router encapsulates the GRE protocol header on the GTP-U data packet.
  • Step3 Backhaul the core network to use the GRE data packet as the payload (payload), and perform GTP-U data packet encapsulation again.
  • Step4 The backhaul base station receives the GTP-U data, unpacks it, and sends it to the access device (such as TAU) through a wireless channel, and the access device transparently transmits it to the first routing device.
  • the access device such as TAU
  • Step5 After the first routing device parses the GRE data packet header, it forwards the data to the vehicle base station.
  • Step6 The vehicle-mounted base station parses the GTP-U header and sends the data to the terminal device.
  • the second router performs non-equivalent load sharing according to the downlink throughput rate.
  • the second routing device selects the same or different access points for the service data to be transmitted according to the downlink throughput rate of each access device.
  • the device transmits to the end device.
  • the second routing device can transmit the downlink throughput according to the multiple access devices, for example, the second routing device in Figure 1 can receive the downlink throughput reported by the TAU 111-1 and TAU 111-2 forwarded by the first routing device , and select the TAU with a higher downlink throughput rate as the access device used for downlink transmission; or, the second routing device can use the downlink throughput rate sent by each access device as a judgment factor for access device selection, and other dimensions Together with the judgment factors of the access device, the access device used for the downlink transmission is comprehensively determined; or, the second routing device can select the corresponding access device according to the service type of the downlink data to be transmitted and the downlink throughput rate reported by the access device, for example, the second routing device The second routing device selects an access device with a higher downlink throughput rate when the downlink data to be transmitted is video, and selects an access device with a lower downlink throughput rate when the downlink data to be transmitted is a file.
  • the access device determines the first throughput rate of the backhaul link at the first moment, and sends the first throughput rate to the first routing device, and the first routing device sends the first throughput rate or the first throughput rate to the first routing device.
  • the downlink throughput rate in the rate is sent to the second routing device, so that the second routing device determines the access device used for downlink transmission according to the downlink throughput rate of the backhaul link at the first moment, realizing the routing of the backhaul link
  • the dynamic adjustment of the wireless backhaul reduces the fluctuation of the wireless backhaul rate and improves the reliability of the backhaul link.
  • the second routing device may add sequence numbers to multiple downlink data packets to be transmitted during downlink data transmission, for example, during the GRE encapsulation process,
  • the sequence number of each downlink data packet is indicated by the packet sequence number (Sequence Number) field of the GRE header, and after the first routing device receives the plurality of downlink data packets, it can rearrange according to the sequence numbers of each downlink data packet.
  • the second routing device can determine whether to add a sequence number to it according to the service priority of the downlink data packet to be transmitted, for example, the second routing device can require high quality of service (quality of service, QoS) Add sequence numbers to the data packets corresponding to the business.
  • quality of service quality of service
  • services such as large file downloads and web browsing allow packet loss and have low QoS requirements, that is, the service priority is low, while services such as voice and games have low tolerance for packet loss and high QoS requirements. That is, the business priority is higher.
  • the first routing device can add sequence numbers to the multiple uplink data packets to be transmitted during the uplink data transmission process, for example, during the encapsulation process of the data packets, indicate each uplink The sequence numbers of the data packets.
  • the second routing device can rearrange according to the sequence numbers of the uplink data packets.
  • the first routing device may add sequence numbers to high-priority uplink data packets for services with high QoS requirements, that is, service priorities.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 400 may include: a transceiver unit 410 and a processing unit 420 .
  • the communication apparatus 400 may correspond to the access device in the above method embodiments, for example, may be the access device, or a component configured in the access device (such as a chip or a chip system, etc.).
  • the communication apparatus 400 may correspond to the access device in the method 200 shown in FIG. 3 or the method 300 shown in FIG. 5 according to the embodiment of the present application, and the communication apparatus 400 may include a 200 or elements of the method executed by the access device in method 300 in FIG. 5 . Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are respectively for implementing the corresponding flow of the method in FIG. 3 or the method in FIG. 5 .
  • the processing unit 420 can be used to determine the first throughput rate of the backhaul link at the first moment, and the first throughput rate includes the uplink throughput rate and /or downlink throughput rate, the uplink throughput rate is used to determine the access device used by the terminal device for uplink transmission, the downlink throughput rate is used to determine the access device used by the terminal device for downlink transmission; the transceiver unit 410 can be used to use the first throughput The rate is sent to the first routing device.
  • the processing unit 420 is specifically configured to: determine the first throughput rate according to the reference signal received power of the backhaul link at the first moment.
  • the processing unit 420 is specifically configured to: determine the modulation order according to the reference signal received power of the backhaul link at the first moment; determine the modulation order according to the modulation order and the code rate corresponding to the modulation order And the resource element RE configured by the communication device determines the first throughput rate.
  • the processing unit 420 is further configured to determine the reference signal received power at the first moment according to the measured reference signal received power and the path loss function at the current moment.
  • the processing unit 420 is specifically configured to: determine the first correspondence according to the historical data, the first correspondence is the correspondence between the received power of the reference signal and the modulation order; according to the backhaul link in the The reference signal received power at the first moment and the first corresponding relationship determine the corresponding modulation order.
  • the processing unit 420 is specifically configured to: calculate the product of the first number of REs, the number of data streams, the modulation order, and the code rate corresponding to the modulation order, and then calculate the product and the duration of the time unit quotient to obtain the uplink throughput rate; and/or, perform the product of the second RE number, the number of data streams, the modulation order and the code rate corresponding to the modulation order, and then obtain the quotient of the product and the duration of the time unit, The uplink throughput rate is obtained; wherein, the first number of REs is the difference between the number of REs configured on the access device and the number of uplink overhead REs, and the second number of REs is the number of REs configured on the access device and the number of downlink overhead REs difference in number.
  • the transceiving unit 410 is specifically configured to: send the first throughput rate to the first routing device in a wired transmission manner.
  • the transceiving unit 410 is specifically configured to: generate first information according to the label length value TLV format in the link discovery protocol LLDP, the first information includes first indication information, and the first indication information is used to indicate Whether the first information includes the uplink throughput rate and/or the downlink throughput rate, when the first indication information indicates that the uplink throughput rate is included, the first information also includes the uplink throughput rate information, and the first indication information includes the uplink throughput rate information. When the information indicates that the downlink throughput rate is included, the first information also includes information about the downlink throughput rate; and sending the first information to the first routing device.
  • transceiver unit 410 may be used to execute step 220 in the method shown in FIG. 3 or FIG. 5
  • processing unit 420 may be used to execute step 210 in the method shown in FIG. 3 or FIG. 5 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the communication device 400 may correspond to the first routing device in the above method embodiments, for example, it may be the first routing device, or a component configured in the first routing device (such as a chip or a chip system, etc. ).
  • the communication apparatus 400 may correspond to the first routing device in the method shown in FIG. 3 or FIG. 5 according to the embodiment of the present application, and the communication apparatus 400 may include a method for executing the method 200 in FIG. 3 or FIG. 5 The elements of the method executed by the first routing device in the method 300. Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are for realizing the corresponding flow of the method in FIG. 3 or FIG. 5 respectively.
  • the transceiver unit 410 can be used to obtain the first throughput rate of the backhaul link at the first moment; the first throughput rate includes the uplink throughput rate,
  • the processing unit 420 can be used to determine the access device used by the terminal device for uplink transmission according to the uplink throughput rate; and/or, the first throughput rate includes a downlink throughput rate, and the transceiver unit 410 sends the downlink throughput rate to the second routing device.
  • the transceiving unit 410 is specifically configured to: receive the first throughput rate sent by the access device in a wired transmission manner.
  • the transceiving unit 410 is specifically configured to: receive first information from the access device, the first information is information conforming to the TLV format in LLDP, the first information includes first indication information, The first indication information is used to indicate whether the first information includes the uplink throughput rate and/or the downlink throughput rate, and when the first indication information indicates that the uplink throughput rate is included, the first information also includes the uplink throughput rate When the first indication information indicates that the downlink throughput rate is included, the first information also includes the downlink throughput rate information.
  • the transceiver unit 410 is specifically configured to: perform data encapsulation according to the routing encapsulation protocol to obtain a first data packet, the header of the first data packet includes the information of the downlink throughput rate; send the first data packet to the second routing device.
  • the processing unit 420 determines that the service priority of the plurality of downlink data packets is high priority; the processing unit 420 rearranges the plurality of downlink data packets received according to the sequence numbers of the downlink data packets ; The transceiving unit 410 sends the rearranged downlink data packets to the terminal device.
  • transceiver unit 410 may be used to execute step 220 in the method shown in FIG. 3 and step 230-2 in the method shown in FIG. 5
  • processing unit 420 may be used to execute step 230-1 in the method shown in FIG. 3 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the communication device 400 may correspond to the second routing device in the above method embodiments, for example, it may be the second routing device, or a component configured in the second routing device (such as a chip or a chip system, etc. ).
