WO2023071444A1 - Led基板、直下式背光模组及显示装置 - Google Patents

Led基板、直下式背光模组及显示装置 Download PDF

Info

Publication number
WO2023071444A1
WO2023071444A1 PCT/CN2022/113311 CN2022113311W WO2023071444A1 WO 2023071444 A1 WO2023071444 A1 WO 2023071444A1 CN 2022113311 W CN2022113311 W CN 2022113311W WO 2023071444 A1 WO2023071444 A1 WO 2023071444A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
blind hole
led substrate
solder resist
circuit layer
Prior art date
Application number
PCT/CN2022/113311
Other languages
English (en)
French (fr)
Inventor
黄宗坤
周琛
李彤彤
刘志涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071444A1 publication Critical patent/WO2023071444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present application relates to the field of display technology, in particular to an LED substrate, a direct-lit backlight module and a display device.
  • ultra-clear display In the field of display technology, ultra-clear display has always been one of the technical points that technicians and consumers are most concerned about and pursued. Especially with the further development of 5G, people's demand for ultra-clear display is becoming stronger and stronger, so direct-type backlights came into being.
  • Mini LED mini light-emitting diode
  • the use of Mini LED (mini light-emitting diode) direct backlight as the backlight of the liquid crystal display device can make the advantages of the liquid crystal display device in terms of contrast, color reproduction, cost, life, stability, etc.
  • Traditional liquid crystal display devices, and even organic light emitting display devices are examples of the advantages of the liquid crystal display device.
  • a backlight module needs to be disposed under the display panel.
  • the thickness of the LED (light-emitting diode) substrate in the direct-type backlight module is significantly increased compared with the thickness of the light guide plate in the side-type backlight module, that is to say, the thickness of the direct-type backlight module is increased, which in turn makes the display device Increase. This is contrary to the current development trend of pursuing light and thin display devices.
  • the application provides an LED substrate, a direct-lit backlight module and a display device.
  • the present application provides an LED substrate, including a first electronic component and a printed circuit board; the printed circuit board includes a first dielectric layer, a first circuit layer, and a second circuit layer, and the first dielectric layer is arranged on the first Between the circuit layer and the second circuit layer; wherein, the printed circuit board includes a first blind hole that penetrates the first circuit layer and the first dielectric layer and exposes the second circuit layer; the first electronic component is arranged in the first blind hole And it is electrically connected with the second circuit layer.
  • the first electronic component is an LED.
  • the printed circuit board further includes a first solder resist layer disposed on a side of the first circuit layer away from the first dielectric layer, and the first blind hole penetrates the first solder resist layer; wherein, In the first blind hole, the light emitting surface of the LED is located below the upper surface of the first solder resist layer.
  • the propagation path of the light emitted by the LED at the maximum exit angle does not overlap with the upper edge of the first blind hole.
  • the LED substrate further includes a second electronic component; wherein the printed circuit board further includes a second blind hole that penetrates the second circuit layer and the first dielectric layer and exposes the first circuit layer; The second electronic component is arranged in the second blind hole and is electrically connected with the first circuit layer.
  • the second electronic component includes at least one of a resistor, a capacitor, an inductor, and an integrated circuit.
  • the minimum distance between the orthographic projection of the first blind hole and the orthographic projection of the adjacent second blind hole is w, where w ⁇ 0.5mm.
  • the printed circuit board further includes a first solder resist layer, the first solder resist layer is in contact with the first circuit layer, and the first solder resist layer covers the first circuit layer.
  • the printed circuit board further includes a third circuit layer and a first solder resist layer, the third circuit layer is arranged between the first circuit layer and the first solder resist layer, and the second circuit layer The second blind hole does not penetrate the third circuit layer.
  • the printed circuit board further includes a second solder resist layer, the second solder resist layer is in contact with the second circuit layer, and the second solder resist layer covers the second circuit layer.
  • the printed circuit board further includes a fourth circuit layer and a second solder resist layer, the fourth circuit layer is arranged between the second circuit layer and the second solder resist layer, and the first blind hole Does not penetrate the fourth line layer.
  • the present application also provides a direct-lit backlight module, including the LED substrate as provided in the first aspect.
  • the direct-lit backlight module further includes an optical module, the optical module is arranged on the side of the light-emitting surface of the LED substrate, and is stacked with the LED substrate; the optical module includes a brightness enhancement film, At least one of a diffusion film, a reflective film, and a quantum dot film.
  • the present application further provides a display device, including the direct-lit backlight module as provided in the second aspect.
  • the present application also provides a method for preparing an LED substrate, which is used for the LED substrate provided in the first aspect, including:
  • the opening of the window is at least partially aligned along the thickness direction of the LED substrate to form a first blind hole exposing the second circuit layer.
  • the first electronic component is arranged in the first blind hole, and the first electronic component is electrically connected to the second circuit layer exposed by the first blind hole.
  • the method before preparing the patterned first circuit layer and the second circuit layer on opposite sides of the first dielectric layer, the method further includes:
  • Preliminary etching is performed on the position of the first dielectric layer corresponding to the first blind hole, so that the thickness of the first dielectric layer at the position corresponding to the first blind hole is reduced.
  • the first electronic component is arranged toward the first side of the printed circuit board and realizes electrical connection with the printed circuit board, but the first electronic component is specifically connected to the second side of the first circuit layer.
  • the second circuit layer is electrically connected.
  • the first electronic component in the LED substrate provided by the embodiment of the present application is equivalent to sinking into the opening of the printed circuit board, and the first electronic component is electrically connected to the second circuit layer on the side away from the printed circuit board.
  • the thickness of the structure formed after the first electronic component is electrically connected to the printed circuit board is smaller than the thickness of the first electronic component and the thickness of the printed circuit board. And, that is, the thickness of the LED substrate is reduced, and at the same time, the minimum thickness requirements of each film layer can be guaranteed to avoid the reduction of the strength of the LED substrate.
  • FIG. 1 is a schematic cross-sectional view of an LED substrate provided by an embodiment of the present application.
  • FIG. 2 is an exploded view of an LED substrate provided by an embodiment of the present application.
  • FIG. 3 is a schematic plan view of an LED substrate provided by an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of an LED substrate provided by another embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of another LED substrate provided by another embodiment of the present application.
  • Fig. 6 is a schematic diagram of light emission of an LED substrate provided by an embodiment of the present application.
  • Fig. 7 is a schematic cross-sectional view of an LED substrate provided in another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of another LED substrate provided in another embodiment of the present application.
  • Fig. 9 is a schematic projection diagram of a first blind hole and a second blind hole in an LED substrate provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a preparation step of the LED substrate provided in the embodiment of the present application.
  • Fig. 11 is a schematic diagram of another preparation step of the LED substrate provided in the embodiment of the present application.
  • FIG. 12 is a cross-sectional view of a direct-lit backlight module provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a display device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a display device provided by an embodiment of the present application.
  • Fig. 15 is a schematic diagram of an LED substrate related to the present application.
  • Fig. 15 is a schematic diagram of an LED substrate related to the present application.
  • the LED substrate 01' includes a printed circuit board (printed circuit board, PCB) 20', LED11' and other electronic components 12', and the printed circuit board 20' is used to control the LED11' to emit light.
  • PCB printed circuit board
  • the LED11' is arranged on the first side of the printed circuit board 20', and the LED11' is electrically connected to the circuit layer 221' closest to the first side of the printed circuit board 20' through the pad 100'.
  • the first side of the printed circuit board 20' is provided with a solder resist layer 231', and the solder resist layer 231' is provided with an opening to ensure that the LED 11' is electrically connected to the circuit layer 221' below the solder resist layer 231'.
  • the thickness of the structure formed after the LED11' is electrically connected to the printed circuit board 20' is basically the sum of the thickness of the LED11' and the thickness of the printed circuit board 20'.
  • the circuit layer 222' and the circuit layer 221' are respectively disposed on opposite sides of the dielectric layer 211'.
  • the second side of the printed circuit board 20' is provided with a solder resist layer 232' and the solder resist layer 232' is provided with openings to ensure that other electronic components 12' are electrically connected to the circuit layer 222' below the solder resist layer 232'.
  • the thickness of the structure formed after the other electronic components 12' are electrically connected to the printed circuit board 20' is basically the sum of the thickness of the other electronic components 12' and the thickness of the printed circuit board 20'.
  • the thickness of the LED substrate 01' shown in Figure 15 is basically the sum of the thickness of the LED 11', the thickness of the printed circuit board 20' and the thickness of other electronic components 12'.
  • the thickness of the dielectric layer 211' is basically above 0.04mm
  • the thickness of the solder resist layer 231'/232' is basically 0.01-0.04mm
  • the thickness of the circuit layer 221'/222' is basically 0.04mm. More than 0.01mm, the thickness of the substrate of LED11' and other electronic components 12' is between 0.05-0.2mm.
  • the thickness of the LED substrate 01' In order to reduce the thickness of the LED substrate 01', it is usually achieved by reducing the thickness of each film layer, such as reducing the thickness of the dielectric layer 211', and/or reducing the thickness of the solder resist layer 231'/232', and/or Or reduce the thickness of the wiring layer 221'/222'. Due to the requirement of the minimum thickness of each film layer, the thickness of the LED substrate 01' that can be actually reduced by this method is limited, and the structural strength of the LED substrate will be reduced.
  • the inventor analyzed the structure of the LED substrate, and combined the considerations of the strength and thickness of the LED substrate, and proposed a new LED substrate structure, which can be applied to backlight modules and display devices with local dimming.
  • Figure 1 is a schematic cross-sectional view of an LED substrate provided by an embodiment of the present application
  • Figure 2 is an exploded view of an LED substrate provided by an embodiment of the present application
  • Figure 3 is an LED substrate provided by an embodiment of the present application floor plan.
  • the LED substrate provided in the embodiment of the present application can be applied to a direct type backlight module.
  • the LED substrate 01 provided by the embodiment of the present application includes a plurality of electronic components 10 and a printed circuit board 20, and the plurality of electronic components 10 included in the LED substrate 01 are electrically connected to the printed circuit board 20. superior. Moreover, some of the electronic components 10 are LEDs, and the printed circuit board 20 can drive the LEDs to emit light, so that the LED substrate 01 can emit light.
  • the printed circuit board 20 includes a first dielectric layer 211 , a first circuit layer 221 and a second circuit layer 222 , and the first dielectric layer 211 is disposed between the first circuit layer 221 and the second circuit layer 222 .
  • the first circuit layer 221 and the second circuit layer 222 may be copper layers, that is, the first circuit layer 221 and the second circuit layer 222 are respectively formed by patterning copper layers located on both sides of the first dielectric layer 211 .
