WO2023065155A1 - 无线通信的方法、终端设备、接入网设备和核心网设备 - Google Patents

无线通信的方法、终端设备、接入网设备和核心网设备 Download PDF

Info

Publication number
WO2023065155A1
WO2023065155A1 PCT/CN2021/125020 CN2021125020W WO2023065155A1 WO 2023065155 A1 WO2023065155 A1 WO 2023065155A1 CN 2021125020 W CN2021125020 W CN 2021125020W WO 2023065155 A1 WO2023065155 A1 WO 2023065155A1
Authority
WO
WIPO (PCT)
Prior art keywords
qoe
network device
terminal device
measurement report
configuration
Prior art date
Application number
PCT/CN2021/125020
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/125020 priority Critical patent/WO2023065155A1/zh
Priority to CN202180100670.9A priority patent/CN117693999A/zh
Publication of WO2023065155A1 publication Critical patent/WO2023065155A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, an access network device, and a core network device.
  • the terminal device can report the quality of experience (Quality of Experience, QoE) measurement report of the application, and the quality of experience (Quality of Experience, QoE) measurement report includes the application Measurements related to user experience, such as Average Throughput, Initial Playout Delay, Buffer Level, Device information, etc.
  • QoE Quality of Experience
  • QoE Quality of Experience
  • the NR system can support more applications, such as virtual reality applications.
  • applications such as virtual reality applications.
  • the data volume of the QoE measurement report that the terminal device needs to report has increased significantly, which greatly consumes the air interface. resource. Therefore, how to transmit the QoE measurement report is an urgent problem to be solved.
  • Embodiments of the present application provide a wireless communication method, a terminal device, an access network device, and a core network device, which are beneficial to reducing an air interface overhead for a terminal device to report a QoE measurement report.
  • a wireless communication method includes: a terminal device receives a first quality of experience QoE configuration sent by an access network device, where the first QoE configuration includes at least one of the following:
  • a wireless communication method including: an access network device sending a first quality of experience QoE configuration to a terminal device, where the first QoE configuration includes at least one of the following:
  • a wireless communication method including: a core network device sending a first quality of experience QoE configuration to an access network device, where the first QoE configuration includes at least one of the following:
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • an access network device configured to execute the method in the second aspect above.
  • the access network device includes a functional module for executing the method in the second aspect above.
  • a core network device configured to execute the method in the above third aspect.
  • the core network device includes a functional module for executing the method in the above third aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • an access network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • a core network device including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the third aspect above.
  • a chip configured to implement the method in any one of the first to third aspects above.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to third aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above first to third aspects.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the method in any one of the above first to third aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the first to third aspects above.
  • the access network device configures the maximum bit limit of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report for the terminal device, so that the terminal device can determine the report based on the maximum bit limit of the QoE measurement report
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of QMC collection and reporting provided by the present application.
  • Fig. 3 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 6 is a schematic interaction diagram of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an access network device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a core network device provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • QMC QoE measurement collection
  • Step 1 A core network device (for example, a measurement collection entity (MCE)) sends an activation area QMC task (activationAreaQMCjob) signaling to an access network device (for example, gNB), wherein the activationAreaQMCjob includes a service type (serviceType ), geographical range (areascpe), Internet Protocol (Internet Protocol, IP) location of QoE collection entity (QoE collection entity), target PLMN, target QMC, QoE reference identifier (QoE Reference ID) and QMC configuration file.
  • serviceType service type
  • geographical range areascpe
  • Internet Protocol Internet Protocol
  • QoE collection entity QoE collection entity
  • target PLMN target PLMN
  • target QMC QoE reference identifier
  • Step 2 The gNB sends the service type (Service type) and the QMC configuration file to the UE through the radio resource control (Radio Resource Control, RRC) reconfiguration (RRCReconfiguration) signaling, wherein the QMC configuration file includes the QoE reference identifier (QoE Reference ID).
  • RRC Radio Resource Control
  • RRCReconfiguration Radio Resource Control
  • the gNB binds the service type (Service type) with the IP address of the QoE collection entity (QoE collection entity).
  • the content of the measurement configuration information (measConfigAppLayer) of the application layer is as follows:
  • Step 3 The Access Stratum (AS) layer of the UE sends the service type and the QMC configuration file to the application layer of the UE through an application command (for example, +CAPPLEVMC).
  • AS Access Stratum
  • Step 4 After the UE's application layer completes the measurement quantity collection, the corresponding report (including the serviceType in the report) is sent to the UE's AS layer through an application command (for example, +CAPPLEVMC).
  • an application command for example, +CAPPLEVMC
  • Step 5 The AS layer of the UE then determines the service type through the type of the application (application, APP) that submitted the report, and sends the service type and QoE measurement report to the gNB through the APP layer measurement report (measurementreportApplayer).
  • the content of the application layer measurement report information element is as follows:
  • Step 6 The gNB sends the received measurement report (measurement report) to the corresponding measurement collection entity (measurement collection entity, MCE) (for example, find the corresponding MCE through the service type).
  • MCE measurement collection entity
  • the purpose of QoE collection and reporting is for a specific application, and the network configuration terminal reports the measurement related to the user experience of the application, such as the following: Average Throughput (Average Throughput), Initial Playout Delay (Initial Playout Delay), buffer amount (Buffer Level), device information (Device information).
  • Average Throughput Average Throughput
  • Initial Playout Delay Initial Playout Delay
  • Buffer Level buffer amount
  • Device information Device information
  • the NR system can support more applications, such as virtual reality applications.
  • applications such as virtual reality applications.
  • the amount of data in the QoE measurement report that the terminal device needs to report has increased significantly, which consumes a lot of air interfaces. resource. Therefore, how to transmit the QoE measurement report is an urgent problem to be solved.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device receives the first quality of experience QoE configuration sent by the access network device.
  • the first QoE configuration is used to constrain (or limit) the size of the QoE measurement report reported by the terminal device, and/or, to constrain (or limit) the QoE reported by the terminal device Period of measurement reporting.
  • the QoE measurement reports the consumption of air interface resources.
  • the restricting the size of the QoE measurement report reported by the terminal device may include:
  • the period for restricting the terminal device to report the QoE measurement report may include:
  • the first QoE configuration includes at least one of the following:
  • the minimum sending cycle limitation may be in units of time slots, or in units of subframes, or in units of radio frames, and the like.
  • the embodiment of the present application does not limit the configuration granularity of the first QoE configuration.
  • the first QoE configuration may be configured according to application granularity, or may also be configured according to service type granularity, or may also be UE granular, that is, the first QoE configuration may be applicable to all Reporting of the QoE measurement report, etc.
  • the access network device sends the first QoE configuration through any downlink signaling or downlink channel.
  • the access network device may send the first QoE configuration through existing signaling, or may also send the first QoE configuration through newly added signaling.
  • the terminal device may receive an RRC reconfiguration command sent by the access network device, where the RRC reconfiguration signaling includes the first QoE configuration.
  • the RRC reconfiguration signaling may also include other configuration information for QoE measurement collection or reporting.
  • the service type, QMC configuration package, where the QMC configuration package may include a QoE reference identifier.
  • the terminal device receiving the RRC reconfiguration command sent by the access network device may include:
  • the AS of the terminal device receives the RRC reconfiguration command sent by the AS of the access network device.
  • the AS of the terminal device may send the first QoE configuration in the RRC reconfiguration command to an application layer (application, APP) of the terminal device.
  • application application
  • the AS of the terminal device sends an application command to the application layer of the terminal device, where the application command includes the first QoE configuration.
  • the application command may be, for example, the +CAPPLEVMC command.
  • the terminal device may generate a first QoE measurement report according to the first QoE configuration.
  • the amount of data included in the first QoE measurement report is determined according to the limit on the maximum number of bits of the QoE measurement report in the first QoE configuration.
  • the data volume of the first QoE measurement report generated by the terminal device does not exceed the limit of the maximum number of bits of the QoE measurement report.
  • the terminal device discards part of the QoE measurement report to be sent.
  • the terminal device may discard part of the QoE measurement report to be sent according to a preset rule
  • the terminal device discards at least one QoE measurement report with the latest time among the recorded QoE measurement reports.
