WO2020210958A1 - 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用 - Google Patents

一种用于牙科修复体的预烧结瓷块、其制备方法及其应用 Download PDF

Info

Publication number
WO2020210958A1
WO2020210958A1 PCT/CN2019/082763 CN2019082763W WO2020210958A1 WO 2020210958 A1 WO2020210958 A1 WO 2020210958A1 CN 2019082763 W CN2019082763 W CN 2019082763W WO 2020210958 A1 WO2020210958 A1 WO 2020210958A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered
porcelain block
matrix glass
sintered porcelain
sintering
Prior art date
Application number
PCT/CN2019/082763
Other languages
English (en)
French (fr)
Inventor
何玲玲
宋国轶
侯成
韩成玮
赵中亮
李佳玲
Original Assignee
深圳爱尔创口腔技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳爱尔创口腔技术有限公司 filed Critical 深圳爱尔创口腔技术有限公司
Priority to PCT/CN2019/082763 priority Critical patent/WO2020210958A1/zh
Priority to BR112021020521A priority patent/BR112021020521A2/pt
Priority to KR1020217034932A priority patent/KR20210143884A/ko
Priority to US17/603,753 priority patent/US20220177358A1/en
Priority to EP19925234.7A priority patent/EP3957614A4/en
Priority to CN201980094573.6A priority patent/CN113614044A/zh
Priority to CA3136724A priority patent/CA3136724C/en
Priority to AU2019441599A priority patent/AU2019441599B2/en
Publication of WO2020210958A1 publication Critical patent/WO2020210958A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/063Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction by hot-pressing powders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • C03C4/0021Compositions for glass with special properties for biologically-compatible glass for dental use
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2201/00Material properties
    • A61C2201/002Material properties using colour effect, e.g. for identification purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/04Opaque glass, glaze or enamel

Definitions

  • This application relates to the technical field of dental restorations, in particular to a pre-sintered porcelain block for dental restorations, a preparation method and application thereof.
  • the chairside restoration system is a dental restoration system formed by introducing computer-aided design and manufacturing into the field of dental restoration.
  • the feature of the chairside restoration system is that it is convenient and quick. It breaks the traditional denture manufacturing procedures such as molar teeth, mold taking, wax carving, and porcelain burning. When the dentist grinds and trims the teeth, the image is directly captured with a 3D camera and transferred to the computer immediately , The automatic porcelain block grinder is assisted by the computer to process the porcelain blocks into dental restorations.
  • lithium disilicate glass ceramic materials not only have outstanding aesthetic effects, but also have good mechanical properties.
  • lithium disilicate glass-ceramic materials have high hardness and poor processing performance, making it difficult to apply in chairside repair systems.
  • lithium metasilicate glass ceramics with lithium metasilicate as the main crystalline phase are obtained by pre-sintering at a lower temperature, and the shape of the restoration is obtained after mechanical processing. Dense sintering at a higher temperature will finally obtain a glass-ceramic restoration with lithium disilicate as the main crystalline phase; because the hardness of lithium metasilicate is lower than that of lithium disilicate, the processing performance is improved. Even so, the Vickers hardness of the porcelain block with lithium metasilicate as the main crystal phase still reaches 5-6GPa, and its mechanical processing is only suitable for wet machining, not dry machining.
  • Lithium silicate glass ceramics are processed by dry machining, there will be incomplete edges, incomplete processing, or even damage to the porcelain block, and it is also easy to damage the bur. In view of this, a lower hardness can be developed.
  • the pre-sintered porcelain block suitable for dry machining is a technical problem to be solved urgently in this field.
  • This application provides a pre-sintered porcelain block for dental restorations, which is used to solve the problem that lithium metasilicate glass ceramics are too hard to be suitable for dry machining.
  • this application provides a method for preparing a pre-sintered porcelain block for dental restorations.
  • the application also provides a method for preparing a porcelain block for dental restorations, and a method for preparing dental restorations.
  • the first aspect of the present application provides a pre-sintered porcelain block for dental restorations, wherein the pre-sintered porcelain block contains a silica main crystalline phase, the Vickers hardness is 0.5-3 GPa, preferably 1-2.5 GPa, And opaque.
  • the pre-sintered porcelain block does not contain a lithium metasilicate crystal phase.
  • the three-point bending strength of the pre-sintered porcelain block is 10-110 MPa; preferably 10-90 MPa; more preferably 30-70 MPa.
  • the pre-sintered ceramic block contains the following components:
  • SiO 2 55-85%wt, preferably 55-80%wt, more preferably 60-80%wt, most preferably 64-75%wt
  • ZrO 2 0-10%wt, preferably 0-8%wt, more preferably 0-6%wt, most preferably 0-4%wt
  • Al 2 O 3 0.3-8% wt, preferably 0.5-6% wt, more preferably 0.5-5% wt, most preferably 0.5-4% wt
  • La 2 O 3 0-7%wt, preferably 0-5%wt, more preferably 0-4.5%wt, most preferably 0-4%wt
  • ZnO 0-10% wt, preferably 0-8% wt, more preferably 0-7% wt, most preferably 0.1-5% wt
  • K 2 O 0.1-10% wt, preferably 0.1-9% wt, more preferably 0.1-7% wt, most preferably 0.5-4.5% wt
  • GeO 2 0.1-7%wt, preferably 0.1-6%wt, more preferably 0.3-5%wt, most preferably 0.5-4%wt
  • Nucleating agent 0-10%wt, preferably 0-8%wt, more preferably 0.5-8%wt, most preferably 0.5-5%wt
  • Coloring agent 0-10% wt, preferably 0-8% wt, more preferably 0-6% wt, most preferably 0.1-5% wt
  • additives 0-15%wt, preferably 0-10%wt, more preferably 0-4%wt;
  • the nucleating agent is selected from one or a combination of at least two of P 2 O 5 , TiO 2 , V 2 O 5 , Cr 2 O 3 , and Fe 2 O 3 ;
  • additives are selected from one or a combination of at least two of B 2 O 3 , F, Na 2 O, BaO, SrO, CaO, MgO, etc.
  • the colorant is selected from glass colorants or ceramic colorants; preferably, the glass colorant is selected from oxides of at least one of the following elements: vanadium, chromium, manganese, iron, Cobalt, nickel, copper, cerium, praseodymium, neodymium, samarium, promethium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, samarium and europium; the ceramic colorant is selected from zirconium iron red, zirconium cerium praseodymium yellow and nickel black, etc. One or a combination of at least two.
  • the second aspect of the present application provides a method for preparing the pre-sintered ceramic block of the dental restoration of the aforementioned first aspect, which includes the following steps:
  • the sintering temperature of the pre-sintering is 530-590°C.
  • the matrix glass powder contains the following components:
  • SiO 2 55-85%wt, preferably 55-80%wt, more preferably 60-80%wt, most preferably 64-75%wt
  • ZrO 2 0-10%wt, preferably 0-8%wt, more preferably 0-6%wt, most preferably 0-4%wt
  • Al 2 O 3 0.3-8% wt, preferably 0.5-6% wt, more preferably 0.5-5% wt, most preferably 0.5-4% wt
  • La 2 O 3 0-7%wt, preferably 0-5%wt, more preferably 0-4.5%wt, most preferably 0-4%wt
  • ZnO 0-10% wt, preferably 0-8% wt, more preferably 0-7% wt, most preferably 0.1-5% wt
  • K 2 O 0.1-10%wt, preferably 0.1-9%wt, more preferably 0.1-7%wt, most preferably 1-7%wt
  • GeO 2 0.1-7%wt, preferably 0.1-6%wt, more preferably 0.3-5%wt, most preferably 0.5-4%wt
  • Nucleating agent 0-10%wt, preferably 0-8%wt, more preferably 0.5-8%wt, most preferably 0.5-5%wt
  • Coloring agent 0-10% wt, preferably 0-8% wt, more preferably 0-6% wt, most preferably 0.1-5% wt
  • additives 0-15%wt, preferably 0-10%wt, more preferably 0-4%wt;
  • the nucleating agent is selected from one or a combination of at least two of P 2 O 5 , TiO 2 , V 2 O 5 , Cr 2 O 3 , and Fe 2 O 3 ; and the other additives are selected from B 2 One or a combination of at least two of O 3 , F, Na 2 O, BaO, SrO, CaO, and MgO.
  • the sintering temperature of the pre-sintering is 530-560°C.
  • the sintering temperature of the pre-sintering is 570-590°C.
  • the pre-sintered ceramic block basically has the same composition as the matrix glass powder.
  • the matrix glass powder can be prepared by the following method:
  • matrix glass powder According to all the components contained in the matrix glass powder, select suitable matrix materials, such as carbonate, oxide, fluoride, etc., and then grind and mix the matrix materials and melt them at 1250°C-1650°C 0.5-3 hours to prepare matrix glass liquid;
  • suitable matrix materials such as carbonate, oxide, fluoride, etc.
  • the matrix glass liquid is water-quenched to obtain glass cullet, and then the glass cullet is dried at 100°C ⁇ 150°C for 1h ⁇ 2h;
  • the matrix glass powder can also be prepared by the following method:
  • each single-color matrix glass The powder can be prepared as follows:
  • (A2) Choose suitable matrix materials, such as carbonate, oxide, fluoride, etc., grind and mix the matrix materials, and melt them at 1250°C-1650°C for 0.5-3 hours to obtain monochromatic matrix glass liquid;
  • the single-color matrix glass liquid is water-quenched to obtain single-color glass shards, and then the single-color glass shards are dried at 100°C ⁇ 150°C for 1h ⁇ 2h;
  • the matrix glass powder can also be prepared by the following method:
  • (C3) Grind the dried glass pieces, and then mix them with the coloring agent uniformly to obtain matrix glass powder.
  • the coloring agent is added in step (C3) to avoid the effect of the coloring agent on the coloring effect during the high-temperature melting process
  • step (A3) some colorants with poor coloring ability, such as CeO 2 etc., can also be added in step (A3); other colorants can be added in step (C3).
  • water quenching of the molten glass can be achieved by pouring the molten glass into cold water; the cold water generally refers to water at 0-40°C.
  • the average particle size of the matrix glass powder is 1-100um, preferably 1-50um, more preferably 5-20um.
  • the inventor of the present application found that the better the uniformity of the average particle size of the matrix glass powder, the better the compactness of the densely sintered lithium disilicate glass ceramic products, the more uniform the crystallization, resulting in greater strength and visible light transmittance. High, closer to the texture of natural teeth.
  • the third aspect of the application provides a pre-sintered porcelain block for dental restorations, wherein the pre-sintered porcelain block contains a silica main crystalline phase, and the Vickers hardness is 0.5-3GPa, preferably 1-2.5GPa , Opaque, and after the pre-sintered porcelain block is densely sintered at 800° C.-1100° C., it shows gradual light transmittance and/or color.