  • the first circuit layer 221 and the second circuit layer 222 may include power lines, ground lines, connecting lines, and the like.
  • the printed circuit board 20 includes a first blind hole H1 , the first blind hole H1 penetrates the first circuit layer 221 and the first dielectric layer 211 , and the first blind hole H1 exposes the second circuit layer 222 .
  • the first blind hole H1 included in the printed circuit board 20 is used to expose the second circuit layer 222 , and the opening of the first blind hole H1 faces the same direction as the second circuit layer 222 points to the first circuit layer 221 .
  • the first circuit layer 221 and the first dielectric layer 211 are disposed above the second circuit layer 222 , and the first blind hole H1 is an opening facing upward in the printed circuit board 20 .
  • the upper and lower directions are opposite directions, and when the placement directions of the LED substrate 01 are different, the first blind hole H1 may also be an opening facing downward in the printed circuit board 20 .
  • the plurality of electronic components 10 included in the LED substrate 01 includes a first electronic component 11 , that is, at least one of the plurality of electronic components 10 included in the LED substrate 01 is the first electronic component 11 . And the first electronic component 11 is disposed in the first blind hole H1 and is electrically connected to the second circuit layer 222 . Wherein, at least two of the plurality of electronic components included in the LED substrate 01 may be the first electronic components 11 .
  • the first circuit layer 221 is located on the first side of the second circuit layer 222
  • the second circuit layer 222 is located on the second side of the first circuit layer 221 .
  • the first electronic component 11 is disposed toward the first side of the printed circuit board 20 and realizes electrical connection with the printed circuit board, but the first electronic component 11 is specifically connected to the first circuit layer 221 located on the first circuit layer 221.
  • the second circuit layer 222 in the direction of two sides is electrically connected.
  • the first electronic component 11 in the LED substrate 01 provided by the embodiment of the present application sinks into the first blind hole H1 of the printed circuit board 20, and the first electronic component The device 11 is electrically connected to the second circuit layer 222 on the side away from the printed circuit board 20 .
  • the electrical connection manner between the first electronic component 11 and the second circuit layer 222 may be soldering through the pad 100 , or may be electrical connection through other means.
  • the thickness of the structure formed after the first electronic component 11 is electrically connected to the printed circuit board 20 is smaller than the thickness of the first electronic component 11 and the printed circuit board 20.
  • the sum of the thicknesses of the board 20 means that the thickness of the LED substrate 01 is reduced, and at the same time, the minimum thickness requirement of each film layer can be ensured to avoid the reduction of the strength of the LED substrate 01 .
  • the inventive concept of the present application more choices can be made when measuring the thickness and strength of the LED substrate 01 during the design process of the LED substrate 01 .
  • the LED substrate 01 including one dielectric layer and two circuit layers as an example, when the total thickness of the LED substrate is required to be less than or equal to 0.16mm, using the inventive concept of this application can realize the extreme thinning of the LED substrate 01;
  • the structural strength of the LED substrate 01 can be enhanced while the thickness of the LED substrate 01 is reduced by using the inventive concept of the present application.
  • the first electronic component 11 may be an LED.
  • the LED substrate 01 when the LED substrate 01 includes a plurality of LEDs, the plurality of LEDs can be arranged in an array.
  • the LEDs in the LED substrate 01 may specifically be mini-LEDs (mini light-emitting diodes), and the mini-LEDs are LEDs with a size on the order of hundreds of microns, for example, LEDs with a size of 50 ⁇ m-200 ⁇ m are mini-LEDs. LED substrates using mini-LEDs have higher brightness and can achieve regional dimming in more partitions.
  • all electronic components 10 provided on one side of the printed circuit board 20 are LEDs, and the side of the printed circuit board 20 provided with LEDs No other electronic components 10 are provided.
  • the side of the printed circuit board 20 on which the LED is disposed may also be disposed with other functional electronic components other than the LED.
  • the electronic components with other functions may also be disposed in the blind holes, and the opening manner of the blind holes in which the electronic components with other functions are disposed may be the same as that of the first blind hole H1 .
  • the printed circuit board 20 also includes a first solder resist layer 231 and a second solder resist layer 232, and the first solder resist layer 231 and the second solder resist layer 232 are respectively arranged on the outermost sides of the printed circuit board 20, that is, the printed circuit board 20 Both the circuit layer and the dielectric layer in the board 20 are disposed between the first solder resist layer 231 and the second solder resist layer 232 .
  • the first solder resist layer 231 is arranged on the side of the first circuit layer 221 away from the first dielectric layer 211 in the printed circuit board 20
  • the second solder resist layer 232 is arranged on the side of the printed circuit board 20 where the second circuit layer 222 is far away from the first dielectric layer 211 .
  • the first blind hole H1 penetrates the first solder resist layer 231 .
  • the first solder resist layer 231 includes a window 2310
  • the first dielectric layer 211 includes a window 2110
  • the first circuit layer 221 is designed to avoid the window 2310 and the window 2110, then the window 2310
  • a first blind hole H1 is formed aligned with the opening 2110 and exposes the second circuit layer 222 .
  • FIG. 4 is a schematic cross-sectional view of an LED substrate provided by another embodiment of the present application
  • FIG. 5 is a schematic cross-sectional view of another LED substrate provided by another embodiment of the present application.
  • the surface of the first electronic component 11 away from the second circuit layer 222 is defined as the first surface of the first electronic component 11 . If the first electronic component 11 is an LED, the light emitting surface of the LED is its first surface.
  • the first surface of the first electronic component 11 is flush with the upper surface of the first solder resist layer 231 , that is, the first electronic component 11 is completely disposed on the first inside the blind hole H1 and be flush with the first blind hole H1. Then the thickness of the corresponding structure after the first electronic component 11 is electrically connected to the printed circuit board 20 is still the thickness of the printed circuit board 20 .
  • the first surface of the first electronic component 11 is lower than the upper surface of the first solder resist layer 231, that is, the first electronic component 11 is completely disposed on the first blind. Inside the hole H1, and lower than the height of the first blind hole H1. Then the thickness of the corresponding structure after the first electronic component 11 is electrically connected to the printed circuit board 20 is still the thickness of the printed circuit board 20 .
  • the first surface of the first electronic component 11 is higher than the upper surface of the first solder resist layer 231, that is, the first electronic component 11 is arranged in the first blind hole. H1, and partially protrude outside the first blind hole H1. Then the thickness of the corresponding structure after the first electronic component 11 is electrically connected to the printed circuit board 20 is the sum of the thickness of the printed circuit board 20 and the height of the first electronic component 11 protruding from the first blind hole H1 .
  • the first surface of the first electronic component 11 may be a planar structure or a curved surface structure.
  • the height relationship between the first surface of the first electronic component 11 and the upper surface of the first solder resist layer 231 specifically refers to the height of the first electronic component 11 The height relationship between the highest point of the first surface and the upper surface of the first solder resist layer 231 .
  • FIG. 6 is a schematic diagram of light emission of an LED substrate provided by an embodiment of the present application.
  • the LED when the first electronic component 11 is an LED, the LED is disposed in the first blind hole H1 . Then as shown in FIG. 6, in the first blind hole H1 where the LED is provided, the light-emitting surface of the LED is located below the upper surface of the first solder resist layer 231, that is, the LED does not protrude beyond the first blind hole H1 where it is provided and its The light emitting surface is lower than the height of the first blind hole H1.
  • the problem of optical crosstalk between adjacent LEDs in the LED substrate 01 is not easy to occur. And when the LED substrate 01 is applied to a direct-lit backlight module capable of regional dimming, optical crosstalk between different dimming regions can be avoided.
  • the propagation path of light emitted by the LED at a maximum emission angle does not overlap with the upper edge of the first blind hole H1 . Then, on the plane where the upper surface of the first solder resist layer 231 is located, the minimum distance between the cross section of the light emitted by the LED and the first solder resist layer 231 is d, where d>0.
  • the light emitted by the LED at the maximum exit angle is L1
  • the light L1 can maintain a straight-line propagation path and directly exit the first blind hole H1 without There will be overlap with the edge of the first blind hole H1 , and there will be no overlap with the edge of the first solder resist layer 231 close to the first blind hole H1 .
  • the LED is arranged in the first blind hole H1
  • none of the light emitted by the LED hits the upper edge of the first blind hole H1, which prevents the light emitted by the LED from passing through the first blind hole.
  • Diffraction occurs when H1 emits light, which ensures the brightness uniformity of the LED substrate 01 when it emits light.
  • the LED substrate 01 is applied to a direct-lit backlight module capable of regional dimming, the uniformity of brightness in each dimming area can be ensured.
  • Fig. 1-Fig. 2 and Fig. 4-Fig. 5 illustrate the situation that the printed circuit board 20 includes the first circuit layer 221, the second circuit layer 222 and the first dielectric layer 211, but in the embodiment of the present application In the provided LED substrate 01 , the printed circuit board 20 may include more circuit layers and dielectric layers.
  • FIG. 7 is a schematic cross-sectional view of an LED substrate provided by another embodiment of the present application
  • FIG. 8 is a schematic cross-sectional view of another LED substrate provided by another embodiment of the present application.
  • the first blind hole H1 penetrates all other circuit layers except the second circuit layer 222, that is to say , the second circuit layer 222 to which the first electronic component 11 is electrically connected is the circuit layer closest to the surface of the printed circuit board 20 .
  • the first blind hole H1 penetrates the first solder resist layer 231 at the same time.
  • the second circuit layer 222 exposed by the first blind hole H1 is a circuit layer in contact with the second solder resist layer 232, that is, the second solder resist layer 232 is in contact with the second circuit layer 222 and the second solder resist layer 232 covers the second circuit layer 232. Line layer 222 .
  • the second solder resist layer 232 can provide support for the second circuit layer 222 and the first electronic component 11 in the first blind hole H1 .
  • the first blind hole H1 penetrates through some circuit layers in other circuit layers except the second circuit layer 222, that is to say, the first blind hole H1 Outside the second circuit layer 222 , some other circuit layers have not yet been penetrated. And because the first blind hole H1 exposes the second circuit layer 222 , the other circuit layers not penetrated by the first blind hole H1 are located on the side of the second circuit layer 222 away from the first blind hole H1 . That is, the second circuit layer 222 to which the first electronic component 11 is electrically connected may be a circuit layer in the printed circuit board 20 away from the surface.
  • the first blind hole H1 penetrates the first solder resist layer 231 at the same time.
  • the second circuit layer 222 exposed by the first blind hole H1 is a circuit layer away from the second solder resist layer 232 .
  • the printed circuit board 20 further includes a fourth circuit layer 224, the fourth circuit layer 224 is disposed between the second circuit layer 222 and the second solder resist layer 232, and the first blind hole H1 does not penetrate through the fourth circuit layer 224.
