WO2015096092A1 - 资源调度方法、信息交互方法及设备 - Google Patents

资源调度方法、信息交互方法及设备 Download PDF

Info

Publication number
WO2015096092A1
WO2015096092A1 PCT/CN2013/090559 CN2013090559W WO2015096092A1 WO 2015096092 A1 WO2015096092 A1 WO 2015096092A1 CN 2013090559 W CN2013090559 W CN 2013090559W WO 2015096092 A1 WO2015096092 A1 WO 2015096092A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user
flow cell
downlink data
scheduling priority
Prior art date
Application number
PCT/CN2013/090559
Other languages
English (en)
French (fr)
Inventor
王晓霞
王成毅
赵骁飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380035188.7A priority Critical patent/CN104429144A/zh
Priority to PCT/CN2013/090559 priority patent/WO2015096092A1/zh
Publication of WO2015096092A1 publication Critical patent/WO2015096092A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a resource scheduling method, an information interaction method, and a device. Background technique
  • the 3rd Generation Partnership Project (3GPP) introduced High Speed Downlink Packet Access (HSDPA) technology in Release 5 to provide users with high-speed downlink data transmission channels.
  • HSDPA High Speed Downlink Packet Access
  • the user can only establish an HSDPA channel with one cell at the same time, as shown in FIG. 1A, and the user at the edge of the cell is far from the wireless environment. Even if the user uses the HSDPA channel to receive downlink data, the downlink data throughput of the user is still far. Downstream data throughput for users below the center of the cell.
  • 3GPP introduced HSDPA multi-stream technology in Release 11 (Release 11), and cell edge users can simultaneously establish HSDPA channels with multiple cells covering the user, and multiple cells covering the user are simultaneously the user.
  • the downlink data transmission scheduling resource increases the downlink data transmission channel and improves the downlink data throughput rate of the edge users.
  • each cell that establishes an HSDPA channel with the user is called a current multi-stream cell of the user, and multiple multi-stream cells corresponding to the user form a multi-stream cell group.
  • Multi-stream cells may belong to the same base station or may belong to different base stations.
  • the base station can uniformly allocate resources of each multi-flow cell for the downlink data transmission of the user, and each multi-flow cell fairly shares the load corresponding to the user. Maximize the utilization of cell resources.
  • the radio quality of each cell arriving at the user is fluctuating.
  • the radio quality of one multi-stream cell may be poor, and the radio quality of another multi-stream cell is better, then The base station can optimize resource scheduling by using a multi-stream cell with better radio quality.
  • each base station when each multi-stream cell corresponding to the user belongs to a different base station, each base station is divided into Do not perform resource scheduling on the multi-flow cell controlled by itself.
  • the base station periodically determines the resource scheduling priority of the user in each multi-flow cell controlled by the user, and for each multi-flow cell controlled by the user, according to the resource scheduling priority of the user in the cell, the downlink of the user is Data transmission schedules resources of the cell.
  • the base station determines the resource scheduling priority of the user according to the maximum downlink data throughput rate, the obtained downlink data throughput rate, and the corresponding scheduling priority weight that the user can obtain in the multi-flow cell controlled by the user.
  • the scheduling priority weight of the user is often set. The comparison is low to ensure the data transmission of the traditional user, that is to say, the priority of the resource scheduling of the user in the co-cell is relatively low. Therefore, the data transmission of the user can only be used as the multi-cell in the primary cell.
  • the downlink data transmission situation of the user in the multi-flow cell controlled by other base stations is not known. Therefore, each base station cannot perform fair resource scheduling, as follows:
  • the primary cell If the primary cell is congested and the co-cell is very idle, the user obtains a satisfactory service in the co-cell, but since there is no information interaction between the base stations to which the multi-stream cell belongs, the primary cell still schedules downlink data for the user. The resource is transmitted. Therefore, the co-cell cannot share the load of the primary cell, and consumes more resources of the primary cell. The primary cell cannot obtain the gain brought by the multi-stream HSDPA technology.
  • the radio quality of each cell arriving at the user is fluctuating.
  • the radio quality of one of the multi-stream cells may be poor, and the radio quality of another multi-stream cell is better due to There is no information exchange between the base stations to which the multi-stream cells belong. Therefore, it is not possible to preferentially schedule resources of the multi-stream cell with better radio quality, so that the resource utilization rate is lower and the spectrum efficiency of the system is poor.
  • the present invention provides a resource scheduling method, an information interaction method, and a device, which are used to solve the problem that the base stations cannot perform fair resource scheduling when the multi-stream cell crosses the base station in the prior art.
  • the first aspect provides a resource scheduling method, where the method includes:
  • the base station to which the multi-stream cell corresponding to the user belongs acquires the downlink data throughput rate of the user in the multi-flow cell controlled by other base stations;
  • the performing, by the base station, the downlink data throughput rate of the user in the multi-stream cell controlled by the other base station specifically includes:
  • the base station receives downlink data throughput rate of the multi-flow cell controlled by the other base station and sent by the other base station through the physical connection.
  • the method further includes:
  • the base station sends the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the other base station according to the first transmission frequency set for the other base station.
  • the method further includes:
  • the base station updates a first transmission frequency set for the other base station based on a degree of congestion with an interface with the other base station.
  • the performing, by the base station, the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station includes: The base station receives the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, which is sent by the radio network controller RNC.
  • the method further includes:
  • the base station reports the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set second transmission frequency.
  • the method further includes:
  • the base station updates the second transmission frequency according to a degree of congestion of an interface with the RNC.
  • the user is in the downlink of the multi-flow cell controlled by another base station Data throughput rate:
  • the downlink data throughput rate of the user in each multi-stream cell controlled by other base stations or the sum of downlink data throughput rates of the users in each multi-stream cell controlled by other base stations.
  • the first possible implementation of the first aspect, the second possible implementation of the first aspect, the third possible implementation of the first aspect, the fourth possible aspect of the first aspect includes:
  • Determining that the user is at the base station according to the determined sum of the downlink data throughput rates and the maximum downlink data throughput rate and scheduling priority weight of the user in the multi-flow cell controlled by the base station The resource scheduling priority in the controlled multi-stream cell.
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station; the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station; SPIweight, for the user in a multi-cell scheduling stream i in said base station control priority weight; multiple downlink data stream for cell j r j corresponding user throughput; cell number n is the multi-stream corresponding to the user.
  • the second aspect provides an information interaction method, where the method includes: receiving, by a radio network controller, an RNC, a downlink that is sent by each base station to which the multi-stream cell corresponding to the user belongs, and the user is in a multi-flow cell controlled by the base station Data throughput rate:
  • the RNC transmits, to each base station to which the multi-stream cell corresponding to the user belongs, the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station to the base station.
  • the RNC for each base station to which the multi-stream cell corresponding to the user belongs, respectively, in the multi-flow cell controlled by another base station
  • the downlink data throughput rate is sent to the base station, and specifically includes:
  • the RNC transmits, to each base station to which the multi-stream cell corresponding to the user belongs, the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station to the base station according to the transmission frequency set for the base station.
  • the method further includes:
  • the RNC is configured according to each base station to which each multi-stream cell corresponding to the user belongs The degree of congestion of the interface between stations, updating the transmission frequency set for the base station.
  • the third aspect a resource scheduling method, where the method includes:
  • the base station to which the multi-flow cell corresponding to the user belongs acquires a scheduling priority factor of the user in the multi-flow cell controlled by the base station, where the scheduling priority factor is based on the downlink of the user in the corresponding multi-flow cell Data throughput rate determined;
  • the scheduling priority factor is a sum of downlink data throughput rates of the user in the corresponding multiple stream cells.
  • the acquiring, by the base station, a scheduling priority factor of the user in the multi-flow cell controlled by the base station specifically includes:
  • the base station receives a scheduling priority factor that is sent by the radio network controller RNC and is determined according to the downlink data throughput rate of the user in the corresponding multi-stream cells.
  • the method further includes:
  • the base station reports the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set first transmission frequency.
  • the method further includes:
  • the scheduling priority factor in the flow cell determines the resource scheduling priority of the user in the multi-flow cell controlled by the base station, and specifically includes:
  • the base station determines, by using the following manner, a resource scheduling priority of the user in the multi-flow cell controlled by the base station:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station
  • the SPI weight is a scheduling priority weight of the user in the multi-flow cell i controlled by the base station; and is a downlink data throughput rate of the user in the corresponding multi-flow cell j;
  • n is the number of multi-stream cells corresponding to the user.
  • the scheduling priority factor is a scheduling priority weight of the user in the multi-flow cell controlled by the base station, and the corresponding multi-flow cell in the user The ratio of the sum of the downstream data throughput rates.
  • the acquiring, by the base station, a scheduling priority factor of the user in the multi-flow cell controlled by the base station specifically includes:
  • the scheduling priority weight sent by the radio network controller RNC according to the user in the multi-flow cell controlled by the base station, and the downlink number of the user in the corresponding multi-flow cell
  • the scheduling priority factor determined based on the throughput rate.
  • the method further includes:
  • the base station reports the scheduling priority weight and the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set second transmission frequency.
  • the method further includes: the base station updating the second sending frequency according to a congestion degree of an interface between the RNC and the RNC.
  • An eleventh possible implementation manner determining, according to the acquired scheduling priority factor of the user in the multi-flow cell controlled by the base station, a resource scheduling priority of the user in the multi-flow cell controlled by the base station Specifically, including:
  • the determining, by the base station, a resource scheduling priority of the user in the multi-flow cell controlled by the base station :
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station; a scheduling priority factor of the user in the multi-stream cell i controlled by the base station; SPIweight, for a multi-user scheduling in the base station control flow cell i in the priority weight; multiple downlink data stream for cell j r j corresponding user throughput;
  • n is the number of multi-stream cells corresponding to the user.
  • a fourth aspect provides an information interaction method, where the method includes:
  • the radio network controller RNC receives the downlink data throughput rate of the user in the multi-stream cell controlled by the base station, which is sent by each base station to which the multi-stream cell corresponding to the user belongs;
  • the RNC performs the following operations for each base station to which the multi-stream cell corresponding to the user belongs: determining, according to the downlink data throughput rate of the user in the corresponding multi-stream cell, the multi-flow controlled by the user at the base station A scheduling priority factor in the cell, and the determined scheduling priority factor is sent to the base station.
  • the RNC sends the determined scheduling priority factor to the base station, including:
  • the RNC sends the determined scheduling priority factor to the base station according to a transmission frequency set for the base station.
  • the method further includes:
  • the RNC updates the transmission frequency set for the base station according to the degree of congestion of the interface with the base station for each base station to which each multi-stream cell corresponding to the user belongs.
  • the downlink data throughput rate is determined by the scheduling priority factor of the user in the multi-flow cell controlled by the base station, and specifically includes:
  • the downlink data throughput rate of the user in the multi-flow cell controlled by the base station which is sent by each base station to which the multi-stream cell corresponding to the user belongs, includes: :
  • the determined ratio is determined as the scheduling priority factor of the user in the multi-stream cell controlled by the base station.
  • a base station including:
  • a throughput rate obtaining unit configured to acquire a downlink data throughput rate of the user in a multi-flow cell controlled by another base station;
  • a scheduling priority determining unit configured to use, according to the throughput rate acquiring unit, a downlink data throughput rate of the user in a multi-flow cell controlled by another base station, and a downlink data throughput rate of the user in the multi-flow cell controlled by the base station Determining a resource scheduling priority of the user in the multi-flow cell controlled by the base station; scheduling, for the user, resources of the multi-flow cell controlled by the base station.
  • the base station further includes: a first throughput rate sending unit, configured to send, by using a physical connection, a downlink data throughput rate of the user in the multi-flow cell controlled by the user To other base stations;
  • the throughput rate obtaining unit is specifically configured to receive a downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, which is sent by another base station.
  • the first throughput sending unit is specifically configured to use a first sending frequency set for other base stations. Transmitting a downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the other base station.
  • the base station further includes:
  • a first sending frequency update unit configured to update a first sending frequency set for the other base station according to a congestion degree of an interface with another base station.
  • the foregoing a throughput rate sending unit, configured to send the downlink data throughput rate of each user in each multi-flow cell controlled by the user to another base station; or downlink data throughput rate of the user in each multi-flow cell controlled by the user The sum is sent to other base stations.
  • the base station further includes:
  • a second throughput rate sending unit configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the user to the radio network controller RNC;
  • the throughput rate obtaining unit is specifically configured to receive, by the RNC, a downlink data throughput rate of the user in a multi-flow cell controlled by another base station.
  • the second throughput sending unit is configured to: perform multi-stream controlled by the user at the base station according to the set second sending frequency.
  • the downlink data throughput rate in the cell is reported to the RNC.
  • the base station further includes:
  • a second sending frequency updating unit configured to update the second sending frequency according to a congestion degree of an interface with the RNC.
  • the second throughput sending unit is specifically configured to send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to the RNC; or downlink the user in each multi-flow cell controlled by the user. The sum of the data throughput rates is sent to the RNC.
  • the scheduling priority determining unit is specifically configured to: according to the obtained downlink data throughput rate of the user in the multi-flow cell controlled by another base station, and the user controlled by the base station a downlink data throughput rate in the flow cell, determining a sum of downlink data throughput rates of the user in the corresponding multiple stream cells; and determining, according to the sum of the downlink data throughput rates, and the user controlling the base station
  • the maximum downlink data throughput rate and the scheduling priority weight in the flow cell determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the scheduling priority determining unit determines, by using the following manner, resource scheduling of the user in the multi-flow cell controlled by the base station priority:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station
  • SPIweight which is a scheduling priority weight of the user in the multi-flow cell i controlled by the base station
  • is the downlink data throughput rate of the user in the corresponding multi-stream cell j; n is the number of multi-stream cells corresponding to the user.
  • a wireless network controller including:
  • the throughput receiving unit is configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, a downlink data throughput rate of the user in the multi-flow cell controlled by the base station;
  • the throughput sending unit is specifically configured to: according to a sending frequency set for the base station, each base station to which each multi-stream cell corresponding to the user belongs The downlink data throughput rate of the user in the multi-stream cell controlled by the other base station is sent to the base station.
  • the method further includes:
  • the transmission frequency update unit is configured to update, according to the congestion degree of the interface between the base stations, the transmission frequency set for the base station, for each base station to which the multi-stream cell corresponding to the user belongs.
  • a base station including:
  • a priority factor acquisition unit configured to acquire a scheduling priority factor of the user in the multi-flow cell controlled by the base station, where the scheduling priority factor is based on downlink data of the user in each corresponding multi-flow cell The throughput rate is determined;
  • a scheduling priority determining unit configured to determine, according to a scheduling priority factor of the user in the multi-flow cell controlled by the base station, the resource of the user in the multi-flow cell controlled by the base station Scheduling priority; scheduling resources of the multi-stream cell controlled by the base station for the user.
  • the scheduling priority factor is a sum of downlink data throughput rates of the users in the corresponding multiple stream cells.
  • the base station further includes:
  • a first throughput rate sending unit configured to send a downlink data throughput rate of the user in the multi-flow cell controlled by the user to the radio network controller RNC;
  • the priority factor obtaining unit is specifically configured to receive, by the RNC, a scheduling priority factor determined according to a downlink data throughput rate of the user in each of the corresponding multi-flow cells.
  • the first throughput rate sending unit is configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set first transmission frequency.
  • the method further includes:
  • a first sending frequency update unit configured to update the first sending frequency according to a congestion degree of an interface with the RNC.
  • the scheduling priority determining unit is specifically configured to: according to the acquired scheduling priority factor of the user in the multi-flow cell controlled by the base station, and the user controlled by the base station The maximum downlink data throughput rate and the scheduling priority weight in the multi-stream cell determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the scheduling priority determining unit determines resource scheduling of the user in the multi-flow cell controlled by the base station by: priority:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station
  • the SPI weight is a scheduling priority weight of the user in the multi-flow cell i controlled by the base station; and is a downlink data throughput rate of the user in the corresponding multi-flow cell j;
  • n is the number of multi-stream cells corresponding to the user.
  • the scheduling priority factor is The ratio of the scheduling priority weight of the user in the multi-stream cell controlled by the base station to the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells.
  • the base station further includes:
  • a second throughput rate sending unit configured to send a scheduling priority weight and a downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC;
  • the priority factor obtaining unit is specifically configured to receive, according to a scheduling priority weight of the multi-flow cell controlled by the user in the base station, and a downlink data throughput rate of the user in the corresponding multi-flow cell, sent by the RNC.
  • the determined scheduling priority factor is specifically configured to receive, according to a scheduling priority weight of the multi-flow cell controlled by the user in the base station, and a downlink data throughput rate of the user in the corresponding multi-flow cell, sent by the RNC.
  • the second throughput rate sending unit is specifically configured to control the user in a self-control according to the set second sending frequency
  • the scheduling priority weight and the downlink data throughput rate in the flow cell are sent to the RNC.
  • the method further includes:
  • a second sending frequency updating unit configured to update the second sending frequency according to a congestion degree of an interface with the RNC.
  • the scheduling priority determining unit is specifically configured to: according to the acquired scheduling priority factor of the user in the multi-flow cell controlled by the base station, and the user is controlled by the base station The maximum downlink data throughput rate in the multi-stream cell determines the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the scheduling priority determining unit determines, by using the following manner, the user in the multi-flow cell controlled by the base station Resource scheduling priority:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • a maximum downlink data throughput rate of the user in the multi-flow cell i controlled by the base station a scheduling priority factor of the user in the multi-flow cell i controlled by the base station
  • n is the number of multi-stream cells corresponding to the user.
  • a wireless network controller including:
  • the throughput receiving unit is configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, a downlink data throughput rate of the user in the multi-flow cell controlled by the base station;
  • the scheduling priority factor determining unit is configured to: perform, according to the downlink data throughput rate of the user in each corresponding multi-flow cell, the following operations: a scheduling priority factor in the multi-stream cell controlled by the base station;
  • a scheduling priority factor sending unit configured to send the scheduling priority factor determined by the scheduling priority factor determining unit to the base station.
  • the scheduling priority factor sending unit is configured to send the determined scheduling priority factor to the base station according to a sending frequency set for the base station.
  • the method further includes:
  • the transmission frequency adjustment unit is configured to update, according to the congestion degree of the interface between the base stations and the base stations to which the multi-stream cell corresponding to the user belongs, the transmission frequency set for the base station.
  • the scheduling priority factor determining And determining, by the user, a sum of downlink data throughput rates of the user in the corresponding multiple stream cells; determining, by the sum of the determined downlink data throughput rates, that the user is in the multi-flow cell controlled by the base station The scheduling priority factor.
  • the throughput receiving unit is specifically configured to receive The downlink data throughput rate and the scheduling priority weight of the user in the multi-flow cell controlled by the base station, respectively, sent by each base station to which the multi-stream cell corresponding to the user belongs;
  • the scheduling priority factor determining unit is specifically configured to determine a ratio of a scheduling priority weight of the user in the multi-flow cell controlled by the base station to a sum of downlink data throughput rates of the user in the corresponding multi-flow cells; The determined ratio is determined as a scheduling priority factor of the user in the multi-flow cell controlled by the base station.
  • the resource scheduling priority of the user in the multi-flow cell controlled by a certain base station is not only required to be Considering the downlink data throughput rate of the user in the multi-flow cell controlled by the base station, and considering the downlink data throughput rate of the user in the multi-flow cell controlled by other base stations, the determined resource scheduling priority can reflect the user's Corresponding data transmission conditions in each multi-stream cell, thereby realizing fair resource scheduling for data transmission between users in each base station; if one multi-flow cell is congested, and another multi-stream cell is idle, the user is idle The satisfactory service is obtained in the multi-stream cell, and the downlink data throughput rate of the user in the congested multi-flow cell is large, so that the resource scheduling priority of the user in the congested multi-flow cell is reduced, and the congestion is multi-flow.
  • each multi-stream cell can be cooperatively shared.
  • the load is generated, and each multi-stream cell can obtain the gain brought by the multi-stream HSDPA technology; in addition, if the wireless quality of one multi-stream cell is better, and the radio quality of another multi-stream cell is poor, the user A satisfactory service is obtained in a multi-stream cell with better radio quality, so that the downlink data throughput rate of the user in the multi-stream cell with better radio quality is larger, and the user is in the multi-stream cell with poor radio quality.
  • the resource scheduling priority is reduced, thereby realizing the resource of the multi-flow cell with better scheduling of better radio quality, improving resource utilization, and improving the spectrum efficiency of the system.
  • FIG. 1 is a schematic diagram of a user establishing a HSDPA channel with a cell in the prior art
  • FIG. 2A is a schematic diagram of a multi-stream cell in a multi-flow cell group belonging to the same base station in the prior art
  • 2B is a schematic diagram of a multi-stream cell in a multi-stream cell group belonging to different base stations in the prior art
  • FIG. 3 is a schematic flowchart of a resource scheduling method according to Embodiment 1 of the present invention.
  • FIG. 4A is a schematic diagram of information interaction between base stations directly through physical connections according to Embodiment 1 of the present invention.
  • FIG. 4B is a schematic diagram of indirectly performing information interaction between base stations through an RNC according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic flowchart of a method for information interaction according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic flowchart of a resource scheduling method according to Embodiment 3 of the present invention.
  • 7A is a schematic diagram of information interaction between each base station and an RNC when the scheduling priority factor is the first form in the third embodiment of the present invention
  • 7B is a schematic diagram of information interaction between each base station and an RNC when the scheduling priority factor is the second form in the third embodiment of the present invention.
  • Embodiment 8 is a schematic flowchart of a method for information interaction in Embodiment 4 of the present invention.
  • FIG. 9 and FIG. 10 are schematic structural diagrams of a base station according to Embodiment 5 of the present invention.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of an RNC according to Embodiment 6 of the present invention.
  • FIG. 13 and FIG. 14 are schematic structural diagrams of a base station according to Embodiment 7 of the present invention.
  • FIG. 15 and FIG. 16 are schematic diagrams showing the structure of an RNC according to Embodiment 8 of the present invention. detailed description
  • the base station when a user establishes an HSDPA channel with multiple cells at the same time, and the multi-stream cell corresponding to the user belongs to different base stations (ie, the multi-stream cell crosses the base station), the base station generally determines that the user is in accordance with the following formula (1).
  • Resource scheduling priority in a multi-stream cell (assumed to be multi-stream cell i) controlled by the base station:
  • priority is the resource scheduling priority of the user in the multi-stream cell i; the maximum downlink data throughput rate of the user in the multi-stream cell i; SPIweighti is the user in the multi-stream cell i The priority weight is scheduled; ri is the downlink data throughput rate of the user in the multi-stream cell i.
  • the maximum downlink data throughput rate R of the user in the multi-stream cell refers to the maximum downlink data throughput rate that the user can support the radio quality of the location in the multi-stream cell; the downlink data throughput rate r of the user in the multi-stream cell is The downlink data throughput rate that the user has obtained in the multi-stream cell; the larger the R/r, the better the radio quality of the multi-stream cell is, or the downlink data throughput rate that the user has obtained in the multi-stream cell is too low, in order to ensure The fairness of the resource scheduling needs to increase the scheduling priority of the user in the multi-flow cell. The smaller the R/r is, the opposite is true, and the scheduling priority of the user in the multi-stream cell needs to be reduced.
  • the scheduling priority weight SPIweight of the user in the multi-flow cell is set according to the priority of the user, the priority of the service established by the user in the multi-flow cell, and the like, and is used to adjust the value of R/r. Since the downlink data transmission situation of the user in the multi-stream cell is constantly changing, the base station needs to periodically update the resource scheduling priority of the user in the multi-stream cell, and the update period can be preset.
  • the base station determines the resource scheduling priority of the user in a multi-flow cell controlled by the base station, not only the user in the multi-flow cell controlled by the base station is considered.
  • the downlink data throughput rate is also obtained, and the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station is also obtained, and the determined resource scheduling priority can reflect the data transmission situation of the user in the corresponding multi-flow cell.
  • resource scheduling for fairness of data transmission between users is realized between the base stations.
  • the solution of the present invention When the solution of the present invention is specifically implemented, if a multi-flow cell is congested and another multi-stream cell is idle, and the user obtains a satisfactory service in the idle multi-flow cell, the downlink data of the user in the congested multi-flow cell
  • the throughput rate is large, so that the resource scheduling priority of the user in the congested multi-flow cell is reduced, and the congested multi-flow cell no longer schedules excessive downlink data transmission resources for the user, so each multi-flow cell can be cooperatively shared.
  • each multi-stream cell can obtain the gain brought by the multi-stream HSDPA technology; in addition, if the radio quality of one multi-stream cell is better, and the radio quality of another multi-stream cell is poor, The user obtains a satisfactory service in the multi-stream cell with better radio quality, so the downlink data throughput rate of the user in the multi-stream cell with better radio quality is larger, and the user is in the multi-stream cell with poor radio quality.