  • the pre-sintered porcelain block may exhibit gradual light transmittance after being densely sintered.
  • the pre-sintered ceramic block may show a gradual color after being densely sintered.
  • the pre-sintered porcelain block can show gradual light transmittance and color after being densely sintered. Since the pre-sintered porcelain block provided in this application can be applied to dental restorations, the light transmittance and/or color shown after dense sintering can be close to the characteristics of natural teeth; improve the restoration Aesthetic effect.
  • the pre-sintered porcelain block does not contain a lithium metasilicate crystal phase.
  • the three-point bending strength of the pre-sintered porcelain block is 10-110 MPa; preferably 10-90 MPa; more preferably 30-70 MPa.
  • the pre-sintered ceramic block contains the following components:
  • SiO 2 55-85%wt, preferably 55-80%wt, more preferably 60-80%wt, most preferably 64-75%wt
  • ZrO 2 0-10%wt, preferably 0-8%wt, more preferably 0-6%wt, most preferably 0-4%wt
  • Al 2 O 3 0.3-8% wt, preferably 0.5-6% wt, more preferably 0.5-5% wt, most preferably 0.5-4% wt
  • La 2 O 3 0-7%wt, preferably 0-5%wt, more preferably 0-4.5%wt, most preferably 0-4%wt
  • ZnO 0-10% wt, preferably 0-8% wt, more preferably 0-7% wt, most preferably 0.1-5% wt
  • K 2 O 0.1-10% wt, preferably 0.1-9% wt, more preferably 0.1-7% wt, most preferably 0.5-4.5% wt
  • GeO 2 0.1-7%wt, preferably 0.1-6%wt, more preferably 0.3-5%wt, most preferably 0.5-4%wt
  • Nucleating agent 0-10%wt, preferably 0-8%wt, more preferably 0.5-8%wt, most preferably 0.5-5%wt
  • Coloring agent 0-10% wt, preferably 0-8% wt, more preferably 0-6% wt, most preferably 0.1-5% wt
  • additives 0-15%wt, preferably 0-10%wt, more preferably 0-4%wt;
  • the nucleating agent is selected from one or a combination of at least two of P 2 O 5 , TiO 2 , V 2 O 5 , Cr 2 O 3 , and Fe 2 O 3 ;
  • additives are selected from one or a combination of at least two of B 2 O 3 , F, Na 2 O, BaO, SrO, CaO, MgO, etc.
  • the colorant is selected from glass colorants or ceramic colorants; preferably, the glass colorant is selected from oxides and/or salts of at least one of the following elements: vanadium, chromium, and manganese , Iron, cobalt, nickel, copper, cerium, praseodymium, neodymium, samarium, promethium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, samarium and europium; the ceramic colorant is selected from zirconium iron red, zirconium cerium praseodymium yellow and nickel One or a combination of at least two of the black grades.
  • the fourth aspect of the present application provides a method for preparing the pre-sintered ceramic block of the dental restoration of the third aspect, which includes the following steps:
  • the sintering temperature of the pre-sintering is 530-590°C.
  • the matrix glass powder contains the following components:
  • SiO 2 55-85%wt, preferably 55-80%wt, more preferably 60-80%wt, most preferably 64-75%wt
  • ZrO 2 0-10%wt, preferably 0-8%wt, more preferably 0-6%wt, most preferably 0-4%wt
  • Al 2 O 3 0.3-8% wt, preferably 0.5-6% wt, more preferably 0.5-5% wt, most preferably 0.5-4% wt
  • La 2 O 3 0-7%wt, preferably 0-5%wt, more preferably 0-4.5%wt, most preferably 0-4%wt
  • ZnO 0-10% wt, preferably 0-8% wt, more preferably 0-7% wt, most preferably 0.1-5% wt
  • K 2 O 0.1-10%wt, preferably 0.1-9%wt, more preferably 0.1-7%wt, most preferably 1-7%wt
  • GeO 2 0.1-7%wt, preferably 0.1-6%wt, more preferably 0.3-5%wt, most preferably 0.5-4%wt
  • Nucleating agent 0-10%wt, preferably 0-8%wt, more preferably 0.5-8%wt, most preferably 0.5-5%wt
  • Coloring agent 0-10% wt, preferably 0-8% wt, more preferably 0-6% wt, most preferably 0.1-5% wt
  • additives 0-15%wt, preferably 0-10%wt, more preferably 0-4%wt;
  • the nucleating agent is selected from one or a combination of at least two of P 2 O 5 , TiO 2 , V 2 O 5 , Cr 2 O 3 , and Fe 2 O 3 ; and the other additives are selected from B 2 One or a combination of at least two of O 3 , F, Na 2 O, BaO, SrO, CaO, and MgO.
  • the sintering temperature of the pre-sintering is 530-560°C.
  • the sintering temperature of the pre-sintering is 570-590°C.
  • step (1) can prepare 3, 4, 5, 7 or more types of matrix glass powders with different light transmittance and/or colors. After being densely sintered, each matrix glass powder has different light transmittance and/or color.
  • the "matrix glass powder with different light transmittance and/or color” means that the matrix glass powder exhibits different light transmittance and/or color after being densely sintered.
  • pre-sintered ceramics with different light transmittance and/or color means that the pre-sintered ceramics have different light transmittance and/or color after being densely sintered.
  • the pre-sintered porcelain block Since the pre-sintered porcelain block is densely sintered, it contains a large amount of lithium disilicate crystal phase. Therefore, in this article, the pre-sintered porcelain block after dense sintering is also called lithium disilicate glass ceramic.
  • step (1) can prepare at least two kinds of matrix glass powders with different light transmittance; used to prepare pre-sintered porcelain with gradual light transmittance after being densely sintered Block; In some embodiments, step (1) can prepare at least two different colors of matrix glass powder; used to prepare a pre-sintered ceramic block that shows a gradual color after being densely sintered; in other embodiments , Step (1) can prepare at least two kinds of matrix glass powders with different light transmittance and colors; used to prepare pre-sintered porcelain blocks that show gradual light transmittance and color after being densely sintered.
  • step (2) after filling a matrix glass powder into a mold, and flattening the upper surface of the matrix glass powder into a mold, then loading another matrix glass powder ; Until all the powder is loaded into the mold; and then compression molding.
  • the pre-sintered porcelain block prepared by the method provided in the fourth aspect of the present application contains at least two layers; when the pre-sintered porcelain block is densely sintered, the resulting product will show multilayer gradual light transmittance and /Or color.
  • This application can prepare matrix glass powders with different light transmittance and/or colors by adjusting the content of each component; for example, preparing matrix glass powders with different colors can be achieved by adjusting the type and content of colorants ; Although the content of the components in the matrix glass powder of different light transmittance and/or color is different, the components and content of each matrix glass powder still meet the aforementioned pre-sintered porcelain block components and content ranges .
  • the preparation of each matrix glass powder can be implemented in accordance with the aforementioned preparation steps of the matrix glass powder of the second aspect.
  • the pre-sintered ceramic block of the dental restoration contains the following components:
  • the pre-sintered ceramic block of the dental restoration contains the following components:
  • the pre-sintered ceramic block of the dental restoration contains the following components:
  • GeO 2 is added to its components, which can effectively reduce the viscosity of the matrix glass during the melting process, reduce the generation of bubbles during the melting process, and reduce the appearance of pores in the pre-sintered porcelain block It can increase the refractive index of the densely sintered porcelain block and improve the optical performance.
  • the addition of GeO 2 can increase the density of the porcelain block after dense sintering, thereby increasing its strength.
  • a coloring agent is added to its components mainly to allow the densely sintered porcelain block to obtain a color matching the patient's natural teeth.
  • the colorant can be a glass colorant or a ceramic colorant.
  • the glass colorant refers to the colorant used in glass and glass products; including but not limited to oxides of transition metals and rare earth elements; glass colorants can be directly derived from the oxidation of transition metals, rare earth elements, etc. Substances can also be derived from salts that can produce the above-mentioned glass colorant oxides after high-temperature treatment, including but not limited to chlorides.
  • the ceramic coloring agent refers to the coloring agent applied to ceramics and ceramic products, including but not limited to zirconium iron red, zirconium cerium praseodymium yellow and nickel black. Ceramic colorants such as zirconium iron red, zirconium cerium praseodymium yellow and nickel black can be obtained commercially.
  • additives can be added to its components, and other additives can be selected from but not limited to B 2 O 3 , F, Na 2 O, BaO, SrO, CaO, MgO One or a combination of at least two; adding B 2 O 3 can reduce the viscosity of the matrix glass liquid and the glass-ceramic phase during the dense sintering process, and promote liquid phase sintering; F can convert the surface of lithium disilicate glass ceramics into a whole Crystallization; Na 2 O can reduce the high temperature viscosity of the matrix glass liquid; BaO can increase the surface brightness of the matrix glass, thereby increasing the surface brightness of the glass phase in the glass ceramic.
  • B 2 O 3 can reduce the viscosity of the matrix glass liquid and the glass-ceramic phase during the dense sintering process, and promote liquid phase sintering
  • F can convert the surface of lithium disilicate glass ceramics into a whole Crystallization
  • Na 2 O can reduce the high temperature viscosity of the matrix glass liquid
  • BaO
  • SrO can be used as a fluxing agent when preparing the matrix glass liquid, reducing the viscosity of the glass liquid, and at the same time reducing the viscosity of the glass-ceramics during the dense sintering process, and increasing the refractive index of the glass phase in the glass ceramics.
  • CaO also has the effect of reducing the high temperature viscosity of the molten glass.
  • the pre-sintered ceramic block provided in this application is basically opaque and not translucent to visible light; while glass containing the same composition is generally transparent, and glass ceramics (also called glass-ceramics) of the same composition are generally translucent It can be seen that the pre-sintered porcelain block provided by this application is different from glass or glass ceramics containing the same composition in microstructure.
  • opaque has its usual meaning; in the specific embodiment of the present application, the opaque characteristics of products, such as pre-sintered ceramic blocks, are observed with the naked eye.
  • transmittance can be characterized by the transmittance of visible light.
  • the gradual light transmittance can be understood as the gradual transmittance of visible light.
  • the nucleating agent when preparing the matrix glass powder, can be directly derived from P 2 O 5 , TiO 2 , V 2 O 5 , Cr 2 O 3 , Fe Oxides such as 2 O 3 can also be derived from salts that can produce the above-mentioned nucleating agent oxides after high temperature treatment, including but not limited to carbonates, chlorides and the like.
