WO2023071289A1 - 一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用 - Google Patents

一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用 Download PDF

Info

Publication number
WO2023071289A1
WO2023071289A1 PCT/CN2022/104550 CN2022104550W WO2023071289A1 WO 2023071289 A1 WO2023071289 A1 WO 2023071289A1 CN 2022104550 W CN2022104550 W CN 2022104550W WO 2023071289 A1 WO2023071289 A1 WO 2023071289A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic
preparation
fluorescent glass
fluorescent
Prior art date
Application number
PCT/CN2022/104550
Other languages
English (en)
French (fr)
Inventor
张佳新
聂全义
赵丽佳
虞勇
杜震宇
郑京京
Original Assignee
爱迪特(秦皇岛)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱迪特(秦皇岛)科技股份有限公司 filed Critical 爱迪特(秦皇岛)科技股份有限公司
Priority to US17/910,462 priority Critical patent/US20240199471A1/en
Priority to EP22761934.3A priority patent/EP4194415A4/en
Publication of WO2023071289A1 publication Critical patent/WO2023071289A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/04Opacifiers, e.g. fluorides or phosphates; Pigments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/1045Forming solid beads by bringing hot glass in contact with a liquid, e.g. shattering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the invention belongs to the technical field of glass ceramics, and in particular relates to a fluorescent glass ceramic with high transparency, a preparation method and application thereof.
  • Lithium disilicate glass-ceramic occupies a very important position in the chairside restoration system due to its excellent translucency, good mechanical properties and inherent characteristics of being easily etched by HF, and it is rapidly becoming the leading The material of choice for dental restorations.
  • lithium disilicate glass-ceramics since the crystal structure of lithium disilicate glass-ceramics is distributed in a state of three-dimensional interweaving and grain interlocking, it is difficult to process it with a diamond bur. Therefore, through continuous exploration, researchers have obtained lithium metasilicate glass ceramics that are easy to process.
  • CN106277798A discloses a lithium metasilicate glass ceramic and a preparation method thereof, comprising the following steps: (a) preparing a matrix glass liquid; (b) pouring the matrix glass liquid into a mold, and cooling to obtain a matrix glass body; (c) The matrix glass body is placed in a heating device for heat treatment.
  • the process parameters of the heat treatment include: raising the temperature to 450-600° C. at a heating rate of 5-20° C./min and keeping the temperature for 20-150 minutes. After the heat treatment, it is cooled with the furnace to obtain lithium metasilicate glass ceramics.
  • the lithium metasilicate glass-ceramic obtained by this method does not have a fluorescent effect, making it difficult to achieve a truly differentiated product.
  • lithium metasilicate glass-ceramic is prepared by high-temperature melting, and the rare earth elements with fluorescent effect are very easy to volatilize at high temperatures above 1400 ° C and change in value under oxidation conditions, so it is difficult to make them at specific wavelengths.
  • the desired fluorescence properties are excited under ultraviolet light.
  • US10131569B2 introduces a reducing agent or a reducing atmosphere to control the price change of rare earth elements in order to achieve the fluorescent performance of glass ceramics.
  • a reducing agent or a reducing atmosphere to control the price change of rare earth elements in order to achieve the fluorescent performance of glass ceramics.
  • the object of the present invention is to provide a fluorescent glass ceramic with high transparency and its preparation method and application.
  • the fluorescent glass ceramic forms a lithium metasilicate glass with fluorescent effect, high transparency and easy processing by optimizing the proportion Ceramics;
  • the preparation method adopts conventional melting casting method or vacuum sintering method, without special control of reducing atmosphere or introduction of reducing agent, which greatly optimizes the processability and transparency of lithium metasilicate glass ceramics, and makes it resistant to ultraviolet light exhibited excellent fluorescence properties.
  • the present invention provides a fluorescent glass-ceramic with high transparency.
  • the raw material composition of the fluorescent glass-ceramic includes SiO 2 63-70wt%, such as 63wt%, 65wt%, 67wt% or 70wt%; Li 2 O 13 ⁇ 16wt%, such as 13wt%, 14wt%, 15wt% or 16wt%, etc.; Al 2 O 3 1 ⁇ 6wt%, such as 1wt%, 2wt%, 3wt%, 4wt%, 5wt% or 6wt%, etc.; K 2 O 1 ⁇ 10wt%, such as 1wt%, 3wt%, 5wt%, 7wt% or 10wt%, etc.; P 2 O 5 2 ⁇ 6wt%, such as 2wt%, 3wt%, 4wt%, 5wt% or 6wt%, etc.; CeO 2 0.5 ⁇ 3.5wt%, such as 0.5wt%, 1wt%
  • the main crystal phase of the fluorescent glass ceramic is lithium metasilicate crystal
  • the shape of the crystals is layered or plate-like;
  • the grain size of the crystal is 0.1-1.5 ⁇ m, such as 0.1 ⁇ m, 0.3 ⁇ m, 0.5 ⁇ m, 0.7 ⁇ m, 0.9 ⁇ m, 1.1 ⁇ m, 1.3 ⁇ m or 1.5 ⁇ m, etc., but not limited to the listed values, the values Other unrecited values within the range also apply.
  • the fluorescent glass-ceramic is obtained by optimizing the composition ratio of raw materials, and the obtained lithium silicate glass-ceramic has the characteristics of fluorescent effect, high transparency and easy processing, which is beneficial to mass production.
  • the obtained glass-ceramics has excellent fluorescent properties under ultraviolet light, mainly because the ratio of Ce 4+ ions in the matrix glass to be partially or completely converted into Ce 3+ ions can be well controlled, and formed Ce 3+ ions are prone to 4f-5d electric dipole interactions, which makes lithium metasilicate glass ceramics show an excellent fluorescence performance.
  • the raw materials of glass ceramics often contain pentavalent/hexavalent metal oxides (i.e.
  • Me V 2 O 5 or Me VI O 3 Me 5+ /Me 6+ ions are easily It is reduced to Me 4+ ions and/or Me 3+ ions, resulting in the conversion of Ce 3+ ions into Ce 4+ ions, and too much Ce 4+ will damage the fluorescence effect of glass ceramics.
  • the present invention solves this problem well by optimizing the composition and proportion of raw materials, ensures the toning effect and avoids the influence of further oxidation of Ce 3+ ions in the glass ceramics, and ensures that it has a good fluorescent effect.
  • the lanthanide oxides with atomic numbers of 59-71 can assist in coloring the glass ceramics.
  • the lithium metasilicate glass-ceramic is extremely easy to process, mainly because: 1) layered or plate-shaped crystals have a good dissociation surface, and are easily ground by a bur during processing and are not easily processed. Edge collapse; 2) The number of crystals distributed per unit volume is large, which further increases the interface between the glass matrix and crystals and improves the processing performance.
  • the raw material composition of the fluorescent glass ceramics includes SiO 2 64-66wt%, such as 64wt%, 65wt% or 66wt%, etc.; Li 2 O 14-15wt%, such as 14wt%, 14.5wt% or 15wt%, etc.; Al 2 O 3 2 ⁇ 4wt%, such as 2wt%, 3wt% or 4wt%, etc.; K 2 O 2 ⁇ 5wt%, such as 2wt%, 3wt%, 4wt% or 5wt%, etc.; P 2 O 5 3 ⁇ 4wt%, such as 3wt%, 3.5wt% or 4wt%, etc.; CeO 2 1.5 ⁇ 3.0wt%, such as 1.5wt%, 2.0wt%, 2.5wt% or 3.0wt%, etc.; For example, 1wt%, 2wt% or 3wt%, etc.; 1.5-3.0wt% of lanthanide oxides with SiO 2 64-66wt%, such
  • the additives include monovalent metal oxides and/or divalent metal oxides.
  • the monovalent metal oxide includes any one or a combination of at least two of Na 2 O, Rb 2 O and Cs 2 O.
  • Typical but non-limiting examples of the combination include: Na 2 O and Cs A combination of 2 O, a combination of Na 2 O and Rb 2 O, a combination of Na 2 O, Rb 2 O and Cs 2 O, etc.
  • the divalent metal oxide includes any one or a combination of at least two of MgO, SrO, ZnO and CaO.
  • Typical but non-limiting examples of the combination include: a combination of MgO and CaO, MgO, SrO Combination with ZnO, combination of SrO, ZnO and CaO, etc.