  • the communication device 400 may correspond to the second routing device in the method 300 shown in FIG. 5 according to the embodiment of the present application, and the communication device 400 may include the second routing device for executing the method in FIG. The unit of the method. Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are respectively for implementing the corresponding flow of the method in FIG. 5 .
  • the transceiver unit 410 is used to obtain the downlink throughput rate of the backhaul link at the first moment; the processing unit 420 is used to determine according to the downlink throughput rate The access device used by the terminal device for downlink transmission.
  • the transceiving unit 410 is specifically configured to: receive the first data packet sent by the first routing device, where the header of the first data packet includes the downlink throughput information.
  • the processing unit 420 determines that the service priority of the multiple uplink data packets is high priority; the processing unit 420 rearranges the multiple received uplink data packets according to the sequence numbers of the uplink data packets ; The transceiver unit 410 sends the rearranged uplink data packets to the network device.
  • transceiver unit 410 may be used to execute step 230-2 in the method shown in FIG. 5
  • processing unit 420 may be used to execute step 240 in the method shown in FIG. 5 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit 410 in the communication device 400 may be implemented by a transceiver, for example, it may correspond to the transceiver 520 in the communication device 500 shown in FIG.
  • the processing unit 420 of can be implemented by at least one processor, for example, it can correspond to the processor 510 in the communication device 500 shown in FIG. 8 .
  • the transceiver unit 410 in the communication device 400 may be implemented by a transceiver, for example, it may correspond to the transceiver 520 in the communication device 500 shown in FIG. 8 , the communication device 400
  • the processing unit 420 in may be implemented by at least one processor, for example, may correspond to the processor 510 in the communication device 500 shown in FIG. 8 .
  • the transceiver unit 410 in the communication device 400 may be implemented by a transceiver, for example, it may correspond to the transceiver 520 in the communication device 500 shown in FIG. 8 , the communication device 400
  • the processing unit 420 in may be implemented by at least one processor, for example, may correspond to the processor 510 in the communication device 500 shown in FIG. 8 .
  • the transceiver unit 410 in the communication device 400 can use an input/output interface
  • the processing unit 420 in the communication device 400 may be implemented by a processor, a microprocessor, or an integrated circuit integrated on the chip or system-on-a-chip.
  • Fig. 8 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 500 may include: a processor 510 , a transceiver 520 and a memory 530 .
  • the processor 510, the transceiver 520 and the memory 530 communicate with each other through an internal connection path, the memory 530 is used to store instructions, and the processor 510 is used to execute the instructions stored in the memory 530 to control the transceiver 520 to send signals and /or to receive a signal.
  • the communication apparatus 500 may correspond to the access device, the first routing device, or the second routing device in the foregoing method embodiments, and may be used to execute the access device, the first routing device, or the second routing device in the foregoing method embodiments. 2.
  • the memory 530 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 530 may be an independent device, or may be integrated in the processor 510 .
  • the processor 510 may be used to execute the instructions stored in the memory 530, and when the processor 510 executes the instructions stored in the memory, the processor 510 is used to execute each of the above-mentioned method embodiments corresponding to the terminal device or the network device. steps and/or processes.
  • the communications apparatus 500 is the access device in the foregoing embodiments.
  • the communications apparatus 500 is the first routing device in the foregoing embodiments.
  • the communications apparatus 500 is the second routing device in the foregoing embodiments.
  • the transceiver 520 may include a transmitter and a receiver.
  • the transceiver 520 may further include an antenna, and the number of antennas may be one or more.
  • the processor 510, memory 530 and transceiver 520 may be devices integrated on different chips.
  • the processor 510 and the memory 530 may be integrated in a baseband chip, and the transceiver 520 may be integrated in a radio frequency chip.
  • the processor 510, the memory 530 and the transceiver 520 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 500 is a component configured in an access device, such as a chip, a chip system, and the like.
  • the communication apparatus 500 is a component configured in the first routing device, such as a chip, a chip system, and the like.