  • the priority of the resource scheduling is reduced, thereby realizing the resource of the multi-stream cell with better scheduling wireless quality, and improving the resource utilization rate. Good spectral efficiency of the system.
  • the solution of the first embodiment of the present invention can be applied not only to the multi-stream technology of the base station in the Universal Mobile Telecommunications System (UMTS) but also to the Long Term Evolution (LTE). Multi-stream technology across base stations in the system.
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • the multi-stream cells corresponding to the user belong to different base stations, and the method for determining the resource scheduling priority of the user in the multi-flow cell controlled by the user is consistent. Therefore, the following embodiments are It is described from the perspective of any base station.
  • the base station can determine the resource scheduling priority of the user in the following two manners:
  • the first method for determining the priority of the resource scheduling the base station first acquires the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, and then according to the downlink data throughput rate of the user in the corresponding multi-flow cell (including the Determining the resource scheduling priority of the user by the downlink data throughput rate of the user in the multi-flow cell controlled by the base station and the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station;
  • the second method for determining the priority of the resource scheduling the base station first acquires a scheduling priority factor determined according to the downlink data throughput rate of the user in the corresponding multi-flow cell, and then determines the user according to the obtained scheduling priority factor. Resource scheduling priority.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the base station first acquires the downlink data throughput rate of the user in the multi-stream cell controlled by the other base station, and then according to the downlink data throughput rate of the user in the corresponding multi-flow cell, Determine the resource scheduling priority of the user.
  • FIG. 3 it is a schematic diagram of steps of a resource scheduling method in Embodiment 1 of the present invention, where the method includes the following steps:
  • Step 31 The base station to which the multi-flow cell corresponding to the user belongs acquires the control of the user at other base stations. Downstream data throughput in a multi-stream cell.
  • the first embodiment of the present invention provides that, when a multi-stream cell crosses a base station, each base station to which the multi-stream cell belongs can obtain the downlink data throughput rate of the user in the multi-flow cell controlled by other base stations in a direct mode or an indirect manner. Then, the base station can know the data transmission situation of the user in the multi-flow cell controlled by other base stations, thereby providing a basis for subsequently determining the resource scheduling priority of the user.
  • a physical interface is added between the base stations in advance, and a physical connection is established through the physical interface, for example, establishing a fiber connection.
  • Information exchange can be directly performed between the base stations through established physical connections.
  • Each base station to which each multi-stream cell corresponding to the user belongs performs the following operations:
  • the downlink data throughput rate of the user in the multi-flow cell controlled by the base station is transmitted to other base stations through physical connection, and the other base station transmits the physical data connection, and the user controls the other base stations.
  • Downstream data throughput rate in the streaming cell is transmitted to other base stations through physical connection, and the other base station transmits the physical data connection, and the user controls the other base stations.
  • each base station controls at least one multi-stream cell. If the base station controls a multi-stream cell, the base station may send the downlink data throughput rate of the user in the multi-stream cell controlled by the user to other base stations. If the base station controls at least two multi-stream cells, the base station may send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to other base stations, or may downlink the user in each multi-flow cell controlled by the user. The sum of data throughput rates is sent to other base stations.
  • step 31 the downlink data throughput rate of the user acquired by the base station in the multi-stream cell controlled by other base stations may be the following two cases:
  • the downlink data throughput rate of the user in each multi-stream cell controlled by other base stations or the sum of downlink data throughput rates of the users in each multi-stream cell controlled by other base stations.
  • the multi-stream cell corresponding to the user is cell 1 and small.
  • the base station to which the cell 1 belongs is the base station A
  • the base station to which the cell 2 belongs is the base station B.
  • the base station A transmits the downlink data throughput rate ri of the user in the cell 1 to the base station B through the physical connection with the base station B
  • the base station B The downlink data throughput rate r 2 of the user in the cell 2 is transmitted to the base station A through a physical connection with the base station A.
  • the base station controls two multi-stream cells, and the multi-flow cell is the cell 1, the cell 2, and the cell 3.
  • the base station to which the cell 1 and the cell 2 belong is the base station A
  • the base station to which the cell 3 belongs is the base station B
  • the base station B is the base station B.
  • the downlink data throughput rate r 3 of the user in the cell 3 is transmitted to the base station A through the physical connection with the base station A
  • the base station A connects the downlink data throughput rate ri of the user in the cell 1 and the user through the physical connection with the base station B.
  • the downlink data throughput rate r 2 in the cell 2 is transmitted to the base station B, or the base station A connects the downlink data throughput rate of the user in the cell 1 and the downlink data throughput rate of the user in the cell 2 through the physical connection with the base station B.
  • the sum of 2 ( ri + r 2 ) is sent to base station B.
  • each base station directly interacts with the downlink data throughput rate of the user through a physical connection, thereby reducing the transmission delay of the downlink data throughput rate, and determining the processing flow of the user's resource scheduling priority.
  • the downlink data throughput rate may be periodically exchanged between the base stations.
  • the base station may set the first transmission frequency for other base stations, and then according to the first transmission frequency set for other base stations, the period.
  • the downlink data throughput rate of the user in the multi-flow cell controlled by the base station is sent to the other base station.
  • the first transmission frequency set by the base station can be sent up to every 2 milliseconds.
  • the base station may further dynamically update the first transmission frequency set for other base stations according to the congestion degree of the physical interface with other base stations, and the subsequent base station may send downlink data throughput to other base stations according to the updated first transmission frequency. rate. If the physical interface between the base station and other base stations is idle, the first transmission frequency set for other base stations can be increased. Conversely, if the physical interface between the base station and other base stations is congested, the first transmission set for other base stations can be reduced. Frequency, the degree of congestion of the physical interface can be characterized by the ratio of the use of the physical interface, preset the range of use ratios, and set the corresponding transmission frequency for each usage ratio range.
  • the station When the station needs to update the first transmission frequency set for other base stations, it may first acquire the usage ratio of the physical interface with other base stations, and then determine the transmission frequency corresponding to the usage ratio range to which the usage ratio belongs, and determine the transmission frequency. As the updated first transmission frequency set for the other base stations.
  • the base station may preset a minimum guaranteed transmission frequency, for example, set to transmit every 100 milliseconds, and the first transmission frequency set by the base station for other base stations should be not less than the minimum guaranteed transmission frequency, that is, when the base station and other base stations When the physical interface is very congested, the downlink data throughput rate can be sent at the minimum guaranteed transmission frequency.
  • the base station may periodically update the first sending frequency set for other base stations according to a preset update period.
  • the network device can be a Radio Network Controller (RNC).
  • RNC Radio Network Controller
  • each base station to which the multi-stream cell corresponding to the user belongs transmits the downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC, and after receiving the downlink data throughput rate sent by each base station, the RNC receives the downlink data throughput rate.
  • the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station is respectively sent to the base station, and each base station receives the downlink data throughput rate of the user in the multi-stream cell controlled by the other base station and sent by the RNC.
  • each base station and the RNC can exchange information through an existing lub interface.
  • each base station controls at least one multi-stream cell. If the base station controls a multi-stream cell, the base station may send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to the RNC, and then forward the RNC to the other base station. If the base station controls at least two multi-stream cells, the base station may send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to the RNC, and the RNC forwards the data to the other base station, and the base station may also control the user in its own control. The sum of downlink data throughput rates in each multi-stream cell is sent to the RNC and forwarded by the RNC to other base stations.
  • the multi-stream cell corresponding to the user is cell 1 and cell 2
  • the base station to which the cell 1 belongs is the base station A
  • the base station to which the cell 2 belongs is the base station B
  • the base station A passes the lub interface to the user.
  • the downlink data throughput rate ri in the cell 1 is sent to the RNC, and the base station B passes The lub interface sends the downlink data throughput rate r 2 of the user in the cell 2 to the RNC, and the RNC sends the downlink data throughput rate of the user in the cell 1 to the base station B through the lub interface, and the downlink data of the user in the cell 2
  • the throughput rate r 2 is sent to the base station A.
  • the base station controls two multi-stream cells, and the multi-flow cell is the cell 1, the cell 2, and the cell 3.
  • the base station to which the cell 1 and the cell 2 belong is the base station A
  • the base station to which the cell 3 belongs is the base station B
  • the base station B is the base station B.
  • the downlink data throughput rate r 3 of the user in the cell 3 is sent to the RNC through the lub interface, and the RNC sends the r 3 to the base station A through the lub interface, and the base station A transmits the downlink data throughput rate of the user in the cell 1 through the lub interface.
  • the downlink data throughput rate r 2 of the user in the cell 2 is sent to the RNC, the RNC sends the r 2 interface and the r 2 to the base station B, or the base station A uses the lub interface to set the downlink data throughput rate r of the user in the cell 1.
  • the sum of the downlink data throughput rate r 2 ( ri +r 2 ) of the user in the cell 2 is sent to the RNC, and the RNC transmits (+r 2 ) to the base station B through the lub interface.
  • the downlink data throughput rate of the user is indirectly exchanged between the base stations through the RNC, which ensures compatibility with the existing network, reduces the complexity of determining the resource scheduling priority, and reduces the complexity of resource scheduling. degree.
  • the base station may periodically report the downlink data throughput rate to the RNC. Specifically, the base station may set the second transmission frequency, and then periodically set the user according to the set second transmission frequency.
  • the downlink data throughput rate in the multi-stream cell controlled by the base station is sent to the RNC.
  • the second transmission frequency set by the base station can be sent up to every 2 milliseconds.
  • the base station may dynamically update the second sending frequency according to the congestion degree of the lub interface with the RNC, and the subsequent base station may report the downlink data throughput rate to the RNC according to the updated second sending frequency. If the lub interface between the base station and the RNC is idle, the second transmission frequency can be increased. Conversely, if the lub interface between the base station and the RNC is congested, the second transmission frequency can be lowered.
  • the degree of congestion of the lub interface can be represented by the usage ratio of the lub interface.
  • the usage ratio ranges are set in advance, and the corresponding transmission frequency is set for each usage ratio range.
  • the base station may first Obtaining a usage ratio of the lub interface with the RNC, and then determining a transmission frequency corresponding to the usage ratio range to which the usage ratio belongs, and determining the determined transmission frequency as the updated second transmission frequency.
  • the base station can preset a minimum guaranteed transmission frequency.
  • the second transmission frequency set by the base station should be not less than the minimum guaranteed transmission frequency, that is, when the Iub interface between the base station and the RNC is very congested, the minimum guaranteed transmission frequency can be used. Report the downlink data throughput rate.
  • the base station may periodically update the second transmission frequency step 32 according to a preset update period, according to the obtained downlink data throughput rate of the user in the multi-flow cell controlled by other base stations, and the user in the office. Determining a downlink data throughput rate in the multi-stream cell controlled by the base station, and determining a resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the base station After obtaining the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, the base station determines the user according to the obtained downlink data throughput rate and the downlink data throughput rate of the user in the multi-flow cell controlled by the base station itself.
  • the sum of the downlink data throughput rates in the corresponding multi-stream cells and then based on the determined sum of the downlink data throughput rates and the maximum downlink data throughput rate and scheduling of the user in the multi-flow cell controlled by the base station itself
  • the priority weight determines the resource scheduling priority of the user in the multi-flow cell controlled by the base station itself.
  • the base station can determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station by using the following formula (2):
  • the priority is the resource scheduling priority of the user in the multi-flow cell i controlled by the base station itself; the maximum downlink data throughput rate of the user in the multi-flow cell i controlled by the base station itself; SPIweight is the user The scheduling priority weight in the multi-stream cell i controlled by the base station itself; ⁇ is the downlink data throughput rate of the user in the corresponding multi-stream cell j, and the multi-stream cell j may be a multi-stream cell controlled by the base station, A multi-stream cell that can be controlled by other base stations; n is the number of multi-stream cells corresponding to the user.
  • each base station controls at least one multi-stream cell. If the base station controls a multi-stream cell, the base station according to the downlink data throughput rate of the user in the multi-flow cell controlled by the user The downlink data throughput rate of the user in the multi-flow cell controlled by the other base station is used to determine the resource scheduling priority of the user in the multi-flow cell controlled by the user.
  • the base station needs to determine the resource scheduling priority of the user in a multi-flow cell controlled by the user according to the following information: the downlink data throughput rate of the user in the multi-flow cell controlled by the user The downlink data throughput rate of the user in other multi-stream cells controlled by the user and the downlink data throughput rate of the user in the multi-stream cell controlled by other base stations.
  • the multi-stream cell corresponding to the user is cell 1 and cell 2, that is, n in the above formula (2) is 2, the base station to which the cell 1 belongs is the base station A, and the base station to which the cell 2 belongs.
  • base station B For base station B.
  • the resource scheduling priority priority 2 of the user in cell 2 is calculated.
  • the multi-flow cell is the cell 1, the cell 2, and the cell 3, that is, n in the above formula (2) is 3, and the base station to which the cell 1 and the cell 2 belong is the base station A.
  • the base station to which the cell 3 belongs is the base station B.
  • Step 33 Scheduling resources of the multi-flow cell controlled by the base station for the user according to the determined resource scheduling priority.
  • the process of scheduling the resources for the downlink data transmission of the user according to the resource scheduling priority of the user in the multi-flow cell controlled by the user is consistent with the resource scheduling process of the prior art, and is not described here.
  • the resource scheduling priority determined by the base station can reflect the data transmission situation of the user in the corresponding multi-flow cells, thereby realizing fair resource scheduling between the base stations for data transmission of the user.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the RNC can indirectly exchange the downlink data throughput rate of the user through the RNC.
  • the second embodiment of the present invention describes a method for performing information interaction between the RNC and the base station. As shown in FIG. 5, the method includes the following steps:
  • Step 51 The RNC receives the downlink data throughput rate of the user in the multi-flow cell controlled by the base station, which is sent by each base station to which the multi-stream cell corresponding to the user belongs.
  • Step 52 The RNC sends, to each base station to which the multi-stream cell corresponding to the user belongs, the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station to the base station.
  • each base station and the RNC can exchange information through an existing Iub interface.
  • the RNC can periodically forward the downlink data throughput rate to each base station. Specifically, the RNC sets a corresponding transmission frequency for each base station to which each multi-stream cell corresponding to the user belongs, and then separately sets a corresponding transmission frequency for each base station. According to the sending frequency set for the base station, the user is The downlink data throughput rate in the multi-stream cell controlled by the other base station is sent to the base station.
  • the RNC may also dynamically update the transmission frequency set for each base station. Specifically, the RNC dynamically updates the base stations to which the multi-stream cells corresponding to the user belong according to the congestion degree of the lub interface with the base station. For the transmission frequency set by the base station, the subsequent RNC may forward the downlink data throughput rate reported by the other base station to the base station according to the updated transmission frequency. If the lub interface between the RNC and the base station is idle, the transmission frequency set for the base station can be increased. Conversely, if the lub interface between the RNC and the base station is congested, the transmission frequency set for the base station can be reduced, and the congestion degree of the lub interface. It can be characterized by the usage ratio of the lub interface.
  • the usage ratio ranges are set in advance, and the corresponding transmission frequency is set for each usage ratio range.
  • the base station can be acquired first.
  • the usage ratio of the lub interface between the two is determined, and then the transmission frequency corresponding to the usage ratio range to which the usage ratio belongs is determined, and the determined transmission frequency is used as the updated transmission frequency set for the base station.
  • the RNC can preset a minimum guaranteed transmission frequency. For example, it is set to send once every 100 milliseconds.
  • the RNC should set the transmission frequency for the base station to be not less than the minimum guaranteed transmission frequency. That is, when the lub interface between the RNC and the base station is very In the case of congestion, the downlink data throughput rate reported by other base stations may be forwarded to the base station at the minimum guaranteed transmission frequency.
  • the RNC may periodically update the transmission frequency set for each base station according to a preset update period.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the base station first acquires a scheduling priority factor determined according to the downlink data throughput rate of the user in the corresponding multi-flow cells, and then determines according to the obtained scheduling priority factor. The user's resource scheduling priority.
  • FIG. 6 is a schematic diagram of steps of a resource scheduling method according to Embodiment 3 of the present invention, where the method includes the following steps:
  • Step 61 The base station to which the multi-flow cell corresponding to the user belongs acquires a scheduling priority factor of the user in the multi-flow cell controlled by the base station, where the scheduling priority factor is based on the user.
  • the downlink data throughput rate in each corresponding multi-stream cell is determined.
  • the third embodiment of the present invention provides that, when the multi-stream cell crosses the base station, each base station to which the multi-stream cell belongs can acquire a scheduling priority factor determined according to the downlink data throughput rate of the user in the corresponding multi-flow cell, then the base station The data transmission situation of the user in each corresponding multi-flow cell can be known, thereby providing a basis for subsequently determining the resource scheduling priority of the user.
  • the downlink data throughput rate of each user in the multi-flow cell controlled by the user corresponding to each multi-stream cell may be downlink data of the user in the corresponding multi-flow cell by the network device.
  • the throughput rate is determined by the scheduling priority factor of the user in each multi-flow cell, and may be an RNC.
  • the information exchange between the base station and the RNC can be performed through the existing Iub interface.
  • each base station to which the multi-stream cell corresponding to the user belongs needs to separately send the user to the RNC in the multi-flow cell controlled by the user.
  • the downlink data throughput rate, the RNC determines the scheduling priority factor of the user in each multi-flow cell according to the downlink data throughput rate sent by each base station.
  • the scheduling priority factor may be, but not limited to, the following two forms:
  • the scheduling priority factor of the user in the multi-flow cell controlled by the base station is that the user is in the corresponding multi-flow cell.
  • the scheduling priority factor of the user in the multi-flow cell controlled by the base station is the scheduling priority weight of the user in the multi-flow cell controlled by the base station, and the downlink data throughput of the user in the corresponding multi-flow cell.
  • the following describes the information interaction between the base station and the RNC when the scheduling priority factor is used for each form, and the process by which the RNC determines the scheduling priority factor.
  • each base station to which the multi-stream cell corresponding to the user belongs needs to separately send downlink data throughput of the user in the multi-flow cell controlled by the user to the RNC.
  • Rate after receiving the downlink data throughput rate sent by each base station, the RNC determines the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells, and then determines the downlink. The sum of data throughput rates is sent to each base station as a scheduling priority factor.
  • the base station can periodically report the downlink data throughput rate to the RNC. Specifically, the base station can set the first transmission frequency for the RNC, and then periodically control the user at the base station according to the set first transmission frequency. The downlink data throughput rate in the multi-stream cell is sent to the RNC. The first transmission frequency set by the base station can be sent up to every 2 milliseconds.
  • the base station may dynamically update the first sending frequency according to the congestion degree of the lub interface with the RNC, and the subsequent base station may report the downlink data throughput rate to the RNC according to the updated first sending frequency. If the lub interface between the base station and the RNC is idle, the first transmission frequency can be increased. Conversely, if the lub interface between the base station and the RNC is congested, the first transmission frequency can be lowered.
  • the degree of congestion of the lub interface may be represented by a usage ratio of the lub interface, and each usage ratio range is preset, and a corresponding first transmission frequency is respectively set for each usage ratio range.
  • the usage ratio of the lub interface with the RNC may be first obtained, and then the transmission frequency corresponding to the usage ratio range to which the usage ratio belongs is determined, and the determined transmission frequency is used as the updated first transmission frequency.
  • the base station may preset a minimum guaranteed transmission frequency, for example, set to transmit once every 100 milliseconds, and the first transmission frequency set by the base station should be not less than the minimum guaranteed transmission frequency, that is, when the lub interface between the base station and the RNC is very When congestion occurs, the downlink data throughput rate can be reported at the minimum guaranteed transmission frequency.
  • the base station may periodically update the sending frequency according to a preset update period.
  • each base station controls at least one multi-stream cell, and each base station sends the downlink data throughput rate of the user in each multi-flow cell controlled by the user to the RNC, and the RNC determines the scheduling priority factor, and each The multi-stream cells correspond to the same scheduling priority factor.
  • the multi-stream cell corresponding to the user is cell 1 and cell 2
  • the base station to which the cell 1 belongs is the base station A
  • the base station to which the cell 2 belongs is the base station B
  • the base station A passes the lub interface to the user.
  • the downlink data throughput rate ri in the cell 1 is sent to the RNC
  • the base station B transmits the downlink data throughput rate r 2 of the user in the cell 2 to the RNC through the lub interface
  • the RNC determines the downlink of the user in the corresponding multi-stream cell.
  • the sum of the data throughput rates is then sent to base station A and base station B as r1 + r 2 as a scheduling priority factor over the lub interface.
  • the base station controls two multi-stream cells, and the multi-flow cell is the cell 1, the cell 2, and the cell 3.
  • the base station to which the cell 1 and the cell 2 belong is the base station A
  • the base station to which the cell 3 belongs is the base station B
  • the base station A by the lub interface, the user in the cell 1 downlink data throughput rate r, and the downlink user data throughput in the cell 2 r 2 transmits to the RNC, the base station B by the lub interface, the downlink user data throughput in the cell 3
  • the rate r 3 is sent to the RNC, and the RNC determines the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells, and then the RNC transmits the scheduling priority factor to the base station A and the base station B through the lub interface.
  • the RNC determines that the scheduling priority factor needs to know the downlink data throughput rate and the scheduling priority weight of the user in the corresponding multi-flow cells. Therefore, as shown in FIG. 7B.
  • Each base station to which the multi-stream cell corresponding to the user belongs needs to send not only the downlink data throughput rate of the user in the multi-flow cell controlled by the user, but also the scheduling priority weight of the user in the multi-flow cell controlled by the user.
  • the RNC determines the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells, and then performs the following for each base station separately.
  • Operation determining a ratio of a scheduling priority weight of the user in the multi-flow cell controlled by the base station to a sum of downlink data throughput rates of the user in the corresponding multi-flow cells, and determining the ratio as the scheduling priority The factor is sent to the base station.
  • the base station may periodically report the scheduling priority weight and the downlink data throughput rate to the RNC. Specifically, the base station may set a second sending frequency for the RNC, and then periodically set the user according to the set second sending frequency. The scheduling priority weight and the downlink data throughput rate in the multi-stream cell controlled by the base station are sent to the RNC.
  • the base station may further dynamically update the second sending frequency according to the congestion degree of the lub interface with the RNC, and the subsequent base station may report the scheduling priority weight and the downlink data throughput rate to the RNC according to the updated second sending frequency.
  • the specific process of updating the second sending frequency is similar to the specific process of updating the first sending frequency, and details are not described herein again.
  • the base station may periodically update the second sending frequency according to a preset update period.
  • each base station controls at least one multi-stream cell, and each base station sends the downlink data throughput rate and the scheduling priority weight of the user in each multi-flow cell controlled by the user to
  • the RNC determines, by the RNC, a scheduling priority factor of the user in each multi-flow cell, and each multi-stream cell corresponds to a different scheduling priority factor.
  • the base station controls a multi-stream cell as an example, and assumes that the multi-stream cell corresponding to the user is cell 1 and cell 2, the base station to which the cell 1 belongs is the base station A, and the base station to which the cell 2 belongs is the base station B, and the base station A uses the lub interface to connect the user.
  • the base station B sends the downlink data throughput rate r 2 and the scheduling priority weight SPIweigh of the user in the cell 2 to the RNC through the lub interface, and the RNC determines that the user is in the cell.
  • Scheduling priority factor in 1 the base station B sends the downlink data throughput rate r 2 and the scheduling priority weight SPIweigh of the user in the cell 2 to the RNC through the lub interface, and the RNC determines that the user is in the cell.
  • the determined transmission is sent to the base station A, and the determined Z 2 is sent to the base station B.
  • the base station controls two multi-stream cells, and the multi-flow cell is the cell 1, the cell 2, and the cell 3.
  • the base station to which the cell 1 and the cell 2 belong is the base station A
  • the base station to which the cell 3 belongs is the base station B
  • the base station A The downlink data throughput rate ri and the scheduling priority weight SPIweig of the user in the cell 1, the downlink data throughput rate r 2 of the user in the cell 2, and the scheduling priority weight SPI weight 2 are sent to the RNC through the lub interface, and the base station B passes the lub.
  • Step 62 Determine, according to the acquired scheduling priority factor of the user in the multi-flow cell controlled by the base station, a resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the RNC determines the downlink data throughput rate reported by each base station. After the priority factor is scheduled, the scheduling priority factor is sent to the corresponding base station, and the base station determines the corresponding resource scheduling priority according to the scheduling priority factor, so that the processing procedure for determining the resource scheduling priority by the base station can be centralized.
  • the following describes the process of determining the priority of resource scheduling by the base station when the scheduling priority factor is the first form or the second form.
  • the scheduling priority factor is the first form, that is, the resource scheduling priority of the user in the multi-flow cell controlled by the base station is the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells.