  • the colorant contained in the matrix glass powder is selected from glass colorants or ceramic colorants; preferably, the glass colorant is selected from the oxidation of at least one of the following elements: Substances: vanadium, chromium, manganese, iron, cobalt, nickel, copper, cerium, praseodymium, neodymium, samarium, promethium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, samarium and europium; the ceramic colorant is selected from zirconium One or a combination of at least two of iron red, zirconium cerium praseodymium yellow and nickel black.
  • the above-mentioned glass colorant oxide can be directly derived from vanadium, chromium, manganese, iron, cobalt, nickel, copper, cerium, praseodymium, neodymium, samarium, promethium, terbium, dysprosium, holmium, erbium, thulium,
  • the oxides of ytterbium, samarium, and europium can also be derived from salts that can produce the above-mentioned glass colorant oxides after high temperature treatment, including but not limited to chlorides.
  • the compression molding may adopt dry pressing molding or isostatic pressing, and the pressure used during the compression molding may be 50-300 MPa.
  • the sintering temperature of the pre-sintering is 530-590°C.
  • the inventor of the present application unexpectedly found that the obtained pre-sintered porcelain block is within this temperature range Containing silicon dioxide as the main crystalline phase; in particular, when the sintering temperature of the pre-sintering is 530-560°C, the prepared pre-sintered porcelain block basically does not contain the lithium metasilicate crystal phase; when the sintering temperature of the pre-sintering At 570-590°C, the prepared pre-sintered porcelain block will contain a small amount of lithium metasilicate crystal phase.
  • the sintering temperature of the pre-sintering can be any value in the range of 530-590°C, such as 540°C, 550°C, 560°C, 570°C, etc.
  • the inventor further found that if the pre-sintering temperature is continued to be increased, when the pre-sintering temperature is higher than 590°C, for example, reaches 600°C, the lithium metasilicate crystal phase in the porcelain block will gradually become the main crystal phase.
  • the holding time of the pre-sintering is 20-240 minutes, preferably 30-120 minutes, more preferably 60-120 minutes.
  • pre-sintering and compact sintering can be performed in a sintering furnace, which can provide a vacuum atmosphere; in the specific implementation process, the vacuum condition is measured by absolute pressure, which can be 100-5000Pa, preferably 1000-3000Pa.
  • absolute pressure which can be 100-5000Pa, preferably 1000-3000Pa.
  • the inventor of the present application found that when the vacuum degree is 100-5000 Pa, especially 1000-3000 Pa, the better the density of the finally obtained lithium disilicate glass ceramic, the better the light transmittance.
  • the fifth aspect of the present application provides a method for preparing a porcelain block for dental restoration, which includes the following steps:
  • the pre-sintered porcelain block is densely sintered under vacuum conditions, wherein the sintering temperature of the dense sintering is 800°C-1100°C.
  • the sixth aspect of the present application provides a method for preparing a dental restoration, which includes the following steps:
  • the prosthesis body is compactly sintered under vacuum conditions to obtain a dental prosthesis; wherein the sintering temperature of the compact sintering is 800°C-1100°C.
  • the pre-sintered porcelain block can be further densified; in the process of dense sintering, the crystal content in the porcelain block increases, the crystal grows, a large amount of lithium disilicate is precipitated, and the main crystal phase of lithium disilicate is obtained.
  • the holding time for dense sintering may be 1-60 minutes, preferably 1-40 minutes.
  • CAD/CAM technology can be used to process the pre-sintered ceramics, more specifically, dry machining or wet machining can be used.
  • CAD/CAM technology may be used to process the pre-sintered ceramics, more specifically, dry machining or wet machining may be used.
  • dry machining is also called dry machining, which has the usual meaning in the art, and generally refers to a machining method that performs cutting without using cutting fluid.
  • wet machining is also called wet machining, which has the usual meaning in the art, generally refers to the machining method of cutting under the condition of using cutting fluid; the machining process is accompanied by cutting fluid spraying On the porcelain block and the bur, to reduce the large amount of heat generated during the machining process.
  • dry machining does not require expensive consumables such as cutting fluids and filter elements, so the machining cost is lower and it is easier to popularize.
  • the dental restoration after dense sintering, may also be glazing and/or decorated.
  • the dental restoration after dense sintering, may also be glazing and/or decorated.
  • Glazing has the usual meaning in the art, which means to apply a layer of colored glaze or transparent glaze evenly on the surface of the ceramic restoration, and then put it in a porcelain furnace for sintering to form a thin oxide layer on the surface of the restoration. . Glazing can seal the micropores and cracks that may exist on the surface of the ceramic restoration and restore its smooth surface.
  • the pre-sintered porcelain block provided by this application has a low pre-sintering temperature, and it contains the main crystal phase of silicon dioxide, but does not contain or contains a small amount of lithium metasilicate crystal phase; the hardness is low, and the Vickers hardness is 0.5-3GPa, which is obviously low For porcelain blocks containing lithium metasilicate crystal phase, when machined into dental restorations, it is suitable for dry machining and also suitable for wet machining.
  • Figure 1 is an XRD pattern of the pre-sintered porcelain block prepared in Example 2;
  • Example 2 is an XRD pattern of the pre-sintered porcelain block prepared in Example 4.
  • Example 3 is an XRD pattern of the pre-sintered porcelain block prepared in Example 17.
  • composition and content of the matrix glass powder are as follows:
  • composition and content of the matrix glass powder grind and mix all the components corresponding to the matrix materials such as oxides, carbonate compounds, phosphates, etc., and put the mixed matrix materials into a platinum crucible, and place the platinum crucible Put it into the furnace and heat it to 1550°C, keep it for 1 hour, clarify and homogenize to prepare the matrix glass liquid; subject the prepared matrix glass liquid to water quenching to obtain glass pieces, and then put the glass pieces at 120°C Dry for 1 hour; grind the dried glass pieces to an average particle size of 5-30um to obtain matrix glass powder.
  • the matrix materials such as oxides, carbonate compounds, phosphates, etc.
  • the matrix glass powder is put into a mold, and uniaxial dry pressing is performed at a molding pressure of 75 MPa to obtain a matrix glass body with a weight of about 9-10 g.
  • the matrix glass body is sintered in a vacuum furnace with a vacuum atmosphere, the sintering temperature is 550°C, the heat preservation is 60 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a pre-sintered porcelain block;
  • the pre-sintered ceramic block is processed by wet machining using CAD/CAM processing equipment (CEREC inLab MC XL, Sirona Corporation) to obtain a restoration body.
  • CAD/CAM processing equipment CEREC inLab MC XL, Sirona Corporation
  • the prosthesis body is densely sintered in a sintering furnace with a vacuum atmosphere, the sintering temperature is 875°C, the temperature is kept for 15 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a lithium disilicate glass ceramic prosthesis.
  • the other components except the colorants correspond to oxides, carbonate compounds, and phosphates.
  • the matrix raw materials wait for the matrix raw materials to grind and mix uniformly, put the mixed raw materials into a platinum crucible, heat the platinum crucible into the furnace to 1550°C, keep it for 1 hour, clarify and homogenize, and prepare the matrix glass liquid;
  • the matrix glass solution is water-quenched to obtain glass fragments, and then the glass fragments are dried at 120°C for 1 hour; the dried glass fragments are ground to an average particle size of 5-30um, and then added
  • the colorant is mixed uniformly; a single-color matrix glass powder 1 is obtained.
  • monochromatic matrix glass powder 2 and monochromatic matrix glass powder 3 according to the mass ratio of monochromatic matrix glass powder 1: monochromatic matrix glass powder 2: monochromatic matrix glass powder 3 as The ratio of 4:3:2 is evenly mixed to obtain matrix glass powder.
  • the matrix glass powder is put into a mold, and uniaxial dry pressing is performed at a molding pressure of 75 MPa to obtain a matrix glass body with a weight of about 9-10 g.
  • the matrix glass body is sintered in a vacuum furnace with a vacuum atmosphere, the sintering temperature is 570°C, the holding time is 60 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a pre-sintered porcelain block; the pre-sintered porcelain block is tested by XRD The result is shown in Fig. 1. It can be seen from Fig. 1 that the pre-sintered porcelain block silica prepared in this embodiment is the main crystalline phase, and lithium metasilicate is the secondary crystalline phase.
  • the pre-sintered porcelain block is processed by dry machining with CAD/CAM processing equipment (Roland DWX 51D) to obtain a restoration body.
  • the processed restoration is complete without incomplete edges or incomplete processing, and damage to the porcelain block The problem.
  • the prosthesis body is compactly sintered in a sintering furnace with a vacuum atmosphere, the sintering temperature is 930° C., the temperature is kept for 10 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a lithium disilicate ceramic restoration.
  • Monochrome matrix glass powder 1 Monochrome matrix glass powder 2
  • Monochrome matrix glass powder 3 SiO 2 69.60% 69.67% 69.67% Li 2 O 14.42% 14.44% 14.44% ZrO 2 1.50% 1.50% 1.50% Al 2 O 3 1.26% 1.26% 1.26% K 2 O 3.58% 3.58% 3.58% P 2 O 5 4.00% 4.00% ZnO 2.44% 2.45% 2.45% CeO 2 1.15% 1.15% 1.15% 1.15% GeO 2 0.85% 0.85% 0.85% MgO 0.30% 0.30% 0.30% La2O3 0.60% 0.60% 0.60% 0.60%
  • composition and content of the single-color matrix glass powder 1 in Table 2 grind and mix all the components corresponding to the matrix materials such as oxides, carbonate compounds, phosphates, etc., and put the mixed raw materials into a platinum crucible. Put the platinum crucible into the furnace and heat it to 1550°C, keep it for 1 hour, clarify and homogenize, and prepare the matrix glass liquid; subject the prepared matrix glass liquid to water quenching to obtain glass fragments, and then the glass fragments Drying at 120°C for 1 hour; grinding the dried glass pieces to an average particle size of 5-30um to obtain monochromatic matrix glass powder 1 respectively.
  • the matrix materials such as oxides, carbonate compounds, phosphates, etc.
  • monochromatic matrix glass powder 2 and monochromatic matrix glass powder 3.
  • monochromatic matrix glass powder 1 monochromatic matrix glass powder 2
  • monochromatic matrix glass powder 3 is 4: The ratio of 3:2 is mixed uniformly to obtain matrix glass powder.
  • the pre-sintered porcelain block is formed and pre-sintered according to the method of Example 2 to obtain a pre-sintered porcelain block; the pre-sintered porcelain block is subjected to wet machining and dense sintering according to the method of Example 1 to obtain a lithium disilicate ceramic restoration.