  • the lanthanide oxide with an atomic number of 59-71 includes any one of Nd 2 O 3 , Tb 2 O 3 , Pr 6 O 11 , Eu 2 O 3 and Er 2 O 3 one or at least two combinations, the typical but non-limiting examples of the combination are: the combination of Nd 2 O 3 and Tb 2 O 3 , the combination of Nd 2 O 3 , Pr 6 O 11 and Eu 2 O 3 , the combination of Eu 2 Combinations of O 3 and Er 2 O 3 etc.
  • the colorant includes any one or a combination of at least two of TiO 2 , CuO, MnO and SeO 2 , typical but non-limiting examples of the combination include: a combination of TiO 2 and CuO, TiO 2 , Combination of CuO and MnO, combination of CuO, MnO and SeO2 , etc.
  • the optical transmittance of the 1 mm thick sample of the fluorescent glass ceramic at 550 nm is 40-90%, such as 40%, 45%, 50%, 55%, 60%, 65%, 70% %, 75%, 80%, 85% or 90%, etc., but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the content of glass matrix in glass ceramics is more, and the content of lithium metasilicate crystal is far less than glass matrix, this makes glass ceramics have higher light transmittance;
  • the refraction of lithium metasilicate crystal The factor (1.57) is relatively close to the refraction factor (1.60) of the glass matrix, and the difference is only 0.03, which greatly reduces the scattering of light, thereby effectively improving the light transmittance of glass ceramics.
  • the present invention provides a method for preparing the above-mentioned fluorescent glass-ceramic, the preparation method comprising the following steps:
  • step (2) performing secondary melting and forming annealing treatment on the glass slag obtained in step (1) successively to obtain the first matrix glass;
  • step (1) Or the glass slag obtained in step (1) is ground, dry pressed and vacuum sintered in sequence to obtain the second base glass;
  • step (3) The first base glass or the second base glass obtained in step (2) is sequentially subjected to the first heat treatment and the second heat treatment to obtain a fluorescent glass-ceramic with high transparency.
  • the preparation method adopts the conventional melting casting method or vacuum sintering method, and by optimizing the formula composition and heat treatment process, the rare earth element can be stably maintained at high temperature without controlling the reducing atmosphere or introducing a reducing agent.
  • the state balance greatly improves the processability, high transparency and fluorescence performance of lithium metasilicate glass ceramics under ultraviolet light, while reducing the difficulty of the process.
  • a large number of crystal nuclei are formed in the glass matrix through the first heat treatment of the base glass; and then a high-transparency fluorescent glass ceramic with lithium metasilicate as the main crystal phase is formed through the second heat treatment.
  • the primary melting temperature in step (1) is 1300-1600°C, such as 1300°C, 1350°C, 1400°C, 1450°C, 1500°C, 1550°C or 1600°C, etc., but not only Limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the primary melting time in step (1) is 1 to 6 hours, such as 1 hour, 2 hours, 3 hours, 4 hours, 5 hours or 6 hours, etc., but it is not limited to the values listed, and other values not listed within the value range The same applies.
  • the secondary melting temperature in step (2) is 1300-1600°C, such as 1300°C, 1350°C, 1400°C, 1450°C, 1500°C, 1550°C or 1600°C, etc., but not Not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the secondary melting time in step (2) is 1 to 6 hours, such as 1 hour, 2 hours, 3 hours, 4 hours, 5 hours or 6 hours, etc., but it is not limited to the listed values. Numerical values also apply.
  • the forming and annealing step in step (2) includes: pouring the base molten glass obtained after secondary melting into the first mold for annealing to obtain the first base glass.
  • the preheating temperature of the first mold is 200-500°C, such as 200°C, 250°C, 300°C, 350°C, 400°C, 450°C or 500°C, etc., but not limited to the listed values, Other unrecited values within this value range are also applicable.
  • the annealing time is 0.5-24h, such as 0.5h, 2h, 4h, 8h, 12h, 16h, 20h, 22h or 24h, etc., but it is not limited to the listed values, other unlisted values within the range Numerical values also apply.
  • cooling to room temperature after the forming annealing treatment Preferably, cooling to room temperature after the forming annealing treatment.
  • the glass powder with a particle size of 0.2-50 ⁇ m is obtained after grinding in step (2), such as 0.2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m, etc., but not limited to the above Numerical values listed, other unlisted numerical values within the numerical range are also applicable.
  • the step of dry pressing in step (2) includes: placing the ground glass powder in a second mold for dry pressing to obtain a green body.
  • the pressure of the dry pressure in step (2) is 5-50MPa, such as 5MPa, 10MPa, 20MPa, 30MPa, 40MPa or 50MPa, etc., but not limited to the listed values, other unlisted values within this range The same applies.
  • the vacuum degree of vacuum sintering in step (2) is 100 to 3000Pa, such as 100Pa, 300Pa, 500Pa, 700Pa, 800Pa, 1000Pa, 1500Pa, 2000Pa or 3000Pa, etc., but it is not limited to the listed values. Other unrecited values within the range also apply.
  • the vacuum sintering temperature in step (2) is 900-1200°C, such as 900°C, 1000°C, 1100°C or 1200°C, etc., but it is not limited to the listed values, other unlisted values within this range Numerical values also apply.
  • the vacuum sintering time in step (2) is 100 to 240 minutes, such as 100 minutes, 150 minutes, 180 minutes, 200 minutes, 210 minutes, 230 minutes or 240 minutes, etc., but it is not limited to the listed values. values are also applicable.
  • the temperature of the first heat treatment in step (3) is 450-580°C, such as 450°C, 480°C, 500°C, 520°C, 540°C, 560°C, 570°C or 580°C, etc. , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the time of the first heat treatment in step (3) is 1-48h, such as 1h, 5h, 10h, 15h, 20h, 25h, 30h, 35h, 40h or 48h, etc., but not limited to the listed values, Other unrecited values within this value range are also applicable.
  • the temperature of the second heat treatment in step (3) is 600-700°C, such as 600°C, 620°C, 640°C, 660°C, 680°C or 700°C, etc., but not limited to the listed values, the Other unrecited values within the range of values also apply.
  • the time for the second heat treatment in step (3) is 10 to 240 minutes, such as 10 minutes, 30 minutes, 60 minutes, 120 minutes, 180 minutes, 200 minutes or 240 minutes, etc., but it is not limited to the listed values. The listed values also apply.
  • the present invention has the following beneficial effects:
  • the fluorescent glass-ceramic of the present invention does not contain pentavalent/hexavalent metal oxides.
  • Fig. 1 is the fluorescent spectrogram of the fluorescent glass-ceramic that the embodiment of the present invention 1 obtains;
  • Fig. 2 is the microscopic topography figure (SEM) of the fluorescent glass-ceramic that the embodiment of the present invention 1 obtains;
  • Fig. 3 is the X-ray diffraction pattern (XRD) of the fluorescent glass-ceramic that the embodiment of the present invention 1 obtains;
  • Fig. 4 is a graph showing the light transmittance curve of the fluorescent glass ceramic obtained in Example 1 of the present invention in the range of 370nm-900nm visible light.
  • the raw material composition of the fluorescent glass ceramics prepared in the following examples is shown in Table 1, and the contents of each component are all in mass percent.
  • Example Example 1 Example 2 Example 3 Example 4 SiO 2 65 66 64 65 Li 2 O 14.6 15.6 14.4 15.5 K 2 O 3.6 3.8 4.2 4.7 Al 2 O 3 3.8 3.6 3.8 3.0 P 2 O 5 3.5 3.8 3.8 3.4 CeO2 2.8 3.2 2.8 2.8
  • This embodiment provides a method for preparing a fluorescent glass-ceramic with high transparency.
  • the raw material composition of the fluorescent glass-ceramic is shown in Table 1.
  • the preparation method of described fluorescent glass-ceramic comprises the following steps:
  • step (2) Put the glass slag material obtained in step (1) into the crucible again for secondary melting at 1450° C., keep the temperature for 6 hours, and obtain molten glass;
  • step (3) Heat the first base glass obtained in step (2) at 500° C. for 90 minutes; then hold it at 660° C. for 120 minutes to obtain a fluorescent glass-ceramic with high transparency.