  • the communication apparatus 500 is a component configured in the second routing device, such as a chip, a chip system, and the like.
  • the transceiver 520 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 520 , the processor 510 and the memory 530 may be integrated in the same chip, such as a baseband chip.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is configured to execute a computer program stored in a memory, so that the processing device executes the method performed by the access device in the above method embodiment or A method performed by a network device.
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input-output interface is coupled with the processor.
  • the input and output interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method executed by the access device or the method executed by the network device in the above method embodiments.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the access device in the method embodiment above, and the method executed by the first routing device in the above method embodiment. method or a method executed by the second routing device.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of the hardware in the processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the following method in the above method embodiment.
  • the method performed by the ingress device, the first routing device, or the second routing device.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the above-mentioned method embodiments The method executed by the middle access device, the first routing device or the second routing device.
  • the present application further provides a communication system, and the communication system may include the foregoing access device, the first routing device, and the second routing device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data, such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet through a signal interacting with other systems. Communicate through local and/or remote processes.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该通信方法包括:接入设备确定回传链路在第一时刻的第一吞吐率,该第一吞吐率包括上行吞吐率和/或下行吞吐率,该上行吞吐率用于确定终端设备上行传输采用的接入设备,该下行吞吐率用于确定终端设备下行传输采用的接入设备,该接入设备将该第一吞吐率发送给第一路由设备。实现了对回传链路路由的动态调整,减少了无线回传速率的波动,提升了回传链路的可靠性。

Description

通信方法、装置、设备以及存储介质
本申请要求于2021年10月28日提交中国专利局、申请号为202111266759.0、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
在一些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,车载接入设备在车辆行驶过程中,相对于网络设备存在位移变化,那么回传链路的信道也会发生变化,尤其在小区切换过程中,回传链路的回传能力存在突变,当这种突变发生时,车载终端与网络设备之间的数据传输能力或者车载终端通过网络设备提供的网络与其他终端之间的数据传输能力无法满足业务需求,导致通信质量较差。目前基于固定的接入设备实现终端设备与网络设备之间的通信连接,无法确保回传链路的可靠性。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质。
第一方面,本申请实施例提供一种通信方法,包括:接入设备确定回传链路在第一时刻的第一吞吐率,该第一吞吐率包括上行吞吐率和/或下行吞吐率,该上行吞吐率用于确定终端设备上行传输采用的接入设备,该下行吞吐率用于确定终端设备下行传输采用的接入设备;该接入设备将该第一吞吐率发送给第一路由设备。
通过第一方面提供的通信方法,接入设备确定回传链路在第一时刻的第一吞吐率,并向第一路由设备发送该第一吞吐率,使第一路由设备根据该回传链路在第一时刻的上行吞吐率,确定上行传输采用的接入设备,实现了对回传链路路由的动态调整,减少了无线回传速率的波动,提升了回传链路的可靠性。
在一种可能的实施方式中,该接入设备确定回传链路在第一时刻的第一吞吐率,包括:该接入设备根据该回传链路在该第一时刻的参考信号接收功率,确定该第一吞吐率。
通过该实施方式提供的通信方法,接入设备基于参考信号接收功率,能够准确确定第一时刻的第一吞吐率。
在一种可能的实施方式中,该接入设备根据该回传链路在该第一时刻的参考信号接收功率,确定该第一吞吐率,包括:该接入设备根据该回传链路在该第一时刻的参考信号接收功率,确定调制阶数;该接入设备根据该调制阶数、该调制阶数对应的码率以及该接入设备被配置的资源粒子RE,确定该第一吞吐率。
通过该实施方式提供的通信方法,基于第一时刻的参考信号接收功率,获取对应的调制阶数,并获取调制阶数对应的码率,进而确定第一吞吐率,提高了实现第一吞吐率的准确性。
在一种可能的实施方式中,该第一时刻晚于当前时刻,该方法还包括:该接入设备根据该当前时刻测量的参考信号接收功率和路径损耗函数,确定该第一时刻的参考信号接收功率。
通过该实施方式提供的通信方法,可以实现对晚于当前时刻的第一时刻的参考信号接收功率进行预测,进而基于预测得到的参考信号功率确定第一时刻的第一吞吐率,该第一吞吐率相比于当前时刻的吞吐率,能够更准确的反应第一时刻回传链路的回传能力。
在一种可能的实施方式中,该接入设备根据该回传链路在该第一时刻的参考信号接收功率,确定调制阶数,包括:该接入设备根据历史数据,确定第一对应关系,该第一对应关系为参考信号接收功率和调制阶数的对应关系;该接入设备根据该回传链路在该第一时刻的参考信号接收功率和该第一对应关系,确定对应的调制阶数。
通过该实施方式提供的通信方法,接入设备基于历史数据确定的与参考信号接收功率对应的调制阶数较为准确,进而基于该调制阶数以及该调制阶数确定第一吞吐率,提高了第一吞吐率的准确性。
在一种可能的实施方式中,该接入设备根据该调制阶数、该调制阶数对应的码率以及该接入设备被配置的资源元素RE,确定该第一吞吐率,包括:该接入设备对第一RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到该上行吞吐率;和/或,该接入设备对第二RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到该上行吞吐率;其中,该第一RE数为该接入设备被配置的RE数与上行开销RE数之差,该第二RE数为该接入设备被配置的RE数与下行开销RE数之差。
在一种可能的实施方式中,该接入设备将该第一吞吐率发送给路由设备,包括:该接入设备将该第一吞吐率,以有线传输的方式发送给该第一路由设备。
通过该实施方式提供的通信方法,接入设备与第一路由设备之间通过有线传输的方式传输第一吞吐率,使接入设备和第一路由设备安装在例如车辆的可移动设备上时,通信的可靠性更高。
在一种可能的实施方式中,该接入设备将该第一吞吐率发送给第一路由设备,包括:该接入设备按照链路发现协议LLDP中的标签长度值TLV格式生成第一信息,该第一信息包括第一指示信息,该第一指示信息用于指示该第一信息是否包含该上行吞吐率和/或该下行吞吐率,在该第一指示信息指示包含该上行吞吐率时,该第一信息还包括该上行吞吐率的信息,在该第一指示信息指示包含该下行吞吐率时,该第一信息还包括该下行吞吐率的信息;该接入设备将该第一信息发送给该第一路由设备。
第二方面,本申请实施例提供一种通信方法,包括:第一路由设备获取回传链路在第一时刻的第一吞吐率;该第一吞吐率包括上行吞吐率,该第一路由设备根据该上行吞吐率,确定终端设备上行传输采用的接入设备;和/或,该第一吞吐率包括下行吞吐率,该第一路由设备将该下行吞吐率发送至第二路由设备。
在一种可能的实施方式中,该第一路由设备获取回传链路在第一时刻的第一吞吐率,包括:该第一路由以有线传输的方式接收该接入设备发送的该第一吞吐率。
在一种可能的实施方式中,该第一路由设备获取回传链路在第一时刻的第一吞吐率,包括:该第一路由设备接收来自于该接入设备的第一信息,该第一信息为符合LLDP中的TLV格式的信息,该第一信息包括第一指示信息,该第一指示信息用于指示该第一信息是否包含该上行吞吐率和/或该下行吞吐率,在该第一指示信息指示包括该上行吞吐率时,该第一信息还包括该上行吞吐率的信息,在该第一指示信息指示包括该下行吞吐率时,该第一信息还包括该下行吞吐率的信息。
在一种可能的实施方式中,该第一路由设备将该下行吞吐率发送至第二路由设备,包括:该第一路由设备按照路由封装协议进行数据封装,得到第一数据包,该第一数据包的包头包括该下行吞吐率的信息;该第一路由设备将该第一数据包发送至该第二路由设备。
在一种可能的实施方式中,该方法还包括:该第一路由设备确定多个下行数据包的业务优先级为高优先级;该第一路由设备对接收到的该多个下行数据包,按照各下行数据包的序号进行重排;该第一路由设备将重排后的下行数据包发送给该终端设备。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信方法,包括:第二路由设备获取回传链路在第一时刻的下行吞吐率;该第二路由设备根据该下行吞吐率,确定终端设备下行传输采用的接入设备。
在一种可能的实施方式中,该第二路由设备获取回传链路在第一时刻的下行吞吐率,包括:该第二路由设备接收第一路由设备发送的第一数据包,该第一数据包的包头包括该下行吞吐率的信息。