  • a dielectric layer is provided between adjacent circuit layers, and a third dielectric layer 213 is further included between the second circuit layer 222 and the fourth circuit layer 224 . Then the first blind hole H1 does not penetrate through the third dielectric layer 213 . Then the arrangement of the second solder resist layer 232 , the fourth circuit layer 224 and the third dielectric layer 213 can provide support for the second circuit layer 222 and the first electronic component 11 in the first blind hole H1 .
  • Fig. 1-Fig. 2, Fig. 4-Fig. 5, Fig. 7-Fig. The wiring layer 222 and the first dielectric layer 211 , and the second blind hole H2 exposes the first wiring layer 221 .
  • the second blind hole H2 included in the printed circuit board 20 is used to expose the first circuit layer 221 , and the opening of the second blind hole H2 faces the same direction as the first circuit layer 221 points to the second circuit layer 222 .
  • Fig. 1-Fig. 2 Fig. 4-Fig. 5, Fig. 7-Fig. An opening facing downward in the circuit board 20 .
  • the plurality of electronic components 10 included in the LED substrate 01 also includes a second electronic component 12 , that is, at least one of the electronic components 10 included in the LED substrate 01 is the second electronic component 12 .
  • the second electronic component 12 is disposed in the second blind hole H2 and is electrically connected to the first circuit layer 221 .
  • the second electronic component 12 faces the first side of the printed circuit board 20 and realizes electrical connection with the printed circuit board, but the second electronic component 12 is specifically connected to the first side of the second circuit layer 222 .
  • the first circuit layer 221 on the side is electrically connected.
  • the LED substrate 01 provided by this application along the thickness direction of the LED substrate 01, the thickness of the structure formed after the second electronic component 12 is electrically connected to the printed circuit board 20 is smaller than the thickness of the second electronic component 12 and the printed circuit board 20.
  • the sum of the thicknesses of the board 20 means that the thickness of the LED substrate 01 is reduced, and at the same time, the minimum thickness requirement of each film layer can be ensured to avoid the reduction of the strength of the LED substrate 01 .
  • the second electronic component 12 includes at least one of resistors, capacitors, inductors and integrated circuits.
  • resistors, capacitors, inductors, etc. can constitute a driving circuit that provides voltage required for light emitting diodes.
  • only the second electronic component 12 is disposed in all the second blind holes H2. Further, the electronic components 10 provided on one side of the printed circuit board 20 are all second electronic components 12, and then the side of the printed circuit board 20 provided with the second electronic components 12 is not provided with other electronic components 10 .
  • the first blind holes H1 of the first electronic components 11 may all face one side of the printed circuit board 20, and the second electronic components 12 are arranged
  • the second blind holes H2 may all face to the other side of the printed circuit board 20 .
  • the second blind hole H2 penetrates through the second solder resist layer 232 .
  • the surface of the second electronic component 12 away from the first circuit layer 221 is defined as the first surface of the second electronic component 12 .
  • the second solder resist layer 232 includes a window 2320
  • the first dielectric layer 211 includes a window 2110'
  • the second circuit layer 222 is designed to avoid the window 2320 and the window 2110', then the opening
  • the window 2320 is aligned with the opening 2110 ′ to form the second blind hole H2 and expose the first circuit layer 221 .
  • the first surface of the second electronic component 12 is flush with the upper surface of the second solder resist layer 232, that is, the second electronic component 12 is completely arranged on the second inside the blind hole H1 and be flush with the second blind hole H2. Then the thickness of the corresponding structure after the second electronic component 12 is electrically connected to the printed circuit board 20 is still the thickness of the printed circuit board 20 .
  • the first surface of the second electronic component 12 is lower than the upper surface of the second solder resist layer 232, that is, the second electronic component 12 is completely arranged on the second solder resist layer 232.
  • the hole H2 and lower than the height of the second blind hole H2. Then the thickness of the corresponding structure after the second electronic component 12 is electrically connected to the printed circuit board 20 is still the thickness of the printed circuit board 20 .
  • the first surface of the second electronic component 12 is higher than the upper surface of the second solder resist layer 232, that is, the second electronic component 12 is arranged in the second blind hole H2, and partially protrude outside the second blind hole H2. Then the thickness of the corresponding structure after the second electronic component 12 is electrically connected to the printed circuit board 20 is the sum of the thickness of the printed circuit board 20 and the height of the second electronic component 12 protruding from the second blind hole H2 .
  • the first surface of the second electronic component 12 may be a planar structure or a curved surface structure.
  • the height relationship between the first surface of the second electronic component 12 and the upper surface of the second solder resist layer 232 specifically refers to the height of the second electronic component 12.
  • the second blind hole H2 penetrates all other circuit layers except the first circuit layer 221, that is to say , the first circuit layer 221 to which the second electronic component 12 is electrically connected is the circuit layer closest to the surface of the printed circuit board 20 .
  • the second blind hole H2 penetrates the second solder resist layer 232 at the same time.
  • the first wiring layer 221 exposed by the second blind hole H2 is the wiring layer in contact with the first solder resist layer 231, that is, the first solder resist layer 231 is in contact with the first wiring layer 221 and the first solder resist layer 231 covers the first solder resist layer 231. Line layer 221.
  • the first solder resist layer 231 can provide support for the first circuit layer 221 and the second electronic component 12 in the second blind hole H2.
  • the second blind hole H2 penetrates through some circuit layers in other circuit layers except the first circuit layer 221, that is to say, the second blind hole H2 Except for the first circuit layer 221 , some other circuit layers have not yet been penetrated. And because the second blind hole H2 exposes the first circuit layer 221 , the other circuit layers not penetrated by the second blind hole H2 are located on the side of the first circuit layer 221 away from the second blind hole H2 . That is, the first circuit layer 221 to which the second electronic component 12 is electrically connected may be a circuit layer away from the surface of the printed circuit board 20 .
  • the second blind hole H2 penetrates the second solder resist layer 232 at the same time.
  • the first circuit layer 221 exposed by the second blind hole H2 is a circuit layer away from the first solder resist layer 231 .
  • the printed circuit board 20 further includes a third circuit layer 223, the third circuit layer 223 is disposed between the first circuit layer 221 and the first solder resist layer 231, and the second blind hole H2 does not penetrate the third circuit layer 223.
  • a second dielectric layer 212 is further included between the first circuit layer 221 and the third circuit layer 223 . Then the second blind hole H2 does not penetrate through the second dielectric layer 212 . Then, the arrangement of the first solder resist layer 231 , the third circuit layer 223 and the second dielectric layer 212 can provide support for the first circuit layer 221 and the second electronic component 12 in the second blind hole H2 .
  • FIG. 9 is a schematic projection diagram of a first blind hole and a second blind hole in an LED substrate provided by an embodiment of the present application.
  • the printed circuit board 20 includes a plurality of first blind holes H1 and a plurality of second blind holes H2 arranged on opposite sides thereof, along the thickness direction of the LED substrate, the front of the first blind holes H1
  • the minimum distance between the projection and the orthographic projection of the adjacent second blind hole H2 is w, w>0.5mm.
  • the projections of the first blind hole H1 and the second blind hole H2 along the thickness direction of the LED substrate 01 may be any one of rectangle, circle, and ellipse.
  • the three-dimensional shape of the first blind hole H1 and the second blind hole H2 can be a funnel shape with a wide top and a narrow bottom, or a barrel shape with equal width at the top and bottom.
  • FIG. 10 is a schematic diagram of a preparation step of the LED substrate provided by the embodiment of the present application
  • FIG. 11 is a schematic diagram of another preparation step of the LED substrate provided by the embodiment of the present application.
  • the present application also provides a method for preparing the LED substrate 01 , please refer to FIG. 10 and FIG. 11 .
  • the preparation method is used to prepare the LED substrate 01 provided in any one of the above embodiments.
  • the preparation method specifically includes:
  • the film layer where the first circuit layer 221 is located includes a window 2210 .
  • the step S11 specifically includes:
  • S111 Paste the first circuit layer 221 and the second circuit layer 222 on opposite sides of the first dielectric layer 211 respectively. Specifically, lamination process can be used to realize lamination of the first circuit layer 221 , the second circuit layer 222 and the first dielectric layer 211 .
  • S112 Etching the first wiring layer 221 and the second wiring layer 222 to form a patterned first wiring layer 221 and a patterned second wiring layer 222 .
  • the specific etching process may be wet etching or dry etching.
  • S12 Prepare a patterned first solder resist layer 231 on the side of the first wiring layer 221 away from the first dielectric layer 211, and prepare a patterned second solder resist layer on the side of the second wiring layer 222 away from the first dielectric layer 211.
  • Solder layer 232 Solder layer 232 .
  • the first solder resist layer 231 includes a window 2310, and the window 2310 included in the first solder resist layer 231 is at least partially aligned with the window 2210 included in the film layer where the first circuit layer 221 is located along the thickness direction of the LED substrate 01. .
  • the step S12 specifically includes:
  • S121 Prepare the first solder resist layer 231 on the side of the first circuit layer 221 away from the first dielectric layer 211 , and prepare the second solder resist layer 232 on the side of the second circuit layer 222 away from the first dielectric layer 211 .
  • the first solder resist layer 231 and the second solder resist layer 232 can be prepared on both sides of the first circuit layer 221 and the second circuit layer 222 by using a screen printing or spraying process.
  • S122 Etching the first solder resist layer 231 and the second solder resist layer 232 to form patterned first solder resist layers 231 and second solder resist layers 232 .
  • the specific etching process may be wet etching or dry etching.
  • the preparation method of the LED substrate 01 further includes:
  • the film layer where the second circuit layer 222 is located includes open Windows 2220.
  • the second solder resist layer 232 When etching the first solder resist layer 231 and the second solder resist layer 232 in step S122 to form the patterned first solder resist layer 231 and the second solder resist layer 232, the second solder resist layer 232 includes openings 2320. And the opening 2320 included in the second solder resist layer 232 is at least partially aligned with the opening 2220 included in the film layer where the second circuit layer 222 is located along the thickness direction of the LED substrate 01 .
  • step S13 the first dielectric layer 211 exposed by the opening 2320 of the second solder resist layer 232 and the opening 2220 of the second wiring layer 222 is simultaneously etched to form the opening 2110'; and the first dielectric layer
  • the opening 2110' of 211 is at least partially aligned with the opening 2330 of the second solder resist layer 232 and the opening 2220 of the second circuit layer 222 along the thickness direction of the LED substrate 01 to form a second blind hole exposing the first circuit layer 221 H2.
  • step S14 the second electronic component 12 is disposed in the second blind hole H2 and electrically connected to the first circuit layer 221 exposed by the second blind hole H2. Specifically, the second electronic component 12 can be soldered to the first circuit layer 221 through the pad 100 .