  • the emission spectrum shows the maximum width value at 430nm, which is mainly due to the interaction between the electric dipoles of Ce 3+ ions that are very prone to 4f-5d, which shows Fluorescence is generally perceived by the human eye as blue-white fluorescence.
  • the main crystal phase of the product is lithium metasilicate (Li 2 SiO 3 ).
  • This embodiment provides a method for preparing a fluorescent glass-ceramic with high transparency, and the raw material composition of the fluorescent glass-ceramic is shown in Table 1.
  • the preparation method of described fluorescent glass-ceramic comprises the following steps:
  • step (2) Grind the glass slag obtained in step (1) into a glass powder with a particle size of 20 ⁇ m, place it in the second mold and dry press it into a green body with a pressure of 10 MPa, and further place the green body in a vacuum sintering furnace Sintering is carried out in a sintering chamber, wherein the sintering vacuum degree is 2000Pa, the sintering temperature is 1100°C, and the sintering time is 120min to obtain the second base glass;
  • step (3) Heat the second base glass obtained in step (2) at 530° C. for 100 minutes; then hold it at 640° C. for 140 minutes to obtain a fluorescent glass-ceramic with high transparency.
  • This embodiment provides a method for preparing a fluorescent glass-ceramic with high transparency.
  • the raw material composition of the fluorescent glass-ceramic is shown in Table 1.
  • the preparation method of described fluorescent glass-ceramic comprises the following steps:
  • step (2) Place the glass slag material obtained in step (1) in the crucible again for secondary melting at 1550° C., keep the temperature for 4 hours, and obtain molten glass;
  • step (3) Heat the first base glass obtained in step (2) at 570° C. for 150 minutes; then hold it at 650° C. for 120 minutes to obtain a fluorescent glass-ceramic with high transparency.
  • This embodiment provides a method for preparing a fluorescent glass-ceramic with high transparency.
  • the raw material composition of the fluorescent glass-ceramic is shown in Table 1.
  • the preparation method of described fluorescent glass-ceramic comprises the following steps:
  • step (2) Grind the glass slag obtained in step (1) into a glass powder with a particle size of 40 ⁇ m, place it in the second mold and dry press it into a green body with a pressure of 25 MPa, and further place the green body in a vacuum sintering furnace Sintering is carried out in a sintering chamber, wherein the sintering vacuum degree is 2400Pa, the sintering temperature is 1150°C, and the sintering time is 160min to obtain the second base glass;
  • step (3) Heat the second base glass obtained in step (2) at 560° C. for 160 minutes; then hold it at 630° C. for 150 minutes to obtain a fluorescent glass-ceramic with high transparency.
  • This embodiment provides a method for preparing glass ceramics, the raw material composition of the glass ceramics is the same as that of the fluorescent glass ceramics in Embodiment 1.
  • the preparation method refers to the preparation method in Example 1, the only difference is that only the first heat treatment is carried out in step (3), and the second heat treatment is not carried out.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment provides a method for preparing glass ceramics, the raw material composition of the glass ceramics is the same as that of the fluorescent glass ceramics in Embodiment 1.
  • the preparation method refers to the preparation method in Example 1, the only difference is that the temperature for the second heat treatment in step (3) is 750°C.
  • T 1 and t 1 are the temperature and time of the first heat treatment, respectively; T 2 and t 2 are the temperature and time of the second heat treatment, respectively.
  • Vickers hardness according to the ISO14705:2008 international standard, use a Vickers hardness tester, apply a load of 1 kilogram force (1kgf), test 15 sets of data, and obtain the average Vickers hardness of the sample.
  • the prepared glass ceramics are very easy to process, and no chipping occurs.
  • the high glass phase content and similar refractive index also make the light transmittance of the prepared glass ceramics as high as 74.43% at 550nm wavelength.
  • it shows a three-point bending strength of 127Mpa and a hardness of 5.70GPa, which provides a guarantee for subsequent processing and grinding.
  • the prepared glass-ceramics can exhibit blue-white fluorescence effect under ultraviolet light, exhibiting excellent aesthetic properties.
  • the prepared glass ceramics are very easy to process, and only slight chipping occurs.
  • the light transmittance of the prepared glass-ceramic at the wavelength of 550nm is as high as 70.12%. In addition, it exhibited a three-point bending strength of 115 MPa and a hardness of 5.90 GPa.
  • the prepared glass-ceramics can exhibit blue fluorescence under ultraviolet light, showing excellent aesthetic properties.
  • the prepared glass-ceramic is very easy to process, and no chipping occurs.
  • the high glass phase content and similar refractive index also make the light transmittance of the prepared glass ceramics as high as 64.65% at 550nm wavelength.
  • it exhibits a three-point bending strength of 130Mpa and a hardness of 5.50GPa, which provides a guarantee for subsequent processing and grinding.
  • the prepared glass-ceramic can exhibit strong blue-white fluorescence effect under ultraviolet light, exhibiting excellent aesthetic properties.
  • the prepared glass ceramics are very easy to process, and only slight chipping occurs.
  • the light transmittance of the prepared glass ceramics at the wavelength of 550nm is as high as 84.23%. In addition, it exhibited a three-point bending strength of 126 MPa and a hardness of 5.40 GPa.
  • the prepared glass-ceramics can exhibit blue-white fluorescence effect under ultraviolet light, exhibiting excellent aesthetic properties.
  • Example 5 As can be seen from Example 5 in Table 2 and Table 3, since only the first heat treatment was performed and no second heat treatment was performed, the three-point bending strength was 95Mpa, the grain size after crystallization was 0.4 ⁇ m, and the light transmittance was as high as 86.43%. . Moreover, the prepared glass-ceramics can show a weak blue-white fluorescence effect under ultraviolet light, and it is difficult to show excellent aesthetic properties.
  • Example 6 in Table 2 and Table 3 because the temperature of the second heat treatment is increased, the three-point bending strength is 200Mpa, the grain size after crystallization is 1.2 ⁇ m, and the light transmittance drops to 38%. In addition, the higher temperature of the second heat treatment also tends to make Li 2 SiO 3 crystals continue to grow to form rod-shaped Li 2 Si 2 O 5 crystals, which will lead to serious edge chipping and reduced light transmission during processing, affecting its aesthetic properties .
  • the fluorescent glass ceramics of the present invention do not contain pentavalent/hexavalent metal oxides.
  • the lithium metasilicate is greatly improved.
  • the processability, high transparency and fluorescent performance of glass ceramics; the light transmittance at 550nm wavelength is as high as 64.65%.
  • the present invention illustrates the product and detailed method of the present invention through the above-mentioned examples, but the present invention is not limited to the above-mentioned product and detailed method, that is, it does not mean that the present invention must rely on the above-mentioned product and detailed method to implement.
  • Those skilled in the art should understand that any improvement of the present invention, equivalent replacement of the operation of the present invention, addition of auxiliary operations, selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供了一种具有高透明度的荧光玻璃陶瓷及其制备方法,所述荧光玻璃陶瓷的原料组成包括SiO 2 63~70wt%、Li 2O 13~16wt%、Al 2O 3 1~6wt%、K 2O 1~10wt%、P 2O 5 2~6wt%、CeO 2 0.5~3.5wt%、添加剂0~4wt%、原子序数为59-71的镧系氧化物1~4wt%和着色剂0~8wt%,主晶相为偏硅酸锂晶体,晶体形态为层状或板片状,晶粒尺寸为0.1~1.5μm;所述荧光玻璃陶瓷不含有五价/六价金属氧化物,通过优化原料的组成配比,并进一步控制制备过程中的热处理条件,使得到的偏硅酸锂玻璃陶瓷具有荧光效果、高透明度和极易加工的特性,有利于批量生产。