  • the terminal device discards at least one QoE measurement report with the earliest time among the recorded QoE measurement reports.
  • the terminal device discards the QoE measurement report of a specific application, or the QoE measurement report of an application of a specific service type.
  • the terminal device may send the first QoE measurement report to the access network device.
  • the access network device may forward the first QoE measurement report to the core network device, for example, the access network device determines the corresponding MCE according to the service type, and further sends the first QoE measurement report to the corresponding The MCE.
  • the method 200 further includes:
  • the terminal device determines the size of the uplink resource (for example, uplink grant (UL grant)) requested from the access network device according to the maximum number of bits limit of the QoE measurement report in the first QoE configuration.
  • uplink grant for example, uplink grant (UL grant)
  • the number of bits that can be carried by the uplink resource requested by the terminal device is less than or equal to the limit of the maximum number of bits of the QoE measurement report, which is beneficial to reduce the consumption of air interface resources for reporting the QoE measurement report.
  • the method 200 further includes:
  • the terminal device determines the target cycle length for reporting the QoE measurement report according to the minimum sending cycle limit of the QoE measurement report.
  • the terminal device may determine a cycle length greater than or equal to the minimum sending cycle limit of the QoE measurement report as the target cycle length.
  • the access network device configures the maximum number of bits of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report for the terminal device, so that the terminal device can Determine the size of the reported QoE measurement report according to the number limit, and/or determine the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, which is beneficial to reduce the air interface overhead of the terminal device reporting the QoE measurement report.
  • FIG. 4 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 4 , the wireless communication method 300 may include at least part of the following content:
  • the access network device sends the first quality of experience QoE configuration to the terminal device.
  • the first QoE configuration is used to restrict the size of the QoE measurement report reported by the terminal device, and/or is used to restrict the period for the terminal device to report the QoE measurement report.
  • the first QoE configuration is used to constrain (or limit) the size of the QoE measurement report reported by the terminal device, and/or to constrain (or limit) the QoE reported by the terminal device Period of measurement reporting.
  • the QoE measurement reports the consumption of air interface resources.
  • the restricting the size of the QoE measurement report reported by the terminal device may include:
  • the period for restricting the terminal device to report the QoE measurement report may include:
  • the first QoE configuration includes at least one of the following:
  • the minimum sending cycle limitation may be in units of time slots, or in units of subframes, or in units of radio frames, and the like.
  • the embodiment of the present application does not limit the configuration granularity of the first QoE configuration.
  • the first QoE configuration may be configured according to application granularity, or may also be configured according to service type granularity, or may also be UE granular, that is, the first QoE configuration may be applicable to all Reporting of the QoE measurement report, etc.
  • the access network device may send the first QoE configuration through any downlink signaling or downlink channel.
  • the access network device may send the first QoE configuration through existing signaling, or may also send the first QoE configuration through newly added signaling.
  • the access network device may send an RRC reconfiguration command to the terminal device, where the RRC reconfiguration signaling includes the first QoE configuration.
  • the RRC reconfiguration signaling may also include other configuration information for QoE measurement collection or reporting.
  • the service type, QMC configuration package, where the QMC configuration package may include a QoE reference identifier.
  • the first QoE configuration may be determined by a core network device.
  • the core network device may determine the constraints of the corresponding QoE measurement report (including the maximum number of bits limit and/or the minimum sending cycle limit) according to information such as service type (service type) or application type (APP type) .
  • service type service type
  • APP type application type
  • the reporting frequency of the QoE measurement report is relatively high, which is conducive to timely adjustment of the application problems on the network side and improving the quality of experience of the application.
  • the reporting frequency of the QoE measurement report is too high, which consumes a lot of air interface resources. . Therefore, in the embodiment of the present application, the constraints for reporting the QoE measurement report are determined according to information such as service type or application type, which is beneficial to achieve a balance between application quality of experience and air interface resource consumption.
  • the method 300 further includes:
  • the access network device receives the first QoE configuration sent by the core network device.
  • the core network device may send the first QoE configuration through any signaling interacted with the access network device.
  • the core network device may send the first QoE configuration through existing signaling, or may also send the first QoE configuration through newly added signaling.
  • the access network device receives an activation area quality of experience measurement collection QMC job (activationAreaQMCjob) command sent by the core network device, where the activation area QMC job command includes the first QoE configuration.
  • activationAreaQMCjob activation area quality of experience measurement collection QMC job
  • the activationAreaQMCjob command further includes other configuration information for QoE measurement collection or reporting. For example, service type, area scope, QoE CE address, QMC target, QMC configuration package, QoE reference identifier, etc.
  • the first QoE configuration may be determined by an access network device.
  • the access network device may determine the constraint conditions of the corresponding QoE measurement report (including maximum bit number limitation and/or minimum sending period limitation) according to information such as service type or application type. It is beneficial to realize the balance between the quality of experience of the application and the consumption of air interface resources.
  • the access network device may also determine the first QoE configuration according to usage of air interface resources.
  • the air interface resource utilization rate when the air interface resource utilization rate is low, configure a shorter minimum transmission period and/or a larger maximum bit limit, and when the air interface resource utilization rate is high, configure a longer minimum transmission period and/or a smaller The maximum number of bits limit.
  • the first QoE configuration when the air interface resource usage rate is lower than a preset threshold, it is determined that the first QoE configuration includes a first bit limit and/or a first transmission period limit, and when the air interface resource usage rate is higher than a preset threshold, it is determined that The first QoE configuration includes a second bit limit and/or a second sending cycle limit, wherein the first bit limit is greater than the second bit limit, and the first sending cycle limit is smaller than the first 2. Sending period limit.
  • the method 300 further includes:
  • the access network device receives the first QoE measurement report sent by the terminal device, where the data volume of the first QoE measurement report is less than or equal to the maximum bit of the QoE measurement report in the first QoE configuration number limit.
  • the access network device may forward the first QoE measurement report to the core network device. For example, the access network device determines the corresponding MCE according to the service type, and further sends the first QoE measurement report to the corresponding MCE.
  • the method 300 further includes:
  • the access network device receives first request information sent by the terminal device, where the first request information is used to indicate the size of the uplink resource requested by the terminal device, where the size of the uplink resource requested by the terminal device is The amount of data that can be carried is less than or equal to the limit on the maximum number of bits of the QoE measurement report in the first QoE configuration.
  • the first request information may be a buffer status report (Buffer Status Report, BSR).
  • BSR Buffer Status Report
  • the core network device is a measurement collection entity MCE.
  • the access network device configures the maximum number of bits of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report for the terminal device, so that the terminal device can Determine the size of the reported QoE measurement report according to the number limit, and/or determine the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, which is beneficial to reduce the air interface overhead of the terminal device reporting the QoE measurement report.
  • FIG. 5 is a schematic flowchart of a wireless communication method 400 according to an embodiment of the present application. As shown in FIG. 5 , the wireless communication method 400 may include at least part of the following content:
  • the core network device sends the first quality of experience QoE configuration to the access network device.
  • the first QoE configuration is used to restrict the size of the QoE measurement report reported by the terminal device, and/or is used to restrict the period for the terminal device to report the QoE measurement report.
  • the first QoE configuration is used to constrain (or limit) the size of the QoE measurement report reported by the terminal device, and/or, to constrain (or limit) the QoE reported by the terminal device Period of measurement reporting.
  • the QoE measurement reports the consumption of air interface resources.
  • the restricting the size of the QoE measurement report reported by the terminal device may include:
  • the period for restricting the terminal device to report the QoE measurement report may include:
  • the first QoE configuration includes at least one of the following:
  • the minimum sending cycle limitation may be in units of time slots, or in units of subframes, or in units of radio frames, and the like.
  • the embodiment of the present application does not limit the configuration granularity of the first QoE configuration, for example, the first QoE configuration may be configured according to the application granularity, or may also be configured according to the service type granularity, or, It may also be UE granular, that is, the first QoE configuration may be applicable to reporting of all QoE measurement reports of the terminal device, and the like.
  • the first QoE configuration may be determined by a core network device.
  • the core network device may determine the constraints of the corresponding QoE measurement report (including the maximum number of bits limit and/or the minimum sending cycle limit) according to information such as service type (service type) or application type (APP type) .