  • the base station After the base station acquires the scheduling priority factor of the user in the multi-flow cell controlled by the base station, the base station obtains the scheduling priority factor and the maximum downlink data throughput rate and scheduling of the user in the multi-flow cell controlled by the base station.
  • the priority weight determines the resource scheduling priority of the user in the multi-flow cell controlled by the base station itself.
  • the base station can determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station by using the following formula (3):
  • Priority — * SPIweigh ⁇ ( 3 )
  • priority is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station itself; the maximum of the multi-stream cell i controlled by the user in the base station itself
  • is the downlink data throughput rate of the user in the corresponding multi-stream cell j
  • the multi-flow cell jj l
  • the multi-flow cell that may be controlled by the base station may also be a multi-flow cell controlled by other base stations, where n is the number of multi-stream cells corresponding to the user; SPIweighti is the scheduling of the user in the multi-stream cell i controlled by the base station itself Priority weight.
  • the scheduling priority factor is the second form, that is, the resource scheduling priority of the user in the multi-flow cell controlled by the base station is that the scheduling priority weight of the user in the multi-flow cell controlled by the base station corresponds to the user.
  • the base station can determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station by using the following formula (4):
  • the multi-stream cell j may be a multi-flow cell controlled by the base station, or may be a multi-flow cell controlled by other base stations, where n is the number of multi-stream cells corresponding to the user, and SPIweighti is a multi-flow cell controlled by the user in the base station itself.
  • the resource scheduling priority of the user in a multi-flow cell controlled by the base station when determining, by the base station, the resource scheduling priority of the user in a multi-flow cell controlled by the base station, not only the downlink data throughput rate of the user in the multi-flow cell controlled by the base station is considered.
  • the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station is also considered, and the determined resource scheduling priority can reflect the data transmission situation of the user in the corresponding multi-flow cell.
  • Step 63 Scheduling resources of the multi-flow cell controlled by the base station for the user according to the determined resource scheduling priority.
  • the process of scheduling the resources for the downlink data transmission of the user according to the resource scheduling priority of the user in the multi-flow cell controlled by the user is consistent with the resource scheduling process of the prior art, and is not described here.
  • the resource scheduling priority determined by the base station can reflect the data transmission situation of the user in the corresponding multi-flow cells, thereby realizing fair resource scheduling for the data transmission between the users.
  • Embodiment 4
  • each base station may determine, by the RNC, the scheduling priority factor of the user in each multi-flow cell according to the downlink data throughput rate of the user in the corresponding multi-flow cell, which is described in Embodiment 4 of the present invention.
  • the method for performing information exchange between the RNC and the base station, as shown in FIG. 8, includes the following steps:
  • Step 81 The RNC receives the downlink data throughput rate of the user in the multi-flow cell controlled by the base station, which is sent by each base station to which the multi-stream cell corresponding to the user belongs.
  • Step 82 The RNC performs the following operations for each base station to which the multi-stream cell corresponding to the user belongs: determining, according to the downlink data throughput rate of the user in the corresponding multi-flow cells, that the user is controlled by the base station The scheduling priority factor in the multi-stream cell, and the determined scheduling priority factor is sent to the base station.
  • each base station and the RNC can exchange information through an existing Iub interface.
  • the following describes the process of determining the scheduling priority factor by the RNC when the scheduling priority factor is the first form or the second form described in the third embodiment of the present invention.
  • the scheduling priority factor is the first form, that is, the resource scheduling priority of the user in the multi-flow cell controlled by the base station is the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells.
  • the RNC After receiving the downlink data throughput rate sent by each base station, the RNC determines the sum of the downlink data throughput rates of the users in the corresponding multi-stream cells, and confirms the sum of the determined downlink data throughput rates as the user.
  • a scheduling priority factor in each multi-stream cell Therefore, each multi-stream cell corresponds to the same scheduling priority factor.
  • the multi-flow cell is the cell 1, the cell 2, and the cell 3.
  • the base station to which the cell 1 and the cell 2 belong is the base station A
  • the base station to which the cell 3 belongs is the base station B.
  • the RNC receives the downlink data throughput rate of the user in the cell 1 and the downlink data throughput rate r 2 of the user in the cell 2 through the Iub interface, and receives the downlink data throughput rate of the user in the cell 3 transmitted by the base station B. 3.
  • the RNC calculates the sum of the downlink data throughput rates of the user in the corresponding multi-stream cells + r 2 + r 3 , and then confirms + r 2 + r 3 as the scheduling priority factor of the user in each multi-flow cell.
  • the scheduling priority factor is the second form, that is, the resource scheduling priority of the user in the multi-flow cell controlled by the base station is that the scheduling priority weight of the user in the multi-flow cell controlled by the base station corresponds to the user.
  • Each base station not only sends the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC, but also sends the scheduling priority weight of the user in the multi-flow cell controlled by the base station, and the RNC receives each base station separately.
  • the following operations are performed for each base station: determining that the scheduling priority weight of the user in the multi-flow cell controlled by the base station is in the corresponding multi-flow cell corresponding to the user The ratio of the sum of the downlink data throughput rates is then determined as the scheduling priority factor of the user in the multi-stream cell controlled by the base station.
  • the multi-flow cell is the cell 1, the cell 2, and the cell 3.
  • the base station to which the cell 1 and the cell 2 belong is the base station A
  • the base station to which the cell 3 belongs is the base station B.
  • User sent by the RNC via an Iub interface the receiving station A downlink data in the cell 1 throughput and scheduling priority weight SPIweight ⁇ and user downlink data in the cell 2 throughput r 2 and a scheduling priority weight SPIweight 2, the receiving base station
  • the downlink data throughput rate r 3 and the scheduling priority weight SPI weight 3 of the user transmitted by the user in the cell 3 calculates the scheduling priority weight of the user in the cell 1 and the downlink data throughput of the user in the corresponding multi-flow cell.
  • the scheduling priority factor, ie Z 2 SPIwdght2 , confirms SPIweight 3 as the user's tone in cell 3 .
  • Priority factor, ie SPIWdght3 .
  • the RNC may periodically send a scheduling priority factor to each base station, specifically The RNC sets a corresponding transmission frequency for each base station to which each multi-stream cell corresponding to the user belongs, and then, for each base station, respectively, according to the transmission frequency set for the base station, the determined user is controlled by the base station. A scheduling priority factor in the multi-stream cell is sent to the base station.
  • the RNC may also dynamically update the transmission frequency set for each base station. Specifically, the RNC dynamically updates the base stations to which the multi-stream cells corresponding to the user belong according to the congestion degree of the lub interface with the base station. For the transmission frequency set by the base station, the subsequent RNC may send the determined scheduling priority factor to the base station according to the updated transmission frequency. If the lub interface between the RNC and the base station is idle, the transmission frequency set for the base station can be increased. Conversely, if the lub interface between the RNC and the base station is congested, the transmission frequency set for the base station can be reduced.
  • the degree of congestion of the lub interface can be represented by the usage ratio of the lub interface, and each usage ratio range is set in advance, and the corresponding transmission frequency is set for each usage ratio range.
  • the usage ratio of the lub interface with the base station may be first obtained, and then the transmission frequency corresponding to the usage ratio range to which the usage ratio belongs is determined, and the determined transmission frequency is used as the updated transmission frequency set for the base station.
  • the RNC can preset a minimum guaranteed transmission frequency. For example, it is set to send once every 100 milliseconds.
  • the RNC should set the transmission frequency for the base station to be not less than the minimum guaranteed transmission frequency. That is, when the lub interface between the RNC and the base station is very When congestion occurs, the determined scheduling priority factor may be sent to the base station at the minimum guaranteed transmission frequency.
  • the RNC may periodically update the transmission frequency set for each base station according to a preset update period.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the fifth embodiment of the present invention describes a base station in the same inventive concept as the first embodiment. As shown in FIG. 9, the method includes:
  • the throughput rate obtaining unit 91 is configured to acquire a downlink data throughput rate of the user in a multi-flow cell controlled by another base station;
  • a scheduling priority determining unit 92 configured to: according to the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station acquired by the throughput rate obtaining unit 91, and the user controlled by the base station
  • the downlink data throughput rate in the multi-stream cell determines the resource scheduling priority of the user in the multi-flow cell controlled by the base station; and first, the resource of the multi-flow cell controlled by the base station is scheduled for the user.
  • the base station further includes:
  • a first throughput sending unit configured to send, by using a physical connection, a downlink data throughput rate of the user in the multi-stream cell controlled by the user to another base station;
  • the throughput rate obtaining unit 91 is specifically configured to receive, by using another base station, a downlink data throughput rate of the user in the multi-flow cell controlled by the other base station.
  • the first throughput rate sending unit is specifically configured to send, according to the first sending frequency set for the other base station, the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the other base station.
  • the base station further includes:
  • a first sending frequency update unit configured to update a first sending frequency set for the other base station according to a congestion degree of an interface with another base station.
  • the first throughput rate sending unit is specifically configured to send the downlink data throughput rate of each user in each multi-flow cell controlled by the user to another base station; or the user is in each multi-flow cell controlled by the user.
  • the sum of the downlink data throughput rates in the middle is sent to other base stations.
  • the base station further includes:
  • a second throughput rate sending unit configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the user to the radio network controller RNC;
  • the throughput rate obtaining unit 91 is specifically configured to receive, by the RNC, a downlink data throughput rate of the user in a multi-flow cell controlled by another base station.
  • the second throughput rate sending unit is configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set second transmission frequency.
  • the base station further includes:
  • a second transmission frequency update unit configured to perform congestion according to an interface with the RNC, Updating the second transmission frequency.
  • the second throughput rate sending unit is specifically configured to send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to the RNC; or the user in each multi-flow cell controlled by the user The sum of the downlink data throughput rates is sent to the RNC.
  • the scheduling priority determining unit 92 is specifically configured to: according to the obtained downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, and the downlink data throughput of the user in the multi-flow cell controlled by the base station Rate, determining a sum of downlink data throughput rates of the user in the corresponding multi-stream cells; and determining a maximum downlink data of the downlink data throughput rate and the maximum downlink data of the user in the multi-flow cell controlled by the base station.
  • the throughput rate and the scheduling priority weight determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station; SPIweight is the scheduling priority weight of the user in the multi-stream cell i controlled by the base station; Downstream data throughput rate in multi-stream cell j;
  • n is the number of multi-stream cells corresponding to the user.
  • the method includes:
  • a receiver 101 configured to receive a downlink data throughput rate of the user in a multi-flow cell controlled by another base station;
  • the processor 102 is configured to determine, according to the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, and the downlink data throughput rate of the user in the multi-flow cell controlled by the base station, The resource scheduling priority of the user in the multi-flow cell controlled by the base station, and And scheduling, according to the determined resource scheduling priority, resources of the multi-flow cell controlled by the base station for the user.
  • the base station further includes:
  • the transmitter 103 is configured to send, by using a physical connection, a downlink data throughput rate of the user in the multi-flow cell controlled by the user to another base station;
  • the receiver 101 is specifically configured to receive, by using another base station, a downlink data throughput rate of the user in the multi-flow cell controlled by the other base station.
  • the transmitter 103 is specifically configured to send, according to the first sending frequency set for the other base station, the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the other base station.
  • the processor 102 is further configured to update a first sending frequency set for the other base station according to a degree of congestion of an interface with another base station.
  • the transmitter 103 is specifically configured to send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to another base station; or downlink the user in each multi-flow cell controlled by the user. The sum of data throughput rates is sent to other base stations.
  • the base station further includes:
  • the transmitter 103 is configured to: send the downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC;
  • the receiver 101 is specifically configured to receive, by the RNC, a downlink data throughput rate of the user in a multi-flow cell controlled by another base station.
  • the transmitter 103 is configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set second transmission frequency.
  • the processor 102 is further configured to update the second sending frequency according to a congestion degree of an interface with the RNC.
  • the transmitter 103 is specifically configured to send the downlink data throughput rate of the user in each multi-flow cell controlled by the user to the RNC; or downlink data of the user in each multi-flow cell controlled by the user. The sum of the throughput rates is sent to the RNC.
  • the processor 102 is specifically configured to: according to the obtained downlink data throughput rate of the user in the multi-flow cell controlled by the other base station, and the downlink data throughput rate of the user in the multi-flow cell controlled by the base station Determining a sum of downlink data throughput rates of the users in the corresponding multi-stream cells; determining, according to the sum of the downlink data throughput rates, and the maximum downlink data throughput of the user in the multi-flow cell controlled by the base station The rate and the scheduling priority weight determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the processor 102 determines a resource scheduling priority of the user in the multi-flow cell controlled by the base station by:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station; SPIweight is the scheduling priority weight of the user in the multi-stream cell i controlled by the base station; Downstream data throughput rate in multi-stream cell j;
  • n is the number of multi-stream cells corresponding to the user.
  • the sixth embodiment of the present invention describes an RNC that is the same as the second embodiment of the present invention.
  • the method includes:
  • the throughput receiving unit 111 is configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, a downlink data throughput rate of the user in the multi-flow cell controlled by the base station;
  • the throughput rate transmitting unit 112 is configured to send, to each base station to which each multi-stream cell corresponding to the user belongs, the downlink data throughput rate of the user in the multi-stream cell controlled by the other base station to the base station.
  • the throughput sending unit 111 is specifically configured to: according to the sending frequency set by the base station for each base station to which the multi-stream cell corresponding to the user belongs, the user is in another The downlink data throughput rate in the multi-stream cell controlled by the base station is sent to the base station.
  • the RNC further includes:
  • the transmission frequency update unit is configured to update, according to the congestion degree of the interface between the base stations, the transmission frequency set for the base station, for each base station to which the multi-stream cell corresponding to the user belongs.
  • the method includes:
  • the receiver 121 is configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, a downlink data throughput rate of the user in the multi-flow cell controlled by the base station;
  • the transmitter 122 is configured to send, to each base station to which the multi-stream cell corresponding to the user belongs, the downlink data throughput rate of the user in the multi-flow cell controlled by the other base station to the base station.
  • the transmitter 122 is specifically configured to: for each base station to which each multi-stream cell corresponding to the user belongs, downlink the user in a multi-flow cell controlled by another base station according to a transmission frequency set for the base station The data throughput rate is sent to the base station.
  • the RNC further includes:
  • the processor 123 is configured to update, according to the congestion degree of the interface between the base stations and the base stations to which the multi-stream cells corresponding to the user belong, the transmission frequency set for the base station.
  • the seventh embodiment of the present invention describes a base station that is in the same concept as the third embodiment. As shown in FIG. 13, the method includes:
  • the priority factor obtaining unit 131 is configured to acquire a scheduling priority factor of the user in the multi-flow cell controlled by the base station, where the scheduling priority factor is based on the downlink of the user in the corresponding multi-flow cell Data throughput rate determined;
  • the scheduling priority determining unit 132 is configured to determine, according to the scheduling priority factor of the user in the multi-flow cell controlled by the base station, the priority factor acquiring unit 131, and determine that the user is in the multi-flow cell controlled by the base station.
  • Resource scheduling priority priority, scheduling resources of the multi-flow cell controlled by the base station for the user.
  • the scheduling priority factor is a downlink number of the user in each corresponding multi-flow cell. According to the sum of throughput rates.
  • the base station further includes:
  • a first throughput sending unit configured to send a downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC;
  • the priority factor obtaining unit 131 is specifically configured to receive, by the RNC, a scheduling priority factor determined according to a downlink data throughput rate of the user in each corresponding multi-flow cell.
  • the first throughput rate sending unit is configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set first transmission frequency.
  • the base station further includes:
  • a first sending frequency update unit configured to update the first sending frequency according to a congestion degree of an interface with the RNC.
  • the scheduling priority determining unit 132 is specifically configured to: according to the acquired scheduling priority factor of the user in the multi-flow cell controlled by the base station, and the user in the multi-flow cell controlled by the base station The maximum downlink data throughput rate and the scheduling priority weight determine the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the scheduling priority determining unit 132 determines a resource scheduling priority of the user in the multi-flow cell controlled by the base station by:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • is the maximum downlink data throughput rate of the user in the multi-stream cell i controlled by the base station
  • n is the number of multi-stream cells corresponding to the user.
  • the scheduling priority factor is a ratio of a scheduling priority weight of the user in the multi-flow cell controlled by the base station to a sum of downlink data throughput rates of the users in the corresponding multi-stream cells.
  • the base station further includes:
  • a second throughput rate sending unit configured to send a scheduling priority weight and a downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC;
  • the priority factor obtaining unit 131 is specifically configured to receive, according to a scheduling priority weight sent by the RNC according to the user in the multi-flow cell controlled by the base station, and downlink data throughput of the user in each corresponding multi-flow cell. Rate determines the scheduling priority factor.
  • the second throughput rate sending unit is specifically configured to send the scheduling priority weight and the downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC according to the set second transmission frequency.
  • the base station further includes:
  • a second sending frequency updating unit configured to update the second sending frequency according to a congestion degree of an interface with the RNC.
  • the scheduling priority determining unit 132 is specifically configured to: according to the acquired scheduling priority factor of the user in the multi-flow cell controlled by the base station, and the user in the multi-flow cell controlled by the base station The maximum downlink data throughput rate determines the resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the scheduling priority determining unit 132 determines a resource scheduling priority of the user in the multi-flow cell controlled by the base station by:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station Level
  • a maximum downlink data throughput rate of the user in the multi-flow cell i controlled by the base station a scheduling priority factor of the user in the multi-flow cell i controlled by the base station
  • n is the number of multi-stream cells corresponding to the user.
  • the method includes:
  • the receiver 141 is configured to receive a scheduling priority factor of the user in the multi-flow cell controlled by the base station, where the scheduling priority factor is based on a downlink data throughput rate of the user in each corresponding multi-flow cell. definite;
  • the processor 142 is configured to determine, according to a scheduling priority factor of the user in the multi-flow cell controlled by the base station, the resource scheduling priority of the user in the multi-flow cell controlled by the base station, And scheduling, according to the determined resource scheduling priority, resources of the multi-flow cell controlled by the base station for the user.
  • the scheduling priority factor is a sum of downlink data throughput rates of users in corresponding multi-stream cells.
  • the base station further includes:
  • a transmitter 143 configured to send a downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC;
  • the receiver 141 is specifically configured to receive, by the RNC, a scheduling priority factor determined according to a downlink data throughput rate of the user in each corresponding multi-flow cell.
  • the transmitter 143 is specifically configured to report the downlink data throughput rate of the user in the multi-flow cell controlled by the base station to the RNC according to the set first transmission frequency.
  • the processor 142 is further configured to update the first sending frequency according to a congestion degree of an interface with the RNC.
  • the processor 142 is specifically configured to perform multiple streams controlled by the user according to the base station. a scheduling priority factor in the cell and a maximum downlink data throughput rate and a scheduling priority weight of the user in the multi-flow cell controlled by the base station, and determining a resource scheduling priority of the user in the multi-flow cell controlled by the base station .
  • the processor 142 determines a resource scheduling priority of the user in the multi-flow cell controlled by the base station by:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • the SPI weight is a scheduling priority weight of the user in the multi-flow cell i controlled by the base station; and is a downlink data throughput rate of the user in the corresponding multi-flow cell j;
  • n is the number of multi-stream cells corresponding to the user.
  • the scheduling priority factor is a ratio of a scheduling priority weight of the user in the multi-flow cell controlled by the base station to a sum of downlink data throughput rates of the users in the corresponding multi-stream cells.
  • the base station further includes:
  • a transmitter 143 configured to send, to the RNC, a scheduling priority weight and a downlink data throughput rate of the user in the multi-flow cell controlled by the user;
  • the receiver 141 is specifically configured to receive, by the RNC, a scheduling priority weight according to the user in the multi-flow cell controlled by the base station, and determine a downlink data throughput rate of the user in the corresponding multi-flow cell.
  • the scheduling priority factor is specifically configured to receive, by the RNC, a scheduling priority weight according to the user in the multi-flow cell controlled by the base station, and determine a downlink data throughput rate of the user in the corresponding multi-flow cell.
  • the transmitter 143 is specifically configured to send, according to the set second transmission frequency, the scheduling priority weight and the downlink data throughput rate of the user in the multi-flow cell controlled by the user to the RNC. Further, the processor 142 is further configured to update the second sending frequency according to a congestion degree of an interface with the RNC.
  • the processor 142 is specifically configured to: according to a scheduling priority factor of the user in the multi-flow cell controlled by the base station, and a maximum downlink data throughput rate of the user in the multi-flow cell controlled by the base station, Determining a resource scheduling priority of the user in the multi-flow cell controlled by the base station.
  • the processor 142 determines a resource scheduling priority of the user in the multi-flow cell controlled by the base station by:
  • ? ⁇ ! ⁇ is the resource scheduling priority of the user in the multi-stream cell i controlled by the base station;
  • a maximum downlink data throughput rate of the user in the multi-flow cell i controlled by the base station a scheduling priority factor of the user in the multi-flow cell i controlled by the base station
  • the SPI weight is a scheduling priority weight of the user in the multi-flow cell i controlled by the base station; and is a downlink data throughput rate of the user in the corresponding multi-flow cell j;
  • n is the number of multi-stream cells corresponding to the user.
  • the eighth embodiment of the present invention describes an RNC that is in the same concept as the fourth embodiment. As shown in FIG. 15, the method includes:
  • the throughput receiving unit 151 is configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, a downlink data throughput rate of the user in the multi-flow cell controlled by the base station;
  • the scheduling priority factor determining unit 152 is configured to: perform, for each base station to which each multi-stream cell corresponding to the user belongs, perform the following operations: determining the user according to the downlink data throughput rate of the user in each corresponding multi-flow cell a scheduling priority factor in the multi-stream cell controlled by the base station;
  • a scheduling priority factor sending unit 153 configured to determine the scheduling priority factor determining unit 152 The outgoing scheduling priority factor is sent to the base station.
  • the scheduling priority factor sending unit 153 is specifically configured to send the determined scheduling priority factor to the base station according to a sending frequency set for the base station.
  • the RNC further includes:
  • the transmission frequency adjustment unit is configured to update, according to the congestion degree of the interface between the base stations and the base stations to which the multi-stream cell corresponding to the user belongs, the transmission frequency set for the base station.
  • the scheduling priority factor determining unit 152 is specifically configured to determine a sum of downlink data throughput rates of the users in the corresponding multi-stream cells; and determine the sum of the determined downlink data throughput rates as The scheduling priority factor of the user in the multi-stream cell controlled by the base station.
  • the throughput rate receiving unit 151 is specifically configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, downlink data throughput rate and scheduling priority of the user in the multi-flow cell controlled by the base station. Weights;
  • the scheduling priority factor determining unit 152 is specifically configured to determine a ratio of a scheduling priority weight of the user in the multi-flow cell controlled by the base station to a sum of downlink data throughput rates of the user in the corresponding multi-flow cells. And determining the determined ratio as a scheduling priority factor of the user in the multi-flow cell controlled by the base station.
  • the method includes:
  • the receiver 161 is configured to receive, by each base station to which the multi-stream cell corresponding to the user belongs, a downlink data throughput rate of the user in the multi-flow cell controlled by the base station;
  • the processor 162 is configured to perform, according to the downlink data throughput rate of the user in each corresponding multi-flow cell, the base station to be controlled by the base station to which the multi-stream cell corresponding to the user belongs: Scheduling priority factor in a multi-stream cell,
  • the transmitter 163 is configured to send, to the base station, a scheduling priority factor determined by the processor 162. Further, the transmitter 163 is specifically configured to send the determined scheduling priority factor to the base station according to a sending frequency set for the base station.
  • the processor 162 is further configured to: for each base station to which each multi-stream cell corresponding to the user belongs, update the setting for the base station according to the congestion degree of the interface with the base station, respectively. Send frequency.
  • the processor 162 is specifically configured to determine a sum of downlink data throughput rates of the user in the corresponding multiple stream cells, and determine the sum of the determined downlink data throughput rates, and confirm that the user is in the A scheduling priority factor in a multi-stream cell controlled by the base station.
  • the receiver 161 is specifically configured to receive downlink data throughput rate and scheduling priority weight of the user in the multi-flow cell controlled by the base station, respectively, sent by each base station to which the multi-stream cell corresponding to the user belongs;
  • the processor 162 is specifically configured to determine a ratio of a scheduling priority weight of the user in the multi-flow cell controlled by the base station to a downlink data throughput ratio of the user in each corresponding multi-flow cell; The ratio is determined as the scheduling priority factor of the user in the multi-stream cell controlled by the base station.
  • inventions of the present invention can be provided as a method, system, or computer program product.
  • the present invention can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • Computer readable media does not include non-persistent computer readable media as defined herein