Description

一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用
本申请要求于2021年10月28日提交中国专利局、申请号为202111266277.5、发明名称为“一种具有高透明度的荧光玻璃陶瓷及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于微晶玻璃技术领域,尤其涉及一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用。
背景技术
随着CAD/CAM椅旁修复系统的快速兴起和发展,让患者当日就能实现即刻修复,这为患者的口腔修复提供了诸多便利、极大地节约了时间成本。由于二硅酸锂玻璃陶瓷具有优异的半透光性、良好的力学性能和极易被HF所酸蚀的固有特性,使其在椅旁修复系统中占据着十分重要的地位,快速地成为前牙美学修复的首选材料。
但是,由于二硅酸锂玻璃陶瓷的晶体结构呈三维交织和晶粒互锁的状态分布,使其很难通过金刚石车针进行加工。因此,研究人员通过不断探索,得到了易于加工的偏硅酸锂玻璃陶瓷。
CN106277798A公开了一种偏硅酸锂玻璃陶瓷及其制备方法,包括以下步骤:(a)制备基质玻璃液;(b)将基质玻璃液倒入模具中,冷却得到基质玻璃坯体;(c)将基质玻璃坯体放置于加热装置中,进行热处理,热处理的工艺参数包括:以5~20℃/分钟的升温速率,升温至450~600℃,并保温20~150分钟。热处理结束后随炉冷却,得到偏硅酸锂玻璃陶瓷。然而,该方法得到的偏硅酸锂玻璃陶瓷不具有荧光效果,使其很难做到真正的差异化产品。究其原因在于偏硅酸锂玻璃陶瓷是采取的高温熔融制备工艺,具有荧光效果的稀土元素极易在1400℃以上的高温下挥发和在氧化条件下发生变价,因此很难使其在特定波长的紫外光下激发出所期望的荧光性能。
所以,为有效地避免稀土元素在高温条件下极易发生变价的行为,US10131569B2通过引入还原剂或还原气氛来控制稀土元素的变价,以期实现玻璃陶瓷的荧光性能。然而,由于生产工艺难以控制、操作成本较高, 难以实现批量生产。
综上所述,如何采取简单的工艺、低成本、批量化地生产出具有荧光效果、高透明度且极易加工的玻璃陶瓷,成为一个亟待解决的技术问题。
发明内容
本发明的目的在于提供一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用,所述荧光玻璃陶瓷通过优化配比,形成了具有荧光效果、高透明度且极易加工的偏硅酸锂玻璃陶瓷;所述制备方法通过常规的熔融浇筑法或真空烧结法,无需特别地控制还原气氛或引入还原剂,极大地优化了偏硅酸锂玻璃陶瓷的加工性、透明度,且使其在紫外光下能显示出优异的荧光性能。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种具有高透明度的荧光玻璃陶瓷,所述荧光玻璃陶瓷的原料组成包括SiO 2 63~70wt%,例如63wt%、65wt%、67wt%或70wt%等;Li 2O 13~16wt%,例如13wt%、14wt%、15wt%或16wt%等;Al 2O 3 1~6wt%,例如1wt%、2wt%、3wt%、4wt%、5wt%或6wt%等;K 2O 1~10wt%,例如1wt%、3wt%、5wt%、7wt%或10wt%等;P 2O 5 2~6wt%,例如2wt%、3wt%、4wt%、5wt%或6wt%等;CeO 2 0.5~3.5wt%,例如0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%或3.5wt%等;添加剂0~4wt%,例如0wt%、1wt%、2wt%、3wt%或4wt%等;原子序数为59-71的镧系氧化物1~4wt%,例如1wt%、2wt%、3wt%或4wt%等;着色剂0~8wt%,例如0wt%、2wt%、4wt%、5wt%或8wt%等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
所述荧光玻璃陶瓷的主晶相为偏硅酸锂晶体;
所述晶体的形态为层状或板片状;
所述晶体的晶粒尺寸为0.1~1.5μm,例如0.1μm、0.3μm、0.5μm、0.7μm、0.9μm、1.1μm、1.3μm或1.5μm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明中,所述荧光玻璃陶瓷通过优化原料的组成配比,得到硅酸锂玻璃陶瓷具有荧光效果、高透明度和极易加工的特性,有利于批量生产。
本发明中,所得玻璃陶瓷在紫外光下具有优异的荧光性能,主要是由 于基质玻璃中的Ce 4+离子被部分或完全转换成Ce 3+离子的比例能够得到很好的控制,而形成的Ce 3+离子极易发生4f-5d的电偶极子间相互作用,使得偏硅酸锂玻璃陶瓷显示出一种优异的荧光性能。但由于现有技术中,玻璃陶瓷的原料中常常含有五价/六价金属氧化物(即Me V 2O 5或Me VIO 3),而Me 5+/Me 6+离子在热处理过程中容易被还原成Me 4+离子和/或Me 3+离子,从而导致Ce 3+离子转换成Ce 4+离子,而Ce 4+的含量过多则会损坏玻璃陶瓷的荧光效果。
而本发明通过优化原料的组成与配比,很好地解决了这一问题,保证调色效果的同时避免了玻璃陶瓷中Ce 3+离子被进一步氧化的影响,保证其具有良好的荧光效果。本发明中,原子序数为59-71的镧系氧化物可对玻璃陶瓷进行辅助调色。
本发明中,所述偏硅酸锂玻璃陶瓷极易加工,主要是由于:1)层状或板片状晶体具有很好的解离面,在加工过程中极易被车针磨削且不崩边;2)单位体积内分布的晶体数量较多,进一步增加了玻璃基质和晶体的界面,提高了加工性能。
以下作为本发明优选的技术方案,但不作为本发明提供的技术方案的限制,通过以下技术方案,可以更好地达到和实现本发明的技术目的和有益效果。
作为本发明优选的技术方案,所述荧光玻璃陶瓷的原料组成包括SiO 264~66wt%,例如64wt%、65wt%或66wt%等;Li 2O 14~15wt%,例如14wt%、14.5wt%或15wt%等;Al 2O 3 2~4wt%,例如2wt%、3wt%或4wt%等;K 2O 2~5wt%,例如2wt%、3wt%、4wt%或5wt%等;P 2O 5 3~4wt%,例如3wt%、3.5wt%或4wt%等;CeO 2 1.5~3.0wt%,例如1.5wt%、2.0wt%、2.5wt%或3.0wt%等;添加剂1~3wt%,例如1wt%、2wt%或3wt%等;原子序数为59-71的镧系氧化物1.5~3.0wt%,例如1.5wt%、2wt%、2.5wt%或3.0wt%等;着色剂1~4wt%,例如1wt%、2wt%、3wt%或4wt%等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,所述添加剂包括一价金属氧化物和/或二价金属氧化物。
优选地,所述一价金属氧化物包括Na 2O、Rb 2O和Cs 2O中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:Na 2O和Cs 2O的组合、Na 2O和Rb 2O的组合、Na 2O、Rb 2O和Cs 2O的组合等。
优选地,所述二价金属氧化物包括MgO、SrO、ZnO和CaO中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:MgO和CaO的组合、MgO、SrO和ZnO的组合、SrO、ZnO和CaO的组合等。
作为本发明优选的技术方案,所述原子序数为59-71的镧系氧化物包括Nd 2O 3、Tb 2O 3、Pr 6O 11、Eu 2O 3和Er 2O 3中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:Nd 2O 3和Tb 2O 3的组合,Nd 2O 3、Pr 6O 11和Eu 2O 3的组合,Eu 2O 3和Er 2O 3的组合等。
优选地,所述着色剂包括TiO 2、CuO、MnO和SeO 2中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:TiO 2和CuO的组合、TiO 2、CuO和MnO的组合、CuO、MnO和SeO 2的组合等。