在一种可能的实施方式中,该方法还包括:该第二路由设备确定多个上行数据包的业务优先级为高优先级;该第二路由设备对接收到的该多个上行数据包,按照各上行数据包的序号进行重排;该第二路由设备将重排后的上行数据包发送给网络设备。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定回传链路在第一时刻的第一吞吐率,该第一吞吐率包括上行吞吐率和/或下行吞吐率,该上行吞吐率用于确定终端设备上行传输采用的接入设备,该下行吞吐率用于确定终端设备下行传输采用的接入设备;收发单元,用于将该第一吞吐率发送给第一路由设备。
在一种可能的实施方式中,该处理单元具体用于:根据该回传链路在该第一时刻的参考信号接收功率,确定该第一吞吐率。
在一种可能的实施方式中,该处理单元具体用于:根据该回传链路在该第一时刻的参考信号接收功率,确定调制阶数;根据该调制阶数、该调制阶数对应的码率以及该通信装置被配置的资源粒子RE,确定该第一吞吐率。
在一种可能的实施方式中,该处理单元还用于根据该当前时刻测量的参考信号接收功率和路径损耗函数,确定该第一时刻的参考信号接收功率,该第一时刻晚于当前时刻。
在一种可能的实施方式中,该处理单元具体用于:根据历史数据,确定第一对应关系,该第一对应关系为参考信号接收功率和调制阶数的对应关系;根据该回传链路在该第一时刻的参考信号接收功率和该第一对应关系,确定对应的调制阶数。
在一种可能的实施方式中,该处理单元具体用于:对第一RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到该上行吞吐率;和/或,对第二RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到该上行吞吐率;其中,该第一RE数为该接入设备被配置的RE数与上行开销RE数之差,该第二RE数为该通信装置被配置的RE数与下行开销RE数之差。
在一种可能的实施方式中,该收发单元具体用于:将该第一吞吐率,以有线传输的方式发送给该第一路由设备。
在一种可能的实施方式中,该收发单元具体用于:按照链路发现协议LLDP中的标签长度值TLV格式生成第一信息,该第一信息包括第一指示信息,该第一指示信息用于指示该第一信息是否包含该上行吞吐率和/或该下行吞吐率,在该第一指示信息指示包含该上行吞吐率时,该第一信息还包括该上行吞吐率的信息,在该第一指示信息指示包含该下行吞吐率时,该第一信息还包括该下行吞吐率的信息;将该第一信息发送给该第一路由设备。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信装置,包括:收发单元,用于获取回传链路在第一时刻的第一吞吐率;该处理单元,用于根据该第一吞吐率中的上行吞吐率,确定终端设备上行传输采用的接入设备;和/或,该收发单元将该第一吞吐率中的下行吞吐率发送至第二路由设备。
在一种可能的实施方式中,该收发单元具体用于:以有线传输的方式接收该接入设备发送的该第一吞吐率。
在一种可能的实施方式中,该收发单元具体用于:接收来自于该接入设备的第一信息,该第一信息为符合LLDP中的TLV格式的信息,该第一信息包括第一指示信息,该第一指示信息用于指示该第一信息是否包含该上行吞吐率和/或该下行吞吐率,在该第一指示信息指示包括该上行吞吐率时,该第一信息还包括该上行吞吐率的信息,在该第一指示信息指示包括该下行吞吐率时,该第一信息还包括该下行吞吐率的信息。
在一种可能的实施方式中,该收发单元具体用于:按照路由封装协议进行数据封装,得到第一数据包,该第一数据包的包头包括该下行吞吐率的信息;将该第一数据包发送至该第二路由设备。
在一种可能的实施方式中,该处理单元还用于确定多个下行数据包的业务优先级为高优先级;该处理单元还用于对接收到的该多个下行数据包,按照各下行数据包的 序号进行重排;该收发单元还用于将重排后的下行数据包发送给该终端设备。
上述第五方面以及上述第五方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第六方面,本申请实施例提供一种通信装置,包括:收发单元,用于获取回传链路在第一时刻的下行吞吐率;处理单元,用于根据该下行吞吐率,确定终端设备下行传输采用的接入设备。
在一种可能的实施方式中,该收发单元具体用于:接收第一路由设备发送的第一数据包,该第一数据包的包头包括该下行吞吐率的信息。
在一种可能的实施方式中,该处理单元还用于确定多个上行数据包的业务优先级为高优先级;该处理单元还用于对接收到的该多个上行数据包,按照各上行数据包的序号进行重排;该收发单元还用于将重排后的上行数据包发送给网络设备。
上述第六方面以及上述第六方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第七方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面、第三方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面、第三方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面、第三方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面、第三方面或各可能的实现方式中的方法。
附图说明
图1是本申请的实施例应用的无线回传系统100的架构示意图;
图2是本申请提供的一种回传链路连接方式示意图;
图3是本申请实施例提供的通信方法200的示意性流程图;
图4是本申请实施例提供的一种参考信号接收功率的示意图;
图5是本申请实施例提供的通信方法300的示意性流程图;
图6是本申请实施例提供的一种下行业务数据流的传输示意图;
图7是本申请实施例提供的通信装置的示意性框图;
图8是本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(freQuency division duPlex,FDD)系统、LTE时分双工(time division duPlex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoPerability for microwave access,WiMAX)通信系统、未来的第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)以及5G移动通信系统的三大应用场景增强型移动带宽(enhanced mobile broadband,eMBB),超可靠、低时延通信(ultra reliable low latency communications,uRLLC)、和海量机器类通信(massive machine tyPe communications,mMTC),设备到设备(device-to-device,D2D)通信系统、卫星通信系统、物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)系统、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiPle access,WCDMA)、码分多址2000系统(code division multiPle access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiPle access,TD-SCDMA)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的通信方法还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请提供的通信方法在上述任意通信系统的场景下,可以适用于任一回传系统,尤其适用于无线回传系统。
图1是本申请的实施例应用的无线回传系统100的架构示意图。如图1所示,以车辆中设备与网络设备进行通信的场景为例,该无线回传系统100包括车地回传子系统110、车载接入子系统120和核心网子系统130。其中,车地回传子系统110分别与车载接入子系统120和核心网子系统130通过无线的方式连接,实现将车载接入系统120接入网络进行上下数据回传。
结合图1所示,车地回传子系统110包括接入设备111和回传基站112。其中,接入设备111可以包括一个或者多个车载接入单元(Train Access Unit,TAU),如图1中的TAU 111-1和TAU 111-2。可选的,回传基站112可以包括基带处理单元(base band unit,BBU)1121和有源天线处理单元(active antenna unit,AAU)1122,AAU 1122的数量可以是多个,如图1中的1122-1和1122-2,且多个AAU 1122可以均匀分布。例如,当车辆运行于隧道内时,AAU可以沿车辆行驶方向间隔性的均匀部署于隧道壁上。
可选的,多个AAU 1122可以划分为多个AAU组,AAU组中的多个AAU可以与车辆中部署的多个TAU一一对应。结合图1所示,AAU 1122-1和1122-2为一个AAU组,当车辆在图1中由左至右行驶时,AAU 1122-1与车尾处的TAU 111-1进行通信,AAU 1122-2可以与车头处的TAU 111-2通信。
结合图1所示,车载接入子系统120包括车载回传路由器121、车载基站122和 终端设备123。其中,车载基站122为车辆中的设备提供网络服务,车载回传路由器121可以为上行数据传输选择不同的接入设备(例如上述TAU 111-1或TAU 111-2)。
终端设备123可以是任意需要网络服务的智能终端。例如,终端设备123可以包括车辆中部署的车辆控制器、无人驾驶(self driving)中的无线终端、智能显示设备、智能监控设备等;再例如,终端设备123还可以包括在车辆中使用的手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备123还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备123还可以包括智能打印机、车辆探测器等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。等等。
结合图1所示,核心网子系统130包括回传核心网路由器131、回传核心网132和车载基站核心网133。
回传核心网路由器131可以将下行数据在车载基站核心网133以及回传核心网132之间透传,并为下行数据选择不同接入设备(例如TAU 131)进行数据回传。
回传核心网132与接入设备111(例如上述TAU 111-1和/或TAU 111-1)建立连接、对接入设备111进行管理以及对业务完成承载建立,作为承载网络提供到外部网络的接口。
车载基站核心网133提供与上述终端设备123的连接,对终端设备123进行管理以及对业务完成承载建立。
应理解,上述无线回传系统100仅为一种示例,无线回传系统100可以包括比图1中更多或者更少的部件。
还应理解的是,上述无线回传系统100中的车辆也可以是火车、汽车、无人驾驶车辆等,或者车辆也可以替换为飞机、船舶、智能机器人等任意可移动的设备。
还应理解的是,上述无线回传系统100中车辆在隧道内行驶仅为一种示例,但不应对本申请构成任何限定,例如车辆还可以行驶于地面上,当车辆替换为飞机时可以行驶于空中,当车辆替换为船舶时可以行驶与水面,相应的,上述AAU 1122也可以 部署于陆地上、空中、水面等,本申请对此不作限定。
网络设备(如图1中的任一基站、路由设备、网关等)和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed sPectrum)进行通信,也可以通过免授权频谱(unlicensed sPectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
应理解,本申请对于网络设备和终端设备的具体形式均不作限定。
在上述图1所示的无线回传系统100中,一方面,车辆在行驶过程中,TAU(如TAU 111-1或111-2)与回传基站112之间的回传链路的信道是实时变化的,在小区切换过程中,回传能力存在突变,当这种突变发生时,终端设备与网络设备之间的传输无法满足业务需求,导致终端设备的通信质量较差。