  • the etching step of the first dielectric layer 211 occurs after etching the first solder resist layer 231 , and only one etching is performed. In this manner, the jig can be effectively supported during the preparation process of the first solder resist layer 231 and the second solder resist layer 232 .
  • the first dielectric layer 211 is half-cut, that is, the first dielectric layer 211 corresponds to the first blind hole H1 and/or the first blind hole H1.
  • the positions of the two blind holes H2 are preliminarily etched, so that the thickness of the first dielectric layer 211 at these positions is reduced.
  • the first dielectric layer 211 is further fully etched, that is, further etching is performed at the position corresponding to the first blind hole H1 and/or the second blind hole H2 to form the opening 2110 and/or windowing 2110'.
  • FIG. 12 is a cross-sectional view of a direct-lit backlight module provided in an embodiment of the present application.
  • the direct-type backlight module 001 provided by the embodiment of the present application includes an LED substrate 01 and an optical module 02, wherein the optical module 02 is arranged on one side of the light-emitting surface of the direct-type backlight module 001, and two The others are stacked along the thickness direction of the direct type backlight module 001 .
  • the LED substrate 01 can emit light
  • the optical module 02 is used to transmit the light emitted by the LED substrate 01, so that the direct-type backlight module 001 can provide backlight that meets requirements in brightness, chromaticity, and uniformity.
  • the optical module 02 includes at least one of a brightness enhancement film, a diffusion film, a reflection film, and a quantum dot film.
  • the optical module 02 includes a silicone protective layer 021 , and the silicone protective layer 021 is disposed on the LED substrate 01 and completely covers the LED.
  • the silica gel protective layer 021 can diffuse the light emitted by the LED, and in addition, the silica gel protective layer 021 can also protect the LED. It should be noted that, in order to ensure better uniformity of light intensity diffused by the silica gel protective layer 021 and better smoothness of other film layers located on the silica gel protective layer 021, the light emitting side of the silica gel protective layer 021 should have a flat surface. surface.
  • the specific method of setting the silica gel protective layer 021 above the LED substrate 01 can be to attach the silica gel protective film, and then heat-cure the silica gel protective film to form the silica gel protective layer 021.
  • This way can make the silica gel protective layer 021 Tightly wrap the LED and have a flat light emitting surface.
  • the silica gel protection layer 021 can also be disposed in the first blind hole H1, and in addition, the silica gel protection layer 021 can also be disposed only in the first blind hole H1 without extending outside the first blind hole H1, so that the While protecting the LEDs, the thickness of the direct-lit backlight module 001 is further reduced.
  • optical module 02 of the direct type backlight module 001 may also include other structures.
  • the optical module 02 may further include a diffusion sheet 022 , and the diffusion sheet 022 may be disposed on the side of the light-emitting surface of the silicone protective layer 021 for further diffusing light.
  • the optical module 02 may further include a quantum dot conversion layer 023 .
  • the LED may be a light-emitting diode that emits white light, or a light-emitting diode that emits light of other colors.
  • the optical module 02 usually further includes a quantum dot conversion layer 023 to convert the light emitted by the LED into white light.
  • the LED can be a blue light emitting diode with high luminous efficiency and excellent luminous intensity
  • the optical module 02 can include a blue quantum dot conversion layer to convert the blue light emitted by the blue light emitting diode into white light.
  • the quantum dot conversion layer 023 is disposed on the side of the light-emitting surface of the diffusion sheet 022 or the silica gel protective layer 021 .
  • the optical module 02 can also include a brightness enhancement film 024, and the prism on the brightness enhancement film 024 has a converging effect on light, so that the light emitted by the direct-type backlight module 001 is basically emitted vertically, and the intensity of the light is increased. .
  • the optical module 02 can also include a quantum dot thickened film 025, the color gamut of the light passing through the quantum dot thickened film 025 is wider, so setting the quantum dot thickened film 025 in the direct type backlight module 001 can make The backlight it provides has a wider color gamut.
  • the brightness enhancement film 024 and the quantum dot thickening film 025 can be arranged on the side close to the light emitting surface of the direct type backlight module 001 , and the positions of the two can be interchanged.
  • FIG. 13 is a schematic diagram of a display device provided by an embodiment of the present application.
  • the present application provides a display device, including the direct-type backlight module 001 and the display panel 002 provided in the above-mentioned embodiments, wherein the display panel 002 is arranged on the light-emitting side of the direct-type backlight module 001, and the direct-type backlight module 001 generates The light reaching the display panel 002 provides a backlight for the display panel 002.
  • the display device may further include a backplane 003, a front frame 004, and a middle frame (not shown).
  • the display panel 002 and the direct type backlight module 001 are packaged.
  • the direct backlight module 001 includes a printed circuit board 20 and LEDs. Specifically, the LEDs are electrically connected to the printed circuit board 20 and emit light toward the display panel 002 .