作为本发明优选的技术方案,所述荧光玻璃陶瓷1mm厚样品在550nm处的光学透过率为40~90%,例如40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或90%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明中,由于玻璃陶瓷中玻璃基质含量较多,而偏硅酸锂晶体的含量远小于玻璃基质,这使得玻璃陶瓷具有较高的光透过性;此外,由于偏硅酸锂晶体的折射因子(1.57)和玻璃基质的折射因子(1.60)较为接近,相差仅为0.03,极大地减少了光的散射作用,从而有效地提高了玻璃陶瓷的光透过率。
第二方面,本发明提供了一种上述的荧光玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将荧光玻璃陶瓷的原料按照比例进行混合,混合后依次进行一次熔融和水淬,得到玻璃渣料;
(2)将步骤(1)得到的玻璃渣料依次进行二次熔融以及成型退火处理,得到第一基体玻璃;
或将步骤(1)得到的玻璃渣料依次经过研磨、干压以及真空烧结,得到第二基体玻璃;
(3)将步骤(2)得到的第一基体玻璃或第二基体玻璃依次进行第一热处理和第二热处理,得到具有高透明度的荧光玻璃陶瓷。
本发明中,所述制备方法采用常规的熔融浇筑法或真空烧结法,通过优化配方组成和热处理工艺,无需控制还原气氛或引入还原剂,即可使稀土元素在高温下也能稳定地维持价态平衡,极大地提升了偏硅酸锂玻璃陶瓷的加工性、高透明度和在紫外光下显示出的荧光性能,同时降低了工艺难度。
本发明中,通过对基体玻璃进行第一热处理使其玻璃基质中形成大量的晶核;再经过第二热处理使其形成以偏硅酸锂为主晶相的高透明度的荧光玻璃陶瓷。
作为本发明优选的技术方案,步骤(1)所述一次熔融的温度为1300~1600℃,例如1300℃、1350℃、1400℃、1450℃、1500℃、1550℃或1600℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述一次熔融的时间为1~6h,例如1h、2h、3h、4h、5h或6h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(2)所述二次熔融的温度为1300~1600℃,例如1300℃、1350℃、1400℃、1450℃、1500℃、1550℃或1600℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述二次熔融的时间为1~6h,例如1h、2h、3h、4h、5h或6h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述成型退火处理的步骤包括:将二次熔融后得到的基础玻璃液倒入第一模具中进行退火,得到第一基体玻璃。
优选地,所述第一模具的预热温度为200~500℃,例如200℃、250℃、300℃、350℃、400℃、450℃或500℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述退火时间为0.5~24h,例如0.5h、2h、4h、8h、12h、 16h、20h、22h或24h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述成型退火处理后冷却至室温。
作为本发明优选的技术方案,步骤(2)所述研磨后得到粒径为0.2~50μm的玻璃粉体,例如0.2μm、5μm、10μm、20μm、30μm、40μm或50μm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述干压的步骤包括:将研磨后得到的玻璃粉体置于第二模具中进行干压,得到素坯。
优选地,步骤(2)所述干压的压力为5~50MPa,例如5MPa、10MPa、20MPa、30MPa、40MPa或50MPa等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述真空烧结的真空度为100~3000Pa,例如100Pa、300Pa、500Pa、700Pa、800Pa、1000Pa、1500Pa、2000Pa或3000Pa等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述真空烧结的温度为900~1200℃,例如900℃、1000℃、1100℃或1200℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述真空烧结的时间为100~240min,例如100min、150min、180min、200min、210min、230min或240min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(3)所述第一热处理的温度为450~580℃,例如450℃、480℃、500℃、520℃、540℃、560℃、570℃或580℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述第一热处理的时间为1~48h,例如1h、5h、10h、15h、20h、25h、30h、35h、40h或48h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述第二热处理的温度为600~700℃,例如600℃、620℃、640℃、660℃、680℃或700℃等,但并不仅限于所列举的数值, 该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述第二热处理的时间为10~240min,例如10min、30min、60min、120min、180min、200min或240min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
与现有技术相比,本发明具有以下有益效果:
本发明所述荧光玻璃陶瓷不含有五价/六价金属氧化物,通过优化组成配比并在制备过程中优化热处理工艺流程,极大地提升了偏硅酸锂玻璃陶瓷的加工性、高透明度与荧光性能,550nm波长处的透光率高达64.65%以上。
说明书附图
图1为本发明实施例1得到的荧光玻璃陶瓷的荧光光谱图;
图2为本发明实施例1得到的荧光玻璃陶瓷的微观形貌图(SEM);
图3为本发明实施例1得到的荧光玻璃陶瓷的X射线衍射图谱(XRD);
图4为本发明实施例1得到的荧光玻璃陶瓷在370nm~900nm范围可见光的透光率曲线图。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,下面对本发明进一步详细说明。但下述的实施例仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明保护范围以权利要求书为准。
以下各实施例中制备得到的荧光玻璃陶瓷的原料组成如表1所示,其中各组分的含量均为质量百分比。
表1 实施例1~4的原料配比
实施例 实施例1 实施例2 实施例3 实施例4
SiO 2 65 66 64 65
Li 2O 14.6 15.6 14.4 15.5
K 2O 3.6 3.8 4.2 4.7
Al 2O 3 3.8 3.6 3.8 3.0
P 2O 5 3.5 3.8 3.8 3.4
CeO 2 2.8 3.2 2.8 2.8
SrO 1.6 1.8 2.0 1.0
MgO 1.4 1.0 1.6 1.5
TiO 2 2.05 1.2 1.8 1.8
MnO 1.65 1.6 1.3
以下为本发明典型但非限制性实施例:
实施例1:
本实施例提供了一种具有高透明度的荧光玻璃陶瓷的制备方法,所述荧光玻璃陶瓷的原料组成如表1所示。
所述荧光玻璃陶瓷的制备方法包括以下步骤:
(1)将荧光玻璃陶瓷的原料按照比例混合均匀,混合后的原料置于坩埚中在1450℃下进行一次熔融,保温6h,使其原料组分均匀分布,气泡完全逸出;然后进行水淬,得到玻璃渣料;