另一方面,结合图2所示,目前TAU1和TAU2的回传链路独立,各TAU分别连接各自的BBU,那么速率波动容易导致回传链路中传输的数据超出链路承载能力。
针对上述问题,本申请实施例中路由设备与各接入设备连接,通过接入设备向路由设备上报回传链路的吞吐率,使路由设备根据每个接入设备上报的吞吐率确定数据传输采用的接入设备,合理利用多个接入设备对应的回传链路的传输资源,例如图2中的TAU1和TAU2的速率波动互相弥补,避免部分TAU承载的传输数据不饱和而另一部分TAU承载的传输数据超出承载能力,也即实现可动态调整回传链路路由,进而提高了回传链路的可靠性。
其中,路由设备根据各接入设备上报的吞吐率确定接入设备,也可以表述为路由设备根据各接入设备上报的吞吐率选择一个接入设备进行数据传输,下文中“确定”与“选择”交替使用,二者所表达的含义相同。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,以接入设备与路由设备(包括第一路由设备和或第二路由设备)之间的交互为例详细说明本申请实施例所提供的方法。该接入设备例如可以是图1中的接入设备111(如可以是TAU111-1和TAU111-2),第一路由设备例如可以是图1中的车载路由器121,第二路由设备例如可以是图1中的回传核心网路由器131。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的接入设备也可以替换为该接入设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。路由设备也可以替换为该路由设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块等。
还应理解的是,第一路由设备可以集成于接入设备,换言之,接入设备可以集成于第一路由设备。
图3是本申请实施例提供的通信方法200的示意性流程图。如图2所示,该方法 200可以包括S210至S230-1。下面对方法200中的各步骤做详细说明。
S210,接入设备确定回传链路在第一时刻的第一吞吐率,该第一吞吐率包括上行吞吐率和/或下行吞吐率,该上行吞吐率用于确定终端设备上行传输采用的接入设备,该下行吞吐率用于确定终端设备下行传输采用的接入设备;
S220,接入设备将该第一吞吐率发送给第一路由设备。
相应的,第一路由设备获取回传链路在第一时刻的第一吞吐率;
S230-1,第一路由设备根据该第一吞吐率中的上行吞吐率,确定终端设备上行传输采用的接入设备。
需要说明的是,回传链路可以是接入设备与网络设备之间的传输链路,该网络设备可以是基站、核心网等。
上行吞吐率可以反映回传链路的上行回传速率能力,下行吞吐率可以反映回传链路的下行回传速率能力。可选的,第一时刻可以是当前时刻,也可以晚于当前时刻,当第一时刻晚于当前时刻时,第一吞吐率可以是基于当前测量值的预测结果。
本申请实施例中接入设备和第一路由设备均为了实现终端设备与网络设备之间的通信,或者终端设备通过网络与其他终端设备之间的通信,换言之,终端设备在接入设备与第一路由设备的辅助下,能够向网络设备发送上行数据(也即上行传输),或者接收网络设备发送的下行数据(也即下行传输)。
在S210的一种实现方式中,接入设备可以根据回传链路在第一时刻的参考信号接收功率,确定第一吞吐率。需要说明的是,参考信号接收功率可以是接入设备在第一时刻测量得到的,该参考信号接收功率通常可以用SSB RSRP表示,即同步信号块(synchronization signal block,SSB)上测量到的参考信号接收功率(reference signal receiving power,RSRP)。
下面针对第一时刻为当前时刻或者第一时刻晚于当前时刻分别进行说明:
方式一、第一时刻为当前时刻时,上述S210包括以下部分或者全部过程:
S211,接入设备可以根据参考信号接收功率确定调制阶数;
S212,接入设备根据调制阶数、调制阶数对应的码率以及接入设备被配置的资源粒子(Resource element,RE),确定第一吞吐率。
在上述S211的一种实现方式中,接入设备可以根据参考信号接收功率和第一对应关系,确定与参考信号接收功率对应的调制阶数,该第一对应关系为参考信号接收功率和调制阶数的对应关系。可选的,第一对应关系可以是预设的、网络设备配置的,或者第一对应关系可以是接入设备根据历史数据生成的。示例性的,该历史数据可以是接入设备自身存储的,历史数据中包括多个历史时刻下通信时的SSB RSRP和调制阶数,参见表1所示,每个SSB RSRP的值对应一个调制和编码机制(modulation and coding scheme,MCS)索引(Inndex)I MCS,每个MCS索引在MCS映射关系中具有唯一对应的调制阶数(Modulation Order)Q m
表1
SSB RSRP MCS索引
-80 27
-83 25
-87 22
MCS映射关系可以参见如下表2所示:
表2
Figure PCTCN2022121897-appb-000001
可以理解的是,MCS映射关系可以包括比上述表2更多或者更少的项(列),例如还可以包括目标码率、频谱利用率等。
如表2所示,在MCS对应关系中,MCS索引不仅与调制阶数一一对应,MCS索引还与码率一一对应,调制阶数与码率一一对应。那么,接入设备可以根据第一对应关系确定与回传链路在第一时刻的参考信号接收功率对应的调制阶数和码率。
进一步地,在上述S212中,接入设备可以根据S211中确定调制阶数、该调制阶数对应的码率和接入设备被配置的RE,确定第一吞吐率。
例如,接入设备可以对第一RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到上行吞吐率。通过公式表述如下:
上行吞吐率=第一RE数*数据流数*码率*调制阶数/时间单元的时长。
再例如,接入设备可以对第二RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到上行吞吐率。通过公式表述如下:
下行吞吐率=第二RE数*数据流数*码率*调制阶数/时间单元的时长。
需要说明的是,第一RE数和第二RE数均可以根据接入设备被配置的RE确定。例如,第一RE数为接入设备被配置的RE数与上行开销RE数之差,第二RE数为所述接入设备被配置的RE数与下行开销RE数之差。上行开销RE数例如可以包括用于上行传输的公共信道、导频信号开销,下行开销RE数例如可以包括用于下行传输的公共信道、导频信号开销。可选的,上行开销RE数可以为第一预设值,例如预设为被配置的RE数的25%,类似的,下行开销RE数可以为第二预设值,例如预设为被配置的RE数的20%。
数据流数,也可以称作秩(RANK)数,可以是根据信道条件测量值确定的。可选的,该数据流数可以是预设数据流数,例如数据流数为2。
时间单元可以是时隙、子帧、无线帧等的时长。本实施例中时间单元可以是时隙,时间单元的时长也即每个时隙的时长,例如可以是0.125ms。
接入设备被配置的RE数可以根据配置信息确定,例如RE数=每个时隙符号数*每载波资源块(Resource Block,RB)数*每个RB子载波数*载波数。每个时隙符号数例如为14个,每载波RB数例如为66个,每个RB子载波数例如为12个,载波数例如可配置1个,2个,4个或者8个。
方式二、第一时刻晚于当前时刻时,上述S210包括以下部分或者全部过程:
S213,接入设备根据当前时刻测量的参考信号接收功率和路径损耗函数,确定第一时刻的参考信号接收功率;
S211,接入设备可以根据参考信号接收功率确定调制阶数;
S212,接入设备根据调制阶数、调制阶数对应的码率以及接入设备被配置的RE,确定第一吞吐率。
在上述S213中,接入设备需要基于当前时刻的参考信号接收功率预测第一时刻的参考信号接收功率。
结合图4所示,假设接入设备按照预设的周期获取参考信号接收功率,当前时刻 为t2时刻,第一时刻即为t3时刻,那么第一时刻的参考信号接收功率F(t3)满足以下公式:
F(t3)=F(t2)+Pathloss[(t3-t2)*v]
其中,F(t2)为当前时刻的参考信号接收功率,v表示车辆行驶速度,Pathloss为车辆行驶无线链路的路径损耗函数,以地铁隧道场景为例,校正后的隧道场景函数Pathloss=32.4+20*log10(f)+19*log10(d),其中f表示接入设备和网络设备所处的工作频点,单位为GHz,d表示距离,d=(t3-t2)*v。
在一些实施例中,接入设备可以根据历史时刻的参考信号接收功率确定F(t)函数为单调递增函数或者单调递减函数,根据F(t)函数为递增或者递减,基于不同的公式预测第一时刻的参考信号接收功率。例如图4中t1时刻的参考信号接收功率F(t1)小于F(t2),则F(t)函数为单调递增函数,第一时刻的参考信号接收功率F(t3)满足以下公式:F(t3)=F(t2)+Pathloss[(t3-t2)*v];若t1时刻的参考信号接收功率F(t1)大于F(t2),则F(t)函数为单调递减函数,第一时刻的参考信号接收功率F(t3)满足以下公式:F(t3)=F(t2)-Pathloss[(t3-t2)*v]
应理解的是,Pathloss函数的系数可以根据不同的环境条件调整。
进一步的,接入设备根据预测得到的第一时刻的参考信号接收功率,确定对应的调制阶数,进而确定第一吞吐率。
本申请实施例中S211和S212与上述方式一中的S211和S212以及各实现方式相同,此处不再赘述。
针对上述S220需要说明的是,接入设备与路由设备第一路由设备可以通过有线的方式连接,接入设备将所述第一吞吐率,以有线传输的方式发送给所述路由设备。
示例性的,接入设备按照链路发现协议(link layer discovery protocol,LLDP)中的标签长度值(tag length value,TLV)格式生成第一信息,该第一信息包括第一指示信息,第一指示信息用于指示第一信息是否包含上行吞吐率和/或下行吞吐率,在第一指示信息指示第一信息包含上行吞吐率的信息时,第一信息还包括上行吞吐率的信息,在第一指示信息指示包含下行吞吐率时,第一信息还包括下行吞吐率的信息;进一步地,接入设备将该第一信息发送给所述第一路由设备。
接入设备可以按照LLDP新增TLV信源(例如系统功能(System Capabilities)字段)中写入上行吞吐率的信息和/或下行吞吐率的信息。例如,在TLV中的保留位
(Reserved)中增加序号9,用于表示上行吞吐率和/或下行吞吐率。参见如下表3。
表3
Figure PCTCN2022121897-appb-000002
可选的,接入设备可以按照LLDP的发送间隔发送第一信息,或者可以按照预设间隔发送第一信息,例如预设发送间隔可以为1s。
需要说明的是,接入设备按照LLDP向路由设备发送吞吐率仅为一种示例,并不对本申请构成任何限定,接入设备还可以采用其他协议或者自定义传输写进行信息传输,本申请对此不作限定。
应理解,本申请实施例以接入设备与第一路由设备之间通过有线的方式为例进行说明,但并不对本申请构成任何限定。例如本申请实施例中接入设备和第一路由设备之间仍然可以通过无线的方式连接。
针对上述S230-1需要说明的是,第一路由设备可以获取多个接入设备各自发送的上行吞吐率,例如图1中第一路由设备可以接收TAU 111-1和TAU 111-2分别上报的上行吞吐率,并选择其中上行吞吐率较高的TAU作为终端设备上行传输采用的接入设备;或者,第一路由设备可以将各接入设备发送的上行吞吐率作为接入设备选择的一个判断因子,与其他维度的判断因子一起,综合确定终端设备上行传输采用的接入设备。
本申请实施例中,接入设备确定回传链路在第一时刻的第一吞吐率,并向第一路由设备发送该第一吞吐率,使第一路由设备根据该回传链路在第一时刻的上行吞吐率,确定上行传输采用的接入设备,实现了对回传链路路由的动态调整,减少了无线回传速率的波动,提升了回传链路的可靠性。
图5是本申请实施例提供的通信方法300的示意性流程图。如图5所示,该方法300可以包括S210至S240。下面对方法300中的各步骤做详细说明。
S210,接入设备确定回传链路在第一时刻的第一吞吐率,该第一吞吐率包括上行吞吐率和/或下行吞吐率,该上行吞吐率用于确定终端设备上行传输采用的接入设备,该下行吞吐率用于确定终端设备下行传输采用的接入设备;