  • Monochrome matrix glass powder 1 Monochrome matrix glass powder 2
  • Monochrome matrix glass powder 3 SiO 2 69.81% 69.81% 69.81% Li 2 O 14.47% 14.47% 14.47% ZrO 2 1.5% 1.5% 1.5% Al 2 O 3 1.26% 1.26% 1.26% K 2 O 3.60% 3.60% 3.60% P 2 O 5 4.01% 4.01% 4.01% ZnO 2.35% 2.4% 2.4% CeO 2 1.05% 1.1% 1.15% GeO 2 0.85% 0.85% 0.85% 0.85% 0.85%
  • composition and content of the matrix glass powder are as follows:
  • the other components except the colorants correspond to oxides, carbonate compounds, phosphates and other matrix materials by grinding, Mix evenly, put the mixed matrix raw materials into a platinum crucible, put the platinum crucible into the furnace and heat to 1550°C, keep it for 1 hour, clarify and homogenize, and prepare the matrix glass liquid; Water quenched to obtain glass shards, and then dried the glass shards at 120°C for 1 hour; ground the dried glass shards to an average particle size of 5-30um, then added colorants and mixed them evenly; Matrix glass powder.
  • the matrix glass powder is put into a mold, and uniaxial dry pressing is performed at a molding pressure of 75 MPa to obtain a matrix glass body with a weight of about 9-10 g.
  • the matrix glass body is sintered in a vacuum furnace with a vacuum atmosphere, the sintering temperature is 540°C, the holding time is 120 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a pre-sintered porcelain block; the pre-sintered porcelain block is subjected to XRD inspection
  • the result is shown in Figure 2. It can be seen that the diffraction peaks of the temperature-treated sample correspond to the SiO 2 standard PDF card.
  • the pre-sintered porcelain block prepared in this example contains a silicon dioxide crystal phase and does not contain lithium metasilicate Crystalline phase.
  • the pre-sintered porcelain block is processed by dry machining using CAD/CAM processing equipment (Roland DWX-51D) to obtain a restoration body.
  • CAD/CAM processing equipment Roland DWX-51D
  • the prosthesis body is densely sintered in a sintering furnace with a vacuum atmosphere, the sintering temperature is 880° C., the temperature is kept for 8 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a lithium disilicate glass ceramic restoration.
  • Example 3 According to the method of Example 1 and the ingredients in Table 3, the matrix glass powders of Examples 5-10 were prepared and molded.
  • the matrix glass bodies of Examples 5-10 were pre-sintered in a vacuum furnace with a vacuum atmosphere.
  • the sintering temperature and holding time are shown in Table 3.
  • the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain the pre-sintered porcelain block;
  • Example The pre-sintered porcelain block was machined with the corresponding CAD/CAM processing equipment in Table 3 to obtain the restoration body.
  • the restoration bodies of Examples 5-10 were densely sintered in a sintering furnace with a vacuum atmosphere.
  • the sintering temperature and holding time are shown in Table 3.
  • the pressure (absolute pressure) in the vacuum furnace was 3000 Pa to obtain a lithium disilicate glass ceramic restoration.
  • Example 4 According to the method of Example 4 and the ingredients in Table 4, the matrix glass powders of Examples 11-15 were prepared and molded.
  • the matrix glass bodies of Examples 11-15 were pre-sintered in a vacuum furnace with a vacuum atmosphere.
  • the sintering temperature and holding time are shown in Table 3.
  • the pressure in the vacuum furnace (absolute pressure) is 3000 Pa to obtain a pre-sintered porcelain block;
  • Example The pre-sintered porcelain block was machined with the corresponding CAD/CAM processing equipment in Table 4 to obtain the restoration body.
  • the restoration bodies of Examples 11-15 were densely sintered in a sintering furnace with a vacuum atmosphere.
  • the sintering temperature and holding time are shown in Table 4.
  • the pressure (absolute pressure) in the vacuum furnace was 3000 Pa to obtain a lithium disilicate glass ceramic restoration.
  • the other components except colorants correspond to oxides, carbonate compounds, phosphates, etc.
  • Grind and mix the matrix raw materials uniformly put the mixed matrix raw materials into a platinum crucible, heat the platinum crucible into a sintering furnace to 1550°C, keep it for 1 hour, clarify and homogenize, and prepare a matrix glass;
  • the matrix glass liquid is quenched with water to obtain glass fragments, and then the glass fragments are dried at 120°C for 1 hour; the dried glass fragments are ground to an average particle size of 5-30um, and then the colorant is added , Mix uniformly;
  • the matrix glass powder 2 and the matrix glass powder 3 are prepared.
  • the obtained three matrix glass powders have the same light transmittance and different colors.
  • matrix glass powder 1 to the dry pressing mold, flatten its upper surface to be flat, and then add the matrix glass powder 2, flatten the upper surface and add the matrix glass powder 3, where the matrix glass powder 1 Thickness of 5.5mm, matrix glass powder 2 with thickness of 5mm, matrix glass powder 3 with thickness of 5.5mm, and then uniaxial dry pressing with a pressure of 50MPa to obtain matrix glass body with a weight of about 9-10g.
  • the matrix glass body is sintered in a vacuum furnace with a vacuum atmosphere, the sintering temperature is 555°C, the heat preservation is 60 minutes, and the pressure in the vacuum furnace (absolute pressure) is 3000 Pa to obtain the pre-sintered porcelain block;
  • the pre-sintered ceramic block is processed by wet machining using CAD/CAM processing equipment (CEREC inLab MC XL, Sirona Corporation) to obtain a restoration body.
  • CAD/CAM processing equipment CEREC inLab MC XL, Sirona Corporation
  • the prosthesis body is compactly sintered in a sintering furnace with a vacuum atmosphere, the sintering temperature is 920°C, the temperature is kept for 5 minutes, and the pressure (absolute pressure) in the vacuum furnace is 3000 Pa to obtain a three-color lithium disilicate glass ceramic restoration.
  • the other components except the colorant correspond to the oxides, carbonate compounds, phosphate compounds and other matrix materials by grinding and mixing them evenly.
  • Place the mixed materials Put the platinum crucible into a platinum crucible, heat the platinum crucible to 1550°C in the furnace, keep it for 1 hour, clarify and homogenize to obtain the matrix glass liquid; subject the prepared matrix glass liquid to water quenching to obtain glass fragments, and then The glass shards are dried at 120° C. for 1 hour; the dried glass shards are ground to an average particle size of 5-30 um, and then the colorant is added and mixed uniformly; a matrix glass powder 1 is obtained.
  • the matrix glass powder 2 and the matrix glass powder 3 are prepared. The obtained three kinds of matrix glass powders have different light transmittance and color.
  • the thickness of 1 is 5.7mm
  • the thickness of matrix glass powder 2 is 4.9mm
  • the thickness of matrix glass powder 3 is 5.4mm
  • uniaxial dry pressing is performed with a pressure of 50MPa to obtain a matrix glass body with a weight of about 9-10g.
  • the matrix glass body is sintered in a vacuum furnace with a vacuum atmosphere at a sintering temperature of 560° C., heat preservation for 120 minutes, and a pressure (absolute pressure) in the vacuum furnace of 3000 Pa to obtain a pre-sintered porcelain block.
  • the pre-sintered porcelain block was subjected to XRD detection, and the result is shown in Figure 3.
  • the diffraction peak of the temperature-treated sample corresponds to the SiO2 standard PDF card.
  • the pre-sintered porcelain block prepared in this example contains silicon dioxide crystal phase, but does not contain Lithium metasilicate crystal phase.
  • the pre-sintered porcelain block is processed by dry machining using CAD/CAM processing equipment (Roland DWX-51D) to obtain a restoration body.
  • CAD/CAM processing equipment Roland DWX-51D
  • the prosthetic body is compactly sintered in a sintering furnace with a vacuum atmosphere, the sintering temperature is 875°C, the temperature is kept for 15 minutes, and the pressure in the vacuum furnace (absolute pressure) is 3000 Pa to obtain three layers of lithium disilicate glass with light transmittance and color gradient Ceramic restorations.
  • Matrix glass powder 1 Matrix glass powder 2
  • Matrix glass powder 3 SiO 2 68.96% 69.41% 69.94% Li 2 O 15.22% 14.58% 14.28% ZrO 2 1.52% 1.49% 1.19%
  • matrix glass powder 18-1 in Table 7 grind and mix matrix materials such as oxides, carbonate compounds, phosphates, etc., with the exception of colorants.
  • the raw materials are put into a platinum crucible, the platinum crucible is put into the furnace and heated to 1550°C, and kept for 1 hour, clarified and homogenized to obtain a matrix glass liquid; the prepared matrix glass liquid is subjected to water quenching to obtain glass fragments, Then the glass pieces are dried at 120°C for 1 hour; the dried glass pieces are ground to an average particle size of 5-30um, and then the colorant is added and mixed uniformly; a single-color matrix glass powder is obtained ⁇ 18-1.
  • monochromatic matrix glass powder 18-2 and monochromatic matrix glass powder 18-3 according to monochromatic matrix glass powder 18-1: monochromatic matrix glass powder 18-2: monochromatic
  • the matrix glass powder 18-3 is evenly mixed in a ratio of 2:4:3 to obtain matrix glass powder 18-L.
  • each matrix glass powder in Table 8 According to the composition and content of each matrix glass powder in Table 8, according to the preparation method of monochromatic matrix glass powder 18-1, monochromatic matrix glass powder 18-4 and monochromatic matrix glass powder 18- were respectively prepared. 5 and monochromatic matrix glass powder 18-6, according to the ratio of monochromatic matrix glass powder 18-4: monochromatic matrix glass powder 18-5: monochromatic matrix glass powder 18-6 is 2.5:3.5:3 Mix uniformly to obtain matrix glass powder 18-M.
  • each matrix glass powder in Table 9 According to the composition and content of each matrix glass powder in Table 9, according to the preparation method of monochromatic matrix glass powder 18-1, prepare monochromatic matrix glass powder 18-7 and monochromatic matrix glass powder respectively 18-8 and monochromatic matrix glass powder 18-9, according to monochromatic matrix glass powder 18-7: monochromatic matrix glass powder 18-8: monochromatic matrix glass powder 18-9 is 2:3.5:3.5 The ratio is mixed uniformly to obtain matrix glass powder 18-H.
  • Part of the matrix glass powder 18-L and part of the matrix glass powder 18-M are mixed in a mass ratio of 1:1.5 to obtain glass powder 18-LM;
  • Part of the matrix glass powder 18-M and part of the matrix glass powder 18-H are mixed in a mass ratio of 1:2 to obtain glass powder 18-MH;
  • the thickness of the matrix glass powder L is 4mm
  • the thickness of the matrix glass powder LM is 3mm
  • the thickness of the matrix glass powder M is 2.5mm.
  • the thickness of the matrix glass powder MH is 2.5mm
  • the thickness of the matrix glass powder H is 4mm; then uniaxial dry pressing is performed with a pressure of 75MPa to obtain a matrix glass body with a weight of about 9-10g.