  • the printed circuit board 20 controls the LEDs to emit light to provide backlight for the display panel 002 .
  • the direct-type backlight module 001 produces flat light, and the direct-type backlight module 001 is arranged directly below the display panel 002 .
  • the area of the LED substrate 01 may be smaller than that of the display panel 002 , for example, at least one side of the LED substrate 01 is retracted relative to the display panel 002 . Since the display panel 002 includes a display area and a non-display area, during the process of packaging the display device, the front frame 004 will block the non-display area, and the display area is used for luminescent display.
  • the final light emitting surface of the direct type backlight module 001 should basically coincide with the vertical projection of the display area of the display panel 002 in the thickness direction of the display device.
  • the LED substrate 01 The area can be slightly smaller than the area of the display area AA of the display panel 002, as long as the final light emitting surface area of the direct-lit backlight module 001 is basically the same as the area of the display area AA.
  • the area of the LED substrate 01 may also be the same as that of the display area of the substrate.
  • the display panel 002 may be a liquid crystal display panel. Since the liquid crystal display panel is passively emitting light, the LED substrate 01 provides the display panel 002 with light required for display.
  • the display panel 002 may also be an organic light emitting display panel.
  • the organic light emitting display panel is active light emitting, in order to improve the color purity of the display device including the organic light emitting display panel, the LED substrate 01 is a display The device provides light of different colors, and the light emitting diodes of the LED substrate 01 can be in one-to-one correspondence with the pixels of the display panel 002 .
  • the light emitting color of the light emitting diode is the same as the light emitting color of the corresponding pixel in the display panel 002, so as to improve the color purity displayed by the display device.
  • Fig. 14 is a schematic diagram of a display device provided by the embodiment of the present application.
  • the display device provided by the embodiment of the present application can be a TV.
  • the display device provided by the embodiment of the present application It can also be devices such as computers, tablets, and mobile phones. It should be noted that, since different application scenarios have different sizes of display devices and different viewing distances, the size and density of LEDs in the LED substrate 01 are also different.
  • the display device provided in the embodiment of the present application is a TV
  • the size of the LED can be made relatively large, and the process is relatively simple; the density of the LED can also be small to reduce power consumption. ,save costs.
  • the backlight module used in the display device provided by the embodiment of the present application is a direct-type backlight module. Since the thickness of the LED substrate in the direct-type backlight module can be significantly reduced, the thickness of the display device can be reduced, and the backlight module can be ensured. Strength of.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

本申请提供了一种LED基板、直下式背光模组及显示装置;LED基板包括第一电子元器件及印刷电路板;印刷电路板包括第一介质层、第一线路层及第二线路层,第一介质层设置在第一线路层与第二线路层之间;其中,印刷电路板包括贯穿第一线路层和第一介质层且暴露第二线路层的第一盲孔;第一电子元器件设置在第一盲孔内且与第二线路层电连接。本申请实施例提供的LED基板、直下式背光模组及显示装置中,LED基板的厚度可以降低且能够保证LED基板的结构强度。

Description

LED基板、直下式背光模组及显示装置
本申请要求于2021年10月25日提交中国专利局、申请号为202122576413.2、申请名称为“LED基板、直下式背光模组及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种LED基板、直下式背光模组及显示装置。
背景技术
在显示技术领域,超清显示一直是技术人员及消费者最为关注并追求的技术点之一,尤其伴随5G的进一步发展,人们对超清显示的需求愈加的强烈,于是直下式背光源应运而生,例如采用Mini LED(mini light-emitting diode)直下式背光源作为液晶显示装置的背光源,可以使得液晶显示装置在对比度、色彩还原度、成本、寿命、稳定性等方面的优势都远超传统的液晶显示装置,甚至有机发光显示装置。
但是,当显示装置采用直下式背光源时,需要在显示面板的下方设置背光模组。直下式背光模组中LED(light-emitting diode)基板的厚度相较于侧入式背光模组中导光板的厚度明显增加,也就是说直下式背光模组的厚度增加,进而使得显示装置的增加。而这与当前追求轻、薄显示装置的发展趋势相违背。
发明内容
本申请提供了一种LED基板、直下式背光模组及显示装置。
第一方面,本申请提供一种LED基板,包括第一电子元器件及印刷电路板;印刷电路板包括第一介质层、第一线路层及第二线路层,第一介质层设置在第一线路层与第二线路层之间;其中,印刷电路板包括贯穿第一线路层和第一介质层且暴露第二线路层的第一盲孔;第一电子元器件设置在第一盲孔内且与第二线路层电连接。
在第一方面的一种实现方式中,第一电子元器件为LED。
在第一方面的一种实现方式中,印刷电路板还包括设置在第一线路层远离第一介质层的一侧的第一阻焊层,第一盲孔贯穿第一阻焊层;其中,在第一盲孔中,LED的出光面位于第一阻焊层的上表面之下。
在第一方面的一种实现方式中,在第一盲孔中,LED所发射的最大出射角度的光 的传播路径与该第一盲孔的上边缘无交叠。
在第一方面的一种实现方式中,LED基板还包括第二电子元器件;其中,印刷电路板还包括贯穿第二线路层和第一介质层且暴露第一线路层的第二盲孔;第二电子元器件设置在第二盲孔内,且与第一线路层电连接。
在第一方面的一种实现方式中,第二电子元器件包括电阻、电容、电感及集成电路中的至少一者。
在第一方面的一种实现方式中,沿LED基板的厚度方向,第一盲孔的正投影与相邻的第二盲孔的正投影之间的最小距离为w,w≥0.5mm。
在第一方面的一种实现方式中,印刷电路板还包括第一阻焊层,第一阻焊层与第一线路层接触,且第一阻焊层覆盖第一线路层。
在第一方面的一种实现方式中,印刷电路板还包括第三线路层及第一阻焊层,所述第三线路层设置在第一线路层与第一阻焊层之间,且第二盲孔未贯穿第三线路层。
在第一方面的一种实现方式中,印刷电路板还包括第二阻焊层,第二阻焊层与第二线路层接触,且第二阻焊层覆盖第二线路层。
在第一方面的一种实现方式中,印刷电路板还包括第四线路层及第二阻焊层,第四线路层设置在第二线路层与第二阻焊层之间,第一盲孔未贯穿第四线路层。
第二方面,本申请还提供一种直下式背光模组,包括如第一方面提供的LED基板。
在第二方面的一种实现方式中,直下式背光模组还包括光学模组,光学模组设置在LED基板的出光面一侧,且与LED基板层叠设置;光学模组包括增亮膜、扩散膜、反射膜、量子点膜中的至少一者。
第三方面,本申请还提供一种显示装置,包括如第二方面提供的直下式背光模组。
第四方面,本申请还提供一种LED基板的制备方法,用于如第一方面提供的LED基板,包括:
在第一介质层的相对两侧制备图形化的第一线路层和第二线路层,其中,所述第一线路层所在膜层包括开窗;
对所述第一线路层的开窗所暴露的所述第一介质层进行刻蚀形成所述第一介质层的开窗;所述第一介质层的开窗与所述第一线路层的开窗沿所述LED基板的厚度方向至少部分对齐,形成暴露所述第二线路层的第一盲孔。
将所述第一电子元器件设置在所述第一盲孔内,且所述第一电子元器件与所述第一盲孔所暴露的第二线路层电连接。
在第四方面的一种实现方式中,所述在第一介质层的相对两侧制备图形化的第一线路层和第二线路层之前还包括:
对所述第一介质层对应所述第一盲孔的位置进行初步刻蚀,使得所述第一介质层中对应所述第一盲孔的位置处的厚度减薄。
在本申请实施例中,第一电子元器件朝向印刷电路板的第一侧设置且实现与印刷电路板的电连接,但是第一电子元器件具体与位于第一线路层的第二侧方向的第二线路层电连接。本申请实施例所提供的LED基板中的第一电子元器件相当于下沉至印刷电路板的开口中,且第一电子元器件与远离印刷电路板的一侧的第二线路层电连接。则本申请所提供的LED基板中,沿LED基板的厚度方向,第一电子元器件与印刷电路板电连接后所形成的结构的厚度小于第一电子元器件的厚度与印刷电路板的厚度之和,也就是减薄了LED基板的厚度,同时可以保证各膜层的最低厚度要求,避免LED基板的强度降低。
附图说明
图1为本申请一个实施例提供的一种LED基板的剖面示意图;
图2为本申请一个实施例提供的一种LED基板的爆炸图;
图3为本申请一个实施例提供的一种LED基板的平面示意图;
图4为本申请另一个实施例提供的一种LED基板的剖面示意图;
图5为本申请另一个实施例提供的另一种LED基板的剖面示意图;
图6为本申请一个实施例提供的一种LED基板的发光示意图;
图7为本申请又一个实施例提供的一种LED基板的剖面示意图;