S220,接入设备将该第一吞吐率发送给第一路由设备。
相应的,第一路由设备获取回传链路在第一时刻的第一吞吐率;
S230-2,第一路由设备将该第一吞吐率中的下行吞吐率发送至第二路由设备。
相应的,第二路由设备获取回传链路在第一时刻的下行吞吐率;
S240,第二路由设备根据该下行吞吐率,确定终端设备下行传输采用的接入设备。
上述S210和S220与图3所示的S210和S220相同,并且具有与图3中S210和S220各相同的实现方式,此处不再赘述。
在S230-2中,作为一种示例,第一路由设备按照路由封装协议进行数据封装,得到第一数据包,该第一数据包的包头包括下行吞吐率的信息,并将第一数据包发送至第二路由设备。
第一路由设备与第二路由设备之间以无线方式连接。第一路由设备例如可以通过通用路由封装(generic routing encapsulation,GRE)协议将下行吞吐率传输给第二路由设备。
例如,第一路由设备可以使用GRE头的Reserved1字段传递下行吞吐率。第一路由设备收到接入设备发送的第一吞吐率后,将下行吞吐率封装进上行数据包(即第一数据包)的GRE头中的Reserved1字段。第二路由设备从接收报文的GRE头中提取 下行吞吐率。
可选的,Reserved1字段为16bit。
第一路由设备可以将第一吞吐率中的上行吞吐率和下行吞吐率一同发送给第二路由设备,其封装以及传输过程与上述封装以及传输过程类似,此处不再赘述。
结合图6所示,无线回传系统中,下行业务数据流的传输可以包括如下部分或者全部过程:
Step1:车载基站核心网提供按照通用分组无线业务隧道协议用户面(general packet radio service tunneling protocol userplain,GTP-U)格式进行封装,封装后的数据包包含传输地址以及端口号。
Step2:第二路由器在GTP-U数据包上封装GRE协议包头。
Step3:回传核心网将GRE数据包作为有效载荷(payload),再次进行GTP-U数据包封装。
Step4:回传基站收到GTP-U数据,并解包后,通过无线信道发给接入设备(例如TAU),接入设备再透传给第一路由设备。
Step5:第一路由设备解析GRE的数据包头后,将数据转发给车载基站。
Step6:车载基站解析GTP-U包头,将数据发送给终端设备。
在上述S240中,第二路由器根据下行吞吐率进行非等价负载分担,换言之,第二路由设备根据每个接入设备的下行吞吐率,将待传输的业务数据分别选择相同或者不同的接入设备传输给终端设备。
第二路由设备可以根据多个接入设备各自发送的下行吞吐率,例如图1中第二路由设备可以接收由第一路由设备转发的TAU 111-1和TAU 111-2分别上报的下行吞吐率,并选择其中下行吞吐率较高的TAU作为下行传输采用的接入设备;或者,第二路由设备可以将各接入设备发送的下行吞吐率作为接入设备选择的一个判断因子,与其他维度的判断因子一起,综合确定下行传输采用的接入设备;或者,第二路由设备可以根据待传输的下行数据的业务类型和接入设备上报的下行吞吐率,选择对应的接入设备,例如第二路由设备在待传输的下行数据为视频时选择下行吞吐率较高的接入设备,在待传输的下行数据为文件时选择下行吞吐率较低的接入设备。
本申请实施例中,接入设备确定回传链路在第一时刻的第一吞吐率,并向第一路由设备发送该第一吞吐率,第一路由设备将第一吞吐率或者第一吞吐率中的下行吞吐率发送给第二路由设备,使第二路由设备根据该回传链路在第一时刻的下行吞吐率,确定下行传输采用的接入设备,实现了对回传链路路由的动态调整,减少了无线回传速率的波动,提升了回传链路的可靠性。
在上述任一实施例的基础上,为了防止传输过程中出现丢包,第二路由设备可以在下行数据传输的过程中,对待传输的多个下行数据包增加序号,例如在GRE封装过程中,通过GRE包头的封包序号(Sequence Number)字段指示每个下行数据包的序号,第一路由设备接收到该多个下行数据包后,可以按照各下行数据包的序号进行重排。
可选的,为了提高处理效率,第二路由设备可以根据待传输的下行数据包的业务优先级确定是否对其添加序号,例如第二路由设备可以针对服务质量(quality of service, QoS)要求高的业务对应的数据包添加序号。示例性的,大文件下载、网页浏览等业务,允许丢包,QoS要求较低,即业务优先级较低,而语音、游戏等业务对丢包的容忍度较低,QoS要求较高,也即业务优先级较高。
与下行传输类似的,第一路由设备可以在上行数据传输的过程中,对待传输的多个上行数据包增加序号,例如在数据包的封装过程中,通过GRE包头的Sequence Number字段指示每个上行数据包的序号,第二路由设备接收到该多个上行数据包后,可以按照上行数据包的序号进行重排。
与下行传输类似的,第一路由设备可以针对QoS要求高的业务,也即业务优先级为高优先级的上行数据包添加序号。
以上,结合图3至图6详细说明了本申请实施例提供的方法。以下,结合图7和图8详细说明本申请实施例提供的装置。
图7是本申请实施例提供的通信装置的示意性框图。如图7所示,该装置400可以包括:收发单元410和处理单元420。
可选地,该通信装置400可对应于上文方法实施例中的接入设备,例如,可以为接入设备,或者配置于接入设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的图3所示的方法200或图5所示方法300中的接入设备,该通信装置400可以包括用于执行图3中的方法200或图5中方法300中接入设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图3中的方法或图5中的方法的相应流程。
其中,当该通信装置400用于执行图3或图5中的方法时,处理单元420可用于确定回传链路在第一时刻的第一吞吐率,该第一吞吐率包括上行吞吐率和/或下行吞吐率,该上行吞吐率用于确定终端设备上行传输采用的接入设备,该下行吞吐率用于确定终端设备下行传输采用的接入设备;收发单元410可用于将该第一吞吐率发送给第一路由设备。
在一些实施例中,该处理单元420具体用于:根据该回传链路在该第一时刻的参考信号接收功率,确定该第一吞吐率。
在一些实施例中,该处理单元420具体用于:根据该回传链路在该第一时刻的参考信号接收功率,确定调制阶数;根据该调制阶数、该调制阶数对应的码率以及该通信装置被配置的资源粒子RE,确定该第一吞吐率。
在一些实施例中,该第一时刻晚于当前时刻,该处理单元420还用于根据该当前时刻测量的参考信号接收功率和路径损耗函数,确定该第一时刻的参考信号接收功率。
在一些实施例中,该处理单元420具体用于:根据历史数据,确定第一对应关系,该第一对应关系为参考信号接收功率和调制阶数的对应关系;根据该回传链路在该第一时刻的参考信号接收功率和该第一对应关系,确定对应的调制阶数。
在一些实施例中,该处理单元420具体用于:对第一RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到该上行吞吐率;和/或,对第二RE数、数据流数、该调制阶数和该调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到该上行吞吐率;其中,该第一RE数为该接入设备被配置的RE数与上行开销RE数之差,该第二RE数为该接入设备被配 置的RE数与下行开销RE数之差。
在一些实施例中,该收发单元410具体用于:将该第一吞吐率,以有线传输的方式发送给该第一路由设备。
在一些实施例中,该收发单元410具体用于:按照链路发现协议LLDP中的标签长度值TLV格式生成第一信息,该第一信息包括第一指示信息,该第一指示信息用于指示该第一信息是否包含该上行吞吐率和/或该下行吞吐率,在该第一指示信息指示包含该上行吞吐率时,该第一信息还包括该上行吞吐率的信息,在该第一指示信息指示包含该下行吞吐率时,该第一信息还包括该下行吞吐率的信息;将该第一信息发送给该第一路由设备。
应理解,收发单元410可用于执行图3或图5所示方法中的步骤220,处理单元420可用于执行图3或图5所示方法中的步骤210。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置400可对应于上文方法实施例中的第一路由设备,例如,可以为第一路由设备,或者配置于第一路由设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的图3或图5所示的方法中的第一路由设备,该通信装置400可以包括用于执行图3中的方法200或图5中的方法300中第一路由设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图3或图5中的方法的相应流程。
其中,当该通信装置400用于执行图3或图5中的方法时,收发单元410可用于获取回传链路在第一时刻的第一吞吐率;该第一吞吐率包括上行吞吐率,该处理单元420可用于根据该上行吞吐率,确定终端设备上行传输采用的接入设备;和/或,该第一吞吐率包括下行吞吐率,该收发单元410将该下行吞吐率发送至第二路由设备。
在一些实施例中,该收发单元410具体用于:以有线传输的方式接收该接入设备发送的该第一吞吐率。
在一些实施例中,该收发单元410具体用于:接收来自于该接入设备的第一信息,该第一信息为符合LLDP中的TLV格式的信息,该第一信息包括第一指示信息,该第一指示信息用于指示该第一信息是否包含该上行吞吐率和/或该下行吞吐率,在该第一指示信息指示包括该上行吞吐率时,该第一信息还包括该上行吞吐率的信息,在该第一指示信息指示包括该下行吞吐率时,该第一信息还包括该下行吞吐率的信息。
在一些实施例中,该收发单元410具体用于:按照路由封装协议进行数据封装,得到第一数据包,该第一数据包的包头包括该下行吞吐率的信息;将该第一数据包发送至该第二路由设备。
在一些实施例中,该处理单元420确定多个下行数据包的业务优先级为高优先级;该处理单元420对接收到的该多个下行数据包,按照各下行数据包的序号进行重排;该收发单元410将重排后的下行数据包发送给该终端设备。
应理解,收发单元410可用于执行图3所示方法中的步骤220及图5所示方法中的步骤230-2,处理单元420可用于执行图3所示方法中的步骤230-1。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置400可对应于上文方法实施例中的第二路由设备,例如,可以为第二路由设备,或者配置于第二路由设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的图5所示的方法300中的第二路由设备,该通信装置400可以包括用于执行图5中的方法中第二路由设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图5中的方法的相应流程。
其中,当该通信装置400用于执行图5中的方法时,收发单元410,用于获取回传链路在第一时刻的下行吞吐率;处理单元420,用于根据该下行吞吐率,确定终端设备下行传输采用的接入设备。
在一些实施例中,该收发单元410具体用于:接收第一路由设备发送的第一数据包,该第一数据包的包头包括该下行吞吐率的信息。
在一些实施例中,该处理单元420确定多个上行数据包的业务优先级为高优先级;该处理单元420对接收到的该多个上行数据包,按照各上行数据包的序号进行重排;该收发单元410将重排后的上行数据包发送给网络设备。
应理解,收发单元410可用于执行图5所示方法中的步骤230-2,处理单元420可用于执行图5所示方法中的步骤240。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置400为接入设备时,该通信装置400中的收发单元410可以通过收发器实现,例如可对应于图8中所示的通信装置500中的收发器520,该通信装置400中的处理单元420可通过至少一个处理器实现,例如可对应于图8中示出的通信装置500中的处理器510。