(2)将步骤(1)得到的玻璃渣料再次置于坩埚中在1450℃下进行二次熔融,保温6h,得到玻璃液;
将玻璃液倒入350℃的第一模具中成型,退火处理1.5h,然后自然冷却至室温,得到第一基体玻璃;
(3)将步骤(2)得到的第一基体玻璃在500℃下保温90min;然后在660℃下保温120min,得到具有高透明度的荧光玻璃陶瓷。
对本实施例得到的荧光玻璃陶瓷进行表征,其荧光光谱图如图1所示,微观形貌图如图2所示,X射线衍射图谱如图3所示,其在370nm~900nm范围可见光的透光率曲线图如图4所示。
由图1可知,在366nm的激发波长下,发射光谱在430nm处显示出最大宽度值,其主要归因于Ce 3+离子极易发生4f-5d的电偶极子间相互作用,其显示的荧光可通过人眼整体感知为蓝白色荧光。
由图2可知,所述样品的微观形貌呈板片状。
由图3可知,产品的主晶相为偏硅酸锂(Li 2SiO 3)。
由图4可知,所述1mm厚的偏硅酸锂玻璃陶瓷样品在550nm处的光学透光率为74.43%。
实施例2:
本实施例提供了一种具有高透明度的荧光玻璃陶瓷的制备方法,所述 荧光玻璃陶瓷的原料组成如表1所示。
所述荧光玻璃陶瓷的制备方法包括以下步骤:
(1)将荧光玻璃陶瓷的原料按照比例混合均匀,混合后的原料置于坩埚中在1550℃下进行一次熔融,保温3h,使其原料组分均匀分布,气泡完全逸出;然后进行水淬,得到玻璃渣料;
(2)将步骤(1)得到的玻璃渣料研磨成粒径为20μm的玻璃粉体、置于第二模具中以10MPa的压力干压成素坯,并进一步将素坯放置于真空烧结炉中进行烧结,其中烧结的真空度为2000Pa,烧结温度为1100℃,烧结时间为120min,得到第二基体玻璃;
(3)将步骤(2)得到的第二基体玻璃在530℃下保温100min;然后在640℃下保温140min,得到具有高透明度的荧光玻璃陶瓷。
实施例3:
本实施例提供了一种具有高透明度的荧光玻璃陶瓷的制备方法,所述荧光玻璃陶瓷的原料组成如表1所示。
所述荧光玻璃陶瓷的制备方法包括以下步骤:
(1)将荧光玻璃陶瓷的原料按照比例混合均匀,混合后的原料置于坩埚中,在1550℃下进行一次熔融,保温4h,使其原料组分均匀分布,气泡完全逸出;然后进行水淬,得到玻璃渣料;
(2)将步骤(1)得到的玻璃渣料再次置于坩埚中在1550℃下进行二次熔融,保温4h,得到玻璃液;
将玻璃液倒入350℃的第一模具中成型,退火处理2h,然后自然冷却至室温,得到第一基体玻璃;
(3)将步骤(2)得到的第一基体玻璃在570℃下保温150min;然后在650℃下保温120min,得到具有高透明度的荧光玻璃陶瓷。
实施例4:
本实施例提供了一种具有高透明度的荧光玻璃陶瓷的制备方法,所述荧光玻璃陶瓷的原料组成如表1所示。
所述荧光玻璃陶瓷的制备方法包括以下步骤:
(1)将荧光玻璃陶瓷的原料按照比例混合均匀,混合后的原料置于坩埚中在1550℃下进行一次熔融,保温5h,使其原料组分均匀分布,气 泡完全逸出;然后进行水淬,得到玻璃渣料;
(2)将步骤(1)得到的玻璃渣料研磨成粒径为40μm的玻璃粉体、置于第二模具中以25MPa的压力干压成素坯,并进一步将素坯放置于真空烧结炉中进行烧结,其中烧结的真空度为2400Pa,烧结温度为1150℃,烧结时间为160min,得到第二基体玻璃;
(3)将步骤(2)得到的第二基体玻璃在560℃下保温160min;然后在630℃下保温150min,得到具有高透明度的荧光玻璃陶瓷。
实施例5:
本实施例提供了一种玻璃陶瓷的制备方法,所述玻璃陶瓷的原料组成与实施例1中荧光玻璃陶瓷的原料组成相同。
所述制备方法参照实施例1中的制备方法,区别仅在于:步骤(3)中仅进行第一热处理,不进行第二热处理。
实施例6:
本实施例提供了一种玻璃陶瓷的制备方法,所述玻璃陶瓷的原料组成与实施例1中荧光玻璃陶瓷的原料组成相同。
所述制备方法参照实施例1中的制备方法,区别仅在于:步骤(3)中进行第二热处理时的温度为750℃。
首先,对实施例1-6得到的玻璃陶瓷进行物相分析并测试其加工性能,结果如表2所示。
表2 实施例1~6制备的玻璃陶瓷的加工性能数据
Figure PCTCN2022104550-appb-000001
其中,T 1和t 1分别为第一次热处理温度和时间;T 2和t 2分别为第二次热处理温度和时间。
其次,测定实施例1-6得到的玻璃陶瓷的三点弯曲强度、硬度、结晶后晶粒尺寸、550nm处的透光率以及荧光性能,各测试方法条件如下,测定结果如表3所示。
(1)三点弯曲强度:根据ISO6872:2008国际标准,测试15个试样,将获得的三点弯曲强度值进行平均值的计算。
(2)维氏硬度:根据ISO14705:2008国际标准,利用维氏硬度计,施加载荷为1千克力(1kgf),测试15组数据,获得样品的维氏硬度平均值。
(3)透光率:采用分光光度计对测试样品在370nm~900nm波长范围内进行测试,测试样品的厚度在1mm。
(4)荧光性测量:将玻璃陶瓷切割成13×15×2mm的尺寸,激发波长为366nm,扫描范围为375至700nm。
表3 实施例1~6制备的玻璃陶瓷的性能数据
Figure PCTCN2022104550-appb-000002
如表2和3中的实施例1可知,由于玻璃基质中分布着大量呈板片状的偏硅酸锂晶体,所制备的玻璃陶瓷极易加工,无崩边现象发生。高的玻璃相含量和相近的折射率也使制备的玻璃陶瓷在550nm波长处的透光率高达74.43%。此外,其显示出的三点弯曲强度为127Mpa,硬度为5.70GPa,为后续的加工和打磨提供了保障。而且,所制备的玻璃陶瓷在紫外光下能显示出蓝白色的荧光效果,展现出了优异的美学性能。
如表2和3中的实施例2可知,由于玻璃基质中分布着大量呈板片状的偏硅酸锂晶体,所制备的玻璃陶瓷极易加工,只出现细微的崩边现象。而制备的玻璃陶瓷在550nm波长处的透光率高达70.12%。此外,其显示出的三点弯曲强度为115Mpa,硬度为5.90GPa。而且,所制备的玻璃陶瓷在紫外光下能显示出蓝色的荧光效果,展现出了优异的美学性能。
如表2和3中的实施例3可知,由于玻璃基质中分布着大量呈层状的偏硅酸锂晶体,所制备的玻璃陶瓷极易加工,无崩边现象发生。高的玻璃相含量和相近的折射率也使制备的玻璃陶瓷在550nm波长处的透光率高达64.65%。此外,其显示出的三点弯曲强度为130Mpa,硬度为5.50GPa,为后续的加工和打磨提供了保障。而且,所制备的玻璃陶瓷在紫外光下能显示出强蓝白色的荧光效果,展现出了优异的美学性能。
如表2和3中的实施例4可知,由于玻璃基质中分布着大量呈层状的偏硅酸锂晶体,所制备的玻璃陶瓷极易加工,只出现细微的崩边现象。而制备的玻璃陶瓷在550nm波长处的透光率高达84.23%。此外,其显示出的三点弯曲强度为126Mpa,硬度为5.40GPa。而且,所制备的玻璃陶瓷在紫外光下能显示出蓝白色的荧光效果,展现出了优异的美学性能。
如表2和表3中的实施例5可知,由于仅进行了第一热处理,没有进行第二热处理,导致三点弯曲强度为95Mpa,结晶后晶粒尺寸为0.4μm,透光率高达86.43%。而且,所制备的玻璃陶瓷在紫外光下能显示出弱蓝白色的荧光效果,很难呈现出优异的美学性能。
如表2和表3中的实施例6可知,由于提高了第二热处理的温度,导致三点弯曲强度为200Mpa,结晶后晶粒尺寸为1.2μm,透光率降至38%。此外,较高的第二次热处理温度也容易让Li 2SiO 3晶体继续长大形成棒状的Li 2Si 2O 5晶体,从而导致加工过程中崩边严重以及透光性降低,影响其美学性能。
综合上述实施例可以看出,本发明所述荧光玻璃陶瓷不含有五价/六价金属氧化物,通过优化组成配比,并在制备过程中优化热处理工艺流程,极大地提升了偏硅酸锂玻璃陶瓷的加工性、高透明度以及荧光性能;550nm波长处的透光率高达64.65%以上。
申请人声明,本发明通过上述实施例来说明本发明的产品和详细方 法,但本发明并不局限于上述产品和详细方法,即不意味着本发明必须依赖上述产品和详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明操作的等效替换及辅助操作的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (18)