图8为本申请又一个实施例提供的另一种LED基板的剖面示意图;
图9为本申请实施例提供的一种LED基板中第一盲孔与第二盲孔的投影示意图;
图10为本申请实施例提供的LED基板的一种制备步骤示意图;
图11为本申请实施例提供的LED基板的另一种制备步骤示意图;
图12为本申请实施例中提供的一种直下式背光模组的剖面图;
图13为本申请实施例提供的一种显示装置的示意图;
图14为本申请实施例提供的一种显示装置的示意图;
图15为与本申请相关的一种LED基板的示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图15为与本申请相关的一种LED基板的示意图。
如图15所示,LED基板01’包括印刷电路板(printed circuit board,PCB)20’、LED11’及其他电子元器件12’,印刷电路板20’用于控制LED11’发光。
LED11’设置在印刷电路板20’的第一侧,则LED11’与印刷电路板20’中最接近第一侧的线路层221’通过焊盘100’电连接。其中,印刷电路板20’第一侧设置阻焊层231’且阻焊层231’设置开口以保证LED11’与阻焊层231’下方的线路层221’电连接。则 LED11’与印刷电路板20’电连接后形成的结构的厚度基本为LED11’的厚度与印刷电路板20’的厚度之和。
此外,当其他电子元器件12’设置在印刷电路板20’的第二侧时,则其他电子元器件12’与印刷电路板20’中最接近第二侧的线路层222’通过焊盘100’电连接,线路层222’与线路层221’分别设置在介质层211’的相对两侧。其中,印刷电路板20’第二侧设置阻焊层232’且阻焊层232’设置开口以保证其他电子元器件12’与阻焊层232’下方的线路层222’电连接。则其他电子元器件12’与印刷电路板20’电连接后形成的结构的厚度基本为其他电子元器件12’的厚度与印刷电路板20’的厚度之和。
则图15所示LED基板01’的厚度基本为LED11’的厚度、印刷电路板20’的厚度及其他电子元器件12’的厚度之和。图15所示LED基板01’中,介质层211’的厚度基本在0.04mm以上,防焊层231’/232’的厚度基本在0.01-0.04mm,线路层221’/222’的厚度基本在0.01mm以上,LED11’及其他电子元器件12’的厚度基板在0.05-0.2mm之间。
为了减薄LED基板01’的厚度,通常通过减薄各膜层的厚度来实现,例如减薄介质层211’的厚度,和/或减薄防焊层231’/232’的厚度,和/或减薄线路层221’/222’的厚度。受限于各膜层的最低厚度的需求,采用该种方式使得LED基板01’实际能够降低的厚度有限,且会使得LED基板的结构强度降低。
发明人对LED基板结构进行分析,并综合了LED基板强度与厚度等方面的考量,提出了一种新的LED基板结构,该LED基板可以应用于可区域调光的背光模组及显示装置。
图1为本申请一个实施例提供的一种LED基板的剖面示意图,图2为本申请一个实施例提供的一种LED基板的爆炸图,图3为本申请一个实施例提供的一种LED基板的平面示意图。
本申请实施例提供的LED基板可以应用于直下式背光模组。
如图1-图3所示,本申请实施例提供的LED基板01包括多个电子元器件10和印刷电路板20,LED基板01所包括的多个电子元器件10电连接在印刷电路板20上。并且,部分电子元器件10为LED,则印刷电路板20可以驱动LED进行发光,进而使得LED基板01可以发光。
印刷电路板20包括第一介质层211、第一线路层221及第二线路层222,且第一介质层211设置在第一线路层221与第二线路层222之间。第一线路层221、第二线路层222具体可以为铜层,即第一线路层221与第二线路层222分别由位于第一介质层211两侧的铜层图形化形成。且第一线路层221及第二线路层222中可以包括电源线、接地线以及连接走线等。
其中,印刷电路板20包括第一盲孔H1,第一盲孔H1贯穿第一线路层221和第一介质层211,且第一盲孔H1暴露第二线路层222。印刷电路板20所包括的第一盲孔H1用于暴露第二线路层222,且第一盲孔H1的开口朝向与第二线路层222指向第一线路层221的方向相同。如图1所示,第一线路层221及第一介质层211设置在第二线路层222的上方,则第一盲孔H1为印刷电路板20中朝向上方的开口。需要说明 的是,上方与下方为相对的方向,在LED基板01的放置方向不同时,第一盲孔H1也可以为印刷电路板20中朝向下方的开口。
LED基板01所包括的多个电子元器件10中包括第一电子元器件11,也就是说,LED基板01所包括多个电子元器件10中的至少一个为第一电子元器件11。并且第一电子元器件11设置在第一盲孔H1内,且与第二线路层222电连接。其中,LED基板01中所包括的多个电子元器件中的至少两个可以为第一电子元器件11。
为便于说明,定义第一线路层221位于第二线路层222的第一侧,定义第二线路层222位于第一线路层221的第二侧。
在本申请实施例中,第一电子元器件11朝向印刷电路板20的第一侧设置且实现与印刷电路板的电连接,但是第一电子元器件11具体与位于第一线路层221的第二侧方向的第二线路层222电连接。相对于图15所示的LED基板01’,本申请实施例所提供的LED基板01中的第一电子元器件11下沉至印刷电路板20的第一盲孔H1中,且第一电子元器件11与远离印刷电路板20的一侧的第二线路层222电连接。
第一电子元器件11与第二线路层222的电连接方式可以为,通过焊盘100实现焊接,也可以通过其他方式实现电连接。
则本申请所提供的LED基板01,沿LED基板01的厚度方向,第一电子元器件11与印刷电路板20电连接后所形成的结构的厚度小于第一电子元器件11的厚度与印刷电路板20的厚度之和,也就是减薄了LED基板01的厚度,同时可以保证各膜层的最低厚度要求,避免LED基板01的强度降低。
需要说明的是,采用本申请的发明构思,在LED基板01设计过程中对LED基板厚度及强度进行衡量时,可以有更多的选择。例如,以LED基板01包括一层介质层及两层线路层为例,当对LED基板的总厚度需求为小于等于0.16mm时,采用本申请的发明构思可以实现LED基板01的极致减薄;当对LED基板的总厚度需求大于等于0.16mm时,在采用本申请发明构思实现LED基板01厚度较低的同时,能够增强LED基板01的结构强度。
在本申请的一个实施例中,第一电子元器件11可以为LED。且如图3所示,当LED基板01包括多个LED时,多个LED可以阵列排布。其中,该LED基板01中的LED具体可以为mini-LED(mini light-emitting diode),mini-LED为尺寸在百微米量级的LED,例如,尺寸为50μm-200μm的LED为mini-LED。采用mini-LED的LED基板具有较高的亮度,且可以实现更多分区的区域调光。
在本实施例的一种实现方式中,如图1-图3所示,印刷电路板20的一侧所设置的电子元器件10全部为LED,则印刷电路板20中设置有LED的一侧不设置其他电子元器件10。
在本实施例的另一种实现方式中,印刷电路板20中设置LED的一侧也可以设置除LED之外的、其他功能的电子元器件。可选地,该些其他功能的电子元器件也可以设置在盲孔内,并且设置该些其他功能的电子元器件的盲孔的开口方式可以与第一盲孔H1相同。
此外,印刷电路板20中还包括第一阻焊层231和第二阻焊层232,第一阻焊层 231与第二阻焊层232分别设置在印刷电路板20的最外侧,即印刷电路板20中的线路层、介质层均设置在第一阻焊层231与第二阻焊层232之间。其中,第一阻焊层231设置在印刷电路板20中第一线路层221远离第一介质层211的一侧,第二阻焊层232设置在印刷电路板20中第二线路层222远离第一介质层211的一侧,可以理解地,第一盲孔H1贯穿第一阻焊层231。
如图2所示,第一阻焊层231包括开窗2310、第一介质层211包括开窗2110,且第一线路层221在开窗2310及开窗2110处做避让设计,则开窗2310与开窗2110对齐形成第一盲孔H1并暴露第二线路层222。
图4为本申请另一个实施例提供的一种LED基板的剖面示意图,图5为本申请另一个实施例提供的另一种LED基板的剖面示意图。
在本申请中,将第一电子元器件11远离第二线路层222的表面定义为第一电子元器件11的第一表面。若第一电子元器件11为LED,则LED的出光面为其第一表面。
在本申请的一个实施例中,如图1所示,第一电子元器件11的第一表面与第一阻焊层231的上表面平齐,即第一电子元器件11完全设置在第一盲孔H1内,且与第一盲孔H1平齐。则第一电子元器件11电连接在印刷电路板20上之后对应的结构的厚度仍然为印刷电路板20的厚度。
在本申请的一个实施例中,如图4所示,第一电子元器件11的第一表面低于第一阻焊层231的上表面,即第一电子元器件11完全设置在第一盲孔H1内,且低于第一盲孔H1的高度。则第一电子元器件11电连接在印刷电路板20上之后对应的结构的厚度仍然为印刷电路板20的厚度。
在本申请的一个实施例中,如图5所示,第一电子元器件11的第一表面高于第一阻焊层231的上表面,即第一电子元器件11设置在第一盲孔H1内,且部分突出于第一盲孔H1外。则第一电子元器件11电连接在印刷电路板20上之后对应的结构的厚度为印刷电路板20的厚度与第一电子元器件11突出于第一盲孔H1的高度之和。
其中,第一电子元器件11的第一表面可以为平面结构,也可以为曲面结构。当第一电子元器件11的第一表面为曲面结构时,第一电子元器件11的第一表面与第一阻焊层231的上表面的高度关系,具体是指第一电子元器件11的第一表面的最高点与第一阻焊层231的上表面的高度关系。
图6为本申请一个实施例提供的一种LED基板的发光示意图。
在本申请的一个实施例中,当第一电子元器件11为LED时,则LED设置在第一盲孔H1中。则如图6所示,在设置LED的第一盲孔H1中,LED的出光面位于第一阻焊层231的上表面之下,即LED未突出于设置其的第一盲孔H1且其出光面低于第一盲孔H1的高度。
则LED基板01中相邻LED之间不易产生光串扰的问题。并且当LED基板01应用于可以区域调光的直下式背光模组时,可以避免不同调光区域之间的光串扰。
在本实施例的一种实现方式中,在设置有LED的第一盲孔H1中,LED所发射的最大出射角度的光的传播路径与该第一盲孔H1的上边缘无交叠。则在第一阻焊层231 的上表面所在的平面上,LED所发射的光的横截面于第一阻焊层231之间的最小距离为d,d>0。
如图6所示,假设LED所发射的最大出射角度的光为L1,虽然LED完全设置在第一盲孔H1中,但是光L1可以保持直线传播路径并直接射出第一盲孔H1,而不会与第一盲孔H1的边缘有交叠,也就不会与第一阻焊层231靠近第一盲孔H1的边缘有交叠。
在本实现方式中,虽然LED设置在第一盲孔H1中,但是LED所发射的光均未照射到第一盲孔H1的上边缘,则避免了LED所发射的光在由第一盲孔H1出射时发生衍射现象,保证了LED基板01在发光时的亮度均匀性。并且当LED基板01应用于可以区域调光的直下式背光模组时,可以保证各调光区域的亮度均匀性。
需要说明的是,图1-图2、图4-图5示意了印刷电路板20包括第一线路层221、第二线路层222和第一介质层211的情况,但是在本申请实施例所提供的LED基板01中,印刷电路板20可以包括更多数量的线路层和介质层。
图7为本申请又一个实施例提供的一种LED基板的剖面示意图,图8为本申请又一个实施例提供的另一种LED基板的剖面示意图。
在本申请的一个实施例中,如图1-图2、图4-图5及图7所示,第一盲孔H1贯穿除第二线路层222之外的其他所有线路层,也就是说,第一电子元器件11所电连接的第二线路层222为印刷电路板20中最接近表面的线路层。
当印刷电路板20包括第一阻焊层231和第二阻焊层232时,第一盲孔H1同时贯穿第一阻焊层231。第一盲孔H1所暴露的第二线路层222为与第二阻焊层232接触的线路层,即第二阻焊层232与第二线路层222接触且第二阻焊层232覆盖第二线路层222。第二阻焊层232能够为第一盲孔H1中的第二线路层222及第一电子元器件11提供支撑。
在本申请的一个实施例中,如图8所示,第一盲孔H1贯穿除第二线路层222之外的其他线路层中的部分线路层,也就是说,第一盲孔H1除了未贯穿第二线路层222外,还未贯穿部分其他线路层。并且由于第一盲孔H1暴露第二线路层222,则第一盲孔H1未贯穿的其他线路层位于第二线路层222远离第一盲孔H1的一侧。即第一电子元器件11所电连接的第二线路层222可以为印刷电路板20中远离表面的线路层。
当印刷电路板20包括第一阻焊层231和第二阻焊层232时,第一盲孔H1同时贯穿第一阻焊层231。第一盲孔H1所暴露的第二线路层222为远离第二阻焊层232的线路层。可选地,印刷电路板20还包括第四线路层224,第四线路层224设置在第二线路层222与第二阻焊层232之间,且第一盲孔H1未贯穿第四线路层224。
需要说明的是,相邻的线路层之间均设置有介质层,且第二线路层222与第四线路层224之间还包括第三介质层213。则第一盲孔H1也未贯穿第三介质层213。则第二阻焊层232、第四线路层224、第三介质层213的设置能够为第一盲孔H1中的第二线路层222及第一电子元器件11提供支撑。
在本申请的一个实施例中,如图1-图2、图4-图5、图7-图8所示,印刷电路板20还包括第二盲孔H2,第二盲孔H2贯穿第二线路层222和第一介质层211,且第二 盲孔H2暴露第一线路层221。印刷电路板20所包括的第二盲孔H2用于暴露第一线路层221,且第二盲孔H2的开口朝向与第一线路层221指向第二线路层222的方向相同。如图1-图2、图4-图5、图7-图8所示,第二线路层222及第一介质层211设置在第一线路层221的下方,则第二盲孔H2为印刷电路板20中朝向下方的开口。
此外,LED基板01所包括的多个电子元器件10中还包括第二电子元器件12,也就是说,LED基板01所包括的电子元器件10中的至少一个为第二电子元器件12。并且第二电子元器件12设置在第二盲孔H2内,且与第一线路层221电连接。