当该通信装置400为第一路由设备时,该通信装置400中的收发单元410可以通过收发器实现,例如可对应于图8中所示的通信装置500中的收发器520,该通信装置400中的处理单元420可通过至少一个处理器实现,例如可对应于图8中示出的通信装置500中的处理器510。
当该通信装置400为第二路由设备时,该通信装置400中的收发单元410可以通过收发器实现,例如可对应于图8中所示的通信装置500中的收发器520,该通信装置400中的处理单元420可通过至少一个处理器实现,例如可对应于图8中示出的通信装置500中的处理器510。
当该通信装置400为配置于通信设备(如接入设备、第一路由设备或第二路由设备)中的芯片或芯片系统时,该通信装置400中的收发单元410可以通过输入/输出接口、电路等实现,该通信装置400中的处理单元420可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图8是本申请实施例提供的通信装置的另一示意性框图。如图8所示,该通信装置500可以包括:处理器510、收发器520和存储器530。其中,处理器510、收发器520和存储器530通过内部连接通路互相通信,该存储器530用于存储指令,该处理器510用于执行该存储器530存储的指令,以控制该收发器520发送信号和/或接收信号。
应理解,该通信装置500可以对应于上述方法实施例中的接入设备、第一路由设 备或第二路由设备,并且可以用于执行上述方法实施例中接入设备、第一路由设备或第二路由设备执行的各个步骤和/或流程。可选地,该存储器530可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器530可以是一个单独的器件,也可以集成在处理器510中。该处理器510可以用于执行存储器530中存储的指令,并且当该处理器510执行存储器中存储的指令时,该处理器510用于执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置500是前文实施例中的接入设备。
可选地,该通信装置500是前文实施例中的第一路由设备。
可选地,该通信装置500是前文实施例中的第二路由设备。
其中,收发器520可以包括发射机和接收机。收发器520还可以进一步包括天线,天线的数量可以为一个或多个。该处理器510和存储器530与收发器520可以是集成在不同芯片上的器件。如,处理器510和存储器530可以集成在基带芯片中,收发器520可以集成在射频芯片中。该处理器510和存储器530与收发器520也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置500是配置在接入设备中的部件,如芯片、芯片系统等。
可选地,该通信装置500是配置在第一路由设备中的部件,如芯片、芯片系统等。
可选地,该通信装置500是配置在第二路由设备中的部件,如芯片、芯片系统等。
其中,收发器520也可以是通信接口,如输入/输出接口、电路等。该收发器520与处理器510和存储器530都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中接入设备执行的方法或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中接入设备执行的方法或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中接入设备执行的方法、第一路由设备执行的方法或第二路由设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者 软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中接入设备、第一路由设备或第二路由设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中接入设备、第一路由设备或第二路由设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的接入设备、第一路由设备和第二路由设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限 于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    接入设备确定回传链路在第一时刻的第一吞吐率,所述第一吞吐率包括上行吞吐率和/或下行吞吐率,所述上行吞吐率用于确定终端设备上行传输采用的接入设备,所述下行吞吐率用于确定终端设备下行传输采用的接入设备;
    所述接入设备将所述第一吞吐率发送给第一路由设备。
  2. 根据权利要求1所述的方法,其特征在于,所述接入设备确定回传链路在第一时刻的第一吞吐率,包括:
    所述接入设备根据所述回传链路在所述第一时刻的参考信号接收功率,确定所述第一吞吐率。
  3. 根据权利要求2所述的方法,其特征在于,所述接入设备根据所述回传链路在所述第一时刻的参考信号接收功率,确定所述第一吞吐率,包括:
    所述接入设备根据所述回传链路在所述第一时刻的参考信号接收功率,确定调制阶数;
    所述接入设备根据所述调制阶数、所述调制阶数对应的码率以及所述接入设备被配置的资源粒子RE,确定所述第一吞吐率。
  4. 根据权利要求3所述的方法,其特征在于,所述第一时刻晚于当前时刻,所述方法还包括:
    所述接入设备根据所述当前时刻测量的参考信号接收功率和路径损耗函数,确定所述第一时刻的参考信号接收功率。
  5. 根据权利要求3或4所述的方法,其特征在于,所述接入设备根据所述回传链路在所述第一时刻的参考信号接收功率,确定调制阶数,包括:
    所述接入设备根据历史数据,确定第一对应关系,所述第一对应关系为参考信号接收功率和调制阶数的对应关系;
    所述接入设备根据所述回传链路在所述第一时刻的参考信号接收功率和所述第一对应关系,确定对应的调制阶数。
  6. 根据权利要求3至5任一项所述的方法,其特征在于,所述接入设备根据所述调制阶数、所述调制阶数对应的码率以及所述接入设备被配置的资源元素RE,确定所述第一吞吐率,包括:
    所述接入设备对第一RE数、数据流数、所述调制阶数和所述调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到所述上行吞吐率;和/或,
    所述接入设备对第二RE数、数据流数、所述调制阶数和所述调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到所述上行吞吐率;
    其中,所述第一RE数为所述接入设备被配置的RE数与上行开销RE数之差,所述第二RE数为所述接入设备被配置的RE数与下行开销RE数之差。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述接入设备将所述第一吞吐率发送给路由设备,包括:
    所述接入设备将所述第一吞吐率,以有线传输的方式发送给所述第一路由设备。
  8. 根据权利要求7所述的方法,其特征在于,所述接入设备将所述第一吞吐率发送给第一路由设备,包括:
    所述接入设备按照链路发现协议LLDP中的标签长度值TLV格式生成第一信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述第一信息是否包含所述上行吞吐率和/或所述下行吞吐率,在所述第一指示信息指示包含所述上行吞吐率时,所述第一信息还包括所述上行吞吐率的信息,在所述第一指示信息指示包含所述下行吞吐率时,所述第一信息还包括所述下行吞吐率的信息;
    所述接入设备将所述第一信息发送给所述第一路由设备。
  9. 一种通信方法,其特征在于,包括:
    第一路由设备获取回传链路在第一时刻的第一吞吐率;
    所述第一吞吐率包括上行吞吐率,所述第一路由设备根据所述上行吞吐率,确定终端设备上行传输采用的接入设备;和/或,
    所述第一吞吐率包括下行吞吐率,所述第一路由设备将所述下行吞吐率发送至第二路由设备。
  10. 根据权利要求9所述的方法,其特征在于,所述第一路由设备获取回传链路在第一时刻的第一吞吐率,包括:
    所述第一路由以有线传输的方式接收所述接入设备发送的所述第一吞吐率。
  11. 根据权利要求10所述的方法,其特征在于,所述第一路由设备获取回传链路在第一时刻的第一吞吐率,包括:
    所述第一路由设备接收来自于所述接入设备的第一信息,所述第一信息为符合LLDP中的TLV格式的信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述第一信息是否包含所述上行吞吐率和/或所述下行吞吐率,在所述第一指示信息指示包括所述上行吞吐率时,所述第一信息还包括所述上行吞吐率的信息,在所述第一指示信息指示包括所述下行吞吐率时,所述第一信息还包括所述下行吞吐率的信息。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述第一路由设备将所述下行吞吐率发送至第二路由设备,包括:
    所述第一路由设备按照路由封装协议进行数据封装,得到第一数据包,所述第一数据包的包头包括所述下行吞吐率的信息;
    所述第一路由设备将所述第一数据包发送至所述第二路由设备。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一路由设备确定多个下行数据包的业务优先级为高优先级;
    所述第一路由设备对接收到的所述多个下行数据包,按照各下行数据包的序号进行重排;
    所述第一路由设备将重排后的下行数据包发送给所述终端设备。
  14. 一种通信方法,其特征在于,包括:
    第二路由设备获取回传链路在第一时刻的下行吞吐率;
    所述第二路由设备根据所述下行吞吐率,确定终端设备下行传输采用的接入设备。
  15. 根据权利要求14所述的方法,其特征在于,所述第二路由设备获取回传链路 在第一时刻的下行吞吐率,包括:
    所述第二路由设备接收第一路由设备发送的第一数据包,所述第一数据包的包头包括所述下行吞吐率的信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第二路由设备确定多个上行数据包的业务优先级为高优先级;
    所述第二路由设备对接收到的所述多个上行数据包,按照各上行数据包的序号进行重排;
    所述第二路由设备将重排后的上行数据包发送给网络设备。
  17. 一种通信装置,其特征在于,包括:
    处理单元,用于确定回传链路在第一时刻的第一吞吐率,所述第一吞吐率包括上行吞吐率和/或下行吞吐率,所述上行吞吐率用于确定终端设备上行传输采用的接入设备,所述下行吞吐率用于确定终端设备下行传输采用的接入设备;
    收发单元,用于将所述第一吞吐率发送给第一路由设备。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元具体用于:
    根据所述回传链路在所述第一时刻的参考信号接收功率,确定所述第一吞吐率。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于:
    根据所述回传链路在所述第一时刻的参考信号接收功率,确定调制阶数;
    根据所述调制阶数、所述调制阶数对应的码率以及所述通信装置被配置的资源粒子RE,确定所述第一吞吐率。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:
    根据当前时刻测量的参考信号接收功率和路径损耗函数,确定所述第一时刻的参考信号接收功率,所述第一时刻晚于所述当前时刻。
  21. 根据权利要求19或20所述的装置,其特征在于,所述处理单元具体用于:
    根据历史数据,确定第一对应关系,所述第一对应关系为参考信号接收功率和调制阶数的对应关系;
    根据所述回传链路在所述第一时刻的参考信号接收功率和所述第一对应关系,确定对应的调制阶数。
  22. 根据权利要求19至21任一项所述的装置,其特征在于,所述处理单元具体用于:
    对第一RE数、数据流数、所述调制阶数和所述调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到所述上行吞吐率;和/或,