  • the matrix glass body is sintered in a vacuum furnace with a vacuum atmosphere at a sintering temperature of 550° C., heat preservation for 60 minutes, and a pressure (absolute pressure) in the vacuum furnace of 3000 Pa to obtain a pre-sintered porcelain block.
  • the pre-sintered porcelain block is processed by dry machining using CAD/CAM processing equipment (Roland DWX-51D) to obtain a restoration body.
  • CAD/CAM processing equipment Roland DWX-51D
  • the prosthetic body is compactly sintered in a sintering furnace with a vacuum atmosphere.
  • the sintering temperature is 875°C, the temperature is kept for 10 minutes, and the pressure in the vacuum furnace (absolute pressure) is 3000 Pa to obtain 5 layers of lithium disilicate glass with light transmittance and color gradient. Ceramic restorations.
  • the XRD test conditions of Examples 1-18 are: the D8Advance X-ray diffractometer of German Bruker Company, the radiation source is a Cu target, the applied voltage is 40.0kV, the anode current is 40.0mA and the 1.0mm slit, the scanning range is 10°-80 Under the condition of °, the sample is subjected to XRD test.
  • the strength in the table refers to the three-point bending strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种用于牙科修复体的预烧结瓷块,其预烧结温度低,其含有二氧化硅主晶相,但不含有或含有少量的偏硅酸锂晶相;硬度低,维氏硬度为0.5-3GPa,明显低于含有偏硅酸锂晶相的瓷块,在机械加工成牙科修复体时,适合干法机械加工,同时也适用于湿法机械加工。

Description

一种用于牙科修复体的预烧结瓷块、其制备方法及其应用 技术领域
本申请涉及牙科修复体技术领域,特别涉及一种用于牙科修复体的预烧结瓷块、其制备方法及其应用。
背景技术
椅旁修复系统是将计算机辅助设计与制造引入到牙科修复领域中而形成的一种牙科修复系统。
椅旁修复系统的特点是方便快捷,它打破过去磨牙、取模、刻腊、烧瓷等传统假牙制造程序,当牙医将牙齿磨小修整后,即以3D摄影机直接取像,立即传入计算机,自动瓷块研磨机在计算机的辅助下,将瓷块加工成牙科修复体。
自椅旁修复系统出现以来,适于椅旁修复系统的牙科修复体材料的开发就成为国内外研究人员的研究重点。
人们发现,二硅酸锂玻璃陶瓷材料制作的牙科修复体,既具有突出的美学效果,又有良好的机械性能。但是,二硅酸锂玻璃陶瓷材料硬度很大,加工性能较差,很难在椅旁修复系统中应用。
为了解决这一问题,现有技术公开了先通过较低温度的预烧结来获得偏硅酸锂为主晶相的偏硅酸锂玻璃陶瓷,对其进行机械加工得到修复体形状后,再进行更高温度的致密烧结,最终得到二硅酸锂为主晶相的玻璃陶瓷修复体;由于偏硅酸锂的硬度低于二硅酸锂,因此加工性能有所改善。即便如此,以偏硅酸锂为主晶相的瓷块,其维氏硬度仍然达到5-6GPa,对其进行机械加工只适合采用湿法机械加工,而不适合干法机械加工,如果对偏硅酸锂玻璃陶瓷采用干法机械加工,则会出现边缘不完整、或加工不完全,甚至出现瓷块损坏等问题,而且也容易损坏车针;有鉴于此,开发一种硬度更低,能够适合干法机械加工的预烧结瓷块,是本领域亟待解决的技术问题。
发明内容
本申请提供了一种用于牙科修复体的预烧结瓷块,用于解决偏硅酸锂玻璃陶瓷硬度大不适合干法机械加工的问题。相应地,本申请提供了一种用于牙科修复体的预烧结瓷块的制备方法。
本申请还提供了一种用于牙科修复体的瓷块的制备方法,以及一种牙科修复体的制备方法。
具体方案如下:
本申请第一方面提供了一种用于牙科修复体的预烧结瓷块,其中所述预烧结瓷块含有二氧化硅主晶相,维氏硬度为0.5-3GPa,优选为1-2.5GPa,且不透明。
在本申请第一方面的一些实施方式中,预烧结瓷块不含偏硅酸锂晶相。
在本申请第一方面的一些实施方式中,预烧结瓷块的三点弯曲强度10-110MPa;优选为10-90MPa;更优选为30-70MPa。
在本申请第一方面的一些实施方式中,所述预烧结瓷块含有以下组分:
SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选0.5-4.5%wt
GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
其中,成核剂选自于P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;
其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO等中的一种或至少两种的组合。
在本申请第一方面的一些实施方式中,着色剂选自玻璃着色剂或陶瓷着色剂;优选地,玻璃着色剂选自以下元素中至少一种的氧化物:钒、铬、锰、铁、钴、镍、铜、铈、镨、钕、钐、钷、铽、镝、钬、铒、铥、镱、钐和铕;所述陶瓷着色剂选自锆铁红、锆铈镨黄和镍黑等中的一种或至少两种的组合。
本申请第二方面提供了前述第一方面的牙科修复体的预烧结瓷块的制备方法,其包括以下步骤:
(1)、制备基质玻璃粉体;
(2)、将所制备的基质玻璃粉体装入模具中,压制成型,得到基质玻璃坯体;
(3)、将基质玻璃坯体在真空条件下预烧结,得到预烧结瓷块,预烧结的烧结温度为530-590℃。
在本申请第二方面的一些实施方式中,所述基质玻璃粉体含有以下组分:
SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选1-7%wt
GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
其中,所述成核剂选自P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;所述其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO 中的一种或至少两种的组合。
在本申请第二方面的一些实施方式中,预烧结的烧结温度为530-560℃。
在本申请第二方面的一些实施方式中,预烧结的烧结温度为570-590℃。
在本申请的技术方案中,对于预烧结瓷块的组分而言,其基本上具有与基质玻璃粉体相同的组分。
在本申请第二方面的一些实施方式中,基质玻璃粉体可以通过以下方法制备:
(A1)、按基质玻璃粉体含有的所有组分,选择合适的基质原料,例如碳酸盐、氧化物、氟化物等,将各基质原料研磨、混合后,在1250℃-1650℃下熔融0.5-3小时,制得基质玻璃液;
(B1)、将基质玻璃液进行水淬,得到玻璃碎块,然后将玻璃碎块在100℃~150℃的条件下烘干1h~2h;
(C1)、将烘干后的玻璃碎块研磨,得到基质玻璃粉体。
在本申请第二方面的一些实施方式中,基质玻璃粉体还可以通过以下方法制备:
制备至少两种单色基质玻璃粉体,然后将制备的各单色基质玻璃粉按所需颜色比例混合,得到用于制备预烧结瓷块的基质玻璃粉体;其中,每种单色基质玻璃粉体可以按以下方法制得:
(A2)、选择合适的基质原料,例如碳酸盐、氧化物、氟化物等,将各基质原料研磨、混合后,在1250℃-1650℃下熔融0.5-3小时,制得单色基质玻璃液;
(B2)、将单色基质玻璃液进行水淬,得到单色玻璃碎块,然后将单色玻璃碎块在100℃~150℃的条件下烘干1h~2h;
(C2)、将烘干后的单色玻璃碎块研磨,得到单色基质玻璃粉体。
在本申请第二方面的另一些实施方式中,基质玻璃粉体还可以通过以下方法制备:
(A3)、按基质玻璃粉体所含有的组分,将除着色剂以外的其它组分对应的基质原料,例如碳酸盐、氧化物、氟化物等研磨、混合后,在1250℃-1650℃下熔融0.5-3小时,制得基质玻璃液;
(B3)、将玻璃液进行水淬,得到玻璃碎块,然后将玻璃碎块在100℃~150℃的条件下烘干1h~2h;
(C3)、将烘干后的玻璃碎块研磨,然后与着色剂混合均匀,得到基质玻璃粉体。
在此实施方式中,在步骤(C3)中加入着色剂,可以避免高温熔制过程中对着色剂的着色效果的影响;
在具体实施过程中,也可以将一些着色能力差的着色剂,例如CeO 2等,在步骤(A3)中加入;其它着色剂在步骤(C3)中加入。
在本申请第二方面的一些实施方式中,将玻璃液进行水淬可以通过将玻璃液倒入冷水中来实现;所说的冷水一般是指0-40℃的水。
在本申请第二方面的一些实施方式中,基质玻璃粉体的平均粒径为1-100um,优选为1-50um,更优选为5-20um。本申请的发明人发现,基质玻璃粉体的平均粒径的均匀程度越好,致密烧结后的二硅酸锂玻璃陶瓷制品致密性越好,析晶越均匀,导致强度、可见光透过率更高,与天然牙齿的质感更接近。
本申请第三方面提供了还一种用于牙科修复体的预烧结瓷块,其中所述预烧结瓷块含有二氧化硅主晶相,维氏硬度为0.5-3GPa,优选为1-2.5GPa,不透明,且所述预烧结瓷块经过800℃-1100℃的致密烧结后,显示出渐变的透光性和/或颜色。
在本申请第三方面的一些实施方式中,预烧结瓷块经过致密烧结后,可以显示出渐变的透光性。在一些实施方式中,预烧结瓷块经过致密烧结后,可以显示出渐变的颜色。在另一些实施方式中,预烧结瓷块经过致密烧结后,可以显示出渐变的透光性和颜色。由于本申请提供的预烧结瓷块可以应用于牙科修复体,因此,其在致密烧结后所显示出的透光性和/或颜色,可以与天然牙齿的特征趋近于一致;提高修复体的美学效果。
本申请第三方面的一些实施方式中,预烧结瓷块不含偏硅酸锂晶相。
本申请第三方面的一些实施方式中,预烧结瓷块的三点弯曲强度10-110MPa;优选为10-90MPa;更优选为30-70MPa。