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 一种资源调度方法、信息交互方法及设备,用户对应的多流小区所属的基站获取该用户在其他基站控制的多流小区中的下行数据吞吐率;根据获取到的该用户在其他基站控制的多流小区中的下行数据吞吐率以及该用户在所述基站控制的多流小区中的下行数据吞吐率,确定该用户在所述基站控制的多流小区中的资源调度优先级;根据确定出的资源调度优先级,为该用户调度所述基站控制的多流小区的资源。采用本发明技术方案,能够解决现有技术中存在的当多流小区跨基站时,各基站不能进行公平性的资源调度的问题。

Description

资源调度方法、 信息交互方法及设备
技术领域
本发明涉及无线通信技术领域, 尤其涉及一种资源调度方法、 信息交互 方法及设备。 背景技术
第三代合作伙伴计划 ( 3rd Generation Partnership Project, 3GPP )在第 5 版本(Release 5 ) 中引入了高速下行分组接入 ( High Speed Downlink Packet Access , HSDPA )技术, 能够为用户提供高速下行数据发送通道。 但是, 用 户只能同时与一个小区建立 HSDPA通道, 如图 1A所示, 而位于小区边缘的 用户, 由于无线环境较差, 即使用户使用 HSDPA通道接收下行数据, 该用户 的下行数据吞吐率仍然远低于小区中心的用户的下行数据吞吐率。
针对上述问题, 3GPP在第 11版本(Release 11 ) 中引入了 HSDPA多流 技术, 小区边缘用户可以同时与覆盖该用户的多个小区建立 HSDPA通道, 由 覆盖该用户的多个小区同时为该用户的下行数据传输调度资源, 增加了下行 数据发送通道, 提升了边缘用户的下行数据吞吐率。
用户与多个小区同时建立 HSDPA通道时, 每个与用户建立 HSDPA通道 的小区称为该用户当前的多流小区, 用户对应的多个多流小区组成多流小区 组多流小区组中的各多流小区可能属于同一个基站, 也可能属于不同的基站。
如图 2A所示, 当用户对应的多流小区属于同一基站时, 可以由该基站为 用户的下行数据传输统一调度各多流小区的资源, 每个多流小区公平分担该 用户对应的负载, 使小区资源得到最大化利用。 另外, 每个小区到达用户的 无线质量是波动的, 在多流小区组的各多流小区中, 可能一个多流小区的无 线质量较差, 而另一多流小区的无线质量较好, 那么基站就可以优选无线质 量较好的多流小区进行资源调度。
如图 2B所示, 当用户对应的各多流小区属于不同的基站时, 由各基站分 别对自身控制的多流小区进行资源调度。 基站周期性的确定用户在自身控制 的各多流小区中的资源调度优先级, 并针对自身控制的每个多流小区, 分别 根据用户在该小区中的资源调度优先级, 为该用户的下行数据传输调度该小 区的资源。 其中, 基站根据用户在自身控制的多流小区中能够获得的最大下 行数据吞吐率、 已经获得的下行数据吞吐率以及对应的调度优先级权重, 来 确定用户的资源调度优先级。
当多流小区跨基站时, 由网络侧在各多流小区中选定一个小区为主小区, 其他的多流小区则为协小区, 对于协小区来说, 用户的调度优先级权重往往 会设置的比较低, 以保证传统用户的数据传输, 也就是说用户在协小区中的 资源调度优先级就会相对较低, 因此, 用户的数据发送只能在主小区中得以 当多流小区跨基站时, 由于各多流小区所属的基站之间没有信息交互, 并不知道用户在其他基站控制的多流小区中的下行数据传输情况, 因此各基 站不能进行公平性的资源调度, 具体情况如下:
( 1 )如果主小区拥塞, 而协小区非常空闲, 用户在协小区中获得了满意 的服务, 但是由于各多流小区所属的各基站之间没有信息交互, 主小区仍然 会给用户调度下行数据传输资源, 因此协小区不能分担主小区的负载, 耗费 了主小区较多的资源, 主小区并不能获得多流 HSDPA技术所带来的增益。
( 2 )每个小区到达用户的无线质量是波动的, 在用户对应的各多流小区 中, 可能其中一个多流小区的无线质量较差, 而另一多流小区的无线质量较 好, 由于各多流小区所属的各基站之间没有信息交互, 因此就不能优选调度 无线质量较好的多流小区的资源, 使得资源利用率较低, 系统的频谱效率较 差。
综上所述, 当多流小区跨基站时, 各多流小区所属的基站之间进行公平 性的资源调度是亟待解决的问题。 发明内容
本发明提供了一种资源调度方法、 信息交互方法及设备, 用以解决现有 技术中存在的当多流小区跨基站时, 各基站不能进行公平性的资源调度的问 题。
第一方面, 提供一种资源调度方法, 所述方法包括:
用户对应的多流小区所属的基站获取该用户在其他基站控制的多流小区 中的下行数据吞吐率;
根据获取到的该用户在其他基站控制的多流小区中的下行数据吞吐率以 及该用户在所述基站控制的多流小区中的下行数据吞吐率, 确定该用户在所 述基站控制的多流小区中的资源调度优先级;
根据确定出的资源调度优先级, 为该用户调度所述基站控制的多流小区 的资源。
结合第一方面, 在第一种可能的实现方式中, 所述基站获取该用户在其 他基站控制的多流小区中的下行数据吞吐率, 具体包括:
所述基站接收其他基站通过物理连接发送的、 该用户在所述其他基站控 制的多流小区中的下行数据吞吐率。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括:
所述基站按照针对所述其他基站设置的第一发送频率, 将用户在该基站 控制的多流小区中的下行数据吞吐率发送给所述其他基站。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 还包括:
所述基站根据与所述其他基站之间的接口的拥塞程度, 更新针对所述其 他基站设置的第一发送频率。
结合第一方面, 在第四种可能的实现方式中, 所述基站获取该用户在其 他基站控制的多流小区中的下行数据吞吐率, 具体包括: 所述基站接收无线网络控制器 RNC发送的、 该用户在其他基站控制的多 流小区中的下行数据吞吐率。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 还包括:
所述基站按照设置的第二发送频率, 将用户在该基站控制的多流小区中 的下行数据吞吐率上报给所述 RNC。
结合第一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 还包括:
所述基站根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频 率。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四种可 能的实现方式、 第一方面的第五种可能的实现方式或第一方面的第六种可能 的实现方式, 在第七种可能的实现方式中, 该用户在其他基站控制的多流小 区中的下行数据吞吐率为:
该用户在其他基站控制的每个多流小区中的下行数据吞吐率; 或 该用户在其他基站控制的各多流小区中的下行数据吞吐率之和。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四种可 能的实现方式、 第一方面的第五种可能的实现方式、 第一方面的第六种可能 的实现方式或第一方面的第七种可能的实现方式, 在第八种可能的实现方式 中, 具体包括:
根据获取到的该用户在其他基站控制的多流小区中的下行数据吞吐率以 及该用户在所述基站控制的多流小区中的下行数据吞吐率, 确定该用户在对 应的各多流小区中的下行数据吞吐率之和;
根据确定出的所述下行数据吞吐率之和以及该用户在所述基站控制的多 流小区中的最大下行数据吞吐率和调度优先级权重, 确定该用户在所述基站 控制的多流小区中的资源调度优先级。
结合第一方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述基站通过下述方式确定该用户在所述基站控制的多流小区中的资源调度 优先级: priority. = ~― * SPIweight.
ί
j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级; 为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; rj为该用户在对应的多流小区 j中的下行数据吞吐率; n为该用户对应的多流小区的数量。
第二方面, 提供一种信息交互方法, 所述方法包括: 无线网络控制器 RNC接收用户对应的各多流小区所属的各基站分别发送 的、 该用户在该基站控制的多流小区中的下行数据吞吐率; 所述 RNC针对该用户对应的各多流小区所属的各基站, 分别将该用户在 其他基站控制的多流小区中的下行数据吞吐率发送给该基站。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述 RNC针对 该用户对应的各多流小区所属的各基站, 分别将该用户在其他基站控制的多 流小区中的下行数据吞吐率发送给该基站, 具体包括:
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别按照针对该 基站设置的发送频率, 将该用户在其他基站控制的多流小区中的下行数据吞 吐率发送给该基站。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括:
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别根据与该基 站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
第三方面, 一种资源调度方法, 所述方法包括:
用户对应的多流小区所属的基站获取该用户在所述基站控制的多流小区 中的调度优先级因子, 其中, 所述调度优先级因子是根据该用户在对应的各 多流小区中的下行数据吞吐率确定的;
根据获取到的该用户在所述基站控制的多流小区中的调度优先级因子, 确定该用户在所述基站控制的多流小区中的资源调度优先级;
根据确定出的资源调度优先级, 为该用户调度所述基站控制的多流小区 的资源。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述调度优先 级因子为用户在对应的各多流小区中的下行数据吞吐率之和。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述基站获取该用户在所述基站控制的多流小区中的调度优先级因子, 具体 包括:
所述基站接收无线网络控制器 RNC发送的、根据该用户在对应的各多流 小区中的下行数据吞吐率确定出的调度优先级因子。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 还包括:
所述基站按照设置的第一发送频率, 将用户在该基站控制的多流小区中 的下行数据吞吐率上报给所述 RNC。
结合第三方面的第三种可能的实现方式, 在第四种可能的实现方式中, 还包括:
所述基站根据与所述 RNC之间的接口的拥塞程度, 更新所述第一发送频 结合第三方面的第一种可能的实现方式、 第三方面的第二种可能的实现 方式、 第三方面的第三种可能的实现方式或第三方面的第四种可能的实现方 式, 在第五种可能的实现方式中, 根据获取到的该用户在所述基站控制的多 流小区中的调度优先级因子, 确定该用户在所述基站控制的多流小区中的资 源调度优先级, 具体包括:
根据获取到的该用户在所述基站控制的多流小区中的调度优先级因子以 及该用户在所述基站控制的多流小区中的最大下行数据吞吐率和调度优先级 权重, 确定该用户在所述基站控制的多流小区中的资源调度优先级。
结合第三方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述基站通过下述方式确定该用户在所述基站控制的多流小区中的资源调度 优先级:
priority =
Figure imgf000008_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
结合第三方面, 在第七种可能的实现方式中, 所述调度优先级因子为该 用户在所述基站控制的多流小区中的调度优先级权重与该用户在对应的各多 流小区中的下行数据吞吐率之和的比值。
结合第三方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述基站获取该用户在所述基站控制的多流小区中的调度优先级因子, 具体 包括:
所述基站接收无线网络控制器 RNC发送的、根据该用户在所述基站控制 的多流小区中的调度优先级权重以及该用户在对应的各多流小区中的下行数 据吞吐率确定出的调度优先级因子。
结合第三方面的第八种可能的实现方式, 在第九种可能的实现方式中, 还包括:
所述基站按照设置的第二发送频率, 将用户在该基站控制的多流小区中 的调度优先级权重和下行数据吞吐率上报给所述 RNC。
结合第三方面的第九种可能的实现方式, 在第十种可能的实现方式中, 还包括: 所述基站根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发 送频率。
结合第三方面的第七种可能的实现方式、 第三方面的第八种可能的实现 方式、 第三方面的第九种可能的实现方式或第三方面的第十种可能的实现方 式, 在第十一种可能的实现方式中, 根据获取到的该用户在所述基站控制的 多流小区中的调度优先级因子, 确定该用户在所述基站控制的多流小区中的 资源调度优先级, 具体包括:
根据获取到的该用户在所述基站控制的多流小区中的调度优先级因子以 及该用户在所述基站控制的多流小区中的最大下行数据吞吐率, 确定该用户 在所述基站控制的多流小区中的资源调度优先级。
结合第三方面的第十一种可能的实现方式, 在第十二种可能的实现方式 中, 所述基站通过下述方式确定该用户在所述基站控制的多流小区中的资源 调度优先级:
priority = Rj
Figure imgf000009_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; 为该用户在所述基站控制的多流小区 i中的调度优先级因子; SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; rj为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
第四方面, 提供一种信息交互方法, 所述方法包括:
无线网络控制器 RNC接收用户对应的各多流小区所属的各基站分别发送 的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别执行下述操 作: 根据该用户在对应的各多流小区中的下行数据吞吐率, 确定该用户在该 基站控制的多流小区中的调度优先级因子, 并将确定出的调度优先级因子发 送给该基站。
结合第四方面, 在第一种可能的实现方式中, 所述 RNC将确定出的调度 优先级因子发送给该基站, 具体包括:
所述 RNC按照针对该基站设置的发送频率, 将确定出的调度优先级因子 发送给该基站。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括:
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别根据与该基 站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
结合第四方面、 第四方面的第一种可能的实现方式或第四方面的第二种 可能的实现方式, 在第三种可能的实现方式中, 根据该用户在对应的各多流 小区中的下行数据吞吐率, 确定该用户在该基站控制的多流小区中的调度优 先级因子, 具体包括:
确定该用户在对应的各多流小区中的下行数据吞吐率之和;
将确定出的所述下行数据吞吐率之和, 确认为该用户在该基站控制的多 流小区中的调度优先级因子。
结合第四方面、 第四方面的第一种可能的实现方式或第四方面的第二种 可能的实现方式, 在第四种可能的实现方式中, 接收用户对应的各多流小区 所属的各基站分别发送的、 该用户在该基站控制的多流小区中的下行数据吞 吐率, 具体包括:
接收用户对应的各多流小区所属的各基站分别发送的、 该用户在该基站 控制的多流小区中的下行数据吞吐率和调度优先级权重;
根据该用户在对应的各多流小区中的下行数据吞吐率, 确定该用户在该 基站控制的多流小区中的调度优先级因子, 具体包括:
确定该用户在该基站控制的多流小区中的调度优先级权重与该用户在对 应的各多流小区中的下行数据吞吐率之和的比值;
将确定出的所述比值, 确认为该用户在该基站控制的多流小区中的调度 优先级因子。
第五方面, 提供一种基站, 包括:
吞吐率获取单元, 用于获取该用户在其他基站控制的多流小区中的下行 数据吞吐率;
调度优先级确定单元, 用于根据吞吐率获取单元获取到的该用户在其他 基站控制的多流小区中的下行数据吞吐率以及该用户在所述基站控制的多流 小区中的下行数据吞吐率, 确定该用户在所述基站控制的多流小区中的资源 调度优先级; 为该用户调度所述基站控制的多流小区的资源。
结合第五方面, 在第一种可能的实现方式中, 所述基站还包括: 第一吞吐率发送单元, 用于通过物理连接, 将用户在自身控制的多流小 区中的下行数据吞吐率发送给其他基站;
所述吞吐率获取单元, 具体用于接收其他基站发送的、 该用户在所述其 他基站控制的多流小区中的下行数据吞吐率。
结合第五方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述第一吞吐率发送单元, 具体用于按照针对其他基站设置的第一发送频率, 将用户在该基站控制的多流小区中的下行数据吞吐率发送给所述其他基站。 结合第五方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述基站还包括:
第一发送频率更新单元, 用于根据与其他基站之间的接口的拥塞程度, 更新针对所述其他基站设置的第一发送频率。
结合第五方面的第一种可能的实现方式、 第五方面的第二种可能的实现 方式或第五方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所 述第一吞吐率发送单元, 具体用于将该用户在自身控制的每个多流小区中的 下行数据吞吐率发送给其他基站; 或将该用户在自身控制的各多流小区中的 下行数据吞吐率之和发送给其他基站。
结合第五方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述基站还包括:
第二吞吐率发送单元, 用于将用户在自身控制的多流小区中的下行数据 吞吐率上报给无线网络控制器 RNC;
所述吞吐率获取单元, 具体用于接收 RNC发送的、 该用户在其他基站控 制的多流小区中的下行数据吞吐率。
结合第五方面的第五种可能的实现方式, 在第六种可能的实现方式中, 第二吞吐率发送单元, 具体用于按照设置的第二发送频率, 将用户在该基站 控制的多流小区中的下行数据吞吐率上报给 RNC。
结合第五方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述基站还包括:
第二发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频率。
结合第五方面的第五种可能的实现方式、 第五方面的第六种可能的实现 方式或第五方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所 述第二吞吐率发送单元, 具体用于将该用户在自身控制的每个多流小区中的 下行数据吞吐率发送给 RNC; 或将该用户在自身控制的各多流小区中的下行 数据吞吐率之和发送给 RNC。
结合第五方面、 第五方面的第一种可能的实现方式、 第五方面的第二种 可能的实现方式、 第五方面的第三种可能的实现方式、 第五方面的第四种可 能的实现方式、 第五方面的第五种可能的实现方式、 第五方面的第六种可能 的实现方式、 第五方面的第七种可能的实现方式或第五方面的第八种可能的 实现方式, 在第九种可能的实现方式中, 调度优先级确定单元, 具体用于根 据获取到的该用户在其他基站控制的多流小区中的下行数据吞吐率以及该用 户在所述基站控制的多流小区中的下行数据吞吐率, 确定该用户在对应的各 多流小区中的下行数据吞吐率之和; 根据确定出的所述下行数据吞吐率之和 以及该用户在所述基站控制的多流小区中的最大下行数据吞吐率和调度优先 级权重, 确定该用户在所述基站控制的多流小区中的资源调度优先级。
结合第五方面的第九种可能的实现方式, 在第十种可能的实现方式中, 所述调度优先级确定单元通过下述方式确定该用户在所述基站控制的多流小 区中的资源调度优先级:
priority. = ~― * SPIweight.
ί 』
j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重;
^为该用户在对应的多流小区 j中的下行数据吞吐率; n为该用户对应的多流小区的数量。
第六方面, 提供一种无线网络控制器, 包括:
吞吐率接收单元, 用于接收用户对应的各多流小区所属的各基站分别发 送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
吞吐率发送单元, 用于针对该用户对应的各多流小区所属的各基站, 分 别将该用户在其他基站控制的多流小区中的下行数据吞吐率发送给该基站。 结合第六方面, 在第一种可能的实现方式中, 所述吞吐率发送单元, 具 体用于针对该用户对应的各多流小区所属的各基站, 分别按照针对该基站设 置的发送频率, 将该用户在其他基站控制的多流小区中的下行数据吞吐率发 送给该基站。
结合第六方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括:
发送频率更新单元, 用于针对该用户对应的各多流小区所属的各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
第七方面, 提供一种基站, 包括:
优先级因子获取单元, 用于获取该用户在所述基站控制的多流小区中的 调度优先级因子, 其中, 所述调度优先级因子是根据该用户在对应的各多流 小区中的下行数据吞吐率确定的;
调度优先级确定单元, 用于根据优先级因子获取单元获取到的该用户在 所述基站控制的多流小区中的调度优先级因子, 确定该用户在所述基站控制 的多流小区中的资源调度优先级; 为该用户调度所述基站控制的多流小区的资源。
结合第七方面, 在第七方面的第一种可能的实现方式中, 所述调度优先 级因子为用户在对应的各多流小区中的下行数据吞吐率之和。
结合第七方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述基站还包括:
第一吞吐率发送单元, 用于将用户在自身控制的多流小区中的下行数据 吞吐率发送给无线网络控制器 RNC;
所述优先级因子获取单元, 具体用于接收 RNC发送的、 根据该用户在对 应的各多流小区中的下行数据吞吐率确定出的调度优先级因子。
结合第七方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第一吞吐率发送单元, 具体用于按照设置的第一发送频率, 将用户在该 基站控制的多流小区中的下行数据吞吐率上报给 RNC。
结合第七方面的第三种可能的实现方式, 在第四种可能的实现方式中, 还包括:
第一发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第一发送频率。
结合第七方面的第一种可能的实现方式、 第七方面的第二种可能的实现 方式、 第七方面的第三种可能的实现方式或第七方面的第四种可能的实现方 式, 在第五种可能的实现方式中, 所述调度优先级确定单元, 具体用于根据 获取到的该用户在所述基站控制的多流小区中的调度优先级因子以及该用户 在所述基站控制的多流小区中的最大下行数据吞吐率和调度优先级权重, 确 定该用户在所述基站控制的多流小区中的资源调度优先级。
结合第七方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述调度优先级确定单元通过下述方式确定该用户在所述基站控制的多流小 区中的资源调度优先级:
priority =
Figure imgf000015_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
结合第七方面, 在第七种可能的实现方式中, 所述调度优先级因子为该 用户在所述基站控制的多流小区中的调度优先级权重与该用户在对应的各多 流小区中的下行数据吞吐率之和的比值。
结合第七方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述基站还包括:
第二吞吐率发送单元, 用于将用户在自身控制的多流小区中的调度优先 级权重和下行数据吞吐率发送给 RNC;
所述优先级因子获取单元, 具体用于接收 RNC发送的、 根据该用户在所 述基站控制的多流小区中的调度优先级权重以及该用户在对应的各多流小区 中的下行数据吞吐率确定出的调度优先级因子。
结合第七方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述第二吞吐率发送单元, 具体用于按照设置的第二发送频率, 将用户在自 身控制的多流小区中的调度优先级权重和下行数据吞吐率发送给 RNC。
结合第七方面的第九种可能的实现方式, 在第十种可能的实现方式中, 还包括:
第二发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频率。
结合第七方面的第七种可能的实现方式、 第七方面的第八种可能的实现 方式、 第七方面的第九种可能的实现方式或第七方面的第十种可能的实现方 式, 在第十一种可能的实现方式中, 所述调度优先级确定单元, 具体用于根 据获取到的该用户在所述基站控制的多流小区中的调度优先级因子以及该用 户在所述基站控制的多流小区中的最大下行数据吞吐率, 确定该用户在所述 基站控制的多流小区中的资源调度优先级。
结合第七方面的第十一种可能的实现方式, 在第十二种可能的实现方式 中, 所述调度优先级确定单元通过下述方式确定该用户在所述基站控制的多 流小区中的资源调度优先级:
priority = R; Z =
Figure imgf000017_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; 为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; rj为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
第八方面, 提供一种无线网络控制器, 包括:
吞吐率接收单元, 用于接收用户对应的各多流小区所属的各基站分别发 送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
调度优先级因子确定单元, 用于针对该用户对应的各多流小区所属的各 基站, 分别执行下述操作: 根据该用户在对应的各多流小区中的下行数据吞 吐率, 确定该用户在该基站控制的多流小区中的调度优先级因子;
调度优先级因子发送单元, 用于将调度优先级因子确定单元确定出的调 度优先级因子发送给该基站。
结合第八方面, 在第一种可能的实现方式中, 所述调度优先级因子发送 单元, 具体用于按照针对该基站设置的发送频率, 将确定出的调度优先级因 子发送给该基站。
结合第八方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括:
发送频率调整单元, 用于针对该用户对应的各多流小区所属的各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