    对第二RE数、数据流数、所述调制阶数和所述调制阶数对应的码率进行求积,再将乘积与时间单元的时长求商,得到所述上行吞吐率;
    其中,所述第一RE数为所述通信装置被配置的RE数与上行开销RE数之差,所述第二RE数为所述接入设备被配置的RE数与下行开销RE数之差。
  23. 根据权利要求17至22任一项所述的装置,其特征在于,所述收发单元具体用于:
    将所述第一吞吐率,以有线传输的方式发送给所述第一路由设备。
  24. 根据权利要求23所述的装置,其特征在于,所述收发单元具体用于:
    按照链路发现协议LLDP中的标签长度值TLV格式生成第一信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述第一信息是否包含所述上行吞吐率和/或所述下行吞吐率,在所述第一指示信息指示包含所述上行吞吐率时,所述第一信息还包括所述上行吞吐率的信息,在所述第一指示信息指示包含所述下行吞吐率时,所述第一信息还包括所述下行吞吐率的信息;
    将所述第一信息发送给所述第一路由设备。
  25. 一种通信装置,其特征在于,包括:
    收发单元,用于获取回传链路在第一时刻的第一吞吐率;
    处理单元,用于根据所述第一吞吐率中的上行吞吐率,确定终端设备上行传输采用的接入设备;和/或,
    所述收发单元还用于将所述第一吞吐率中的下行吞吐率发送至第二路由设备。
  26. 根据权利要求25所述的装置,其特征在于,所述收发单元具体用于:
    以有线传输的方式接收所述接入设备发送的所述第一吞吐率。
  27. 根据权利要求26所述的装置,其特征在于,所述收发单元具体用于:
    接收来自于所述接入设备的第一信息,所述第一信息为符合LLDP中的TLV格式的信息,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述第一信息是否包含所述上行吞吐率和/或所述下行吞吐率,在所述第一指示信息指示包括所述上行吞吐率时,所述第一信息还包括所述上行吞吐率的信息,在所述第一指示信息指示包括所述下行吞吐率时,所述第一信息还包括所述下行吞吐率的信息。
  28. 根据权利要求25至27任一项所述的装置,其特征在于,所述收发单元具体用于:
    按照路由封装协议进行数据封装,得到第一数据包,所述第一数据包的包头包括所述下行吞吐率的信息;
    将所述第一数据包发送至所述第二路由设备。
  29. 根据权利要求25至28任一项所述的装置,其特征在于,
    所述处理单元还用于确定多个下行数据包的业务优先级为高优先级;
    所述处理单元还用于对接收到的所述多个下行数据包,按照各下行数据包的序号进行重排;
    所述收发单元还用于将重排后的下行数据包发送给所述终端设备。
  30. 一种通信装置,其特征在于,包括:
    收发单元,用于获取回传链路在第一时刻的下行吞吐率;
    处理单元,用于根据所述下行吞吐率,确定终端设备下行传输采用的接入设备。
  31. 根据权利要求30所述的装置,其特征在于,所述收发单元具体用于:
    接收第一路由设备发送的第一数据包,所述第一数据包的包头包括所述下行吞吐率的信息。
  32. 根据权利要求30或31所述的装置,其特征在于,
    所述处理单元还用于确定多个上行数据包的业务优先级为高优先级;
    所述处理单元还用于对接收到的所述多个上行数据包,按照各上行数据包的序号进行重排;
    所述收发单元还用于将重排后的上行数据包发送给网络设备。
  33. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  34. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2022/121897 2021-10-28 2022-09-27 通信方法、装置、设备以及存储介质 WO2023071675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266759.0A CN114205785A (zh) 2021-10-28 2021-10-28 通信方法、装置、设备以及存储介质
CN202111266759.0 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071675A1 true WO2023071675A1 (zh) 2023-05-04

Family

ID=80646561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121897 WO2023071675A1 (zh) 2021-10-28 2022-09-27 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN114205785A (zh)
WO (1) WO2023071675A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205785A (zh) * 2021-10-28 2022-03-18 华为技术有限公司 通信方法、装置、设备以及存储介质
CN116600398B (zh) * 2023-05-15 2024-04-30 华安中云股份有限公司 基于卫星信号的数据传输方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170439A (zh) * 2014-03-21 2014-11-26 华为技术有限公司 连接态准入方法、装置及设备
WO2015096092A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 资源调度方法、信息交互方法及设备
CN106488578A (zh) * 2015-08-26 2017-03-08 华为技术有限公司 数据的传输方法、ap和用户节点
CN110138472A (zh) * 2019-05-24 2019-08-16 唐利(上海)信息科技有限公司 一种资源调度方法、装置及电子设备
CN111225424A (zh) * 2019-12-27 2020-06-02 宇龙计算机通信科技(深圳)有限公司 业务数据的传输方法、装置、存储介质及终端设备
CN111448817A (zh) * 2017-11-14 2020-07-24 华为技术有限公司 提供ue能力以支持承载上的安全保护的系统和方法
CN114205785A (zh) * 2021-10-28 2022-03-18 华为技术有限公司 通信方法、装置、设备以及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096092A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 资源调度方法、信息交互方法及设备
CN104170439A (zh) * 2014-03-21 2014-11-26 华为技术有限公司 连接态准入方法、装置及设备
CN106488578A (zh) * 2015-08-26 2017-03-08 华为技术有限公司 数据的传输方法、ap和用户节点
CN111448817A (zh) * 2017-11-14 2020-07-24 华为技术有限公司 提供ue能力以支持承载上的安全保护的系统和方法
CN110138472A (zh) * 2019-05-24 2019-08-16 唐利(上海)信息科技有限公司 一种资源调度方法、装置及电子设备
CN111225424A (zh) * 2019-12-27 2020-06-02 宇龙计算机通信科技(深圳)有限公司 业务数据的传输方法、装置、存储介质及终端设备
CN114205785A (zh) * 2021-10-28 2022-03-18 华为技术有限公司 通信方法、装置、设备以及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATIONAL INSTRUMENTS: "Experimental Results on Coexistence of DL LAA and Commodity Wi-Fi Network with Cat 2 LBT", 3GPP DRAFT; R1-154740, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Beijing, China; 20150824 - 20150828, 14 August 2015 (2015-08-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050993949 *

Also Published As

Publication number Publication date
CN114205785A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023071675A1 (zh) 通信方法、装置、设备以及存储介质
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
WO2019157995A1 (zh) 传输数据的方法和装置以及通信设备
WO2021175308A1 (zh) 一种应用于多链路通信中的节能方法和通信装置
US20240015564A1 (en) Apparatus, system, and method of multi-link traffic indication map (tim)
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2019072170A1 (zh) 通信方法和通信装置
US11329926B2 (en) Measuring transmission delay
WO2021027790A1 (zh) 一种侧行链路通信方法及装置
WO2018201941A1 (zh) 配置参数的方法及装置
WO2023169514A1 (zh) 一种通信的方法与装置
CN115715025A (zh) 多链路设备的探测方法及通信装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2019191913A1 (en) Measuring transmission delay
CN111479292A (zh) 数据传输的方法和装置
CN116530202A (zh) 用于双连接的方法和装置
WO2023065155A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
US20230224754A1 (en) Quality of service (qos) control method, terminal device, and network device
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141823A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077369A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023001060A1 (zh) 一种通信方法及相关装置
WO2023108555A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023137660A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885560

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885560

Country of ref document: EP

Effective date: 20240410