在本申请第三方面的一些实施方式中,预烧结瓷块含有以下组分:
SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选0.5-4.5%wt
GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
其中,成核剂选自于P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;
其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO等中的一种或至少两种的组合。
本申请第三方面的一些实施方式中,着色剂选自玻璃着色剂或陶瓷着色剂;优选地,玻璃着色剂选自以下元素中至少一种的氧化物和/或盐:钒、铬、锰、铁、钴、镍、铜、铈、镨、钕、钐、钷、铽、镝、钬、铒、铥、镱、钐和铕;所述陶瓷着色剂选自锆铁红、锆铈镨黄和镍黑等中的一种或至少两种的组合。
本申请第四方面提供了前述第三方面的牙科修复体的预烧结瓷块的制备方法,其包括以下步骤:
(1)制备至少两种不同透光性和/或颜色的基质玻璃粉体;
(2)将所制备的至少两种基质玻璃粉体,按透光性和/或颜色渐变的顺序依次装入模具中,压制成型,得到基质玻璃坯体;
(3)将基质玻璃坯体在真空条件下预烧结,得到预烧结瓷块,所述预烧结的烧结温度为530-590℃。
在本申请第四方面的一些实施方式中,所述基质玻璃粉体含有以下组分:
SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选1-7%wt
GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
其中,所述成核剂选自P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;所述其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO中的一种或至少两种的组合。
在本申请第四方面的一些实施方式中,预烧结的烧结温度为530-560℃。
在本申请第四方面的一些实施方式中,预烧结的烧结温度为570-590℃。
在本申请第四方面的一些实施方式中,步骤(1)可以制备出3种、4种、5种、7种甚至更多种具有不同的透光性和/或颜色的基质玻璃粉体,各基质玻璃粉体在致密烧结后,具有不同的透光性和/或颜色。
本文中,所说的“不同透光性和/或颜色的基质玻璃粉体”是指基质玻璃粉体经过致密烧结后呈现不同的透光性和/或颜色。
类似地,所说的“不同透光性和/或颜色”的预烧结陶瓷,是指预烧结陶瓷经过致密烧结后,透光性和/或颜色不同。
由于预烧结瓷块经过致密烧结后,其含有大量的二硅酸锂晶相,因此,在本文中,经过致密烧结后的预烧结瓷块也称为二硅酸锂玻璃陶瓷。
在本申请第四方面的一些实施方式中,步骤(1)可以制备至少两种不同透光性的基质玻璃粉体;用于制备经致密烧结后,显示出渐变的透光性的预烧结瓷块;在一些实施方式中,步骤(1)可以制备至少两种不同颜色的基质玻璃粉体;用于制备经致密烧结后,显示出渐变的颜色的预烧结瓷块;在另一些实施方式中,步骤(1)可以制备至少两种不同透光性和颜色的基质玻璃粉体;用于制备经致密烧结后,显示出渐变的透光性和颜色的预烧结瓷块。
在本申请第四方面的一些实施方式中,步骤(2)中,在将一种基质玻璃粉体装入模具中,将其上表面平整至平坦后,再装入另一种基质玻璃粉体;直至将所有的粉体装入到模具中;然后再进行压制成型。
由本申请第四方面提供的方法所制备出的预烧结瓷块,其包含了至少两个层;当预烧结瓷块经过致密烧结后,所得到的产品会显示出多层渐变的透光性和/或颜色。
本申请可以通过调整各组分的含量来制备出不同的透光性和/或颜色的基质玻璃粉体;例如,制备不同颜色的基质玻璃粉体,可以通过调整着色剂的种类及含量而实现;虽然不同透光性和/或颜色的基质玻璃粉体中组分含量有所差异,但是各基质玻璃粉体组分及其含量仍然满足前述的预烧结瓷块的组分及其含量的范围。
在本申请第四方面的一些实施方式中,每种基质玻璃粉体的制备,可以按照前述第二方面的基质玻璃粉体的制备步骤来实现。
在本申请第一方面、第三方面的一些实施方式中,牙科修复体的预烧结瓷块,其含有以下组分:
SiO 2 55-80%wt
Li 2O:12-25%wt
ZrO 2 0-8%wt
Al 2O 3:0.5-6%wt
La 2O 3:0-5%wt
ZnO:0-8%wt
K 2O:0.1-9%wt
GeO 2:0.1-6%wt
成核剂:0-8%wt
着色剂:0-8%wt,
其他添加剂:0-10%wt。
在本申请第一方面、第三方面的一些实施方式中,牙科修复体的预烧结瓷块,其含有以下组分:
SiO 2 60-80%wt
Li 2O:13-17%wt
ZrO 2 0-6%wt
Al 2O 3:0.5-5%wt
La 2O 3:0-4.5%wt
ZnO:0-7%wt
K 2O:0.1-7%wt
GeO 2:0.3-5%wt
成核剂:0.5-8%wt
着色剂:0-6%wt
其他添加剂:0-4%wt。
在本申请第一方面、第三方面的一些实施方式中,牙科修复体的预烧结瓷块,其含有以下组分:
SiO 2 64-75%wt
Li 2O:13-17%wt
ZrO 2 0-4%wt
Al 2O 3:0.5-4%wt
La 2O 3:0-4%wt
ZnO:0.1-5%wt
K 2O:0.1-4.5%wt
GeO 2:0.5-4%wt
成核剂:0.5-5%wt
着色剂:0.1-5%wt
其他添加剂:0-4%wt。
本申请提供的牙科修复体的预烧结瓷块,其组分中添加GeO 2,可有效降低基质玻璃熔制过程中的粘度,减少熔制过程中气泡的产生,降低预烧结瓷块中气孔出现的可能性,且可提高致密烧结后的瓷块的折射率,改善光学性能。除此之外,GeO 2的加入可提高致密烧结后的瓷块密度,从而提高其强度。
本申请提供的牙科修复体的预烧结瓷块,其组分中添加着色剂主要是为了让致密烧结后的瓷块获得与患者自然牙齿匹配的颜色。具体实施过程中,着色剂可以采用玻璃着色剂或陶瓷着色剂。
本文中,所说的玻璃着色剂是指用于玻璃及玻璃制品的着色剂;包括但不限于过渡金属、稀土元素等的氧化物;玻璃着色剂可以直接来源于过渡金属、稀土元素等的氧化物,也可以来源于经过高温处理可以产生上述玻璃着色剂氧化物的盐,包括但不限于氯化物等。
本文中,所说的陶瓷着色剂是指应用于陶瓷及陶瓷制品的着色剂,包括但不限于锆铁红、锆铈镨黄和镍黑等。锆铁红、锆铈镨黄和镍黑等陶瓷着色剂可以通过商业途径来获得。
本申请提供的牙科修复体的预烧结瓷块,其组分中可以添加其它添加剂,其它添加剂可以选自但不限于B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO中的一种或至少两种的组合;添加B 2O 3可降低基质玻璃液及致密烧结过程中微晶玻璃相粘度,促进液相烧结;F可使二硅酸锂玻璃陶瓷表面析晶转换为整体析晶;Na 2O可降低基质玻璃液的高温粘度;BaO可增加基质玻璃的表面光亮程度,从而增加玻璃陶瓷中玻璃相的表面光亮度。SrO在制备基质玻璃液时可作为助熔剂,降低玻璃液粘度,同时也降低致密烧结过程中微晶玻璃粘度,增加玻璃陶瓷中玻璃相的折光率。CaO也具有降低玻璃液的高温粘度的作用。
本申请提供的预烧结瓷块其基本不透明,对可见光也不是半透明的;而含有相同组分的玻璃一般是透明的,相同组分的玻璃陶瓷(也称为微晶玻璃) 一般是半透明的;由此可见,本申请提供的预烧结瓷块,其在微观结构上与含有相同组分的玻璃或玻璃陶瓷是不同的。
本文中,“不透明”具有其通常的含义;在本申请的具体实施方式中,通过肉眼观测产品,例如预烧结瓷块的不透明特性。
本文中,“透光性”可以通过可见光的透过率来表征,例如,可见光的透过率越高,说明透光性越好;可见光的透过率越低,说明透光性越差;所说的渐变的透光性,可以理解为渐变的可见光的透过率。
本申请的第二方面及第四方面的一些实施方式中,制备基质玻璃粉体时,成核剂可以直接来源于P 2O 5、TiO 2、V 2O 5、Cr 2O 3、、Fe 2O 3等氧化物,也可以来源于经过高温处理可以产生上述成核剂氧化物的盐,包括但不限于碳酸盐、氯化物等。
本申请的第二方面及第四方面的一些实施方式中,基质玻璃粉体含有的着色剂选自玻璃着色剂或陶瓷着色剂;优选地,玻璃着色剂选自以下元素中至少一种的氧化物:钒、铬、锰、铁、钴、镍、铜、铈、镨、钕、钐、钷、铽、镝、钬、铒、铥、镱、钐和铕;所述陶瓷着色剂选自锆铁红、锆铈镨黄和镍黑等中的一种或至少两种的组合。更为具体地,上述的玻璃着色剂氧化物可以直接来源于钒、铬、锰、铁、钴、镍、铜、铈、镨、钕、钐、钷、铽、镝、钬、铒、铥、镱、钐和铕等的氧化物,也可以来源于经过高温处理可以产生上述玻璃着色剂氧化物的盐,包括但不限于氯化物等。
本申请的第二方面及第四方面的一些实施方式中,压制成型可以采用干压成型或等静压成型,压制成型时所采用的压力可以为50-300MPa。
本申请的第二方面及第四方面所提供的制备方法中,预烧结的烧结温度为530-590℃,本申请的发明人意外地发现,在此温度范围内,所得到的预烧结瓷块含有二氧化硅作为主晶相;特别地,当预烧结的烧结温度为530-560℃时,所制备出的预烧结瓷块中基本不含偏硅酸锂晶相;当预烧结的烧结温度为570-590℃时,所制备出的预烧结瓷块中会含有少量的偏硅酸锂晶相。具体实施过程中,预烧结的烧结温度可以为530-590℃范围内的任意值,例如540℃、550℃、560℃、570℃、等。
发明人进一步发现,如果继续提高预烧结温度,当预烧结温度高于590℃,例如达到600℃时,瓷块中的偏硅酸锂晶相会逐渐变为主晶相。
在本申请第二方面及第四方面所提供的制备方法的一些实施方式中,预烧结的保温时间为20-240分钟,优选为30-120分钟,更优为60-120分钟。
在本申请第二方面及第四方面的一些实施方式中,预烧结及致密烧结可以在烧结炉中进行,该烧结炉可以提供真空氛围;具体实施过程中,真空条件以绝对压力计,可以为100-5000Pa,优选为1000-3000Pa。本申请的发明人发现,真空度在100-5000Pa,尤其是在1000-3000Pa时,最后得到的二硅酸锂玻璃陶瓷的致密性越好,透光度越好。
本申请第五方面提供了一种用于牙科修复体的瓷块的制备方法,其包括以下步骤:
制备前述第一方面或第二方面的预烧结瓷块;
将预烧结瓷块在真空条件下进行致密烧结,其中致密烧结的烧结温度为800℃-1100℃。
本申请第六方面提供了一种牙科修复体的制备方法,其包括以下步骤:
制备前述第一方面或第二方面的预烧结瓷块;
将预烧结瓷块加工成牙科修复体形状,得到修复体坯体;
将修复体坯体在真空条件下进行致密烧结,得到牙科修复体;其中致密烧结的烧结温度为800℃-1100℃。
通过致密烧结,可以使预烧结瓷块进一步的致密化;在致密烧结过程中,瓷块中的晶体含量增多,晶体生长,大量析出二硅酸锂,得到以二硅酸锂为主晶相,强度在200MPa以上且其他性能优异满足齿科修复用的二硅酸锂玻璃陶瓷或二硅酸锂玻璃陶瓷修复体。
在本申请第五方面及第六方面的一些实施方式中,致密烧结的保温时间可以为1-60分钟,优选为1-40分钟。