在本申请实施例中,第二电子元器件12朝向印刷电路板20的第一侧且实现与印刷电路板的电连接,但是第二电子元器件12具体与位于第二线路层222的第一侧的第一线路层221电连接。
则本申请所提供的LED基板01,沿LED基板01的厚度方向,第二电子元器件12与印刷电路板20电连接后所形成的结构的厚度小于第二电子元器件12的厚度与印刷电路板20的厚度之和,也就是减薄了LED基板01的厚度,同时可以保证各膜层的最低厚度要求,避免LED基板01的强度降低。
在本申请的一个实施例中,第二电子元器件12包括电阻、电容、电感及集成电路中的至少一者。其中,电阻、电容、电感等可以构成为发光二极管提供发光所需电压的驱动电路。
在本实施例的一种实现方式中,所有的第二盲孔H2内仅设置第二电子元器件12。进一步地,印刷电路板20的一侧所设置的电子元器件10全部为第二电子元器件12,则设置有第二电子元器件12的印刷电路板20的一侧不设置其他电子元器件10。
当第一电子元器件11为LED时,则印刷电路板20中,设置第一电子元器件11的第一盲孔H1可以均朝向印刷电路板20的一侧,且设置第二电子元器件12的第二盲孔H2可以均朝向印刷电路板20的另一侧。
此外,可以理解地,第二盲孔H2贯穿第二阻焊层232。在本申请中,将第二电子元器件12远离第一线路层221的表面定义为第二电子元器件12的第一表面。
如图2所示,第二阻焊层232包括开窗2320、第一介质层211包括开窗2110’,且第二线路层222在开窗2320及开窗2110’处做避让设计,则开窗2320与开窗2110’对齐形成第二盲孔H2并暴露第一线路层221。
在本申请的一个实施例中,如图1所示,第二电子元器件12的第一表面与第二阻焊层232的上表面平齐,即第二电子元器件12完全设置在第二盲孔H1内,且与第二盲孔H2平齐。则第二电子元器件12电连接在印刷电路板20上之后对应的结构的厚度仍然为印刷电路板20的厚度。
在本申请的一个实施例中,如图4所示,第二电子元器件12的第一表面低于第二阻焊层232的上表面,即第二电子元器件12完全设置在第二盲孔H2内,且低于第二盲孔H2的高度。则第二电子元器件12电连接在印刷电路板20上之后对应的结构的厚度仍然为印刷电路板20的厚度。
在本申请的一个实施例中,如图5所示,第二电子元器件12的第一表面高于第二阻焊层232的上表面,即第二电子元器件12设置在第二盲孔H2内,且部分突出于 第二盲孔H2外。则第二电子元器件12电连接在印刷电路板20上之后对应的结构的厚度为印刷电路板20的厚度与第二电子元器件12突出于第二盲孔H2的高度之和。
其中,第二电子元器件12的第一表面可以为平面结构,也可以为曲面结构。当第二电子元器件12的第一表面为曲面结构时,第二电子元器件12的第一表面与第二阻焊层232的上表面的高度关系,具体是指第二电子元器件12的第一表面的最高点与第一阻焊层231的上表面的高度关系。
在本申请的一个实施例中,如图1-图2、图4-图5及图7所示,第二盲孔H2贯穿除第一线路层221之外的其他所有线路层,也就是说,第二电子元器件12所电连接的第一线路层221为印刷电路板20中最接近表面的线路层。
当印刷电路板20包括第一阻焊层231和第二阻焊层232时,第二盲孔H2同时贯穿第二阻焊层232。第二盲孔H2所暴露的第一线路层221为与第一阻焊层231接触的线路层,即第一阻焊层231与第一线路层221接触且第一阻焊层231覆盖第一线路层221。第一阻焊层231能够为第二盲孔H2中的第一线路层221及第二电子元器件12提供支撑。
在本申请的一个实施例中,如图8所示,第二盲孔H2贯穿除第一线路层221之外的其他线路层中的部分线路层,也就是说,第二盲孔H2除了未贯穿第一线路层221外,还未贯穿部分其他线路层。并且由于第二盲孔H2暴露第一线路层221,则第二盲孔H2未贯穿的其他线路层位于第一线路层221远离第二盲孔H2的一侧。即第二电子元器件12所电连接的第一线路层221可以为印刷电路板20中远离表面的线路层。
当印刷电路板20包括第一阻焊层231和第二阻焊层232时,第二盲孔H2同时贯穿第二阻焊层232。第二盲孔H2所暴露的第一线路层221为远离第一阻焊层231的线路层。可选地,印刷电路板20还包括第三线路层223,第三线路层223设置在第一线路层221与第一阻焊层231之间,且第二盲孔H2未贯穿第三线路层223。
且第一线路层221与第三线路层223之间还包括第二介质层212。则第二盲孔H2也未贯穿第二介质层212。则第一阻焊层231、第三线路层223、第二介质层212的设置能够为第二盲孔H2中的第一线路层221及第二电子元器件12提供支撑。
图9为本申请实施例提供的一种LED基板中第一盲孔与第二盲孔的投影示意图。
如图9所示,当印刷电路板20包括设置在其相对两侧的多个第一盲孔H1和多个第二盲孔H2时,沿LED基板的厚度方向,第一盲孔H1的正投影和相邻的第二盲孔H2的正投影之间的最小距离为w,w>0.5mm。
此外,本申请实施例中第一盲孔H1及第二盲孔H2沿LED基板01厚度方向的投影可以为矩形、圆形、椭圆形中的任意一者。而第一盲孔H1及第二盲孔H2的三维形状可以为上宽下窄的漏斗形,也可以为上下等宽的桶状。
图10为本申请实施例提供的LED基板的一种制备步骤示意图,图11为本申请实施例提供的LED基板的另一种制备步骤示意图。
本申请还提供一种LED基板01的制备方法,请参考图10及图11,该制备方法用于制备上述任意一个实施例提供的LED基板01。该制备方法具体包括:
S11:在第一介质层211的相对两侧制备图形化的第一线路层221和第二线路层 222,
其中,第一线路层221所在膜层包括开窗2210。
该步骤S11具体包括:
S111:在第一介质层211的相对两侧分别贴附第一线路层221和第二线路层222。具体可以采用压膜工艺实现第一线路层221、第二线路层222与第一介质层211的贴合。
S112:对第一线路层221和第二线路层222进行刻蚀形成图形化的第一线路层221和图形化的第二线路层222。具体刻蚀工艺可以为湿法刻蚀,也可以为干法刻蚀。
S12:在第一线路层221远离第一介质层211的一侧制备图形化的第一阻焊层231,在第二线路层222远离第一介质层211的一侧制备图形化的第二阻焊层232。
其中,第一阻焊层231包括开窗2310,且第一阻焊层231所包括的开窗2310与第一线路层221所在膜层包括的开窗2210沿LED基板01的厚度方向至少部分对齐。
该步骤S12具体包括:
S121:在第一线路层221远离第一介质层211的一侧制备第一阻焊层231、在第二线路层222远离第一介质层211的一侧制备第二阻焊层232。具体可以采用丝网印刷或者喷涂工艺在第一线路层221和第二线路层222的两侧制备第一阻焊层231和第二阻焊层232。
S122:对第一阻焊层231和第二阻焊层232进行刻蚀形成图形化的第一阻焊层231和第二阻焊层232。具体刻蚀工艺可以为湿法刻蚀,也可以为干法刻蚀。
S13:对第一阻焊层231的开窗2310和第一线路层221的开窗2210所共同暴露的第一介质层211进行刻蚀形成第一介质层的开窗2110;且第一介质层211的开窗2110与第一阻焊层231的开窗2310、第一线路层221的开窗2210沿LED基板01的厚度方向至少部分对齐,形成暴露第二线路层222的第一盲孔H1。
S14:将第一电子元器件11设置在第一盲孔H1内且与第一盲孔H1所暴露的第二线路层222电连接。具体地,第一电子元器件11可以与第二线路层222通过焊盘100焊接。
需要说明的是,当LED基板01还包括第二电子元器件12且第二电子元器件12设置在第二盲孔H2内时,LED基板01的制备方法还包括:
在步骤S112中对第一线路层221和第二线路层222进行刻蚀形成图形化的第一线路层221和图形化的第二线路层222时,使第二线路层222所在膜层包括开窗2220。
在步骤S122中对第一阻焊层231和第二阻焊层232进行刻蚀形成图形化的第一阻焊层231和第二阻焊层232时,使第二阻焊层232包括开窗2320。且第二阻焊层232所包括的开窗2320与第二线路层222所在膜层包括的开窗2220沿LED基板01的厚度方向至少部分对齐。
在步骤S13中,同时对第二阻焊层232的开窗2320和第二线路层222的开窗2220所共同暴露的第一介质层211进行刻蚀形成开窗2110’;且第一介质层211的开窗2110’与第二阻焊层232的开窗2330、第二线路层222的开窗2220沿LED基板01的厚度方向至少部分对齐,形成暴露第一线路层221的第二盲孔H2。
在步骤S14中,将第二电子元器件12设置在第二盲孔H2内且与第二盲孔H2所暴露的第一线路层221电连接。具体地,第二电子元器件12可以与第一线路层221通过焊盘100焊接。
需要说明的是,在对第一介质层211进行刻蚀的方式可以有两种具体实现方式。
在本实施例的一种实现方式中,如图10所示,对第一介质层211的刻蚀步骤发生在对第一阻焊层231刻蚀之后,且只经过一次刻蚀。该方式可以使得第一阻焊层231及第二阻焊层232的制备过程中,治具可以被有效支撑。
在本实施例的另一种实现方式中,如图11所示,在步骤S11之前,对第一介质层211进行半刻,即对第一介质层211对应第一盲孔H1和/或第二盲孔H2的位置进行初步刻蚀,使得第一介质层211在该些位置处的厚度减薄。并且在对第一阻焊层231刻蚀之后进一步对第一介质层211进行全刻,即在对应第一盲孔H1和/或第二盲孔H2的位置进行进一步刻蚀,形成开窗2110和/或开窗2110’。该方式可以使得第一阻焊层231及第二阻焊层232的制备过程中,治具可被有效支撑;且在第二次对第一介质层211进行刻蚀时,可以快速完成刻蚀,避免刻蚀过程中造成其他膜层过刻。
图12为本申请实施例中提供的一种直下式背光模组的剖面图。
如图12所示,本申请实施例提供的直下式背光模组001包括LED基板01及光学模组02,其中,光学模组02设置在直下式背光模组001的出光面一侧,且两者沿沿直下式背光模组001的厚度方向层叠设置。LED基板01可以发光,光学模组02用于对LED基板01发出的光进行的传导,直下式背光模组001从而可以提供亮度、色度、均一性等满足要求的背光。光学模组02包括增亮膜、扩散膜、反射膜、量子点膜中的至少一者。
具体地,光学模组02包括硅胶保护层021,硅胶保护层021设置在LED基板01上,并且完全覆盖LED。硅胶保护层021可以对LED发出的光进行扩散,此外,硅胶保护层021还可以保护LED。需要说明的是,为了保证经硅胶保护层021扩散后的光的强度均一性较好以及位于硅胶保护层021上的其他膜层的平整性更好,硅胶保护层021的出光侧应具备平整的表面。因此,在LED基板01的上方设置硅胶保护层021的具体方式可以为贴附硅胶保护层膜片,然后对硅胶保护层膜片进行热固化形成硅胶保护层021,该方式可以使硅胶保护层021紧密地包裹住LED,并且具备平整的出光表面。需要说明的是,硅胶保护层021也可以设置在第一盲孔H1内,此外,硅胶保护层021也可以仅设置在第一盲孔H1而不外延至第一盲孔H1外,则实现对LED进行保护的同时,进一步减薄直下式背光模组001的厚度。
此外,直下式背光模组001的光学模组02还可以包括其他结构。
如图12所示,光学模组02还可以包括扩散片022,扩散片022可以设置在硅胶保护层021的出光面一侧,用于对光进行进一步地扩散。
如图12所示,光学模组02还可以包括量子点转换层023。需要说明的是,LED可以为发白光的发光二极管,也可以为发其他颜色光的发光二极管。当LED采用发非白色光的发光二极管时,光学模组02通常还包括量子点转换层023,以将LED发出的光转换为白光。例如,LED可以为发光效率高及发光强度优异的蓝光发光二极管, 则光学模组02可以包括蓝色量子点转换层,以将蓝光发光二极管发出的蓝光转换为白光。通常,量子点转换层023设置在扩散片022或硅胶保护层021的出光面一侧。
如图3所示,光学模组02还可以包括增亮膜024,增亮膜024上的棱镜对光有汇聚作用,从而使得直下式背光模组001发出的光基本垂直出射,并且增加出光强度。
进一步地,光学模组02还可以包括量子点加厚膜025,经过量子点加厚膜025的光线的色域更广,因此在直下式背光模组001中设置量子点加厚膜025可以使得其提供的背光具备更广的色域。另外,增亮膜024与量子点加厚膜025可以设置在靠近直下式背光模组001的出光面一侧,并且两者的位置可以互换。
图13为本申请实施例提供的一种显示装置的示意图。
本申请提供一种显示装置,包括如上述实施例提供的直下式背光模组001以及显示面板002,其中,显示面板002设置在直下式背光模组001的出光侧,直下式背光模组001产生的光到达显示面板002为显示面板002提供背光。此外,显示装置还可以包括背板003、前框004以及中框(未示出)其中,背板003用于承载直下式背光模组001,并且背板003、前框004以及中框用于将显示面板002以及直下式背光模组001进行封装。
直下式背光模组001包括印刷电路板20以及LED,具体地,LED电连接在印刷电路板20上,且朝向显示面板002出光,印刷电路板20控制LED发光从而为显示面板002提供背光。
由图13可以看出,直下式背光模组001产生的为平面光,直下式背光模组001设置在显示面板002的正下方。LED基板01面积可以小于显示面板002,例如,LED基板01的至少一侧相对于显示面板002进行了内缩。由于显示面板002包括显示区及非显示区,在对显示装置进行封装的过程中,前框004会遮挡非显示区,显示区用于进行发光显示。因此,直下式背光模组001最终的出光面应该与显示面板002的显示区在显示装置厚度方向的垂直投影基本重合。此外,由于LED基板01发出的光经过光学模组02的扩散、转换、增强等过程后才会从直下式背光模组001出射,并到达显示面板002为其提供背光,因此,LED基板01的面积可以略小于显示面板002的显示区AA的面积,只要保证直下式背光模组001最终的出光面的面积与显示区AA的面积基本相同即可。当然LED基板01的面积也可以与的显示区的面积基板相同。