  1. 一种具有高透明度的荧光玻璃陶瓷,其特征在于,所述荧光玻璃陶瓷的原料组成包括SiO 263~70wt%、Li 2O 13~16wt%、Al 2O 31~6wt%、K 2O 1~10wt%、P 2O 52~6wt%、CeO 20.5~3.5wt%、添加剂0~4wt%、原子序数为59-71的镧系氧化物1~4wt%和着色剂0~8wt%;
    所述荧光玻璃陶瓷的主晶相为偏硅酸锂晶体;
    所述偏硅酸锂晶体的形态为层状或板片状;
    所述偏硅酸锂晶体的晶粒尺寸为0.1~1.5μm。
  2. 根据权利要求1所述的荧光玻璃陶瓷,其特征在于,所述荧光玻璃陶瓷的原料组成包括SiO 264~66wt%、Li 2O 14~15wt%、Al 2O 32~4wt%、K 2O 2~5wt%、P 2O 53~4wt%、CeO 21.5~3.0wt%、添加剂1~3wt%、原子序数为59-71的镧系氧化物1.5~3.0wt%和着色剂1~4wt%。
  3. 根据权利要求1或2所述的荧光玻璃陶瓷,其特征在于,所述添加剂包括一价金属氧化物和/或二价金属氧化物。
  4. 根据权利要求3所述的荧光玻璃陶瓷,其特征在于,所述一价金属氧化物包括Na 2O、Rb 2O和Cs 2O中的任意一种或至少两种的组合;
    所述二价金属氧化物包括MgO、SrO、ZnO和CaO中的任意一种或至少两种的组合。
  5. 根据权利要求1或2所述的荧光玻璃陶瓷,其特征在于,所述原子序数为59-71的镧系氧化物包括Nd 2O 3、Tb 2O 3、Pr 6O 11、Eu 2O 3和Er 2O 3中的任意一种或至少两种的组合。
  6. 根据权利要求1或2所述的荧光玻璃陶瓷,其特征在于,所述着色剂包括TiO 2、CuO、MnO和SeO 2中的任意一种或至少两种的组合。
  7. 根据权利要求1或2所述的荧光玻璃陶瓷,其特征在于,所述荧光玻璃陶瓷1mm厚样品在550nm处的光学透过率为40~90%。
  8. 一种权利要求1-7任一项所述的荧光玻璃陶瓷的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)将荧光玻璃陶瓷的原料按照比例进行混合,混合后依次进行一次熔融和水淬,得到玻璃渣料;
    (2)将步骤(1)得到的玻璃渣料依次进行二次熔融以及成型退火处理,得到第一基体玻璃;
    或将步骤(1)得到的玻璃渣料依次经过研磨、干压以及真空烧结,得到第二基体玻璃;
    (3)将步骤(2)得到的第一基体玻璃或第二基体玻璃依次进行第一热处理和第二热处理,得到具有高透明度的荧光玻璃陶瓷。
  9. 根据权利要求8所述的制备方法,其特征在于,步骤(1)所述一次熔融的温度为1300~1600℃;
    步骤(1)所述一次熔融的时间为1~6h。
  10. 根据权利要求8或9所述的制备方法,其特征在于,步骤(2)所述二次熔融的温度为1300~1600℃;
    步骤(2)所述二次熔融的时间为1~6h。
  11. 根据权利要求8或9所述的制备方法,其特征在于,步骤(2)所述成型退火处理包括:将二次熔融后得到的基础玻璃液倒入第一模具中进行退火,所述第一模具的预热温度为200~500℃。
  12. 根据权利要求8或9所述的制备方法,其特征在于,所述退火的时间为0.5~24h;
    所述成型退火处理后还包括冷却至室温。
  13. 根据权利要求8所述的制备方法,其特征在于,步骤(2)所述研磨后得到粒径为0.2~50μm的玻璃粉体。
  14. 根据权利要求8或13所述的制备方法,其特征在于,步骤(2)所述干压包括:将所述研磨后得到的玻璃粉体置于第二模具中进行干压,得到素坯;步骤(2)所述干压的压力为5~50MPa。
  15. 根据权利要求8或13所述的制备方法,其特征在于,步骤(2)所述真空烧结的真空度为100~3000Pa;
    步骤(2)所述真空烧结的温度为900~1200℃;
    步骤(2)所述真空烧结的时间为100~240min。
  16. 根据权利要求8所述的制备方法,其特征在于,步骤(3)所述第一热处理的温度为450~580℃;
    步骤(3)所述第一热处理的时间为1~48h。
  17. 根据权利要求8或16所述的制备方法,其特征在于,步骤(3)所述第二热处理的温度为600~700℃;
    步骤(3)所述第二热处理的时间为10~240min。
  18. 权利要求1~7任一项所述具有高透明度的荧光玻璃陶瓷或权利要求8~17任一项所述制备方法制备得到的具有高透明度的荧光玻璃陶瓷在椅旁修复系统中的应用。
PCT/CN2022/104550 2021-10-28 2022-07-08 一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用 WO2023071289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/910,462 US20240199471A1 (en) 2021-10-28 2022-07-08 Fluorescent glass ceramic with high transparency and preparation method and use thereof
EP22761934.3A EP4194415A4 (en) 2021-10-28 2022-07-08 FLUORESCENT GLASS CERAMIC WITH HIGH TRANSPARENCY AND PRODUCTION PROCESS THEREOF AND APPLICATION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266277.5 2021-10-28
CN202111266277.5A CN113831016B (zh) 2021-10-28 2021-10-28 一种具有高透明度的荧光玻璃陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2023071289A1 true WO2023071289A1 (zh) 2023-05-04