  • service type service type
  • APP type application type
  • the reporting frequency of the QoE measurement report is relatively high, which is conducive to timely adjustment of the application problems on the network side and improving the quality of experience of the application.
  • the reporting frequency of the QoE measurement report is too high, which consumes a lot of air interface resources. . Therefore, in the embodiment of the present application, the constraints for reporting the QoE measurement report are determined according to information such as service type or application type, which is beneficial to achieve a balance between application quality of experience and air interface resource consumption.
  • the core network device may send the first QoE configuration through any signaling interacted with the access network device.
  • the core network device may send the first QoE configuration through existing signaling, or may also send the first QoE configuration through newly added signaling.
  • the access network device receives an activation area quality of experience measurement collection QMC job (activationAreaQMCjob) command sent by the core network device, where the activation area QMC job command includes the first QoE configuration.
  • activationAreaQMCjob activation area quality of experience measurement collection QMC job
  • the activationAreaQMCjob command further includes other configuration information for QoE measurement collection or reporting of measurement results. For example, service type, area scope, QoE CE address, QMC target, QMC configuration package, QoE reference identifier, etc.
  • the core network device is a measurement collection entity MCE.
  • the core network device sends the maximum number of bits of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report to the terminal device through the access network device, so that the terminal device can Determine the size of the reported QoE measurement report according to the maximum number of bits limit of the QoE measurement report, and/or determine the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, which is beneficial to reduce the air interface overhead for the terminal device to report the QoE measurement report.
  • the AS of the gNB sends the first QoE configuration to the AS of the UE, that is, sending cycle restriction information and/or report size restriction information.
  • the first QoE configuration is sent through RRC reconfiguration signaling, wherein the RRC reconfiguration signaling further includes: a service type and a QMC configuration packet, wherein the QMC configuration packet includes a QoE reference identifier.
  • the first QoE configuration may be obtained from the MCE. In this case, also include:
  • the gNB receives the first QoE configuration sent by the MCE.
  • the gNB receives an activation area quality of experience measurement collection QMC job (activationAreaQMCjob) command sent by the MCE, where the activation area QMC job command includes the first QoE configuration.
  • activationAreaQMCjob activation area quality of experience measurement collection QMC job
  • the activationAreaQMCjob command further includes other configuration information for QoE measurement collection or reporting of measurement results. For example, service type, area scope, QoE CE address, QMC target, QMC configuration package, QoE reference identifier, etc.
  • the first QoE configuration may be determined by the gNB.
  • the gNB determines the first QoE configuration according to information such as air interface resource usage, service type, and application type.
  • the AS of the UE sends the first QoE configuration to the application layer of the UE.
  • the AS of the UE sends an application command to the application layer of the UE, where the application command includes the first QoE configuration.
  • the application command may be, for example, the +CAPPLEVMC command.
  • the UE generates a QoE measurement report according to the first QoE configuration.
  • the data volume of the QoE measurement report generated by the terminal device does not exceed the limit on the maximum number of bits of the QoE measurement report.
  • the UE may also determine the size of the uplink resource (for example, uplink grant (UL grant)) requested from the gNB according to the limit on the maximum number of bits of the QoE measurement report in the first QoE configuration.
  • uplink grant for example, uplink grant (UL grant)
  • the number of bits that can be carried by the uplink resource requested by the UE is less than or equal to the limit of the maximum number of bits in the QoE measurement report, which is beneficial to reduce the consumption of air interface resources for reporting the QoE measurement report.
  • the UE determines the target cycle length for reporting the QoE measurement report according to the minimum sending cycle limit of the QoE measurement report.
  • the UE may determine a cycle length greater than or equal to the minimum sending cycle limit of the QoE measurement report as the target cycle length.
  • the application layer of the UE sends an application command to the AS of the UE, where the application command includes a QoE reference identifier and a QoE measurement report, wherein the QoE measurement report includes a QoE reference identifier and a recording session identifier.
  • the data volume of the QoE measurement report is smaller than the data volume restricted in the first QoE configuration.
  • the AS of the UE sends a QoE measurement report to the gNB.
  • the AS of the UE may also send service type information to the gNB.
  • the QoE measurement report includes a QoE reference identifier and a recording session identifier.
  • the gNB sends a QoE measurement report to the MCE.
  • the QoE measurement report includes a QoE reference identifier and a recording session identifier.
  • the gNB determines the corresponding MCE according to the service type, and further sends the QoE measurement report to the corresponding MCE.
  • the access network device configures the maximum number of bits of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report for the terminal device, so that the terminal device can Determine the size of the reported QoE measurement report according to the number limit, and/or determine the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, which is beneficial to reduce the air interface overhead of the terminal device reporting the QoE measurement report.
  • Fig. 7 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the communication unit 510 is configured to receive a first quality of experience QoE configuration sent by the access network device, where the first QoE configuration includes at least one of the following:
  • the communication unit 510 is also used to:
  • the terminal device further includes:
  • a processing unit configured to send the first QoE configuration at the access layer to the application layer.
  • the processing unit is specifically used for:
  • the terminal device further includes:
  • a processing unit configured to generate a first QoE measurement report according to the first QoE configuration, where the data volume of the first QoE measurement report is less than or equal to the maximum bit of the QoE measurement report in the first QoE configuration number limit.
  • the processing unit is also used for:
  • the terminal device discards part of the QoE measurement report to be sent.
  • the processing unit is also used for:
  • the terminal device further includes:
  • a processing unit configured to determine the size of the uplink resource requested from the access network device according to the maximum number of bits limit of the QoE measurement report in the first QoE configuration.
  • the terminal device further includes:
  • a processing unit configured to determine a target cycle length for reporting the QoE measurement report according to the minimum sending cycle limit of the QoE measurement report.
  • the target cycle length is greater than or equal to the minimum sending cycle limit of the QoE measurement report.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the terminal device can receive the maximum number of bits of the QoE measurement report configured by the access network device and/or the minimum sending cycle limit of the QoE measurement report, and can further be based on the maximum number of bits of the QoE measurement report Restricting the size of the reported QoE measurement report, and/or determining the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, helps reduce the air interface overhead of the terminal device reporting the QoE measurement report.
  • terminal device 500 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 500 are to realize the method shown in FIG. 3
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 8 shows a schematic block diagram of an access network device 600 according to an embodiment of the present application.
  • the access network device 600 includes:
  • the communication unit 610 is configured to send a first quality of experience QoE configuration to the terminal device, where the first QoE configuration includes at least one of the following:
  • the communication unit 610 is also used to:
  • the communication unit 610 is also used to:
  • the access network device further includes:
  • a processing unit configured to determine the first QoE configuration according to usage of air interface resources.
  • the communication unit 610 is also used to:
  • the communication unit 610 is also used to:
  • the communication unit is also used for:
  • the terminal device receiving first request information sent by the terminal device, where the first request information is used to indicate the size of the uplink resource requested by the terminal device, where the size of the uplink resource requested by the terminal device can carry less than Or equal to the limit on the maximum number of bits of the QoE measurement report in the first QoE configuration.
  • the core network device is a measurement collection entity MCE.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the access network device configures the maximum number of bits of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report for the terminal device, so that the terminal device can Determine the size of the reported QoE measurement report according to the number limit, and/or determine the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, which is beneficial to reduce the air interface overhead of the terminal device reporting the QoE measurement report.
  • the access network device 600 may correspond to the access network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the access network device 600 are respectively for To realize the corresponding flow of the access network device in the method 300 shown in FIG. 4 , for the sake of brevity, details are not repeated here.
  • Fig. 9 shows a schematic block diagram of a core network device 700 according to an embodiment of the present application.
  • the core network device 700 includes:
  • a communication unit configured to send a first quality of experience QoE configuration to the access network device, where the first QoE configuration includes at least one of the following:
  • the communication unit 710 is also used to:
  • the core network device is a measurement collection entity MCE.