在本申请第六方面的一些实施方式中,对预烧结陶瓷进行加工,可以采 用CAD/CAM技术,更为具体地,可以干法机械加工,也可以采用湿法机械加工。
在本申请第六方面的一些实施方式中,对预烧结陶瓷进行加工,可以采用CAD/CAM技术,更为具体地,可以干法机械加工,也可以采用湿法机械加工。
本文中,所说的干法机械加工,也称为干式加工,其具有本领域的通常含义,一般是指在不使用切削液的条件下进行切削加工的机械加工方法。
本文中,所说的湿法机械加工,也称为湿式加工,其具有本领域的通常含义,一般是指在使用切削液的条件下进行切削加工的机械加工方法;加工过程中伴随切削液喷洒在瓷块及车针上,以降低机械加工过程中产生的大量热量。
干法机械加工相对于湿法机械加工而言,由于无须切削液,滤芯等昂贵耗材,加工成本更低,更易普及。
在本申请第六方面的一些实施方式中,在致密烧结后,还可以对所述牙科修复体进行上釉和/或饰瓷处理。
在本申请第六方面的一些实施方式中,在致密烧结后,还可以对所述牙科修复体进行上釉和/或饰瓷处理。
在本文中,“上釉”具有本领域的通常含义,是指在陶瓷修复体表面均匀涂抹一层色釉或透明釉,之后放入烤瓷炉中烧结,使修复体表面形成氧化物薄层。上釉可以封闭陶瓷修复体表面可能存在的微孔以及裂纹,恢复其表面光滑形态。
在本文中,“饰瓷”具有本领域的通常含义,是指在陶瓷修复体表面堆塑不同功能,颜色的烤瓷粉,之后放入烤瓷炉中烧结,使修复体形态更加形象,个性化,颜色更加逼真。
本申请提供的预烧结瓷块,预烧结温度低,其含有二氧化硅主晶相,但不含有或含有少量的偏硅酸锂晶相;硬度低,维氏硬度为0.5-3GPa,明显低于含有偏硅酸锂晶相的瓷块,在机械加工成牙科修复体时,适合干法机械加 工,同时也适用于湿法机械加工。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例2制备的预烧结瓷块的XRD图;
图2为实施例4制备的预烧结瓷块的XRD图;
图3为实施例17制备的预烧结瓷块的XRD图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
预烧结瓷块及牙科修复体的制备实施例
实施例1
基质玻璃粉体的组分及含量如下:
SiO 2:67.1%wt
Li 2O:14.7%wt
ZrO 2:1.7%wt
Al 2O 3:1.2%wt
K 2O:4.2%wt
P 2O 5:3.3%wt
ZnO:4.2%wt
CeO 2:0.9%wt
GeO 2:0.65%wt
MgO:0.3%wt
La 2O 3:0.9%wt
B 2O 3:0.3%wt
V 2O 5:0.25%wt
Er 2O 3:0.1%
Tb 4O 7:0.2%wt
MnO 2:0.08%
按基质玻璃粉体的组分及含量,将所有组分对应氧化物,碳酸盐化合物,磷酸盐等基质原料研磨、混合均匀,将混合后的基质原料放入铂金坩埚中,将铂金坩埚放入炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,得到基质玻璃粉体。
将基质玻璃粉体装入模具中,进行单轴干压成型,成型压力75MPa,得到基质玻璃坯体,重量大约9-10g。
将基质玻璃坯体在具有真空氛围的真空炉内进行烧结,烧结温度550℃,保温60分钟,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块;
将预烧结瓷块采用CAD/CAM加工设备(CEREC inLab MC XL,西诺德公司)进行湿法机械加工,得到修复体坯体。
将修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度875℃,保温15分钟,真空炉内压力(绝对压力)3000Pa,得到二硅酸锂玻璃陶瓷修复体。
实施例2
按表1中单色基质玻璃粉1的组分及含量,将除着色剂(V 2O 5、Er 2O 3、MnO 2)以外的其它组分对应氧化物,碳酸盐化合物,磷酸盐等基质原料研磨、混合均匀,将混合后的原料放入铂金坩埚中,将铂金坩埚放入炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将所述玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,随后随后加入着 色剂,混合均匀;得到单色基质玻璃粉1。
用相同的方法,制备出单色基质玻璃粉体2和单色基质玻璃粉体3,按单色基质玻璃粉体1:单色基质玻璃粉体2:单色基质玻璃粉体3质量比为4:3:2的比例混合均匀,得到基质玻璃粉体。将基质玻璃粉体装入模具中,进行单轴干压成型,成型压力75MPa,得到基质玻璃坯体,重量大约9-10g。
将基质玻璃坯体在具有真空氛围的真空炉内进行烧结,烧结温度570℃,保温60分钟,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块;对该预烧结瓷块进行XRD检测,结果如图1所示,从图1中可以看出,本实施例制备的预烧结瓷块二氧化硅为主晶相,偏硅酸锂为次晶相。
将预烧结瓷块采用CAD/CAM加工设备(Roland DWX 51D)进行干法机械加工,得到修复体坯体,加工后的修复体完整,没有出现边缘不完整、或加工不完全,及瓷块损坏的问题。
将修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度930℃,保温10分钟,真空炉内压力(绝对压力)3000Pa,得到二硅酸锂陶瓷修复体。
表1
组分 单色基质玻璃粉体1 单色基质玻璃粉体2 单色基质玻璃粉体3
SiO 2 69.60% 69.67% 69.67%
Li 2O 14.42% 14.44% 14.44%
ZrO 2 1.50% 1.50% 1.50%
Al 2O 3 1.26% 1.26% 1.26%
K 2O 3.58% 3.58% 3.58%
P 2O 5 4.00% 4.00% 4.00%
ZnO 2.44% 2.45% 2.45%
CeO 2 1.15% 1.15% 1.15%
GeO 2 0.85% 0.85% 0.85%
MgO 0.30% 0.30% 0.30%
La2O3 0.60% 0.60% 0.60%
V 2O 5 - 0.2% -
Er 2O 3 0.3% - -
MnO 2 - - 0.2%
实施例3:
按表2中单色基质玻璃粉1的组分及含量,将所有组分对应氧化物,碳酸盐化合物,磷酸盐等基质原料研磨、混合均匀,将混合后的原料放入铂金坩埚中,将铂金坩埚放入炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将所述玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,分别得到单色基质玻璃粉体1。
用相同的方法,制备出单色基质玻璃粉体2和单色基质玻璃粉体3,按单色基质玻璃粉体1:单色基质玻璃粉体2:单色基质玻璃粉体3为4:3:2的比例混合均匀,得到基质玻璃粉体。
按实施例2的方法进行成型、预烧结,得到预烧结瓷块;将预烧结瓷块按实施例1的方法进行湿法机械加工及致密烧结,得到二硅酸锂陶瓷修复体。
表2
组分 单色基质玻璃粉体1 单色基质玻璃粉体2 单色基质玻璃粉体3
SiO 2 69.81% 69.81% 69.81%
Li 2O 14.47% 14.47% 14.47%
ZrO 2 1.5% 1.5% 1.5%
Al 2O 3 1.26% 1.26% 1.26%
K 2O 3.60% 3.60% 3.60%
P 2O 5 4.01% 4.01% 4.01%
ZnO 2.35% 2.4% 2.4%
CeO 2 1.05% 1.1% 1.15%
GeO 2 0.85% 0.85% 0.85%
MgO 0.3% 0.3% 0.3%
La2O3 0.5% 0.5% 0.5%
V 2O 5 - 0.2% -
ErO 2 0.3% - -
MnO 2 - - 0.15%
实施例4
基质玻璃粉体的组分及含量如下:
SiO 2:70.42%wt
Li 2O:14.97%wt
ZrO 2:0.74%wt
Al 2O 3:1.01%wt
K 2O:2.58%wt
P 2O 5:3.6%wt
ZnO:3.9%wt
CeO 2:0.65%wt
GeO 2:1.03%wt
MgO:0.2%wt
La 2O 3:0.5%wt
V 2O 5:0.15%wt
Er 2O 3:0.2%wt
MnO 2:0.05%wt
按基质玻璃粉体的组分及含量,将除着色剂(V 2O 5、Er 2O 3和MnO 2)以外的其它组分对应氧化物,碳酸盐化合物,磷酸盐等基质原料研磨、混合均匀,将混合后的基质原料放入铂金坩埚中,将铂金坩埚放入炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,随后加入着色剂,混合均匀;得到基质玻璃粉体。
将基质玻璃粉体装入模具中,进行单轴干压成型,成型压力75MPa,得到基质玻璃坯体,重量大约9-10g。
将基质玻璃坯体在具有真空氛围的真空炉内进行烧结,烧结温度540℃,保温120分钟,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块;对该预烧结瓷块进行XRD检测,结果如图2所示,可以看出,该温度处理的样品衍射峰与SiO 2标准PDF卡片相对应,本实施例制备的预烧结瓷块含有二氧化硅晶相,不含有偏硅酸锂晶相。
将预烧结瓷块采用CAD/CAM加工设备(Roland DWX-51D)进行干法机械加工,得到修复体坯体。
将修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度880℃,保温8分钟,真空炉内压力(绝对压力)3000Pa得到二硅酸锂玻璃陶瓷修复体。
实施例5-10
按实施例1的方法及表3中的成分制备实施例5-10的基质玻璃粉体,并成型。
将实施例5-10基质玻璃坯体在具有真空氛围的真空炉内进行预烧结,烧结温度及保温时间见表3,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块;将各实施例预烧结瓷块采用表3中对应CAD/CAM加工设备进行机械加工,得到修复体坯体。
将实施例5-10修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度及保温时间见表3,真空炉内压力(绝对压力)3000Pa得到二硅酸锂玻璃陶瓷修复体。
表3
Figure PCTCN2019082763-appb-000001
Figure PCTCN2019082763-appb-000002
Figure PCTCN2019082763-appb-000003
实施例11-15
按实施例4的方法及表4中的成分制备实施例11-15的基质玻璃粉体,并成型。
将实施例11-15基质玻璃坯体在具有真空氛围的真空炉内进行预烧结,烧结温度及保温时间见表3,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块;将各实施例预烧结瓷块采用表4中对应CAD/CAM加工设备进行机械加工,得到修复体坯体。