结合第八方面、 第八方面的第一种可能的实现方式或第八方面的第二种 可能的实现方式, 在第三种可能的实现方式中, 所述调度优先级因子确定单 元, 具体用于确定该用户在对应的各多流小区中的下行数据吞吐率之和; 将 确定出的所述下行数据吞吐率之和, 确认为该用户在该基站控制的多流小区 中的调度优先级因子。
结合第八方面、 第八方面的第一种可能的实现方式或第八方面的第二种 可能的实现方式, 在第四种可能的实现方式中, 所述吞吐率接收单元, 具体 用于接收用户对应的各多流小区所属的各基站分别发送的、 该用户在该基站 控制的多流小区中的下行数据吞吐率和调度优先级权重;
所述调度优先级因子确定单元, 具体用于确定该用户在该基站控制的多 流小区中的调度优先级权重与该用户在对应的各多流小区中的下行数据吞吐 率之和的比值; 将确定出的所述比值, 确认为该用户在该基站控制的多流小 区中的调度优先级因子。
通过本发明实施例的方案, 当用户与多个小区同时建立 HSDPA通道, 且 用户对应的多流小区属于不同的基站时, 用户在某个基站控制的多流小区中 的资源调度优先级不仅要考虑用户在该基站控制的多流小区中的下行数据吞 吐率, 还要考虑用户在其他基站控制的多流小区中的下行数据吞吐率, 那么 确定出的资源调度优先级就能够反映出用户在对应的各多流小区中的数据传 输情况, 从而实现了各基站之间为用户的数据传输进行公平性的资源调度; 如果某个多流小区拥塞, 而另一个多流小区空闲, 用户在空闲的多流小区中 获得了满意的服务, 那么用户在拥塞的多流小区中的下行数据吞吐率就较大, 进而使得用户在拥塞的多流小区中的资源调度优先级降低, 拥塞的多流小区 不再为该用户调度过多的下行数据传输资源, 因此各多流小区能够协同分担 用户带来的负载, 且各多流小区均能够获得多流 HSDPA技术所带来的增益; 另外, 如果某个多流小区的无线质量较好, 而另一个多流小区的无线质量较 差, 用户在无线质量较好的多流小区中获得了满意的服务, 那么用户在无线 质量较好的多流小区中的下行数据吞吐率就较大, 进而使得用户在无线质量 较差的多流小区中的资源调度优先级降低, 从而实现了优选调度无线质量较 好的多流小区的资源, 提高了资源利用率, 改善了系统的频谱效率。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作筒要介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中, 用户与一个小区建立 HSDPA通道的示意图; 图 2A为现有技术中,多流小区组中的各多流小区属于同一基站时的示意 图;
图 2B为现有技术中,多流小区组中的各多流小区属于不同基站时的示意 图;
图 3为本发明实施例一中, 资源调度方法流程示意图;
图 4A为本发明实施例一中,各基站间通过物理连接直接进行信息交互的 示意图;
图 4B为本发明实施例一中, 各基站间通过 RNC间接进行信息交互的示 意图;
图 5为本发明实施例二中, 信息交互方法流程示意图;
图 6为本发明实施例三中, 资源调度方法流程示意图;
图 7A为本发明实施例三中, 当调度优先级因子为第一种形式时, 各基站 和 RNC之间进行信息交互的示意图;
图 7B为本发明实施例三中, 当调度优先级因子为第二种形式时, 各基站 和 RNC之间进行信息交互的示意图;
图 8为本发明实施例四中, 信息交互方法流程示意图;
图 9和图 10为本发明实施例五中, 基站的结构示意图;
图 11和图 12为本发明实施例六中, RNC的结构示意图;
图 13和图 14为本发明实施例七中, 基站的结构示意图;
图 15和图 16为本发明实施例八中, RNC的结构示意图。 具体实施方式
为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
现有技术中, 当用户与多个小区同时建立 HSDPA通道, 且用户对应的多 流小区属于不同的基站(即多流小区跨基站)时, 基站一般按照下述公式( 1 ) 确定用户在该基站控制的某个多流小区 (假设为多流小区 i )中的资源调度优 先级:
Figure imgf000020_0001
在公式( 1 ) 中, priority,为用户在多流小区 i中的资源调度优先级; 为 该用户在多流小区 i中的最大下行数据吞吐率; SPIweighti为该用户在多流小区 i中的调度优先级权重; ri为该用户在多流小区 i中的下行数据吞吐率。
下面对公式(1 ) 中的各个参数进行详细说明。
用户在多流小区中的最大下行数据吞吐率 R是指用户在该多流小区中其 所处位置无线质量可支持的最大下行数据吞吐率; 用户在多流小区中的下行 数据吞吐率 r为用户在该多流小区中已经获得的下行数据吞吐率; R/r越大, 说明多流小区的无线质量变好或者用户在该多流小区中已经获得的下行数据 吞吐率太低, 为了保证资源调度的公平性, 此时需要提升用户在该多流小区 中的调度优先级, 而 R/r越小, 则情况相反, 需要降低用户在该多流小区中的 调度优先级。
用户在多流小区中的调度优先级权重 SPIweight是根据用户的优先级、用 户在多流小区中所建立的业务的优先级等因素设置的,用来对 R/r的值进行调 由于用户在多流小区中的下行数据传输情况是不断变化的, 因此基站需 要周期性的更新用户在多流小区中的资源调度优先级, 更新周期可以预先设 定。
由上可见, 现有技术中, 若多流小区跨基站, 则当基站确定用户在该基 站控制的某多流小区中的资源调度优先级时, 只考虑了用户在该多流小区中 的下行数据吞吐率, 由于各多流小区所属的基站之间没有信息交互, 因此该 基站并不知道用户在其他基站控制的多流小区中的下行数据传输情况, 那么 确定出的资源调度优先级就不能公平体现用户在对应的各多流小区中的数据 传输情况, 进而各基站就不能根据资源调度优先级为用户进行公平性的资源 调度。
本发明实施例方案中, 若多流小区跨基站, 则当基站确定用户在该基站 控制的某多流小区中的资源调度优先级时, 不仅要考虑用户在该基站控制的 多流小区中的下行数据吞吐率, 还要获取用户在其他基站控制的多流小区中 的下行数据吞吐率, 那么确定出的资源调度优先级就能够反映出用户在对应 的各多流小区中的数据传输情况, 从而实现了各基站之间为用户的数据传输 进行公平性的资源调度。
在具体实施本发明方案时, 如果某个多流小区拥塞, 而另一个多流小区 空闲, 用户在空闲的多流小区中获得了满意的服务, 那么用户在拥塞的多流 小区中的下行数据吞吐率就较大, 进而使得用户在拥塞的多流小区中的资源 调度优先级降低, 拥塞的多流小区不再为该用户调度过多的下行数据传输资 源, 因此各多流小区能够协同分担用户带来的负载, 且各多流小区均能够获 得多流 HSDPA技术所带来的增益;另外,如果某个多流小区的无线质量较好, 而另一个多流小区的无线质量较差, 用户在无线质量较好的多流小区中获得 了满意的服务, 那么用户在无线质量较好的多流小区中的下行数据吞吐率就 较大, 进而使得用户在无线质量较差的多流小区中的资源调度优先级降低, 从而实现了优选调度无线质量较好的多流小区的资源, 提高了资源利用率, 改善了系统的频谱效率。 需要说明的是, 本发明实施例一的方案不仅能够适用于通用移动通信系 统 ( Universal Mobile Telecommunications System, UMTS ) 中的跨基站的多流 技术, 也能够适用于长期演进(Long Term Evolution, LTE ) 系统中的跨基站 的多流技术。
下面通过具体实施例对本发明方案进行详细描述, 当然, 本发明并不限 于以下实施例。
当多流小区跨基站时, 用户对应的各多流小区属于不同的基站, 其中每 个基站确定用户在自身控制的多流小区中的资源调度优先级的方法一致, 因 此, 以下各实施例均是站在任意一个基站的角度进行描述的。
本发明实施例中, 基站可以通过下述两种方式确定用户的资源调度优先 级, 分别为:
第一种确定资源调度优先级的方式, 基站先获取用户在其他基站控制的 多流小区中的下行数据吞吐率, 然后根据该用户在对应的各多流小区中的下 行数据吞吐率 (包含该用户在该基站控制的多流小区中的下行数据吞吐率以 及该用户在其他基站控制的多流小区中的下行数据吞吐率), 确定该用户的资 源调度优先级;
第二种确定资源调度优先级的方式, 基站先获取根据该用户在对应的各 多流小区中的下行数据吞吐率确定出的调度优先级因子, 然后根据获取到的 调度优先级因子确定该用户的资源调度优先级。
下面对上述两种方式分别进行详细介绍。
实施例一:
首先介绍第一种确定资源调度优先级的方式, 基站先获取用户在其他基 站控制的多流小区中的下行数据吞吐率, 然后根据该用户在对应的各多流小 区中的下行数据吞吐率, 确定该用户的资源调度优先级。
如图 3所示, 为本发明实施例一中资源调度方法的步骤示意图, 所述方 法包括以下步骤:
步骤 31 , 用户对应的多流小区所属的基站获取该用户在其他基站控制的 多流小区中的下行数据吞吐率。
现有技术中, 当多流小区跨基站时, 各多流小区所属的各基站间不能进 行信息交互, 因此基站就不知道用户在其他基站控制的多流小区中的数据传 输情况, 进而无法进行公平性的资源调度。
有鉴于此, 本发明实施例一提出, 当多流小区跨基站时, 多流小区所属 的各基站能够采用直接方式或间接方式获取用户在其他基站控制的多流小区 中的下行数据吞吐率, 那么基站就能够获知用户在其他基站控制的多流小区 中的数据传输情况, 从而为后续确定用户的资源调度优先级提供基础。
下面对获取用户在其他基站控制的多流小区中的下行数据吞吐率的两种 方式分别进行介绍。
1、 直接方式
预先在各基站间增加物理接口, 通过物理接口建立物理连接, 例如建立 光纤连接。 各基站间可通过建立的物理连接直接进行信息交互。
用户对应的各多流小区所属的各基站分别执行下述操作:
如图 4A所示, 通过物理连接, 向其他基站发送用户在该基站控制的多流 小区中的下行数据吞吐率, 并接收其他基站通过物理连接发送的、 该用户在 所述其他基站控制的多流小区中的下行数据吞吐率。
当多流小区跨基站时, 每个基站控制至少一个多流小区。 若基站控制一 个多流小区, 则基站可以将用户在自身控制的该多流小区中的下行数据吞吐 率发送给其他基站。 若基站控制至少两个多流小区, 则基站可以将用户在自 身控制的每个多流小区中的下行数据吞吐率发送给其他基站, 也可以将用户 在自身控制的各多流小区中的下行数据吞吐率之和发送给其他基站。
也就是说, 在步骤 31中, 基站获取到的该用户在其他基站控制的多流小 区中的下行数据吞吐率可以为下述两种情况:
该用户在其他基站控制的每个多流小区中的下行数据吞吐率; 或 该用户在其他基站控制的各多流小区中的下行数据吞吐率之和。
以基站控制一个多流小区为例, 假设用户对应的多流小区为小区 1 和小 区 2, 小区 1所属的基站为基站 A, 小区 2所属的基站为基站 B, 基站 A通过 与基站 B的物理连接,将用户在小区 1中的下行数据吞吐率 ri发送给基站 B, 基站 B通过与基站 A的物理连接, 将用户在小区 2中的下行数据吞吐率 r2发 送给基站 A。
以基站控制两个多流小区为例, 4叚设多流小区为小区 1、小区 2和小区 3 , 小区 1和小区 2所属的基站为基站 A, 小区 3所属的基站为基站 B, 基站 B 通过与基站 A的物理连接, 将用户在小区 3中的下行数据吞吐率 r3发送给基 站 A, 基站 A通过与基站 B的物理连接, 将用户在小区 1中的下行数据吞吐 率 ri以及用户在小区 2中的下行数据吞吐率 r2发送给基站 B, 或者基站 A通 过与基站 B的物理连接, 将用户在小区 1中的下行数据吞吐率 以及用户在 小区 2中的下行数据吞吐率 r2之和( ri +r2 )发送给基站 B。
在上述直接方式中, 各基站间通过物理连接直接交互用户的下行数据吞 吐率, 能够降低下行数据吞吐率的传输时延, 筒化确定用户的资源调度优先 级的处理流程。
需要说明的是, 在上述直接方式中, 基站间可以周期性的交互下行数据 吞吐率, 具体的, 基站可以针对其他基站设置第一发送频率, 然后按照针对 其他基站设置的第一发送频率, 周期性的将用户在该基站控制的多流小区中 的下行数据吞吐率发送给所述其他基站。 基站设置的第一发送频率最高可达 到每 2毫秒发送一次。
进一步的, 基站还可以根据与其他基站之间的物理接口的拥塞程度, 动 态更新针对其他基站设置的第一发送频率, 后续基站可以按照更新后的第一 发送频率, 向其他基站发送下行数据吞吐率。 若基站与其他基站之间的物理 接口空闲, 则可以提高针对其他基站设置的第一发送频率, 相反, 若基站与 其他基站之间的物理接口拥塞, 则可以降低针对其他基站设置的第一发送频 其中, 物理接口的拥塞程度可以用物理接口的使用比率来表征, 预先设 置各使用比率范围, 并为每个使用比率范围分别设置对应的发送频率, 当基 站需要更新针对其他基站设置的第一发送频率时, 可以先获取与其他基站之 间的物理接口的使用比率, 然后确定该使用比率所属的使用比率范围对应的 发送频率, 将确定出的发送频率作为更新后的针对所述其他基站设置的第一 发送频率。 基站可以预先设置一个最小保证发送频率, 例如, 设置为每 100 毫秒发送一次, 基站针对其他基站设置的第一发送频率应不小于该最小保证 发送频率, 也就是说, 当基站与其他基站之间的物理接口非常拥塞时, 可以 以该最小保证发送频率发送下行数据吞吐率。
优选的, 基站可以按照预设的更新周期, 周期性的更新针对其他基站设 置的第一发送频率。
2、 间接方式
当多流小区跨基站时, 各基站间可通过网络设备间接进行信息交互。 优 选的, 该网络设备可以为无线网络控制器(Radio Network Controller, RNC )。
如图 4B所示, 用户对应的各多流小区所属的各基站分别向 RNC发送用 户在自身控制的多流小区中的下行数据吞吐率, RNC接收到各基站分别发送 的下行数据吞吐率后, 针对各基站, 分别将该用户在其他基站控制的多流小 区中的下行数据吞吐率发送给该基站, 各基站接收 RNC发送的、 该用户在其 他基站控制的多流小区中的下行数据吞吐率。
优选的, 各基站与 RNC之间可以通过已有的 lub接口进行信息交互。 当多流小区跨基站时, 每个基站控制至少一个多流小区。 若基站控制一 个多流小区, 则基站可以将用户在自身控制的各多流小区中的下行数据吞吐 率发送给 RNC, 再由 RNC转发给其他基站。 若基站控制至少两个多流小区, 则基站可以将用户在自身控制的每个多流小区中的下行数据吞吐率发送给 RNC, 由 RNC转发给其他基站, 基站也可以将用户在自身控制的各多流小区 中的下行数据吞吐率之和发送给 RNC , 由 RNC转发给其它基站。
以基站控制一个多流小区为例, 假设用户对应的多流小区为小区 1 和小 区 2, 小区 1所属的基站为基站 A, 小区 2所属的基站为基站 B, 基站 A通过 lub接口, 将用户在小区 1中的下行数据吞吐率 ri发送给 RNC, 基站 B通过 lub接口,将用户在小区 2中的下行数据吞吐率 r2发送给 RNC, RNC通过 lub 接口, 将用户在小区 1中的下行数据吞吐率 发送给基站 B, 将用户在小区 2 中的下行数据吞吐率 r2发送给基站 A。
以基站控制两个多流小区为例, 4叚设多流小区为小区 1、小区 2和小区 3 , 小区 1和小区 2所属的基站为基站 A, 小区 3所属的基站为基站 B, 基站 B 通过 lub接口, 将用户在小区 3中的下行数据吞吐率 r3发送给 RNC, RNC通 过 lub接口将 r3发送给基站 A, 基站 A通过 lub接口, 将用户在小区 1中的 下行数据吞吐率 以及用户在小区 2中的下行数据吞吐率 r2发送给 RNC , RNC 通过 lub接口将 以及 r2发送给基站 B , 或者基站 A通过 lub接口, 将用户 在小区 1中的下行数据吞吐率 r 、及用户在小区 2中的下行数据吞吐率 r2之 和( ri +r2 )发送给 RNC , RNC通过 lub接口将( +r2 )发送给基站 B。
在上述间接方式中,各基站间通过 RNC间接交互用户的下行数据吞吐率, 能够保证与现有网络的兼容性, 降低了确定资源调度优先级的复杂度, 也就 是降低了进行资源调度的复杂度。
需要说明的是, 在上述间接方式中, 基站可以周期性的向 RNC上报下行 数据吞吐率, 具体的, 基站可以设置第二发送频率, 然后按照设置的第二发 送频率, 周期性的将用户在该基站控制的多流小区中的下行数据吞吐率发送 给 RNC。 基站设置的第二发送频率最高可达到每 2毫秒发送一次。
进一步的, 基站还可以根据与 RNC之间的 lub接口的拥塞程度, 动态更 新第二发送频率, 后续基站可以按照更新后的第二发送频率, 向 RNC上报下 行数据吞吐率。 若基站与 RNC之间的 lub接口空闲, 则可以提高第二发送频 率, 相反, 若基站与 RNC之间的 lub接口拥塞, 则可以降低第二发送频率。
其中, lub接口的拥塞程度可以用 lub接口的使用比率来表征, 预先设置 各使用比率范围, 并为每个使用比率范围分别设置对应的发送频率, 当基站 需要更新第二发送频率时, 可以先获取与 RNC之间的 lub接口的使用比率, 然后确定该使用比率所属的使用比率范围对应的发送频率, 将确定出的发送 频率作为更新后的第二发送频率。 基站可以预先设置一个最小保证发送频率, 例如, 设置为每 100 毫秒发送一次, 基站设置的第二发送频率应不小于该最 小保证发送频率, 也就是说, 当基站与 RNC之间的 Iub接口非常拥塞时, 可 以以该最小保证发送频率上报下行数据吞吐率。
优选的, 基站可以按照预设的更新周期, 周期性的更新所述第二发送频 步骤 32, 根据获取到的该用户在其他基站控制的多流小区中的下行数据 吞吐率以及该用户在所述基站控制的多流小区中的下行数据吞吐率, 确定该 用户在所述基站控制的多流小区中的资源调度优先级。
基站获取到用户在其他基站控制的多流小区中的下行数据吞吐率后, 根 据获取到的下行数据吞吐率以及该用户在该基站自身控制的多流小区中的下 行数据吞吐率, 确定该用户在对应的各多流小区中的下行数据吞吐率之和, 然后根据确定出的所述下行数据吞吐率之和以及该用户在该基站自身控制的 多流小区中的最大下行数据吞吐率和调度优先级权重, 确定该用户在该基站 自身控制的多流小区中的资源调度优先级。
基站可通过下述公式(2 )确定该用户在该基站自身控制的多流小区中的 资源调度优先级:
priority. = ~― * SPIweight. ( 2 ) ί j=l
其中, priority,为该用户在该基站自身控制的多流小区 i 中的资源调度优 先级; 为该用户在该基站自身控制的多流小区 i中的最大下行数据吞吐率; SPIweight,为该用户在该基站自身控制的多流小区 i中的调度优先级权重; ^为 该用户在对应的多流小区 j中的下行数据吞吐率, 多流小区 j可能为该基站控 制的多流小区, 也可以为其他基站控制的多流小区; n为该用户对应的多流小 区的数量。
当多流小区跨基站时, 每个基站控制至少一个多流小区。 若基站控制一 个多流小区, 则基站根据用户在自身控制的该多流小区中的下行数据吞吐率 和用户在其他基站控制的多流小区中的下行数据吞吐率, 来确定用户在自身 控制的该多流小区中的资源调度优先级。 若基站控制至少两个多流小区, 则 基站需要根据下述信息确定用户在自身控制的某个多流小区中的资源调度优 先级: 用户在自身控制的该多流小区中的下行数据吞吐率、 用户在自身控制 的其他多流小区中的下行数据吞吐率、 用户在其他基站控制的多流小区中的 下行数据吞吐率。
以基站控制一个多流小区为例, 假设用户对应的多流小区为小区 1 和小 区 2, 即上述公式(2 ) 中的 n为 2, 小区 1所属的基站为基站 A, 小区 2所 属的基站为基站 B。 基站 A先计算用户在小区 1中的下行数据吞吐率 ri和用 户在小区 2 中的下行数据吞吐率和 r2之和, 得到 rrHr2 , 然后根据 priority = - * SPIweigh^ , 计算用户在小区 1中的资源调度优先级 priorit ; 同
ri + r2
理, 基站 B先计算用户在小区 1中的下行数据吞吐率 和用户在小区 2中的 下行数据吞吐率和 r2之和, 得到 然后根据 pri。rity2 = , 计
Figure imgf000028_0001
算用户在小区 2中的资源调度优先级 priority2
以基站控制两个多流小区为例, 4叚设多流小区为小区 1、小区 2和小区 3 , 即上述公式(2 ) 中的 n为 3 , 小区 1和小区 2所属的基站为基站 A, 小区 3 所属的基站为基站 B。 基站 A先计算用户在小区 1中的下行数据吞吐率 ri、 用户在小区 2中的下行数据吞吐率和 r2和用户在小区 3中的下行数据吞吐率 和 r3之和, 得到 , 然后才艮据 priority = ~ ¾ ~ * SPIweigh^ , 计算用户在
ri + r2 + r3
小区 1 中的资源调度优先级 priority , 根据 priority2 = ~ ¾ ~ * SPIweight2 , 计算
ri + r2 + r3
用户在小区 2中的资源调度优先级 priority ; 同理, 基站 B先计算用户在小区 1中的下行数据吞吐率 、用户在小区 2中的下行数据吞吐率和 r2和用户在小 区 3 中的下行数据吞吐率和 r3 之和, 得到 , 然后根据 priority = ~ ¾ ~ * SPIweight3 ,计算用户在小区 3中的资源调度优先级 priority。 ri + r2 + r3
由上可见, 本发明实施例一方案中, 基站确定用户在该基站控制的某多 流小区中的资源调度优先级时, 不仅要考虑用户在该基站控制的多流小区中 的下行数据吞吐率, 还要获取用户在其他基站控制的多流小区中的下行数据 吞吐率, 那么确定出的资源调度优先级就能够反映出用户在对应的各多流小 区中的数据传输情况。
步骤 33, 根据确定出的资源调度优先级, 为该用户调度所述基站控制的 多流小区的资源。
基站根据用户在自身控制的多流小区中的资源调度优先级, 为该用户的 下行数据传输调度资源的过程, 与现有技术的资源调度过程一致, 这里不再 赘述。
由于基站确定出的资源调度优先级能够反映出用户在对应的各多流小区 中的数据传输情况, 从而实现了各基站之间为用户的数据传输进行公平性的 资源调度。
实施例二:
本发明实施例一方案中,基站间可通过 RNC间接交互用户的下行数据吞 吐率, 本发明实施例二描述了 RNC和基站间进行信息交互的方法, 如图 5所 示, 包括以下步骤:
步骤 51 , RNC接收用户对应的各多流小区所属的各基站分别发送的、 该 用户在该基站控制的多流小区中的下行数据吞吐率。
步骤 52, 所述 RNC针对该用户对应的各多流小区所属的各基站, 分别将 该用户在其他基站控制的多流小区中的下行数据吞吐率发送给该基站。
优选的, 各基站与 RNC之间可以通过已有的 Iub接口进行信息交互。 需要说明的是, RNC可以周期性的向各基站转发下行数据吞吐率, 具体 的, RNC针对用户对应的各多流小区所属的各基站, 分别设置相应的发送频 率, 然后针对每个基站, 分别按照针对该基站设置的发送频率, 将该用户在 其他基站控制的多流小区中的下行数据吞吐率发送给该基站。
进一步的, RNC还可以动态更新针对各基站分别设置的发送频率, 具体 的, RNC针对用户对应的各多流小区所属的各基站, 分别根据与该基站之间 的 lub接口的拥塞程度, 动态更新针对该基站设置的发送频率, 后续 RNC可 以按照更新后的发送频率向该基站转发其他基站上报的下行数据吞吐率。 若 RNC与基站之间的 lub接口空闲, 则可以提高针对基站设置的发送频率, 相 反, 若 RNC与基站之间的 lub接口拥塞, 则可以降低针对基站设置的发送频 其中, lub接口的拥塞程度可以用 lub接口的使用比率来表征, 预先设置 各使用比率范围, 并为每个使用比率范围分别设置对应的发送频率, 当 RNC 需要更新针对某基站设置的发送频率时,可以先获取与该基站之间的 lub接口 的使用比率, 然后确定该使用比率所属的使用比率范围对应的发送频率, 将 确定出的发送频率作为更新后的针对该基站设置的发送频率。 RNC可以预先 设置一个最小保证发送频率, 例如, 设置为每 100毫秒发送一次, RNC针对 基站设置的发送频率应不小于该最小保证发送频率, 也就是说, 当 RNC与基 站之间的 lub接口非常拥塞时,可以以该最小保证发送频率向基站转发其他基 站上报的下行数据吞吐率。
优选的, RNC可以按照预设的更新周期, 周期性的更新针对各基站设置 的发送频率。
实施例三:
下面介绍第二种确定资源调度优先级的方式, 基站先获取根据该用户在 对应的各多流小区中的下行数据吞吐率确定出的调度优先级因子, 然后根据 获取到的调度优先级因子确定该用户的资源调度优先级。
如图 6所示, 为本发明实施例三中资源调度方法的步骤示意图, 所述方 法包括以下步骤:
步骤 61 , 用户对应的多流小区所属的基站获取该用户在所述基站控制的 多流小区中的调度优先级因子, 其中, 所述调度优先级因子是根据该用户在 对应的各多流小区中的下行数据吞吐率确定的。
本发明实施例三提出, 当多流小区跨基站时, 多流小区所属的各基站能 够获取根据该用户在对应的各多流小区中的下行数据吞吐率确定出的调度优 先级因子, 那么基站就能够获知用户在对应的各多流小区中的数据传输情况, 从而为后续确定用户的资源调度优先级提供基础。
在步骤 61中, 用户对应的各多流小区所属的各基站分别将该用户在自身 控制的多流小区中的下行数据吞吐率可以由网络设备根据用户在对应的各多 流小区中的下行数据吞吐率, 确定出用户在各多流小区中的调度优先级因子, 可以为 RNC。
其中, 各基站与 RNC之间可以通过已有的 Iub接口进行信息交互。
由于调度优先级因子是根据用户在对应的各多流小区中的下行数据吞吐 率确定的, 因此用户对应的各多流小区所属的各基站需要分别向 RNC发送用 户在自身控制的多流小区中的下行数据吞吐率, RNC根据各基站分别发送的 下行数据吞吐率, 确定出用户在各多流小区中的调度优先级因子。
本发明实施例三中, 调度优先级因子可以但不限于为下述两种形式: 第一种形式, 用户在基站控制的多流小区中的调度优先级因子为用户在 对应的各多流小区中的下行数据吞吐率之和;
第二种形式, 用户在基站控制的多流小区中的调度优先级因子为用户在 该基站控制的多流小区中的调度优先级权重与该用户在对应的各多流小区中 的下行数据吞吐率之和的比值。
下面分别介绍调度优先级因子为每种形式时, 基站和 RNC的信息交互情 况以及 RNC确定调度优先级因子的过程。
1、 当调度优先级因子为上述第一种形式时, 如图 7A所示, 用户对应的 各多流小区所属的各基站需要分别向 RNC发送用户在自身控制的多流小区中 的下行数据吞吐率, RNC接收到各基站分别发送的下行数据吞吐率后, 确定 该用户在对应的各多流小区中的下行数据吞吐率之和, 然后将确定出的下行 数据吞吐率之和作为调度优先级因子发送给各基站。
需要说明的是,基站可以周期性的向 RNC上报下行数据吞吐率,具体的, 基站可以针对 RNC设置第一发送频率, 然后按照设置的第一发送频率, 周期 性的将用户在该基站控制的多流小区中的下行数据吞吐率发送给 RNC。 基站 设置的第一发送频率最高可达到每 2毫秒发送一次。
进一步的, 基站还可以根据与 RNC之间的 lub接口的拥塞程度, 动态更 新第一发送频率, 后续基站可以按照更新后的第一发送频率, 向 RNC上报下 行数据吞吐率。 若基站与 RNC之间的 lub接口空闲, 则可以提高第一发送频 率, 相反, 若基站与 RNC之间的 lub接口拥塞, 则可以降低第一发送频率。