  • the core network device sends the maximum number of bits of the QoE measurement report and/or the minimum sending cycle limit of the QoE measurement report to the terminal device through the access network device, so that the terminal device can Determine the size of the reported QoE measurement report according to the maximum number of bits limit of the QoE measurement report, and/or determine the period of reporting the QoE measurement report according to the minimum sending period limit of the QoE measurement report, which is beneficial to reduce the air interface overhead for the terminal device to report the QoE measurement report.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the core network device 700 may correspond to the core network device 700 in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the core network device 700 are for realizing the The corresponding process of the core network device in the method 400 shown in 5 is not repeated here for the sake of brevity.
  • FIG. 10 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 10 includes a processor 810, and the processor 810 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820 .
  • the processor 810 can call and run a computer program from the memory 820, so as to implement the method in the embodiment of the present application.
  • the memory 820 may be an independent device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of antennas may be one or more.
  • the communication device 800 may specifically be the access network device in the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the access network device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • the communication device 800 may specifically be the terminal device in the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 800 may specifically be the core network device of the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the core network device in each method of the embodiment of the present application. For brevity, in This will not be repeated here.
  • Fig. 11 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the chip 900 shown in FIG. 11 includes a processor 910, and the processor 910 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920 .
  • the processor 910 can invoke and run a computer program from the memory 920, so as to implement the method in the embodiment of the present application.
  • the memory 920 may be an independent device independent of the processor 910 , or may be integrated in the processor 910 .
  • the chip 900 may further include an input interface 930 .
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940 .
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the access network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the access network device in the methods of the embodiments of the present application. For the sake of brevity, here No longer.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the core network device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the core network device in each method of the embodiment of the present application.
  • the repeat For the sake of brevity, the repeat.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 11 is a schematic block diagram of a communication system 1500 provided by an embodiment of the present application. As shown in FIG. 11 , the communication system 1500 includes a network device 1510 and a terminal device 1520 .
  • the network device 1510 may include an access network device, and the access network device may be used to perform corresponding functions implemented by the access network device in the above method, or the network device 1510 may include an access network device and a core Network equipment, the access network equipment can be used to perform the corresponding functions implemented by the access network equipment and the core network equipment in the above method, for the sake of brevity, details will not be repeated here.
  • the terminal device 1520 may be used to implement corresponding functions implemented by the terminal device in the foregoing method, and details are not described here for brevity.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the access network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the access network device in the methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the core network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the core network device in the methods of the embodiments of the present application, in order It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the access network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the access network device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program product can be applied to the core network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the core network device in the various methods of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the core network device in the various methods of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the access network device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the access network device For the sake of brevity, the corresponding process will not be repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the core network device in the embodiments of the present application.
  • the computer program executes the corresponding functions implemented by the core network device in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备、接入网设备和核心网设备,有利于降低终端设备上报QoE测量报告的空口开销。该方法包括:终端设备接收接入网设备发送的第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:QoE测量报告的最大比特数限制;QoE测量报告的最小发送周期限制。

Description

无线通信的方法、终端设备、接入网设备和核心网设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备、接入网设备和核心网设备。
背景技术