Family

ID=78966395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104550 WO2023071289A1 (zh) 2021-10-28 2022-07-08 一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用

Country Status (4)

Country Link
US (1) US20240199471A1 (zh)
EP (1) EP4194415A4 (zh)
CN (1) CN113831016B (zh)
WO (1) WO2023071289A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831016B (zh) * 2021-10-28 2023-03-14 爱迪特(秦皇岛)科技股份有限公司 一种具有高透明度的荧光玻璃陶瓷及其制备方法
CN115140939A (zh) * 2022-06-20 2022-10-04 齐鲁工业大学 一种Cu/Eu掺杂的光转换荧光玻璃及其制备方法
CN115849718A (zh) * 2022-12-29 2023-03-28 爱迪特(秦皇岛)科技股份有限公司 一种义齿用荧光玻璃陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110009254A1 (en) * 2003-08-07 2011-01-13 Ivoclar Vivadent Ag Lithium Silicate Materials
CN106277798A (zh) 2015-06-04 2017-01-04 深圳爱尔创口腔技术有限公司 一种偏硅酸锂玻璃陶瓷及其制备方法
US10131569B2 (en) 2014-05-13 2018-11-20 Ivoclar Vivadent Ag Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics
CN111792847A (zh) * 2019-04-04 2020-10-20 义获嘉伟瓦登特公司 用于制备多色玻璃陶瓷坯料的方法
CN113831016A (zh) * 2021-10-28 2021-12-24 爱迪特(秦皇岛)科技股份有限公司 一种具有高透明度的荧光玻璃陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336913C9 (de) * 2003-08-07 2019-02-21 Ivoclar Vivadent Ag Verwendung eines Lithiumsilicatmaterials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110009254A1 (en) * 2003-08-07 2011-01-13 Ivoclar Vivadent Ag Lithium Silicate Materials
US10131569B2 (en) 2014-05-13 2018-11-20 Ivoclar Vivadent Ag Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics
CN106277798A (zh) 2015-06-04 2017-01-04 深圳爱尔创口腔技术有限公司 一种偏硅酸锂玻璃陶瓷及其制备方法
CN111792847A (zh) * 2019-04-04 2020-10-20 义获嘉伟瓦登特公司 用于制备多色玻璃陶瓷坯料的方法
CN113831016A (zh) * 2021-10-28 2021-12-24 爱迪特(秦皇岛)科技股份有限公司 一种具有高透明度的荧光玻璃陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194415A4

Also Published As

Publication number Publication date
CN113831016A (zh) 2021-12-24
EP4194415A4 (en) 2023-12-20
EP4194415A1 (en) 2023-06-14
CN113831016B (zh) 2023-03-14
US20240199471A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
WO2023071289A1 (zh) 一种具有高透明度的荧光玻璃陶瓷及其制备方法和应用
CN113501668B (zh) 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用
US20190177210A1 (en) Zirconia-toughened glass ceramics
CN103930086A (zh) 包含一价金属氧化物的硅酸锂玻璃陶瓷和硅酸锂玻璃
JP2024063162A (ja) 微結晶ガラス、微結晶ガラス製品及びその製造方法
WO2016192216A1 (zh) 一种偏硅酸锂玻璃陶瓷及其制备方法
CN112919810B (zh) 玻璃陶瓷、玻璃陶瓷制品及其制造方法
US8865606B2 (en) Process for the preparation of dental restorations
JPWO2019151404A1 (ja) 着色ガラスおよびその製造方法
WO2023035704A1 (zh) 荧光硅酸锂玻璃陶瓷的制备方法
CN113087389A (zh) 具有不同透光性的硅酸锂玻璃或硅酸锂玻璃陶瓷坯体的制备方法
WO2023061045A1 (zh) 一种硅酸锂玻璃陶瓷修复体及其制备方法
CN103910489A (zh) 一种用作牙科饰面瓷的玻璃、制备方法及其用途
JP2012223552A (ja) 歯科用修復物の調製のためのプロセス
CN112939469A (zh) 微晶玻璃和微晶玻璃制品
JP2000500730A (ja) 高硬質の透明な雲母−ガラスセラミック
EP4357309A1 (en) Glass ceramic material, method for preparing the same, and denture
EP4375253A1 (en) Glass ceramic composition, preparation method and application thereof
CN109824351B (zh) 一种高强度齿科修复用陶瓷复合材料及其制备方法
CN115028364A (zh) 玻璃陶瓷、其制备方法及牙齿修复材料
WO2020210958A1 (zh) 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用
CN114538780B (zh) 一种前牙饰面瓷材料及其制备方法
RU2790555C1 (ru) Подвергнутый предварительному спеканию керамический блок для восстановления зубов, способ его изготовления и его применение
RU2785730C1 (ru) Подвергнутый предварительному спеканию керамический блок для восстановления зубов, способ его изготовления и его применение
CN115448599B (zh) 一种具有乳光效果的玻璃陶瓷及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17910462

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022761934

Country of ref document: EP

Effective date: 20220909

NENP Non-entry into the national phase

Ref country code: DE