其中, lub接口的拥塞程度可以用 lub接口的使用比率来表征, 预先设置 各使用比率范围, 并为每个使用比率范围分别设置对应的第一发送频率, 当 基站需要更新第一发送频率时, 可以先获取与 RNC之间的 lub接口的使用比 率, 然后确定该使用比率所属的使用比率范围对应的发送频率, 将确定出的 发送频率作为更新后的第一发送频率。 基站可以预先设置一个最小保证发送 频率, 例如, 设置为每 100 毫秒发送一次, 基站设置的第一发送频率应不小 于该最小保证发送频率, 也就是说, 当基站与 RNC之间的 lub接口非常拥塞 时, 可以以该最小保证发送频率上报下行数据吞吐率。
优选的, 基站可以按照预设的更新周期, 周期性的更新所述发送频率。 当多流小区跨基站时, 每个基站控制至少一个多流小区, 每个基站将用 户在自身控制的各多流小区中的下行数据吞吐率发送给 RNC,由 RNC确定调 度优先级因子, 各多流小区对应相同的调度优先级因子。
以基站控制一个多流小区为例, 假设用户对应的多流小区为小区 1 和小 区 2, 小区 1所属的基站为基站 A, 小区 2所属的基站为基站 B, 基站 A通过 lub接口, 将用户在小区 1中的下行数据吞吐率 ri发送给 RNC, 基站 B通过 lub接口, 将用户在小区 2中的下行数据吞吐率 r2发送给 RNC, RNC确定用 户在对应的各多流小区中的下行数据吞吐率之和 然后通过 lub接口, 将 r1+r2作为调度优先级因子发送给基站 A和基站 B。 以基站控制两个多流小区为例, 4叚设多流小区为小区 1、小区 2和小区 3 , 小区 1和小区 2所属的基站为基站 A, 小区 3所属的基站为基站 B, 基站 A 通过 lub接口,将用户在小区 1中的下行数据吞吐率 r 、及用户在小区 2中的 下行数据吞吐率 r2发送给 RNC, 基站 B通过 lub接口, 将用户在小区 3中的 下行数据吞吐率 r3发送给 RNC, RNC确定用户在对应的各多流小区中的下行 数据吞吐率之和 然后 RNC通过 lub接口, 将 作为调度优先 级因子发送给基站 A和基站 B。
2、 当调度优先级因子为上述第二种形式时, RNC确定调度优先级因子需 要获知用户在对应的各多流小区中的下行数据吞吐率以及调度优先级权重, 因此, 如图 7B所示, 用户对应的各多流小区所属的各基站不仅需要向 RNC 发送用户在自身控制的多流小区中的下行数据吞吐率, 还需要将用户在自身 控制的多流小区中的调度优先级权重一并发送给 RNC, RNC接收到各基站分 别发送的下行数据吞吐率和调度优先级权重后, 确定用户在对应的各多流小 区中的下行数据吞吐率之和, 然后针对各基站分别执行下述操作: 确定该用 户在该基站控制的多流小区中的调度优先级权重与该用户在对应的各多流小 区中的下行数据吞吐率之和的比值, 再将确定出的比值作为调度优先级因子 发送给该基站。
需要说明的是,基站可以周期性的向 RNC上报调度优先级权重和下行数 据吞吐率, 具体的, 基站可以针对 RNC设置第二发送频率, 然后按照设置的 第二发送频率, 周期性的将用户在该基站控制的多流小区中的调度优先级权 重和下行数据吞吐率发送给 RNC。
进一步的, 基站还可以根据与 RNC之间的 lub接口的拥塞程度, 动态更 新第二发送频率, 后续基站可以按照更新后的第二发送频率, 向 RNC上报调 度优先级权重和下行数据吞吐率。
其中, 更新第二发送频率的具体流程与更新上述第一发送频率的具体流 程类似, 这里不再赘述。
优选的, 基站可以按照预设的更新周期, 周期性的更新所述第二发送频 当多流小区跨基站时, 每个基站控制至少一个多流小区, 每个基站将用 户在自身控制的各多流小区中的下行数据吞吐率和调度优先级权重发送给
RNC, 由 RNC确定用户在各多流小区中的调度优先级因子, 各多流小区对应 不同的调度优先级因子。
以基站控制一个多流小区为例, 假设用户对应的多流小区为小区 1 和小 区 2, 小区 1所属的基站为基站 A, 小区 2所属的基站为基站 B, 基站 A通过 lub接口,将用户在小区 1中的下行数据吞吐率 和调度优先级权重 SPIweig , 基站 B通过 lub接口, 将用户在小区 2中的下行数据吞吐率 r2和调度优先级 权重 SPIweigh发送给 RNC , RNC 确定用户在小区 1 中的调度优先级因子
Zl = SPIweightl以及用户在小区 2中的调度优先级因子 Z2 = SPIwdght2 , RNC通 ri + ri ri + ri
过 lub接口, 将确定出的 发送给基站 A , 将确定出的 Z2发送给基站 B。
以基站控制两个多流小区为例, 4叚设多流小区为小区 1、小区 2和小区 3 , 小区 1和小区 2所属的基站为基站 A, 小区 3所属的基站为基站 B, 基站 A 通过 lub接口, 将用户在小区 1 中的下行数据吞吐率 ri和调度优先级权重 SPIweig 、用户在小区 2中的下行数据吞吐率 r2和调度优先级权重 SPIweight2发 送给 RNC, 基站 B通过 lub接口, 将用户在小区 3中的下行数据吞吐率 r3和 调度优先级权重 SPIweight3发送给 RNC, RNC确定用户在小区 1中的调度优先 级因子 = SPIweightl、用户在小区 2中的调度优先级因子 Z2 = SPIweight2以及用 户在小区 3中的调度优先级因子 Z3 = ^lweigm3 , RNC通过 lub接口, 将确定 出的 和 Z2发送给基站 A , 将确定出的 Z3发送给基站 B。
步骤 62, 根据获取到的该用户在所述基站控制的多流小区中的调度优先 级因子, 确定该用户在所述基站控制的多流小区中的资源调度优先级。
本发明实施例三方案中, RNC根据各基站上报的下行数据吞吐率确定出 调度优先级因子后, 将调度优先级因子发送给对应的基站, 基站根据调度优 先级因子确定对应的资源调度优先级, 因此能够筒化基站确定资源调度优先 级的处理流程。
下面分别介绍调度优先级因子为上述第一种形式或第二种形式时, 基站 确定资源调度优先级的过程。
1、 调度优先级因子为上述第一种形式, 即用户在基站控制的多流小区中 的资源调度优先级为用户在对应的各多流小区中的下行数据吞吐率之和。 基 站获取到该用户在该基站自身控制的多流小区中的调度优先级因子后, 根据 获取到的调度优先级因子以及该用户在该基站控制的多流小区中的最大下行 数据吞吐率和调度优先级权重, 确定该用户在该基站自身控制的多流小区中 的资源调度优先级。
基站可通过下述公式(3 )确定该用户在该基站自身控制的多流小区中的 资源调度优先级:
priority =— * SPIweigh^ ( 3 ) 其中, priority,为该用户在所该基站自身控制的多流小区 i 中的资源调度 优先级; 为该用户在该基站自身控制的多流小区 i 中的最大下行数据吞吐 率; 为该用户在该基站自身控制的多流小区 i 中的调度优先级因子, = i j , ^为该用户在对应的多流小区 j 中的下行数据吞吐率, 多流小区 j j=l
可能为该基站控制的多流小区, 也可以为其他基站控制的多流小区, n为该用 户对应的多流小区的数量; SPIweighti为该用户在该基站自身控制的多流小区 i 中的调度优先级权重。
2、 调度优先级因子为上述第二种形式, 即用户在基站控制的多流小区中 的资源调度优先级为该用户在该基站控制的多流小区中的调度优先级权重与 该用户在对应的各多流小区中的下行数据吞吐率之和的比值。 基站获取到该 用户在该基站自身控制的多流小区中的调度优先级因子后, 根据获取到的调 度优先级因子以及该用户在该基站控制的多流小区中的最大下行数据吞吐 率, 确定该用户在该基站自身控制的多流小区中的资源调度优先级。
基站可通过下述公式(4 )确定该用户在该基站自身控制的多流小区中的 资源调度优先级:
priority i = R,. * Z; ( 4 ) 其中, 为该用户在该基站自身控制的多流小区 i 中的资源调度优 先级; 为该用户在该基站自身控制的多流小区 i中的最大下行数据吞吐率; Ζ,.为该用户在该基站自身控制的多流小区 i 中的调度优先级因子, z = SPIweight , r为该用户在对应的多流小区 j 中的下行数据吞吐率, 多 流小区 j可能为该基站控制的多流小区, 也可以为其他基站控制的多流小区, n为该用户对应的多流小区的数量, SPIweighti为该用户在该基站自身控制的多 流小区 i中的调度优先级权重。
由上可见, 本发明实施例三方案中, 基站确定用户在该基站控制的某多 流小区中的资源调度优先级时, 不仅要考虑用户在该基站控制的多流小区中 的下行数据吞吐率, 还要考虑用户在其他基站控制的多流小区中的下行数据 吞吐率, 那么确定出的资源调度优先级就能够反映出用户在对应的各多流小 区中的数据传输情况。
步骤 63 , 根据确定出的资源调度优先级, 为该用户调度所述基站控制的 多流小区的资源。
基站根据用户在自身控制的多流小区中的资源调度优先级, 为该用户的 下行数据传输调度资源的过程, 与现有技术的资源调度过程一致, 这里不再 赘述。
由于基站确定出的资源调度优先级能够反映出用户在对应的各多流小区 中的数据传输情况, 从而实现了各基站之间为用户的数据传输进行公平性的 资源调度。 实施例四:
本发明实施例三方案中, 各基站可以由 RNC根据用户在对应的各多流小 区中的下行数据吞吐率, 确定出用户在各多流小区中的调度优先级因子, 本 发明实施例四描述了 RNC和基站间进行信息交互的方法, 如图 8所示, 包括 以下步骤:
步骤 81 , RNC接收用户对应的各多流小区所属的各基站分别发送的、 该 用户在该基站控制的多流小区中的下行数据吞吐率。
步骤 82, 所述 RNC针对该用户对应的各多流小区所属的各基站, 分别执 行下述操作: 根据该用户在对应的各多流小区中的下行数据吞吐率, 确定该 用户在该基站控制的多流小区中的调度优先级因子, 并将确定出的调度优先 级因子发送给该基站。
优选的, 各基站与 RNC之间可以通过已有的 Iub接口进行信息交互。 下面分别介绍调度优先级因子为本发明实施例三中所述的第一种形式或 第二种形式时, RNC确定调度优先级因子的过程。
1、 调度优先级因子为上述第一种形式, 即用户在基站控制的多流小区中 的资源调度优先级为用户在对应的各多流小区中的下行数据吞吐率之和。 RNC接收到各基站分别发送的下行数据吞吐率后, 确定该用户在对应的各多 流小区中的下行数据吞吐率之和, 将确定出的所述下行数据吞吐率之和, 确 认为该用户在各多流小区中的调度优先级因子。 因此, 各多流小区对应相同 的调度优先级因子。
例如, 多流小区为小区 1、 小区 2和小区 3, 小区 1和小区 2所属的基站 为基站 A, 小区 3所属的基站为基站 B。 RNC通过 Iub接口, 接收基站 A发 送的用户在小区 1中的下行数据吞吐率 以及用户在小区 2中的下行数据吞 吐率 r2, 接收基站 B发送的用户在小区 3中的下行数据吞吐率 r3, RNC计算 该用户在对应的各多流小区中的下行数据吞吐率之和 + r2 + r3 ,然后将 + r2 + r3 确认为用户在各多流小区中的调度优先级因子, 即 = Z2 = Z3 = + r2 + r3。 2、 调度优先级因子为上述第二种形式, 即用户在基站控制的多流小区中 的资源调度优先级为该用户在该基站控制的多流小区中的调度优先级权重与 该用户在对应的各多流小区中的下行数据吞吐率之和的比值。 各基站不仅要 向 RNC发送该用户在该基站控制的多流小区中的下行数据吞吐率, 还要发送 该用户在该基站控制的多流小区中的调度优先级权重, RNC接收到各基站分 别发送的下行数据吞吐率和调度优先级权重后, 针对各基站分别执行下述操 作: 确定该用户在该基站控制的多流小区中的调度优先级权重与该用户在对 应的各多流小区中的下行数据吞吐率之和的比值, 然后将确定出的所述比值, 确认为该用户在该基站控制的多流小区中的调度优先级因子。
例如, 多流小区为小区 1、 小区 2和小区 3, 小区 1和小区 2所属的基站 为基站 A, 小区 3所属的基站为基站 B。 RNC通过 Iub接口, 接收基站 A发 送的用户在小区 1 中的下行数据吞吐率 和调度优先级权重 SPIweight^ 以及 用户在小区 2中的下行数据吞吐率 r2和调度优先级权重 SPIweight2, 接收基站 B发送的用户在小区 3中的下行数据吞吐率 r3和调度优先级权重 SPIweight3, RNC计算用户在小区 1中的调度优先级权重与该用户在对应的各多流小区中 的下行数据吞吐率之和的比值 SPIw ghtl , 用户在小区 2中的调度优先级权重 与该用户在对应的各多流小区中的下行数据吞吐率之和的比值^ ¾ , 用 户在小区 3 中的调度优先级权重与该用户在对应的各多流小区中的下行数据 吞吐率之和的比值 SPIweight3, 然后 RNC将 SPIw ghtl确认为用户在小区 1 中 的调度优先级因子, 即 Z1= SPIwdghtl , 将 SPIweight2确认为用户在小区 2 中的
ri +r2 +r3 ri +r2 +r3
调度优先级因子, 即 Z2= SPIwdght2 , 将 SPIweight3确认为用户在小区 3 中的调
ri +r2 +r3
度优先级因子, 即 = SPIWdght3。 需要说明的是, RNC可以周期性的向各基站发送调度优先级因子, 具体 的, RNC针对用户对应的各多流小区所属的各基站, 分别设置相应的发送频 率, 然后针对每个基站, 分别按照针对该基站设置的发送频率, 将确定出的 该用户在该基站控制的多流小区中的调度优先级因子发送给该基站。
进一步的, RNC还可以动态更新针对各基站分别设置的发送频率, 具体 的, RNC针对用户对应的各多流小区所属的各基站, 分别根据与该基站之间 的 lub接口的拥塞程度, 动态更新针对该基站设置的发送频率, 后续 RNC可 以按照更新后的发送频率向该基站发送确定出的调度优先级因子。 若 RNC与 基站之间的 lub接口空闲, 则可以提高针对基站设置的发送频率, 相反, 若 RNC与基站之间的 lub接口拥塞, 则可以降低针对基站设置的发送频率。
其中, lub接口的拥塞程度可以用 lub接口的使用比率来表征, 预先设置 各使用比率范围, 并为每个使用比率范围分别设置对应的发送频率, 当 RNC 需要更新针对某基站设置的发送频率时,可以先获取与该基站之间的 lub接口 的使用比率, 然后确定该使用比率所属的使用比率范围对应的发送频率, 将 确定出的发送频率作为更新后的针对该基站设置的发送频率。 RNC可以预先 设置一个最小保证发送频率, 例如, 设置为每 100毫秒发送一次, RNC针对 基站设置的发送频率应不小于该最小保证发送频率, 也就是说, 当 RNC与基 站之间的 lub接口非常拥塞时,可以以该最小保证发送频率向基站发送确定出 的调度优先级因子。
优选的, RNC可以按照预设的更新周期, 周期性的更新针对各基站设置 的发送频率。
实施例五:
本发明实施例五描述了一种与实施例一属于同一发明构思下的基站, 如 图 9所示, 包括:
吞吐率获取单元 91 , 用于获取该用户在其他基站控制的多流小区中的下 行数据吞吐率;
调度优先级确定单元 92,用于根据吞吐率获取单元 91获取到的该用户在 其他基站控制的多流小区中的下行数据吞吐率以及该用户在所述基站控制的 多流小区中的下行数据吞吐率, 确定该用户在所述基站控制的多流小区中的 资源调度优先级; 先级, 为该用户调度所述基站控制的多流小区的资源。
进一步地, 所述基站还包括:
第一吞吐率发送单元, 用于通过物理连接, 将用户在自身控制的多流小 区中的下行数据吞吐率发送给其他基站;
所述吞吐率获取单元 91 , 具体用于接收其他基站发送的、 该用户在所述 其他基站控制的多流小区中的下行数据吞吐率。
进一步地, 所述第一吞吐率发送单元, 具体用于按照针对其他基站设置 的第一发送频率, 将用户在该基站控制的多流小区中的下行数据吞吐率发送 给所述其他基站。
进一步地, 所述基站还包括:
第一发送频率更新单元, 用于根据与其他基站之间的接口的拥塞程度, 更新针对所述其他基站设置的第一发送频率。
进一步地, 所述第一吞吐率发送单元, 具体用于将该用户在自身控制的 每个多流小区中的下行数据吞吐率发送给其他基站; 或将该用户在自身控制 的各多流小区中的下行数据吞吐率之和发送给其他基站。
进一步地, 所述基站还包括:
第二吞吐率发送单元, 用于将用户在自身控制的多流小区中的下行数据 吞吐率上报给无线网络控制器 RNC;
所述吞吐率获取单元 91 ,具体用于接收 RNC发送的、该用户在其他基站 控制的多流小区中的下行数据吞吐率。
进一步地, 第二吞吐率发送单元, 具体用于按照设置的第二发送频率, 将用户在该基站控制的多流小区中的下行数据吞吐率上报给 RNC。
进一步地, 所述基站还包括:
第二发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频率。
进一步地, 所述第二吞吐率发送单元, 具体用于将该用户在自身控制的 每个多流小区中的下行数据吞吐率发送给 RNC; 或将该用户在自身控制的各 多流小区中的下行数据吞吐率之和发送给 RNC。
进一步地, 调度优先级确定单元 92, 具体用于根据获取到的该用户在其 他基站控制的多流小区中的下行数据吞吐率以及该用户在所述基站控制的多 流小区中的下行数据吞吐率, 确定该用户在对应的各多流小区中的下行数据 吞吐率之和; 根据确定出的所述下行数据吞吐率之和以及该用户在所述基站 控制的多流小区中的最大下行数据吞吐率和调度优先级权重, 确定该用户在 所述基站控制的多流小区中的资源调度优先级。 基站控制的多流小区中的资源调度优先级:
priority. = ~― * SPIweight.
ί 』
j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
本发明实施例五还描述了另一种基站, 如图 10所示, 包括:
接收器 101 ,用于接收该用户在其他基站控制的多流小区中的下行数据吞 吐率;
处理器 102,用于根据接收器 101接收到的该用户在其他基站控制的多流 小区中的下行数据吞吐率以及该用户在所述基站控制的多流小区中的下行数 据吞吐率, 确定该用户在所述基站控制的多流小区中的资源调度优先级, 并 根据确定出的资源调度优先级, 为该用户调度所述基站控制的多流小区的资 源。
进一步地, 所述基站还包括:
发送器 103, 用于通过物理连接, 将用户在自身控制的多流小区中的下行 数据吞吐率发送给其他基站;
所述接收器 101 , 具体用于接收其他基站发送的、该用户在所述其他基站 控制的多流小区中的下行数据吞吐率。
进一步地, 所述发送器 103 , 具体用于按照针对其他基站设置的第一发送 频率, 将用户在该基站控制的多流小区中的下行数据吞吐率发送给所述其他 基站。
进一步地, 所述处理器 102,还用于根据与其他基站之间的接口的拥塞程 度, 更新针对所述其他基站设置的第一发送频率。
进一步地, 所述发送器 103 , 具体用于将该用户在自身控制的每个多流小 区中的下行数据吞吐率发送给其他基站; 或将该用户在自身控制的各多流小 区中的下行数据吞吐率之和发送给其他基站。
进一步地, 所述基站还包括:
发送器 103,用于将用户在自身控制的多流小区中的下行数据吞吐率上 4艮 给 RNC;
所述接收器 101 , 具体用于接收 RNC发送的、 该用户在其他基站控制的 多流小区中的下行数据吞吐率。
进一步地, 发送器 103 , 具体用于按照设置的第二发送频率, 将用户在该 基站控制的多流小区中的下行数据吞吐率上报给 RNC。
进一步地, 所述处理器 102, 还用于根据与所述 RNC之间的接口的拥塞 程度, 更新所述第二发送频率。
进一步地, 所述发送器 103 , 具体用于将该用户在自身控制的每个多流小 区中的下行数据吞吐率发送给 RNC; 或将该用户在自身控制的各多流小区中 的下行数据吞吐率之和发送给 RNC。 进一步地, 所述处理器 102, 具体用于根据获取到的该用户在其他基站控 制的多流小区中的下行数据吞吐率以及该用户在所述基站控制的多流小区中 的下行数据吞吐率, 确定该用户在对应的各多流小区中的下行数据吞吐率之 和; 根据确定出的所述下行数据吞吐率之和以及该用户在所述基站控制的多 流小区中的最大下行数据吞吐率和调度优先级权重, 确定该用户在所述基站 控制的多流小区中的资源调度优先级。
进一步地, 所述处理器 102通过下述方式确定该用户在所述基站控制的 多流小区中的资源调度优先级:
priority. = ~― * SPIweight.
ί j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
实施例六:
本发明实施例六描述了一种与实施例二属于同一发明构思下的 RNC, 如 图 11所示, 包括:
吞吐率接收单元 111 ,用于接收用户对应的各多流小区所属的各基站分别 发送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
吞吐率发送单元 112, 用于针对该用户对应的各多流小区所属的各基站, 分别将该用户在其他基站控制的多流小区中的下行数据吞吐率发送给该基 站。
进一步地, 所述吞吐率发送单元 111 , 具体用于针对该用户对应的各多流 小区所属的各基站, 分别按照针对该基站设置的发送频率, 将该用户在其他 基站控制的多流小区中的下行数据吞吐率发送给该基站。
进一步地, 所述 RNC还包括:
发送频率更新单元, 用于针对该用户对应的各多流小区所属的各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
本发明实施例六还描述了另一种 RNC, 如图 12所示, 包括:
接收器 121 , 用于接收用户对应的各多流小区所属的各基站分别发送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
发送器 122, 用于针对该用户对应的各多流小区所属的各基站, 分别将该 用户在其他基站控制的多流小区中的下行数据吞吐率发送给该基站。
进一步地, 所述发送器 122, 具体用于针对该用户对应的各多流小区所属 的各基站, 分别按照针对该基站设置的发送频率, 将该用户在其他基站控制 的多流小区中的下行数据吞吐率发送给该基站。
进一步地, 所述 RNC还包括:
处理器 123, 用于针对该用户对应的各多流小区所属的各基站, 分别根据 与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
实施例七:
本发明实施例七描述了一种与实施例三属于同一发明构思下的基站, 如 图 13所示, 包括:
优先级因子获取单元 131 ,用于获取该用户在所述基站控制的多流小区中 的调度优先级因子, 其中, 所述调度优先级因子是根据该用户在对应的各多 流小区中的下行数据吞吐率确定的;
调度优先级确定单元 132,用于根据优先级因子获取单元 131获取到的该 用户在所述基站控制的多流小区中的调度优先级因子, 确定该用户在所述基 站控制的多流小区中的资源调度优先级; 优先级, 为该用户调度所述基站控制的多流小区的资源。
进一步地, 所述调度优先级因子为用户在对应的各多流小区中的下行数 据吞吐率之和。
进一步地, 所述基站还包括:
第一吞吐率发送单元, 用于将用户在自身控制的多流小区中的下行数据 吞吐率发送给 RNC;
所述优先级因子获取单元 131 , 具体用于接收 RNC发送的、 根据该用户 在对应的各多流小区中的下行数据吞吐率确定出的调度优先级因子。
进一步地, 所述第一吞吐率发送单元, 具体用于按照设置的第一发送频 率, 将用户在该基站控制的多流小区中的下行数据吞吐率上报给 RNC。
进一步地, 所述基站还包括:
第一发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第一发送频率。
进一步地, 所述调度优先级确定单元 132, 具体用于根据获取到的该用户 在所述基站控制的多流小区中的调度优先级因子以及该用户在所述基站控制 的多流小区中的最大下行数据吞吐率和调度优先级权重, 确定该用户在所述 基站控制的多流小区中的资源调度优先级。
进一步地, 所述调度优先级确定单元 132通过下述方式确定该用户在所 述基站控制的多流小区中的资源调度优先级:
priority =
Figure imgf000045_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率; n为该用户对应的多流小区的数量。
进一步地, 所述调度优先级因子为该用户在所述基站控制的多流小区中 的调度优先级权重与该用户在对应的各多流小区中的下行数据吞吐率之和的 比值。
进一步地, 所述基站还包括:
第二吞吐率发送单元, 用于将用户在自身控制的多流小区中的调度优先 级权重和下行数据吞吐率发送给 RNC;
所述优先级因子获取单元 131 , 具体用于接收 RNC发送的、 根据该用户 在所述基站控制的多流小区中的调度优先级权重以及该用户在对应的各多流 小区中的下行数据吞吐率确定出的调度优先级因子。
进一步地, 所述第二吞吐率发送单元, 具体用于按照设置的第二发送频 率, 将用户在自身控制的多流小区中的调度优先级权重和下行数据吞吐率发 送给 RNC。
进一步地, 所述基站还包括:
第二发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频率。
进一步地, 所述调度优先级确定单元 132, 具体用于根据获取到的该用户 在所述基站控制的多流小区中的调度优先级因子以及该用户在所述基站控制 的多流小区中的最大下行数据吞吐率, 确定该用户在所述基站控制的多流小 区中的资源调度优先级。
进一步地, 所述调度优先级确定单元 132通过下述方式确定该用户在所 述基站控制的多流小区中的资源调度优先级:
priority = R;
Figure imgf000046_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; 为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; vj为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
本发明实施例七还描述了另一种基站, 如图 14所示, 包括:
接收器 141 ,用于接收该用户在所述基站控制的多流小区中的调度优先级 因子, 其中, 所述调度优先级因子是根据该用户在对应的各多流小区中的下 行数据吞吐率确定的;
处理器 142,用于根据接收器 141接收到的该用户在所述基站控制的多流 小区中的调度优先级因子, 确定该用户在所述基站控制的多流小区中的资源 调度优先级, 根据确定出的资源调度优先级, 为该用户调度所述基站控制的 多流小区的资源。
进一步地, 所述调度优先级因子为用户在对应的各多流小区中的下行数 据吞吐率之和。
进一步地, 所述基站还包括:
发送器 143,用于将用户在自身控制的多流小区中的下行数据吞吐率发送 给 RNC;
所述接收器 141 , 具体用于接收 RNC发送的、 根据该用户在对应的各多 流小区中的下行数据吞吐率确定出的调度优先级因子。
进一步地, 所述发送器 143, 具体用于按照设置的第一发送频率, 将用户 在该基站控制的多流小区中的下行数据吞吐率上报给 RNC。
进一步地, 所述处理器 142, 还用于根据与所述 RNC之间的接口的拥塞 程度, 更新所述第一发送频率。
进一步地, 所述处理器 142, 具体用于根据该用户在所述基站控制的多流 小区中的调度优先级因子以及该用户在所述基站控制的多流小区中的最大下 行数据吞吐率和调度优先级权重, 确定该用户在所述基站控制的多流小区中 的资源调度优先级。
进一步地, 所述处理器 142通过下述方式确定该用户在所述基站控制的 多流小区中的资源调度优先级: priority =
Figure imgf000048_0001
j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
进一步地, 所述调度优先级因子为该用户在所述基站控制的多流小区中 的调度优先级权重与该用户在对应的各多流小区中的下行数据吞吐率之和的 比值。
进一步地, 所述基站还包括:
发送器 143,用于将用户在自身控制的多流小区中的调度优先级权重和下 行数据吞吐率发送给 RNC;
所述接收器 141 , 具体用于接收 RNC发送的、 根据该用户在所述基站控 制的多流小区中的调度优先级权重以及该用户在对应的各多流小区中的下行 数据吞吐率确定出的调度优先级因子。
进一步地, 所述发送器 143, 具体用于按照设置的第二发送频率, 将用户 在自身控制的多流小区中的调度优先级权重和下行数据吞吐率发送给 RNC。 进一步地, 所述处理器 142, 还用于根据与所述 RNC之间的接口的拥塞 程度, 更新所述第二发送频率。
进一步地, 所述处理器 142, 具体用于根据该用户在所述基站控制的多流 小区中的调度优先级因子以及该用户在所述基站控制的多流小区中的最大下 行数据吞吐率, 确定该用户在所述基站控制的多流小区中的资源调度优先级。
进一步地, 所述处理器 142通过下述方式确定该用户在所述基站控制的 多流小区中的资源调度优先级:
priority = Rj
Figure imgf000049_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; 为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
实施例八:
本发明实施例八描述了一种与实施例四属于同一发明构思下的 RNC, 如 图 15所示, 包括:
吞吐率接收单元 151 ,用于接收用户对应的各多流小区所属的各基站分别 发送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
调度优先级因子确定单元 152,用于针对该用户对应的各多流小区所属的 各基站, 分别执行下述操作: 根据该用户在对应的各多流小区中的下行数据 吞吐率, 确定该用户在该基站控制的多流小区中的调度优先级因子;
调度优先级因子发送单元 153 ,用于将调度优先级因子确定单元 152确定 出的调度优先级因子发送给该基站。
进一步地, 所述调度优先级因子发送单元 153 , 具体用于按照针对该基站 设置的发送频率, 将确定出的调度优先级因子发送给该基站。
进一步地, 所述 RNC还包括:
发送频率调整单元, 用于针对该用户对应的各多流小区所属的各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
进一步地, 所述调度优先级因子确定单元 152, 具体用于确定该用户在对 应的各多流小区中的下行数据吞吐率之和; 将确定出的所述下行数据吞吐率 之和, 确认为该用户在该基站控制的多流小区中的调度优先级因子。
进一步地, 所述吞吐率接收单元 151 , 具体用于接收用户对应的各多流小 区所属的各基站分别发送的、 该用户在该基站控制的多流小区中的下行数据 吞吐率和调度优先级权重;
所述调度优先级因子确定单元 152,具体用于确定该用户在该基站控制的 多流小区中的调度优先级权重与该用户在对应的各多流小区中的下行数据吞 吐率之和的比值; 将确定出的所述比值, 确认为该用户在该基站控制的多流 小区中的调度优先级因子。
本发明实施例八还描述了另一种 RNC, 如图 16所示, 包括:
接收器 161 , 用于接收用户对应的各多流小区所属的各基站分别发送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
处理器 162, 用于针对该用户对应的各多流小区所属的各基站, 分别执行 下述操作: 根据该用户在对应的各多流小区中的下行数据吞吐率, 确定该用 户在该基站控制的多流小区中的调度优先级因子,
发送器 163 , 用于将处理器 162确定出的调度优先级因子发送给该基站。 进一步地, 所述发送器 163 , 具体用于按照针对该基站设置的发送频率, 将确定出的调度优先级因子发送给该基站。
进一步地, 所述处理器 162,还用于针对该用户对应的各多流小区所属的 各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的 发送频率。
进一步地, 所述处理器 162, 具体用于确定该用户在对应的各多流小区中 的下行数据吞吐率之和; 将确定出的所述下行数据吞吐率之和, 确认为该用 户在该基站控制的多流小区中的调度优先级因子。
进一步地, 所述接收器 161 , 具体用于接收用户对应的各多流小区所属的 各基站分别发送的、 该用户在该基站控制的多流小区中的下行数据吞吐率和 调度优先级权重;
所述处理器 162,具体用于确定该用户在该基站控制的多流小区中的调度 优先级权重与该用户在对应的各多流小区中的下行数据吞吐率之和的比值; 将确定出的所述比值, 确认为该用户在该基站控制的多流小区中的调度优先 级因子。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 本发明可采用在一个或多个其中包含有计算机可用程序代 码的计算机可用存储介质 (包括但不限于磁盘存储器、 CD-ROM、 光学存储 器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。 这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
按照本文中的界定, 计算机可读介质不包括非持续性的电脑可读媒体
(transitory media) , :¾口调制的数据信号和载波。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例做出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种资源调度方法, 其特征在于, 所述方法包括:
用户对应的多流小区所属的基站获取该用户在其他基站控制的多流小区 中的下行数据吞吐率;
根据获取到的该用户在其他基站控制的多流小区中的下行数据吞吐率以 及该用户在所述基站控制的多流小区中的下行数据吞吐率, 确定该用户在所 述基站控制的多流小区中的资源调度优先级;
根据确定出的资源调度优先级, 为该用户调度所述基站控制的多流小区 的资源。
2、 如权利要求 1所述的方法, 其特征在于, 所述基站获取该用户在其他 基站控制的多流小区中的下行数据吞吐率, 具体包括:
所述基站接收其他基站通过物理连接发送的、 该用户在所述其他基站控 制的多流小区中的下行数据吞吐率。
3、 如权利要求 2所述的方法, 其特征在于, 还包括:
所述基站按照针对所述其他基站设置的第一发送频率, 将用户在该基站 控制的多流小区中的下行数据吞吐率发送给所述其他基站。
4、 如权利要求 3所述的方法, 其特征在于, 还包括:
所述基站根据与所述其他基站之间的接口的拥塞程度, 更新针对所述其 他基站设置的第一发送频率。
5、 如权利要求 1所述的方法, 其特征在于, 所述基站获取该用户在其他 基站控制的多流小区中的下行数据吞吐率, 具体包括:
所述基站接收无线网络控制器 RNC发送的、 该用户在其他基站控制的多 流小区中的下行数据吞吐率。
6、 如权利要求 5所述的方法, 其特征在于, 还包括:
所述基站按照设置的第二发送频率, 将用户在该基站控制的多流小区中 的下行数据吞吐率上报给所述 RNC。
7、 如权利要求 6所述的方法, 其特征在于, 还包括:
所述基站根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频
8、 如权利要求 1~7中任一权利要求所述的方法, 其特征在于, 该用户在 其他基站控制的多流小区中的下行数据吞吐率为:
该用户在其他基站控制的每个多流小区中的下行数据吞吐率; 或 该用户在其他基站控制的各多流小区中的下行数据吞吐率之和。
9、 如权利要求 1~8中任一权利要求所述的方法, 其特征在于, 确定该用 户在所述基站控制的多流小区中的资源调度优先级, 具体包括:
根据获取到的该用户在其他基站控制的多流小区中的下行数据吞吐率以 及该用户在所述基站控制的多流小区中的下行数据吞吐率, 确定该用户在对 应的各多流小区中的下行数据吞吐率之和;
根据确定出的所述下行数据吞吐率之和以及该用户在所述基站控制的多 流小区中的最大下行数据吞吐率和调度优先级权重, 确定该用户在所述基站 控制的多流小区中的资源调度优先级。
10、 如权利要求 9所述的方法, 其特征在于, 所述基站通过下述方式确 定该用户在所述基站控制的多流小区中的资源调度优先级:
priority. = ~― * SPIweight.
ί
j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
11、 一种信息交互方法, 其特征在于, 所述方法包括: 无线网络控制器 RNC接收用户对应的各多流小区所属的各基站分别发送 的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别将该用户在 其他基站控制的多流小区中的下行数据吞吐率发送给该基站。
12、 如权利要求 11所述的方法, 其特征在于, 所述 RNC针对该用户对 应的各多流小区所属的各基站, 分别将该用户在其他基站控制的多流小区中 的下行数据吞吐率发送给该基站, 具体包括:
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别按照针对该 基站设置的发送频率, 将该用户在其他基站控制的多流小区中的下行数据吞 吐率发送给该基站。
13、 如权利要求 12所述的方法, 其特征在于, 还包括:
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别根据与该基 站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
14、 一种资源调度方法, 其特征在于, 所述方法包括:
用户对应的多流小区所属的基站获取该用户在所述基站控制的多流小区 中的调度优先级因子, 其中, 所述调度优先级因子是根据该用户在对应的各 多流小区中的下行数据吞吐率确定的;
根据获取到的该用户在所述基站控制的多流小区中的调度优先级因子, 确定该用户在所述基站控制的多流小区中的资源调度优先级;
根据确定出的资源调度优先级, 为该用户调度所述基站控制的多流小区 的资源。
15、 如权利要求 14所述的方法, 其特征在于, 所述调度优先级因子为用 户在对应的各多流小区中的下行数据吞吐率之和。
16、 如权利要求 15所述的方法, 其特征在于, 所述基站获取该用户在所 述基站控制的多流小区中的调度优先级因子, 具体包括:
所述基站接收无线网络控制器 RNC发送的、根据该用户在对应的各多流 小区中的下行数据吞吐率确定出的调度优先级因子。
17、 如权利要求 16所述的方法, 其特征在于, 还包括:
所述基站按照设置的第一发送频率, 将用户在该基站控制的多流小区中 的下行数据吞吐率上报给所述 RNC。
18、 如权利要求 17所述的方法, 其特征在于, 还包括:
所述基站根据与所述 RNC之间的接口的拥塞程度, 更新所述第一发送频
19、 如权利要求 15~18任一权利要求所述的方法, 其特征在于, 根据获 取到的该用户在所述基站控制的多流小区中的调度优先级因子, 确定该用户 在所述基站控制的多流小区中的资源调度优先级, 具体包括:
根据获取到的该用户在所述基站控制的多流小区中的调度优先级因子以 及该用户在所述基站控制的多流小区中的最大下行数据吞吐率和调度优先级 权重, 确定该用户在所述基站控制的多流小区中的资源调度优先级。
20、 如权利要求 19所述的方法, 其特征在于, 所述基站通过下述方式确 定该用户在所述基站控制的多流小区中的资源调度优先级:
priority =
Figure imgf000056_0001
j =l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; ^为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
21、 如权利要求 14所述的方法, 其特征在于, 所述调度优先级因子为该 用户在所述基站控制的多流小区中的调度优先级权重与该用户在对应的各多 流小区中的下行数据吞吐率之和的比值。
22、 如权利要求 21所述的方法, 其特征在于, 所述基站获取该用户在所 述基站控制的多流小区中的调度优先级因子, 具体包括:
所述基站接收无线网络控制器 RNC发送的、根据该用户在所述基站控制 的多流小区中的调度优先级权重以及该用户在对应的各多流小区中的下行数 据吞吐率确定出的调度优先级因子。
23、 如权利要求 22所述的方法, 其特征在于, 还包括:
所述基站按照设置的第二发送频率, 将用户在该基站控制的多流小区中 的调度优先级权重和下行数据吞吐率上报给所述 RNC。
24、 如权利要求 23所述的方法, 其特征在于, 还包括:
所述基站根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频
25、 如权利要求 21~24 中任一权利要求所述的方法, 其特征在于, 根据 获取到的该用户在所述基站控制的多流小区中的调度优先级因子, 确定该用 户在所述基站控制的多流小区中的资源调度优先级, 具体包括:
根据获取到的该用户在所述基站控制的多流小区中的调度优先级因子以 及该用户在所述基站控制的多流小区中的最大下行数据吞吐率, 确定该用户 在所述基站控制的多流小区中的资源调度优先级。
26、 如权利要求 25所述的方法, 其特征在于, 所述基站通过下述方式确 定该用户在所述基站控制的多流小区中的资源调度优先级:
priority = Rj
Figure imgf000057_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
!^为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; 4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; vj为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
27、 一种信息交互方法, 其特征在于, 所述方法包括:
无线网络控制器 RNC接收用户对应的各多流小区所属的各基站分别发送 的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别执行下述操 作: 根据该用户在对应的各多流小区中的下行数据吞吐率, 确定该用户在该 基站控制的多流小区中的调度优先级因子, 并将确定出的调度优先级因子发 送给该基站。
28、 如权利要求 27所述的方法, 其特征在于, 所述 RNC将确定出的调 度优先级因子发送给该基站, 具体包括:
所述 RNC按照针对该基站设置的发送频率, 将确定出的调度优先级因子 发送给该基站。
29、 如权利要求 28所述的方法, 其特征在于, 还包括:
所述 RNC针对该用户对应的各多流小区所属的各基站, 分别根据与该基 站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
30、 如权利要求 27~29 中任一权利要求所述的方法, 其特征在于, 根据 该用户在对应的各多流小区中的下行数据吞吐率, 确定该用户在该基站控制 的多流小区中的调度优先级因子, 具体包括:
确定该用户在对应的各多流小区中的下行数据吞吐率之和;
将确定出的所述下行数据吞吐率之和, 确认为该用户在该基站控制的多 流小区中的调度优先级因子。
31、 如权利要求 27~29 中任一权利要求所述的方法, 其特征在于, 接收 用户对应的各多流小区所属的各基站分别发送的、 该用户在该基站控制的多 流小区中的下行数据吞吐率, 具体包括:
接收用户对应的各多流小区所属的各基站分别发送的、 该用户在该基站 控制的多流小区中的下行数据吞吐率和调度优先级权重;
根据该用户在对应的各多流小区中的下行数据吞吐率, 确定该用户在该 基站控制的多流小区中的调度优先级因子, 具体包括:
确定该用户在该基站控制的多流小区中的调度优先级权重与该用户在对 应的各多流小区中的下行数据吞吐率之和的比值;
将确定出的所述比值, 确认为该用户在该基站控制的多流小区中的调度 优先级因子。
32、 一种基站, 其特征在于, 包括:
吞吐率获取单元, 用于获取该用户在其他基站控制的多流小区中的下行 数据吞吐率;
调度优先级确定单元, 用于根据吞吐率获取单元获取到的该用户在其他 基站控制的多流小区中的下行数据吞吐率以及该用户在所述基站控制的多流 小区中的下行数据吞吐率, 确定该用户在所述基站控制的多流小区中的资源 调度优先级; 为该用户调度所述基站控制的多流小区的资源。
33、 如权利要求 32所述的基站, 其特征在于, 所述基站还包括: 第一吞吐率发送单元, 用于通过物理连接, 将用户在自身控制的多流小 区中的下行数据吞吐率发送给其他基站;
所述吞吐率获取单元, 具体用于接收其他基站发送的、 该用户在所述其 他基站控制的多流小区中的下行数据吞吐率。
34、如权利要求 33所述的基站,其特征在于, 所述第一吞吐率发送单元, 具体用于按照针对其他基站设置的第一发送频率, 将用户在该基站控制的多 流小区中的下行数据吞吐率发送给所述其他基站。
35、 如权利要求 34所述的基站, 其特征在于, 所述基站还包括: 第一发送频率更新单元, 用于根据与其他基站之间的接口的拥塞程度, 更新针对所述其他基站设置的第一发送频率。
36、 如权利要求 33~35 中任一权利要求所述的基站, 其特征在于, 所述 第一吞吐率发送单元, 具体用于将该用户在自身控制的每个多流小区中的下 行数据吞吐率发送给其他基站; 或将该用户在自身控制的各多流小区中的下 行数据吞吐率之和发送给其他基站。
37、 如权利要求 32所述的基站, 其特征在于, 所述基站还包括: 第二吞吐率发送单元, 用于将用户在自身控制的多流小区中的下行数据 吞吐率上报给无线网络控制器 RNC;
所述吞吐率获取单元, 具体用于接收 RNC发送的、 该用户在其他基站控 制的多流小区中的下行数据吞吐率。
38、 如权利要求 37所述的基站, 其特征在于, 第二吞吐率发送单元, 具 体用于按照设置的第二发送频率, 将用户在该基站控制的多流小区中的下行 数据吞吐率上报给 RNC。
39、 如权利要求 38所述的基站, 其特征在于, 所述基站还包括: 第二发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频率。
40、 如权利要求 37~39 中任一权利要求所述的基站, 其特征在于, 所述 第二吞吐率发送单元, 具体用于将该用户在自身控制的每个多流小区中的下 行数据吞吐率发送给 RNC; 或将该用户在自身控制的各多流小区中的下行数 据吞吐率之和发送给 RNC。
41、 如权利要求 32~40 中任一权利要求所述的基站, 其特征在于, 调度 优先级确定单元, 具体用于根据获取到的该用户在其他基站控制的多流小区 中的下行数据吞吐率以及该用户在所述基站控制的多流小区中的下行数据吞 吐率, 确定该用户在对应的各多流小区中的下行数据吞吐率之和; 根据确定 出的所述下行数据吞吐率之和以及该用户在所述基站控制的多流小区中的最 大下行数据吞吐率和调度优先级权重, 确定该用户在所述基站控制的多流小 区中的资源调度优先级。
42、 如权利要求 41所述的基站, 其特征在于, 所述调度优先级确定单元 通过下述方式确定该用户在所述基站控制的多流小区中的资源调度优先级:
priority. = ~― * SPIweight.
ί 』
j=l
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; rj为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
43、 一种无线网络控制器, 其特征在于, 包括:
吞吐率接收单元, 用于接收用户对应的各多流小区所属的各基站分别发 送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
吞吐率发送单元, 用于针对该用户对应的各多流小区所属的各基站, 分 别将该用户在其他基站控制的多流小区中的下行数据吞吐率发送给该基站。
44、 如权利要求 43所述的无线网络控制器, 其特征在于, 所述吞吐率发 送单元, 具体用于针对该用户对应的各多流小区所属的各基站, 分别按照针 对该基站设置的发送频率, 将该用户在其他基站控制的多流小区中的下行数 据吞吐率发送给该基站。
45、 如权利要求 44所述的无线网络控制器, 其特征在于, 还包括: 发送频率更新单元, 用于针对该用户对应的各多流小区所属的各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
46、 一种基站, 其特征在于, 包括:
优先级因子获取单元, 用于获取该用户在所述基站控制的多流小区中的 调度优先级因子, 其中, 所述调度优先级因子是根据该用户在对应的各多流 小区中的下行数据吞吐率确定的;
调度优先级确定单元, 用于根据优先级因子获取单元获取到的该用户在 所述基站控制的多流小区中的调度优先级因子, 确定该用户在所述基站控制 的多流小区中的资源调度优先级; 为该用户调度所述基站控制的多流小区的资源。
47、 如权利要求 46所述的基站, 其特征在于, 所述调度优先级因子为用 户在对应的各多流小区中的下行数据吞吐率之和。
48、 如权利要求 47所述的基站, 其特征在于, 所述基站还包括: 第一吞吐率发送单元, 用于将用户在自身控制的多流小区中的下行数据 吞吐率发送给无线网络控制器 RNC;
所述优先级因子获取单元, 具体用于接收 RNC发送的、 根据该用户在对 应的各多流小区中的下行数据吞吐率确定出的调度优先级因子。
49、如权利要求 48所述的基站,其特征在于, 所述第一吞吐率发送单元, 具体用于按照设置的第一发送频率, 将用户在该基站控制的多流小区中的下 行数据吞吐率上报给 RNC。
50、 如权利要求 49所述的基站, 其特征在于, 还包括:
第一发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第一发送频率。
51、 如权利要求 47~50 中任一权利要求所述的基站, 其特征在于, 所述 调度优先级确定单元, 具体用于根据获取到的该用户在所述基站控制的多流 小区中的调度优先级因子以及该用户在所述基站控制的多流小区中的最大下 行数据吞吐率和调度优先级权重, 确定该用户在所述基站控制的多流小区中 的资源调度优先级。
52、 如权利要求 51所述的基站, 其特征在于, 所述调度优先级确定单元 通过下述方式确定该用户在所述基站控制的多流小区中的资源调度优先级: priority =
Figure imgf000063_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率;
4为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; rj为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
53、 如权利要求 46所述的基站, 其特征在于, 所述调度优先级因子为该 用户在所述基站控制的多流小区中的调度优先级权重与该用户在对应的各多 流小区中的下行数据吞吐率之和的比值。
54、 如权利要求 53所述的基站, 其特征在于, 所述基站还包括: 第二吞吐率发送单元, 用于将用户在自身控制的多流小区中的调度优先 级权重和下行数据吞吐率发送给 RNC;
所述优先级因子获取单元, 具体用于接收 RNC发送的、 根据该用户在所 述基站控制的多流小区中的调度优先级权重以及该用户在对应的各多流小区 中的下行数据吞吐率确定出的调度优先级因子。
55、如权利要求 54所述的基站,其特征在于, 所述第二吞吐率发送单元, 具体用于按照设置的第二发送频率, 将用户在自身控制的多流小区中的调度 优先级权重和下行数据吞吐率发送给 RNC。
56、 如权利要求 55所述的基站, 其特征在于, 还包括:
第二发送频率更新单元, 用于根据与所述 RNC之间的接口的拥塞程度, 更新所述第二发送频率。
57、 如权利要求 53~56 中任一权利要求所述的基站, 其特征在于, 所述 调度优先级确定单元, 具体用于根据获取到的该用户在所述基站控制的多流 小区中的调度优先级因子以及该用户在所述基站控制的多流小区中的最大下 行数据吞吐率, 确定该用户在所述基站控制的多流小区中的资源调度优先级。
58、 如权利要求 57所述的基站, 其特征在于, 所述调度优先级确定单元 通过下述方式确定该用户在所述基站控制的多流小区中的资源调度优先级:
priority = R;
Figure imgf000064_0001
其中, ?^!"^为该用户在所述基站控制的多流小区 i 中的资源调度优先 级;
为该用户在所述基站控制的多流小区 i中的最大下行数据吞吐率; 为该用户在所述基站控制的多流小区 i中的调度优先级因子;
SPIweight,为该用户在所述基站控制的多流小区 i中的调度优先级权重; 为该用户在对应的多流小区 j中的下行数据吞吐率;
n为该用户对应的多流小区的数量。
59、 一种无线网络控制器, 其特征在于, 包括:
吞吐率接收单元, 用于接收用户对应的各多流小区所属的各基站分别发 送的、 该用户在该基站控制的多流小区中的下行数据吞吐率;
调度优先级因子确定单元, 用于针对该用户对应的各多流小区所属的各 基站, 分别执行下述操作: 根据该用户在对应的各多流小区中的下行数据吞 吐率, 确定该用户在该基站控制的多流小区中的调度优先级因子;
调度优先级因子发送单元, 用于将调度优先级因子确定单元确定出的调 度优先级因子发送给该基站。
60、 如权利要求 59所述的无线网络控制器, 其特征在于, 所述调度优先 级因子发送单元, 具体用于按照针对该基站设置的发送频率, 将确定出的调 度优先级因子发送给该基站。
61、 如权利要求 60所述的无线网络控制器, 其特征在于, 还包括: 发送频率调整单元, 用于针对该用户对应的各多流小区所属的各基站, 分别根据与该基站之间的接口的拥塞程度, 更新针对该基站设置的发送频率。
62、 如权利要求 59~61 中任一权利要求所述的无线网络控制器, 其特征 在于, 所述调度优先级因子确定单元, 具体用于确定该用户在对应的各多流 小区中的下行数据吞吐率之和; 将确定出的所述下行数据吞吐率之和, 确认 为该用户在该基站控制的多流小区中的调度优先级因子。
63、 如权利要求 59~61 中任一权利要求所述的无线网络控制器, 其特征 在于, 所述吞吐率接收单元, 具体用于接收用户对应的各多流小区所属的各 基站分别发送的、 该用户在该基站控制的多流小区中的下行数据吞吐率和调 度优先级权重;
所述调度优先级因子确定单元, 具体用于确定该用户在该基站控制的多 流小区中的调度优先级权重与该用户在对应的各多流小区中的下行数据吞吐 率之和的比值; 将确定出的所述比值, 确认为该用户在该基站控制的多流小 区中的调度优先级因子。
PCT/CN2013/090559 2013-12-26 2013-12-26 资源调度方法、信息交互方法及设备 WO2015096092A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380035188.7A CN104429144A (zh) 2013-12-26 2013-12-26 资源调度方法、信息交互方法及设备
PCT/CN2013/090559 WO2015096092A1 (zh) 2013-12-26 2013-12-26 资源调度方法、信息交互方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090559 WO2015096092A1 (zh) 2013-12-26 2013-12-26 资源调度方法、信息交互方法及设备