在新无线(New Radio,NR)系统中,针对特定应用,终端设备可以上报该应用的体验质量(Quality of Experience,QoE)测量报告,该体验质量(Quality of Experience,QoE)测量报告包括该应用的与用户体验相关的测量量,例如,平均吞吐量(Average Throughput)、初始播放延时(Initial Playout Delay)、缓存量(Buffer Level)、设备信息(Device information)等。
随着NR系统的传输能力的提升,NR系统能够支持更多的应用,例如虚拟现实类的应用,对于此类应用,终端设备需要上报的QoE测量报告的数据量大幅提升,极大消耗了空口资源。因此,如何进行QoE测量报告的传输是一项亟需解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备、接入网设备和核心网设备,有利于降低终端设备上报QoE测量报告的空口开销。
第一方面,提供了一种无线通信的方法,该方法包括:终端设备接收接入网设备发送的第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
第二方面,提供了一种无线通信的方法,该方法包括:接入网设备向终端设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
第三方面,提供了一种无线通信的方法,该方法包括:核心网设备向接入网设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
第四方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第五方面,提供了一种接入网设备,用于执行上述第二方面中的方法。
具体地,该接入网设备包括用于执行上述第二方面中的方法的功能模块。
第六方面,提供了一种核心网设备,用于执行上述第三方面中的方法。
具体地,该核心网设备包括用于执行上述第三方面中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第八方面,提供了一种接入网设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第九方面,提供了一种核心网设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面中的方法。
第十方面,提供了一种芯片,用于实现上述第一方面至第三方面中的任一方面中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
通过上述技术方案,接入网设备通过给终端设备配置QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的目标周期,有利于降低终端设备上报QoE测量报告的空口开销。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种QMC采集上报的示意性图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图4是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图5是根据本申请实施例提供的再一种无线通信的方法的示意性流程图。
图6是根据本申请实施例提供的一种无线通的方法示意性交互图。
图7是根据本申请实施例提供的一种终端设备的示意性框图。
图8是根据本申请实施例提供的一种接入网设备的示意性框图。
图9是根据本申请实施例提供的一种核心网设备的示意性框图。
图10是根据本申请实施例提供的一种通信设备的示意性框图。
图11是根据本申请实施例提供的一种芯片的示意性框图。
图12是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可 以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本 申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为便于更好的理解本申请实施例,对本申请相关的QoE测量收集(QoE measurement collection,QMC)启动以及采集上报测量结果进行说明,如图2所示。
步骤1:核心网设备(例如测量收集实体(measurement collection entity,MCE))将激活区域QMC任务(activationAreaQMCjob)信令发送给接入网设备(例如,gNB),其中,该activationAreaQMCjob包括服务类型(serviceType)、地理范围(areascpe)、QoE收集实体(QoE collection entity)的互联网协议(Internet Protocol,IP)位置、目标PLMN、目标QMC、QoE参考标识(QoE Reference ID)和QMC配置文件。
步骤2:gNB将服务类型(Service type)和QMC配置文件通过无线资源控制(Radio Resource Control,RRC)重配置(RRCReconfiguration)信令发送给UE,其中,QMC配置文件中包括QoE参考标识(QoE Reference ID)。gNB将服务类型(Service type)与QoE收集实体(QoE collection entity)的IP地址进行绑定。
示例性地,应用层的测量配置信息(measConfigAppLayer)内容如下:
Figure PCTCN2021125020-appb-000001
步骤3:UE的接入层(Access Stratum,AS)层通过应用命令(例如,+CAPPLEVMC)将service type和QMC配置文件发送给UE的应用层。
步骤4:当UE的应用层完成测量量采集后,将相应的报告(报告中包括serviceType)通过应用命令(例如,+CAPPLEVMC)发送给UE的AS层。
步骤5:UE的AS层继而通过提交报告的应用程序(application,APP)的类型确定service type,将service type和QoE测量报告通过APP层测量报告(measurementreportApplayer)发送给gNB。
示例性的,应用层测量报告信息元素(MeasReportAppLayer-r15-IEs)的内容如下:
Figure PCTCN2021125020-appb-000002
步骤6:gNB将接收到的测量报告(measurement report)发送给对应的测量收集实体(measurement collection entity,MCE)(例如,通过service type寻找对应的MCE)。
为便于更好的理解本申请实施例,对本申请相关的QoE采集进行说明。
QoE采集及上报的目的是针对特定应用,网络配置终端上报该应用的与用户体验相关的测量,如以下几种:平均吞吐量(Average Throughput)、初始播放延时(Initial Playout Delay)、缓存量(Buffer Level)、设备信息(Device information)。
随着NR系统的传输能力的提升,NR系统能够支持更多的应用,例如虚拟现实类的应用,对于此类应用,终端设备需要上报的QoE测量报告的数据量大幅提升,极大消耗量空口资源。因此,如何进行QoE测量报告的传输是一项亟需解决的问题。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,如图3所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备接收接入网设备发送的第一体验质量QoE配置。
在本申请一些实施例中,所述第一QoE配置用于约束(或者说,限制)终端设备上报的QoE测量报告的大小,和/或,用于约束(或者说,限制)终端设备上报QoE测量报告的周期。
通过约束终端设备上报QoE测量报告大小,有利于降低上报的QoE测量报告的数据量,通过约束终端设备上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的频率,从而降低终端设备上报QoE测量报告对空口资源的消耗。
可选地,所述约束终端设备上报QoE测量报告大小可以包括:
约束终端设备上报QoE测量报告的最大数据量,或者最大比特数。
可选地,所述约束终端设备上报QoE测量报告的周期可以包括:
约束终端设备上报QoE测量报告的最小周期,即,约束QoE测量报告的最小发送周期。
作为示例而非限定,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
可选地,所述最小发送周期限制可以是以时隙为单位,或者,以子帧为单位,或者,以无线帧为单位等。
需要说明的是,本申请实施例对于该第一QoE配置的配置粒度不作限定。例如,所述第一QoE配置可以是按照应用粒度配置的,或者,也可以按照服务类型粒度配置的,或者,也可以是UE粒度的,即该第一QoE配置可以适用于该终端设备的所有的QoE测量报告的上报等。
应理解,所述接入网设备通过任意下行信令或下行信道发送所述第一QoE配置。
可选地,接入网设备可以通过已有信令发送所述第一QoE配置,或者,也可以通过新增信令发送所述第一QoE配置。
作为示例,所述终端设备可以接收所述接入网设备发送的RRC重配置命令,所述RRC重配置信令包括所述第一QoE配置。
可选地,所述RRC重配置信令还可以包括用于QoE测量收集或上报的其他配置信息。例如,服务类型,QMC配置包,其中,该QMC配置包可以包括QoE参考标识。
在一些实施例中,所述终端设备接收所述接入网设备发送的RRC重配置命令,可以包括:
所述终端设备的AS接收所述接入网设备的AS发送的RRC重配置命令。
进一步地,所述终端设备的AS可以将所述RRC重配置命令中的所述第一QoE配置发送给所述终端设备的应用层(application,APP)。
例如,所述终端设备的AS向所述终端设备的应用层发送应用命令,所述应用命令包括所述第一QoE配置。
可选地,所述应用命令例如可以为+CAPPLEVMC命令。
进一步地,所述终端设备可以根据所述第一QoE配置,生成第一QoE测量报告。
例如,根据所述第一QoE配置中的所述QoE测量报告的最大比特数限制,确定所述第一QoE测量报告包括的数据量大小。
可选地,所述终端设备生成的第一QoE测量报告的数据量不超过所述QoE测量报告的最大比特数限制。
在一些实施例中,若待发送的QoE测量报告的数据量大于所述第一QoE配置中的所述QoE测量报告的最大比特数限制,所述终端设备丢弃部分待发送的QoE测量报告。
可选地,所述终端设备可以按照预设规则丢弃部分待发送的QoE测量报告
例如,所述终端设备丢弃已记录的QoE测量报告中的时间最近的至少一个QoE测量报告。
又例如,所述终端设备丢弃已记录的QoE测量报告中的时间最早的至少一个QoE测量报告。
再例如,所述终端设备丢弃特定应用的QoE测量报告,或者,特定服务类型的应用的QoE测量报告。
进一步地,所述终端设备可以向所述接入网设备发送所述第一QoE测量报告。接入网设备接收到该第一QoE测量报告可以向核心网设备转发该第一QoE测量报告,例如,接入网设备根据服务类型确定对应的MCE,进一步将该第一QoE测量报告发送给对应的MCE。
在本申请一些实施例中,所述方法200还包括:
所述终端设备根据所述第一QoE配置中的QoE测量报告的最大比特数限制,确定向接入网设备请求的上行资源(例如,上行授权(UL grant))的大小。
例如,所述终端设备请求的上行资源能够承载的比特数小于或等于QoE测量报告的最大比特数限制,有利于降低上报QoE测量报告对空口资源的消耗。
在本申请一些实施例中,所述方法200还包括:
所述终端设备根据所述QoE测量报告的最小发送周期限制,确定用于上报QoE测量报告的目标周期长度。
例如,所述终端设备可以确定大于或等于所述QoE测量报告的最小发送周期限制的周期长度为所述目标周期长度。
因此,在本申请实施例中,接入网设备通过给终端设备配置QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
上文结合图3,详细描述了本申请的终端设备侧实施例,下文结合图4,详细描述本申请的接入网侧实施例,应理解,接入网设备侧实施例与终端设备侧实施例相互对应,类似的描述可以参照终端设备侧实施例。
图4是根据本申请实施例的无线通信的方法300的示意性流程图,如图4所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,接入网设备向终端设备发送第一体验质量QoE配置。
在本申请一些实施例中,所述第一QoE配置用于约束终端设备上报的QoE测量报告的大小,和/或,用于约束终端设备上报QoE测量报告的周期。
在本申请一些实施例中,所述第一QoE配置用于约束(或者说,限制)终端设备上报的QoE测量报告的大小,和/或,用于约束(或者说,限制)终端设备上报QoE测量报告的周期。
通过约束终端设备上报QoE测量报告大小,有利于降低上报的QoE测量报告的数据量,通过约束终端设备上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的频次,从而降低终端设备上报QoE测量报告对空口资源的消耗。
可选地,所述约束终端设备上报QoE测量报告大小可以包括:
约束终端设备上报QoE测量报告的最大数据量,或者最大比特数。
可选地,所述约束终端设备上报QoE测量报告的周期可以包括:
约束终端设备上报QoE测量报告的最小周期,即,约束QoE测量报告的最小发送周期。