在本申请的一个实施例中,显示面板002可以为液晶显示面板,由于液晶显示面板为被动式发光,LED基板01为显示面板002提供显示所需的光线。
在本申请的一个实施例中,显示面板002也可以为有机发光显示面板,虽然有机发光显示面板为主动式发光,但是为了提高包括有机发光显示面板的显示装置的色彩纯度,LED基板01为显示装置提供不同颜色的光,并且LED基板01的发光二极管可以与显示面板002的像素一一对应。具体地,发光二极管的发光颜色与显示面板002中对应的像素的发光颜色相同,从而提升显示装置显示的色彩纯度。
图14为本申请实施例提供的一种显示装置的示意图,根据应用场景不同,如图14所示,本申请实施例提供的显示装置可以为电视机,此外,本申请实施例提供的显示装置也可以为电脑、平板、手机等装置。需要说明的是,由于不同应用场景下,显 示装置的尺寸不同,且观看距离不同,因此,LED基板01中LED的尺寸与密度也不同。
当本申请实施例提供的显示装置为电视机时,由于人眼观看的距离较远,因此,LED的尺寸可以做的相对较大,工艺较为简单;LED的密度也可以较小,降低功耗,节约成本。
本申请实施例提供的显示装置所用的背光模组为直下式背光模组,由于该直下式背光模组中LED基板的厚度可以明显减小,因此可以降低显示装置的厚度,且保证背光模组的强度。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种LED基板,其特征在于,包括:
    第一电子元器件;
    印刷电路板,所述印刷电路板包括第一介质层、第一线路层及第二线路层,所述第一介质层设置在所述第一线路层与所述第二线路层之间;
    其中,所述印刷电路板包括第一盲孔,所述第一盲孔贯穿所述第一线路层和所述第一介质层,且所述第一盲孔暴露所述第二线路层;所述第一电子元器件设置在所述第一盲孔内,且与所述第二线路层电连接。
  2. 根据权利要求1所述的LED基板,其特征在于,所述第一电子元器件为LED。
  3. 根据权利要求2所述的LED基板,其特征在于,所述印刷电路板还包括第一阻焊层,所述第一阻焊层设置在所述第一线路层远离所述第一介质层的一侧,且所述第一盲孔贯穿所述第一阻焊层;
    其中,在所述第一盲孔中,所述LED的出光面位于所述第一阻焊层的上表面之下。
  4. 根据权利要求3所述的LED基板,其特征在于,在所述第一盲孔中,所述LED所发射的最大出射角度的光的传播路径与该所述第一盲孔的上边缘无交叠。
  5. 根据权利要求1所述的LED基板,其特征在于,所述LED基板还包括第二电子元器件;
    其中,所述印刷电路板还包括第二盲孔,所述第二盲孔贯穿所述第二线路层和所述第一介质层,且所述第二盲孔暴露所述第一线路层;所述第二电子元器件设置在所述第二盲孔内,且与所述第一线路层电连接。
  6. 根据权利要求5所述的LED基板,其特征在于,所述第二电子元器件包括电阻、电容、电感及集成电路中的至少一者。
  7. 根据权利要求5所述的LED基板,其特征在于,沿所述LED基板的厚度方向,所述第一盲孔的正投影与相邻的所述第二盲孔的正投影之间的最小距离为w,w≥0.5mm。
  8. 根据权利要求1或5所述的LED基板,其特征在于,所述印刷电路板还包括第一阻焊层,所述第一阻焊层与所述第一线路层接触,且所述第一阻焊层覆盖所述第一线路层。
  9. 根据权利要求5所述的LED基板,其特征在于,所述印刷电路板还包括第三线路层及第一阻焊层,所述第三线路层设置在所述第一线路层与所述第一阻焊层之间,且所述第二盲孔未贯穿所述第三线路层。
  10. 根据权利要求1所述的LED基板,其特征在于,所述印刷电路板还包括第二阻焊层,所述第二阻焊层与所述第二线路层接触,且所述第二阻焊层覆盖所述第二线路层。
  11. 根据权利要求1所述的LED基板,其特征在于,所述印刷电路板还包括第四线路层及第二阻焊层,所述第四线路层设置在所述第二线路层与所述第二阻焊层之间,所述第一盲孔未贯穿所述第四线路层。
  12. 一种直下式背光模组,其特征在于,包括如权利要求1-11任意一项所述的LED 基板。
  13. 根据权利要求12所述的直下式背光模组,其特征在于,所述直下式背光模组还包括光学模组,所述光学模组设置在所述LED基板的出光面一侧,且与所述LED基板层叠设置;
    所述光学模组包括增亮膜、扩散膜、反射膜、量子点膜中的至少一者。
  14. 一种显示装置,其特征在于,如权利要求12-13任意一项所述的直下式背光模组。
  15. 一种LED基板的制备方法,其特征在于,用于制备权利要求1-11任意一项所述的LED基板,包括:
    在第一介质层的相对两侧制备图形化的第一线路层和第二线路层,其中,所述第一线路层所在膜层包括开窗;
    对所述第一线路层的开窗所暴露的所述第一介质层进行刻蚀形成所述第一介质层的开窗;所述第一介质层的开窗与所述第一线路层的开窗沿所述LED基板的厚度方向至少部分对齐,形成暴露所述第二线路层的第一盲孔;
    将所述第一电子元器件设置在所述第一盲孔内,且所述第一电子元器件与所述第一盲孔所暴露的第二线路层电连接。
  16. 根据权利要求15所述的制备方法,其特征在于,所述在第一介质层的相对两侧制备图形化的第一线路层和第二线路层之前还包括:
    对所述第一介质层对应所述第一盲孔的位置进行初步刻蚀,使得所述第一介质层中对应所述第一盲孔的位置处的厚度减薄。
PCT/CN2022/113311 2021-10-25 2022-08-18 Led基板、直下式背光模组及显示装置 WO2023071444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122576413.2 2021-10-25
CN202122576413.2U CN217238564U (zh) 2021-10-25 2021-10-25 Led基板、直下式背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2023071444A1 true WO2023071444A1 (zh) 2023-05-04

Family

ID=82817959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113311 WO2023071444A1 (zh) 2021-10-25 2022-08-18 Led基板、直下式背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN217238564U (zh)
WO (1) WO2023071444A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217238564U (zh) * 2021-10-25 2022-08-19 华为技术有限公司 Led基板、直下式背光模组及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734699A (zh) * 2011-04-14 2012-10-17 乐金显示有限公司 背光单元和包括所述背光单元的液晶显示器件
US20150083476A1 (en) * 2013-09-25 2015-03-26 Samsung Electro-Mechanics Co., Ltd. Device embedded printed circuit board and method of manufacturing the same
US20150124416A1 (en) * 2013-11-05 2015-05-07 Sunasic Technologies, Inc. Printed circuit board having electronic component embedded and manufacturing method thereof
CN110730562A (zh) * 2019-10-12 2020-01-24 Oppo(重庆)智能科技有限公司 电路基板、电路板和显示屏组件
CN111900154A (zh) * 2020-08-07 2020-11-06 京东方科技集团股份有限公司 基板、其制作方法、显示面板及显示装置
CN213071119U (zh) * 2020-08-27 2021-04-27 珠海越亚半导体股份有限公司 具有贯穿开窗的基板及器件封装结构
CN113270437A (zh) * 2020-02-17 2021-08-17 京东方科技集团股份有限公司 背板及其制备方法、显示装置
CN217238564U (zh) * 2021-10-25 2022-08-19 华为技术有限公司 Led基板、直下式背光模组及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734699A (zh) * 2011-04-14 2012-10-17 乐金显示有限公司 背光单元和包括所述背光单元的液晶显示器件
US20150083476A1 (en) * 2013-09-25 2015-03-26 Samsung Electro-Mechanics Co., Ltd. Device embedded printed circuit board and method of manufacturing the same
US20150124416A1 (en) * 2013-11-05 2015-05-07 Sunasic Technologies, Inc. Printed circuit board having electronic component embedded and manufacturing method thereof
CN110730562A (zh) * 2019-10-12 2020-01-24 Oppo(重庆)智能科技有限公司 电路基板、电路板和显示屏组件
CN113270437A (zh) * 2020-02-17 2021-08-17 京东方科技集团股份有限公司 背板及其制备方法、显示装置
CN111900154A (zh) * 2020-08-07 2020-11-06 京东方科技集团股份有限公司 基板、其制作方法、显示面板及显示装置
CN213071119U (zh) * 2020-08-27 2021-04-27 珠海越亚半导体股份有限公司 具有贯穿开窗的基板及器件封装结构
CN217238564U (zh) * 2021-10-25 2022-08-19 华为技术有限公司 Led基板、直下式背光模组及显示装置

Also Published As

Publication number Publication date
CN217238564U (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
JP5306481B2 (ja) Led基板、バックライトユニットおよび液晶表示装置
JP5258978B2 (ja) Led基板、バックライトユニットおよび液晶表示装置
EP3667405B1 (en) Backlight unit and liquid crystal display including the same
US8740409B2 (en) Light-emitting-element mounting package, light emitting device, backlight, and liquid crystal display device
US10401556B2 (en) Light source module and backlight unit having the same
KR20070050159A (ko) 고휘도 발광 다이오드 및 이를 이용한 액정 표시 장치
CN113495384B (zh) 一种直下式背光模组、显示装置及电路板的制作方法
KR20090002352A (ko) 액정표시장치
EP2068378A2 (en) LED backlight for a liquid crystal display device
KR20080051236A (ko) 엘이디 패키지 및 그 엘이디 패키지를 포함하는 광원유닛및 백라이트 유닛
KR20130005792A (ko) 백라이트 유닛
WO2021218478A1 (zh) 一种显示装置
KR20100077821A (ko) 엘이디 백라이트용 연성인쇄회로기판 및 이의 제조방법
JP4937940B2 (ja) Ledを具備したバックライトユニット及びその製造方法
WO2023071444A1 (zh) Led基板、直下式背光模组及显示装置
JP5276990B2 (ja) 発光装置および面発光装置
CN110908178A (zh) 照明装置以及显示装置
KR20150035399A (ko) 광원 모듈과 제조방법 및 이를 구비한 백라이트 유닛
PH12019000058A1 (en) Display device
JP6131068B2 (ja) 表示装置
KR20120014422A (ko) 백라이트 유닛 및 이를 이용한 액정표시장치
JP4912844B2 (ja) 発光装置、およびこれを用いた表示装置
JP2009267279A (ja) 発光装置、表示装置
KR20150086759A (ko) 광원 모듈과 이를 구비한 백라이트 유닛 및 조명 장치
KR20150051120A (ko) 광원 모듈 및 이를 구비한 백라이트 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885344

Country of ref document: EP

Kind code of ref document: A1