Publications (1)

Publication Number Publication Date
WO2015096092A1 true WO2015096092A1 (zh) 2015-07-02

Family

ID=52975452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090559 WO2015096092A1 (zh) 2013-12-26 2013-12-26 资源调度方法、信息交互方法及设备

Country Status (2)

Country Link
CN (1) CN104429144A (zh)
WO (1) WO2015096092A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071675A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 通信方法、装置、设备以及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071834A (zh) * 2016-12-28 2017-08-18 山东省计算中心(国家超级计算济南中心) 基于多路径可靠传输的农机高精度定位通讯方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220075A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 小区能力信息的交互方法、设备和系统
CN103220072A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 多流传输系统控制信道的发送方法和用户、网络侧设备
CN103378952A (zh) * 2012-04-23 2013-10-30 华为技术有限公司 数据传输方法、基站及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284346A1 (en) * 2009-05-11 2010-11-11 Rudrapatna Ashok N System and method for cell-edge performance management in wireless systems using centralized scheduling
US8300584B2 (en) * 2009-05-11 2012-10-30 Alcatel Lucent System and method for cell-edge performance management in wireless systems using distributed scheduling
CN102098737B (zh) * 2009-12-11 2014-02-26 中兴通讯股份有限公司 一种基于小区优先级的协作调度方法及系统
US20130103791A1 (en) * 2011-05-19 2013-04-25 Cotendo, Inc. Optimizing content delivery over a protocol that enables request multiplexing and flow control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220072A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 多流传输系统控制信道的发送方法和用户、网络侧设备
CN103220075A (zh) * 2012-01-21 2013-07-24 华为技术有限公司 小区能力信息的交互方法、设备和系统
CN103378952A (zh) * 2012-04-23 2013-10-30 华为技术有限公司 数据传输方法、基站及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071675A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 通信方法、装置、设备以及存储介质

Also Published As

Publication number Publication date
CN104429144A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
JP6062577B2 (ja) ブロードキャスト/マルチキャストサービスのための効率的な可変レート
AU2016336443B2 (en) PTT network with radio condition aware media packet aggregation scheme
Wang et al. A unified approach to QoS-guaranteed scheduling for channel-adaptive wireless networks
US10091691B2 (en) Methods and apparatuses for dynamic backhaul bandwidth management in wireless networks
JP6705004B2 (ja) データ送信方法、ユーザ機器、および基地局
US10631352B2 (en) Joint WAN and sidelink transmission methods for device-to-device capable user equipment
WO2014101243A1 (zh) 负载均衡的方法和网络控制节点
WO2015054990A1 (zh) 协同处理无线数据的方法、相应装置及系统
JP2010530166A (ja) ブロードキャストまたはマルチキャスト・サービスを提供する複数の動作モード間の選択方法
WO2013034115A1 (zh) 多节点协作传输的方法和装置
WO2011069468A1 (zh) 一种基于小区优先级的协作调度方法及系统
TW201832535A (zh) 在不同參數設定之間切換的設備與方法
TW202123729A (zh) 多存取點(ap)網路中基於簡檔的客戶端引導
WO2012167563A1 (zh) 一种载波聚合调度装置、载波聚合调度方法和基站
US20160021676A1 (en) Base station and communication control method
WO2014127511A1 (zh) 一种分配资源的方法及装置
JP2018507633A (ja) アプリケーション選好に基づくユーザ機器(ue)における無線アクセス技術(rat)選択
TW202224477A (zh) 用於調度資料傳輸之裝置和方法
JP5250840B2 (ja) 基地局制御装置及び基地局連携通信制御方法
Miao et al. QoS-aware resource allocation for LTE-A systems with carrier aggregation
EP2744280B1 (en) Method and system for synchronous service flow transmission in heterogeneous network
WO2015096092A1 (zh) 资源调度方法、信息交互方法及设备
WO2012159462A1 (zh) 一种基于comp的空口拥塞控制方法及系统
WO2021162627A1 (en) Intra-ue uplink prioritization handling
KR20140018962A (ko) 업링크 액세스 오픈루프 파워제어방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900563

Country of ref document: EP

Kind code of ref document: A1