作为示例而非限定,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
可选地,所述最小发送周期限制可以是以时隙为单位,或者,以子帧为单位,或者,以无线帧为单位等。
需要说明的是,本申请实施例对于该第一QoE配置的配置粒度不作限定。例如,所述第一QoE配置可以是按照应用粒度配置的,或者,也可以按照服务类型粒度配置的,或者,也可以是UE粒度的,即该第一QoE配置可以适用于该终端设备的所有的QoE测量报告的上报等。
应理解,所述接入网设备可以通过任意下行信令或下行信道发送所述第一QoE配置。
可选地,接入网设备可以通过已有信令发送所述第一QoE配置,或者,也可以通过新增信令发送所述第一QoE配置。
例如,所述接入网设备可以向终端设备发送RRC重配置命令,所述RRC重配置信令包括所述第一QoE配置。
可选地,所述RRC重配置信令还可以包括用于QoE测量收集或上报的其他配置信息。例如,服务类型,QMC配置包,其中,该QMC配置包可以包括QoE参考标识。
在一些实施例中,所述第一QoE配置可以是核心网设备确定的。
可选地,所述核心网设备可以根据服务类型(service type)或应用类型(APP type)等信息,确定对应的QoE测量报告的约束条件(包括最大比特数限制和/或最小发送周期限制)。
应理解,QoE测量报告的上报频次较高,有利于网络侧对该应用的问题进行及时的调整,提升该应用的体验质量,但是QoE测量报告的上报频次过高,对空口资源的消耗较大。因此,在本申请实施例中,根据服务类型或者应用类型等信息,确定用于上报QoE测量报告的约束条件,有利于实现应用的体验质量和空口资源消耗之间的平衡。
例如,对于体验质量要求高的应用,可以配置较短的最小发送周期和/或较大的最大比特数限制,对于体验质量要求低的应用,配置较长的最小发送周期和/或较小的最大比特数限制。
在本申请一些实施例中,所述方法300还包括:
所述接入网设备接收核心网设备发送的所述第一QoE配置。
应理解,所述核心网设备可以通过与接入网设备交互的任意信令发送所述第一QoE配置。
可选地,在一些实施例中,核心网设备可以通过已有信令发送所述第一QoE配置,或者,也可以通过新增信令发送所述第一QoE配置。
作为示例而非限定,所述接入网设备接收所述核心网设备发送的激活区域体验质量测量收集QMC任务(activationAreaQMCjob)命令,所述激活区域QMC任务命令包括所述第一QoE配置。
在一些实施例中,所述activationAreaQMCjob命令还包括用于QoE测量收集或上报的其他配置信息。例如,服务类型,区域范围,QoE CE地址,QMC目标,QMC配置包,QoE参考标识等。
在另一些实施例中,所述第一QoE配置可以是接入网设备确定的。
可选地,所述接入网设备可以根据服务类型或应用类型等信息,确定对应的QoE测量报告的约束条件(包括最大比特数限制和/或最小发送周期限制)。有利于实现应用的体验质量和空口资源消耗之间的平衡。
例如,对于体验质量要求高的应用,可以配置较短的最小发送周期和/或较大的最大比特数限制,对于体验质量要求低的应用,配置较长的最小发送周期和/或较小的最大比特数限制。
可选地,所述接入网设备也可以根据空口资源的使用情况确定所述第一QoE配置。
例如,在空口资源使用率较低时,配置较短的最小发送周期和/或较大的最大比特数 限制,在空口资源使用率较高时,配置较长的最小发送周期和/或较小的最大比特数限制。
作为示例,在空口资源使用率低于预设阈值时,确定所述第一QoE配置包括第一比特数限制和/或第一发送周期限制,在空口资源使用率高于预设阈值时,确定所述第一QoE配置包括第二比特数限制和/或第二发送周期限制,其中,所述第一比特数限制大于所述第二比特数限制,所述第一发送周期限制小于所述第二发送周期限制。
在本申请一些实施例中,所述方法300还包括:
所述接入网设备接收所述终端设备发送的第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特数限制。
进一步地,接入网设备可以向核心网设备转发该第一QoE测量报告。例如,接入网设备根据服务类型确定对应的MCE,进一步将该第一QoE测量报告发送给对应的MCE。
在本申请一些实施例中,所述方法300还包括:
所述接入网设备接收所述终端设备发送的第一请求信息,所述第一请求信息用于指示所述终端设备请求的上行资源的大小,其中,所述终端设备请求的上行资源的大小能够承载的数据量小于或等于所述第一QoE配置中的QoE测量报告的最大比特数限制。
可选地,所述第一请求信息可以为缓存状态报告(Buffer Status Report,BSR)。
在本申请一些实施例中,所述核心网设备为测量收集实体MCE。
因此,在本申请实施例中,接入网设备通过给终端设备配置QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
上文结合图4,详细描述了本申请的接入网设备侧实施例,下文结合图5,详细描述本申请的核心网设备侧实施例,应理解,核心网设备侧实施例与接入网设备侧实施例相互对应,类似的描述可以参照接入网设备侧实施例。
图5是根据本申请实施例的无线通信的方法400的示意性流程图,如图5所示,该无线通信的方法400可以包括如下内容中的至少部分内容:
S510,核心网设备向接入网设备发送第一体验质量QoE配置。
在本申请一些实施例中,所述第一QoE配置用于约束终端设备上报的QoE测量报告的大小,和/或,用于约束终端设备上报QoE测量报告的周期。
在本申请一些实施例中,所述第一QoE配置用于约束(或者说,限制)终端设备上报的QoE测量报告的大小,和/或,用于约束(或者说,限制)终端设备上报QoE测量报告的周期。
通过约束终端设备上报QoE测量报告大小,有利于降低上报的QoE测量报告的数据量,通过约束终端设备上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的频次,从而降低终端设备上报QoE测量报告对空口资源的消耗。
可选地,所述约束终端设备上报QoE测量报告大小可以包括:
约束终端设备上报QoE测量报告的最大数据量,或者最大比特数。
可选地,所述约束终端设备上报QoE测量报告的周期可以包括:
约束终端设备上报QoE测量报告的最小周期,即,约束QoE测量报告的最小发送周期。
作为示例而非限定,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
可选地,所述最小发送周期限制可以是以时隙为单位,或者,以子帧为单位,或者,以无线帧为单位等。
需要说明的是,本申请实施例对于该第一QoE配置的配置粒度不作限定,例如,所述第一QoE配置可以是按照应用粒度配置的,或者,也可以按照服务类型粒度配置的,或者,也可以是UE粒度的,即该第一QoE配置可以适用于该终端设备的所有的QoE测量报告的上报等。
在一些实施例中,所述第一QoE配置可以是核心网设备确定的。
可选地,所述核心网设备可以根据服务类型(service type)或应用类型(APP type)等信息,确定对应的QoE测量报告的约束条件(包括最大比特数限制和/或最小发送周期限制)。
应理解,QoE测量报告的上报频次较高,有利于网络侧对该应用的问题进行及时的调整,提升该应用的体验质量,但是QoE测量报告的上报频次过高,对空口资源的消耗较大。因此,在本申请实施例中,根据服务类型或者应用类型等信息,确定用于上报QoE测量报告的约束条件,有利于实现应用的体验质量和空口资源消耗之间的平衡。
例如,对于体验质量要求高的应用,可以配置较短的最小发送周期和/或较大的最大比特数限制,对于体验质量要求低的应用,配置较长的最小发送周期和/或较小的最大比特数限制。
应理解,所述核心网设备可以通过与接入网设备交互的任意信令发送所述第一QoE配置。
可选地,在一些实施例中,核心网设备可以通过已有信令发送所述第一QoE配置,或者,也可以通过新增信令发送所述第一QoE配置。
作为示例而非限定,所述接入网设备接收所述核心网设备发送的激活区域体验质量测量收集QMC任务(activationAreaQMCjob)命令,所述激活区域QMC任务命令包括所述第一QoE配置。
在一些实施例中,所述activationAreaQMCjob命令还包括用于QoE测量收集或上报测量结果的其他配置信息。例如,服务类型,区域范围,QoE CE地址,QMC目标,QMC配置包,QoE参考标识等。
在本申请一些实施例中,所述核心网设备为测量收集实体MCE。
因此,在本申请实施例中,核心网设备通过接入网设备向终端设备发送QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
以下,结合图6,以所述接入网设备为gNB,核心网设备为MCE为例,说明根据本申请一个具体实施例的无线通信的方法的整体流程。如图6所示可以包括如下至少部分步骤:
S1002,gNB的AS向UE的AS发送第一QoE配置,即发送周期限制信息和/或报告大小限制信息。
可选地,所述第一QoE配置通过RRC重配置信令发送,其中,该RRC重配置信令还包括:服务类型、QMC配置包,其中,该QMC配置包包括QoE参考标识。
在一些实施例中,所述第一QoE配置可以是从MCE获取的。此情况下,还包括:
S1101,gNB接收MCE发送的第一QoE配置。
例如,gNB接收MCE发送的激活区域体验质量测量收集QMC任务(activationAreaQMCjob)命令,所述激活区域QMC任务命令包括所述第一QoE配置。
在一些实施例中,所述activationAreaQMCjob命令还包括用于QoE测量收集或上报测量结果的其他配置信息。例如,服务类型,区域范围,QoE CE地址,QMC目标,QMC配置包,QoE参考标识等。
在另一些实施例中,所述第一QoE配置可以是gNB确定的。
例如,gNB根据空口资源的使用情况,服务类型,应用类型等信息,确定第一QoE配置。
S1003,UE的AS向UE的应用层发送第一QoE配置。
例如,UE的AS向UE的应用层发送应用命令,所述应用命令包括所述第一QoE配置。
可选地,所述应用命令例如可以为+CAPPLEVMC命令。
进一步地,UE根据第一QoE配置生成QoE测量报告。
可选地,所述终端设备生成的QoE测量报告的数据量不超过所述QoE测量报告的最大比特数限制。
可选地,UE还可以根据所述第一QoE配置中的QoE测量报告的最大比特数限制,确定向gNB请求的上行资源(例如,上行授权(UL grant))的大小。
例如,UE请求的上行资源能够承载的比特数小于或等于QoE测量报告的最大比特数限制,有利于降低上报QoE测量报告对空口资源的消耗。
可选地,UE根据所述QoE测量报告的最小发送周期限制,确定用于上报QoE测量报告的目标周期长度。
例如,UE可以确定大于或等于所述QoE测量报告的最小发送周期限制的周期长度为所述目标周期长度。
S1004,UE的应用层向UE的AS发送应用命令,该应用命令包括QoE参考标识和QoE测量报告,其中,该QoE测量报告包括QoE参考标识和记录会话标识。
可选地,该QoE测量报告的数据量小于所述第一QoE配置中约束的数据量大小。
S1005,UE的AS向gNB发送QoE测量报告。
可选地,所述UE的AS还可以向gNB发送服务类型信息。
可选地,QoE测量报告中包括QoE参考标识和记录会话标识。
S1006,gNB向MCE发送QoE测量报告。
可选地,QoE测量报告中包括QoE参考标识和记录会话标识。
例如,gNB根据服务类型确定对应的MCE,进一步将该QoE测量报告发送给对应的MCE。
因此,在本申请实施例中,接入网设备通过给终端设备配置QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
上文结合图3至图6,详细描述了本申请的方法实施例,下文结合图7至图9,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图7示出了根据本申请实施例的终端设备500的示意性框图。如图7所示,该终端设备500包括:
通信单元510,用于接收接入网设备发送的第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
在本申请一些实施例中,所述通信单元510还用于:
接收所述接入网设备发送的无线资源控制RRC重配置命令,所述RRC重配置命令包括所述第一QoE配置。
在本申请一些实施例中,所述终端设备还包括:
处理单元,用于在接入层向应用层发送所述第一QoE配置。
在本申请一些实施例中,所述处理单元具体用于:
在接入层向应用层发送应用命令,所述应用命令包括所述第一QoE配置。
在本申请一些实施例中,所述终端设备还包括:
处理单元,用于根据所述第一QoE配置生成第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特数限制。
在本申请一些实施例中,所述处理单元还用于:
若待发送的QoE测量报告的数据量大于所述第一QoE配置中的所述QoE测量报告的最大比特数限制,所述终端设备丢弃部分待发送的QoE测量报告。
在本申请一些实施例中,所述处理单元还用于:
丢弃已记录的QoE测量报告中的时间最近的至少一个QoE测量报告,或者
丢弃已记录的QoE测量报告中的时间最早的至少一个QoE测量报告。
在本申请一些实施例中,所述终端设备还包括:
处理单元,用于根据所述第一QoE配置中的QoE测量报告的最大比特数限制,确定向接入网设备请求的上行资源的大小。
在本申请一些实施例中,所述终端设备还包括:
处理单元,用于根据所述QoE测量报告的最小发送周期限制确定用于上报QoE测量报告的目标周期长度。
在本申请一些实施例中,所述目标周期长度大于或等于所述QoE测量报告的最小发送周期限制。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
因此,在本申请实施例中,终端设备可以接收接入网设备配置的QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,进一步可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图8示出了根据本申请实施例的接入网设备600的示意性框图。如图8所示,该接入网设备600包括:
通信单元610,用于向终端设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
在本申请一些实施例中,所述通信单元610还用于:
接收核心网设备发送的所述第一QoE配置。
在本申请一些实施例中,所述通信单元610还用于:
接收所述核心网设备发送的激活区域体验质量测量收集QMC任务命令,所述激活区域QMC任务命令包括所述第一QoE配置。
在本申请一些实施例中,所述接入网设备还包括:
处理单元,用于根据空口资源的使用情况确定所述第一QoE配置。
在本申请一些实施例中,所述通信单元610还用于:
向所述终端设备发送无线资源控制RRC重配置命令,所述RRC重配置命令包括所述第一QoE配置。
在本申请一些实施例中,所述通信单元610还用于:
接收所述终端设备发送的第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特数限制。
在本申请一些实施例中,所述通信单元还用于:
接收所述终端设备发送的第一请求信息,所述第一请求信息用于指示所述终端设备请求的上行资源的大小,其中,所述终端设备请求的上行资源的大小能够承载的数据量小于或等于所述第一QoE配置中的QoE测量报告的最大比特数限制。
在本申请一些实施例中,所述核心网设备为测量收集实体MCE。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
因此,在本申请实施例中,接入网设备通过给终端设备配置QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
应理解,根据本申请实施例的接入网设备600可对应于本申请方法实施例中的接入网设备,并且接入网设备600中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法300中接入网设备的相应流程,为了简洁,在此不再赘述。
图9示出了根据本申请实施例的核心网设备700的示意性框图。如图8所示,该核心网设备700包括:
通信单元,用于向接入网设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
QoE测量报告的最大比特数限制;
QoE测量报告的最小发送周期限制。
在本申请一些实施例中,所述通信单元710还用于:
向所述接入网设备发送激活区域体验质量测量收集QMC任务命令,所述激活区域QMC任务命令包括所述第一QoE配置。
在本申请一些实施例中,所述核心网设备为测量收集实体MCE。
因此,在本申请实施例中,核心网设备通过接入网设备向终端设备发送QoE测量报告的最大比特数限制和/或QoE测量报告的最小发送周期限制,从而终端设备可以基于该QoE测量报告的最大比特数限制确定上报的QoE测量报告的大小,和/或,根据QoE测量报告的最小发送周期限制确定上报QoE测量报告的周期,有利于降低终端设备上报QoE测量报告的空口开销。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的核心网设备700可对应于本申请方法实施例中的核心网设备700,并且核心网设备700中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法400中核心网设备的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例提供的一种通信设备800示意性结构图。图10所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图10所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一些实施例中,如图10所示,通信设备800还可以包括收发器830,处理器810 可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备800具体可为本申请实施例的接入网设备,并且该通信设备800可以实现本申请实施例的各个方法中由接入网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备800具体可为本申请实施例的核心网设备,并且该通信设备800可以实现本申请实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的装置的示意性结构图。图11所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图11所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一些实施例中,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的接入网设备,并且该装置可以实现本申请实施例的各个方法中由接入网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的核心网设备,并且该装置可以实现本申请实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1500的示意性框图。如图11所示,该通信系统1500包括网络设备1510和终端设备1520。
可选地,该网络设备1510可以包括接入网设备,该接入网设备可以用于执行上述方法中接入网设备实现的相应功能,或者,该网络设备1510可以包括接入网设备和核心网设备,该接入网设备可以用于执行上述方法中接入网设备和核心网设备实现的相应功能,为了简洁,在此不再赘述。
可选地,该终端设备1520可以用于实现上述方法中由终端设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal  Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的接入网设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由接入网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的核心网设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的接入网设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由接入网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流 程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的核心网设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的接入网设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由接入网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的核心网设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (57)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收接入网设备发送的第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
    QoE测量报告的最大比特数限制;
    QoE测量报告的最小发送周期限制。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备接收接入网设备发送的第一体验质量QoE配置,包括:
    所述终端设备接收所述接入网设备发送的无线资源控制RRC重配置命令,所述RRC重配置命令包括所述第一QoE配置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一QoE配置是所述终端设备的接入层接收的,所述方法还包括:
    所述终端设备的接入层向所述终端设备的应用层发送所述第一QoE配置。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备的接入层向所述终端设备的非接入层发送所述第一QoE配置,包括:
    所述终端设备的接入层向所述终端设备的应用层发送应用命令,所述应用命令包括所述第一QoE配置。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一QoE配置生成第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特数限制。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备根据所述第一QoE配置生成第一QoE测量报告,包括:
    若待发送的QoE测量报告的数据量大于所述第一QoE配置中的所述QoE测量报告的最大比特数限制,所述终端设备丢弃部分待发送的QoE测量报告。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备丢弃部分待发送的QoE测量报告,包括:
    所述终端设备丢弃已记录的QoE测量报告中的时间最近的至少一个QoE测量报告,或者
    所述终端设备丢弃已记录的QoE测量报告中的时间最早的至少一个QoE测量报告。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一QoE配置中的QoE测量报告的最大比特数限制,确定向接入网设备请求的上行资源的大小。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述QoE测量报告的最小发送周期限制确定用于上报QoE测量报告的目标周期长度。
  10. 根据权利要求9所述的方法,其特征在于,所述目标周期长度大于或等于所述QoE测量报告的最小发送周期限制。
  11. 一种无线通信的方法,其特征在于,包括:
    接入网设备向终端设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
    QoE测量报告的最大比特数限制;
    QoE测量报告的最小发送周期限制。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收核心网设备发送的所述第一QoE配置。
  13. 根据权利要求12所述的方法,其特征在于,所述接入网设备接收核心网设备 发送的所述第一QoE配置,包括:
    所述接入网设备接收所述核心网设备发送的激活区域体验质量测量收集QMC任务命令,所述激活区域QMC任务命令包括所述第一QoE配置。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据空口资源的使用情况确定所述第一QoE配置。
  15. 根据权利要求11-14中任一项所述的方法,其特征在于,所述接入网设备向终端设备发送第一QoE配置,包括:
    所述接入网设备向所述终端设备发送无线资源控制RRC重配置命令,所述RRC重配置命令包括所述第一QoE配置。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收所述终端设备发送的第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特数限制。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收所述终端设备发送的第一请求信息,所述第一请求信息用于指示所述终端设备请求的上行资源的大小,其中,所述终端设备请求的上行资源的大小能够承载的数据量小于或等于所述第一QoE配置中的QoE测量报告的最大比特数限制。
  18. 根据权利要求12或13所述的方法,其特征在于,所述核心网设备为测量收集实体MCE。
  19. 一种无线通信的方法,其特征在于,包括:
    核心网设备向接入网设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
    QoE测量报告的最大比特数限制;
    QoE测量报告的最小发送周期限制。
  20. 根据权利要求19所述的方法,其特征在于,所述核心网设备向接入网设备发送第一体验质量QoE配置,包括:
    所述核心网设备向所述接入网设备发送激活区域体验质量测量收集QMC任务命令,所述激活区域QMC任务命令包括所述第一QoE配置。
  21. 根据权利要求19或20所述的方法,其特征在于,所述核心网设备为测量收集实体MCE。
  22. 一种终端设备,其特征在于,包括:
    通信单元,用于接收接入网设备发送的第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
    QoE测量报告的最大比特数限制;
    QoE测量报告的最小发送周期限制。
  23. 根据权利要求22所述的终端设备,其特征在于,所述通信单元还用于:
    接收所述接入网设备发送的无线资源控制RRC重配置命令,所述RRC重配置命令包括所述第一QoE配置。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于在接入层向应用层发送所述第一QoE配置。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理单元具体用于:
    在接入层向应用层发送应用命令,所述应用命令包括所述第一QoE配置。
  26. 根据权利要求22-25中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据所述第一QoE配置生成第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特 数限制。
  27. 根据权利要求26所述的终端设备,其特征在于,所述处理单元还用于:
    若待发送的QoE测量报告的数据量大于所述第一QoE配置中的所述QoE测量报告的最大比特数限制,所述终端设备丢弃部分待发送的QoE测量报告。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理单元还用于:
    丢弃已记录的QoE测量报告中的时间最近的至少一个QoE测量报告,或者
    丢弃已记录的QoE测量报告中的时间最早的至少一个QoE测量报告。
  29. 根据权利要求22-28中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据所述第一QoE配置中的QoE测量报告的最大比特数限制,确定向接入网设备请求的上行资源的大小。
  30. 根据权利要求22-29中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据所述QoE测量报告的最小发送周期限制确定用于上报QoE测量报告的目标周期长度。
  31. 根据权利要求30所述的终端设备,其特征在于,所述目标周期长度大于或等于所述QoE测量报告的最小发送周期限制。
  32. 一种接入网设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一体验质量QoE配置,其中,所述第一QoE配置包括以下中的至少一项:
    QoE测量报告的最大比特数限制;
    QoE测量报告的最小发送周期限制。
  33. 根据权利要求32所述的接入网设备,其特征在于,所述通信单元还用于:
    接收核心网设备发送的所述第一QoE配置。
  34. 根据权利要求33所述的接入网设备,其特征在于,所述通信单元还用于:
    接收所述核心网设备发送的激活区域体验质量测量收集QMC任务命令,所述激活区域QMC任务命令包括所述第一QoE配置。
  35. 根据权利要求32所述的接入网设备,其特征在于,所述接入网设备还包括:
    处理单元,用于根据空口资源的使用情况确定所述第一QoE配置。
  36. 根据权利要求32-35中任一项所述的接入网设备,其特征在于,所述通信单元还用于:
    向所述终端设备发送无线资源控制RRC重配置命令,所述RRC重配置命令包括所述第一QoE配置。
  37. 根据权利要求32-36中任一项所述的接入网设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第一QoE测量报告,其中,所述第一QoE测量报告的数据量小于或等于所述第一QoE配置中的所述QoE测量报告的最大比特数限制。
  38. 根据权利要求32-37中任一项所述的接入网设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第一请求信息,所述第一请求信息用于指示所述终端设备请求的上行资源的大小,其中,所述终端设备请求的上行资源的大小能够承载的数据量小于或等于所述第一QoE配置中的QoE测量报告的最大比特数限制。
  39. 根据权利要求33或34所述的接入网设备,其特征在于,所述核心网设备为测量收集实体MCE。
  40. 一种核心网设备,其特征在于,包括:
    通信单元,用于向接入网设备发送第一体验质量QoE配置,其中,所述第一QoE配 置包括以下中的至少一项:
    QoE测量报告的最大比特数限制;
    QoE测量报告的最小发送周期限制。
  41. 根据权利要求40所述的核心网设备,其特征在于,所述通信单元还用于:
    向所述接入网设备发送激活区域体验质量测量收集QMC任务命令,所述激活区域QMC任务命令包括所述第一QoE配置。
  42. 根据权利要求40或41所述的核心网设备,其特征在于,所述核心网设备为测量收集实体MCE。
  43. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  44. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  46. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  47. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  48. 一种接入网设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求11至18中任一项所述的方法。
  49. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至18中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至18中任一项所述的方法。
  51. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至18中任一项所述的方法。
  52. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求11至18中任一项所述的方法。
  53. 一种接入网设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求19至21中任一项所述的方法。
  54. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求19至21中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求19至21中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求19至21中任一项所述的方法。
  57. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求19至21中任一项所述的方法。
PCT/CN2021/125020 2021-10-20 2021-10-20 无线通信的方法、终端设备、接入网设备和核心网设备 WO2023065155A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/125020 WO2023065155A1 (zh) 2021-10-20 2021-10-20 无线通信的方法、终端设备、接入网设备和核心网设备
CN202180100670.9A CN117693999A (zh) 2021-10-20 2021-10-20 无线通信的方法、终端设备、接入网设备和核心网设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125020 WO2023065155A1 (zh) 2021-10-20 2021-10-20 无线通信的方法、终端设备、接入网设备和核心网设备

Publications (1)

Publication Number Publication Date
WO2023065155A1 true WO2023065155A1 (zh) 2023-04-27

Family

ID=86058681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125020 WO2023065155A1 (zh) 2021-10-20 2021-10-20 无线通信的方法、终端设备、接入网设备和核心网设备

Country Status (2)

Country Link
CN (1) CN117693999A (zh)
WO (1) WO2023065155A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203363A1 (zh) * 2020-04-09 2021-10-14 北京小米移动软件有限公司 信道状态信息报告配置方法、装置及计算机可读存储介质
WO2021228095A1 (zh) * 2020-05-15 2021-11-18 华为技术有限公司 通信方法和通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203363A1 (zh) * 2020-04-09 2021-10-14 北京小米移动软件有限公司 信道状态信息报告配置方法、装置及计算机可读存储介质
WO2021228095A1 (zh) * 2020-05-15 2021-11-18 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on QoE measurement collection configuration in NR", 3GPP DRAFT; R2-2110099, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101, 21 October 2021 (2021-10-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066551 *

Also Published As

Publication number Publication date
CN117693999A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2021081824A1 (zh) 无线通信方法和终端设备
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2021128022A1 (zh) 无线通信方法、终端设备和网络设备
WO2021042362A1 (zh) 一种无线通信资源分配的方法和装置以及通信设备
WO2021184224A1 (zh) 侧行链路能力发送方法和终端设备
WO2023065155A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022021032A1 (zh) 信息处理方法、终端设备和网络设备
US20230224763A1 (en) Wireless communication method, terminal device, and network device
WO2023035187A1 (zh) 无线通信的方法及设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023123199A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024060985A1 (zh) 一种通信方法、网络设备和终端设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2022141103A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023133685A1 (zh) 无线通信的方法及终端设备
WO2023102693A1 (zh) 无线通信的方法、远端终端和网络设备
WO2022061838A1 (zh) 启用反向映射机制方法、终端设备和网络设备
WO2023283777A1 (zh) 无线通信的方法和终端设备
WO2021237428A1 (zh) 取消传输配置授权上行信道的方法、终端设备和网络设备
WO2023137660A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023010411A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022067758A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100670.9

Country of ref document: CN