将实施例11-15修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度及保温时间见表4,真空炉内压力(绝对压力)3000Pa得到二硅酸锂玻璃陶瓷修复体。
表4
Figure PCTCN2019082763-appb-000004
Figure PCTCN2019082763-appb-000005
实施例16
按表5中基质玻璃粉体1的组分及含量,将除着色剂(V 2O 5、ErO 2、Tb 4O 7)以外的其它组分对应氧化物,碳酸盐化合物,磷酸盐等基质原料研磨、混合均匀,将混合后的基质原料放入铂金坩埚中,将铂金坩埚放入烧结炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,随后加入着色剂,混合均匀;得到基质玻璃粉体1。用相同的方法,制备出基质玻璃粉体2和基质玻璃粉体3。所得到的三种基质玻璃粉体,透光性相同,颜色不同。
将基质玻璃粉体1加入到干压模具中,将其上表面平整至平坦后再加入基质玻璃粉体2,将其上表面平整至平坦后加入基质玻璃粉体3,其中,基质 玻璃粉体1厚度5.5mm,基质玻璃粉体2厚度5mm,基质玻璃粉体3厚度5.5mm,再用50MPa压力进行单轴干压成型,制得基质玻璃坯体,重量大约9-10g。
将基质玻璃坯体在具有真空氛围的真空炉内进行烧结,烧结温度555℃,保温60分钟,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块;
将预烧结瓷块采用CAD/CAM加工设备(CEREC inLab MC XL,西诺德公司)进行湿法机械加工,得到修复体坯体。
将修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度920℃,保温5分钟,真空炉内压力(绝对压力)3000Pa,得到三层色的二硅酸锂玻璃陶瓷修复体。
表5
组分 基质玻璃粉体1 基质玻璃粉体2 基质玻璃粉体3
SiO 2 68.96% 68.965% 68.96%
Li 2O 15.22% 15.22% 15.22%
ZrO 2 1.67% 1.67% 1.67%
Al 2O 3 1.00% 1.00% 1.00%
K 2O 3.68% 3.68% 3.68%
P 2O 5 3.63% 3.63% 3.63%
ZnO 2.69% 2.69% 2.69%
CeO 2 1.58% 1.58% 1.58%
GeO 2 0.77% 0.77% 0.77%
La 2O 3 0.30% 0.30% 0.30%
V 2O 5 0.11% 0.09% 0.07%
ErO 2 0.09% 0.08% 0.07%
Tb 4O 7 0.30% 0.33% 0.36%
实施例17
按表6中基质玻璃粉体1的组分及含量,将除着色剂以外的其它组分对应氧化物,碳酸盐化合物,磷酸盐化合物等基质原料研磨、混合均匀,将混合后的原料放入铂金坩埚中,将铂金坩埚放入炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将所述玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,随后加入着色剂,混合均匀;得到基质玻璃粉体1。用相同的方法,制备出基质玻璃粉体2和基质玻璃粉体3。所得到的三种基质玻璃粉体透光性、颜色均不同。
将基质玻璃粉体1加入到干压模具中,将其上表面平整至平坦后再加入基质玻璃粉体2,将其上表面平整至平坦后加入基质玻璃粉体3,其中,基质玻璃粉体1厚度5.7mm,基质玻璃粉体2厚度4.9mm,基质玻璃粉体3厚度5.4mm,再用50MPa压力进行单轴干压成型,制得基质玻璃坯体,重量大约9-10g。
将基质玻璃坯体在具有真空氛围的真空炉内进行烧结,烧结温度560℃,保温120分钟,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块。对该预烧结瓷块进行XRD检测,结果如图3所示,该温度处理的样品衍射峰与SiO2标准PDF卡片相对应,本实施例制备的预烧结瓷块含有二氧化硅晶相,不含有偏硅酸锂晶相。
将预烧结瓷块采用CAD/CAM加工设备(Roland DWX-51D)进行干法机械加工,得到修复体坯体。
将修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度875℃,保温15分钟,真空炉内压力(绝对压力)3000Pa得到三层透光度及颜色渐变的二硅酸锂玻璃陶瓷修复体。
表6
组分 基质玻璃粉体1 基质玻璃粉体2 基质玻璃粉体3
SiO 2 68.96% 69.41% 69.94%
Li 2O 15.22% 14.58% 14.28%
ZrO 2 1.52% 1.49% 1.19%
Al 2O 3 1.00% 1.24% 1.00%
K 2O 3.73% 3.28% 3.78%
P 2O 5 3.63% 3.88% 4.00%
ZnO 2.69% 3.00% 2.89%
CeO 2 1.58% 1.17% 1.10%
GeO 2 0.77% 0.75% 0.62%
La 2O 3 0.40% 0.70% 0.70%
V 2O 5 0.11% 0.09% 0.07%
ErO 2 0.09% 0.08% 0.07%
Tb 4O 7 0.26% 0.30% 0.36%
MnO 2 0.04% 0.03% -
实施例18
按表7中的基质玻璃粉体18-1的组分及含量,将除着色剂以外的其它组分对应氧化物,碳酸盐化合物,磷酸盐等基质原料研磨、混合均匀,将混合后的原料放入铂金坩埚中,将铂金坩埚放入炉内加热至1550℃,并保温1小时,澄清均化,制得基质玻璃液;将制得的基质玻璃液进行水淬,得到玻璃碎块,然后将所述玻璃碎块在120℃的条件下烘干1小时;将烘干后的玻璃碎块研磨至平均粒径5-30um,随后随后加入着色剂,混合均匀;得到单色基质玻璃粉体18-1。用相同的方法,制备出单色基质玻璃粉体18-2和单色基质玻璃粉体18-3,按单色基质玻璃粉体18-1:单色基质玻璃粉体18-2:单色基质玻璃粉体18-3为2:4:3的比例混合均匀,得到基质玻璃粉体18-L。
按表8中各基质玻璃粉体的组分及含量,按照单色基质玻璃粉体18-1的制备方法,分别制备出单色基质玻璃粉体18-4、单色基质玻璃粉体18-5和单色基质玻璃粉体18-6,按单色基质玻璃粉体18-4:单色基质玻璃粉体18-5:单色基质玻璃粉体18-6为2.5:3.5:3的比例混合均匀,得到基质玻璃粉体18-M。
按表9中各基质玻璃粉体的组分及含量,按照单色基质玻璃粉体18-1的 制备方法,分别制备出单色基质玻璃粉体18-7、制备出单色基质玻璃粉体18-8和单色基质玻璃粉体18-9,按单色基质玻璃粉体18-7:单色基质玻璃粉体18-8:单色基质玻璃粉体18-9为2:3.5:3.5的比例混合均匀,得到基质玻璃粉体18-H。
将部分基质玻璃粉体18-L与部分基质玻璃粉体18-M按照质量比1:1.5的比例混合得到玻璃粉体18-LM;
将部分基质玻璃粉体18-M与部分基质玻璃粉体18-H按照质量比1:2的比例混合得到玻璃粉体18-MH;
将基质玻璃粉体L加入到干压模具中,将其上表面平整至平坦后再加入基质玻璃粉体LM,将其上表面平整至平坦后加入基质玻璃粉体M,将其上表面平整至平坦后再加入基质玻璃粉体MH,将其上表面平整至平坦后加入基质玻璃粉体H其中,基质玻璃粉体L厚度4mm,基质玻璃粉体LM厚度3mm,基质玻璃粉体M厚度2.5mm,基质玻璃粉体MH厚度2.5mm,基质玻璃粉体H厚度4mm;再用75MPa压力进行单轴干压成型,制得基质玻璃坯体,重量大约9-10g。
将基质玻璃坯体在具有真空氛围的真空炉内进行烧结,烧结温度550℃,保温60分钟,真空炉内压力(绝对压力)3000Pa,得到预烧结瓷块。
将预烧结瓷块采用CAD/CAM加工设备(Roland DWX-51D)进行干法机械加工,得到修复体坯体。
将修复体坯体在具有真空氛围的烧结炉内进行致密烧结,烧结温度875℃,保温10分钟,真空炉内压力(绝对压力)3000Pa得到5层透光度及颜色渐变的二硅酸锂玻璃陶瓷修复体。
表7
组分 基质玻璃粉体18-1 基质玻璃粉体18-2 基质玻璃粉体18-3
SiO 2 69.06% 69.06% 69.06%
Li 2O 15.25% 15.25% 15.25%
ZrO 2 1.52% 1.52% 1.52%
Al 2O 3 1.01% 1.01% 1.01%
K 2O 3.73% 3.73% 3.73%
P 2O 5 3.64% 3.64% 3.64%
ZnO 2.69% 2.69% 2.69%
CeO 2 1.58% 1.58% 1.58%
GeO 2 0.77% 0.77% 0.77%
La 2O 3 0.40% 0.40% 0.40%
V 2O 5 - - 0.3%
ErO 2 - 0.35% -
Tb 4O 7 0.15% - 0.05%
MnO2 0.20% - -
表8
组分 基质玻璃粉体18-4 基质玻璃粉体18-5 基质玻璃粉体18-6
SiO 2 69.54% 69.54% 69.54%
Li 2O 14.61% 14.61% 14.61%
ZrO 2 1.50% 1.50% 1.50%
Al 2O 3 1.25% 1.25% 1.25%
K 2O 3.28% 3.28% 3.28%
P 2O 5 3.89% 3.89% 3.89%
ZnO 3.01% 3.01% 3.01%
CeO 2 1.18% 1.18% 1.18%
GeO 2 0.75% 0.75% 0.75%
La 2O 3 0.70% 0.70% 0.70%
V 2O 5 - - 0.24%
ErO 2 - 0.29% -
Tb 4O 7 0.15% - 0.05%
MnO 2 0.14% - -
表9
组分 基质玻璃粉体18-7 基质玻璃粉体18-8 基质玻璃粉体18-9
SiO 2 70.29% 70.29% 70.29%
Li 2O 14.35% 14.35% 14.35%
ZrO 2 1.2% 1.2% 1.2%
Al 2O 3 1.01% 1.01% 1.01%
K 2O 3.75% 3.75% 3.75%
P 2O 5 4.02% 4.02% 4.02%
ZnO 2.85% 2.85% 2.85%
CeO 2 1.11% 1.11% 1.11%
GeO 2 0.62% 0.62% 0.62%
La 2O 3 0.7% 0.7% 0.7%
V 2O 5 - - 0.1%
ErO 2 - 0.1% -
Tb 4O 7 0.05% - -
MnO 2 0.05% - -
上述的表1-9中,各组分对应的百分数均为质量百分数。
实施例1-18的XRD测试条件为:采用德国布鲁克公司D8Advance型X射线衍射仪,放射源为Cu靶,在外加电压40.0kV、阳极电流40.0mA和1.0mm狭缝、扫描范围10°-80°的条件下,对样品进行XRD测试。
性能测试
分别对实施例1-18制备的预烧结瓷块的维氏硬度、三点弯曲强度及预烧结瓷块致密烧结后的三点弯曲强度、可见光透过率进行测试,测试结果见表10所示;
其中,
(1)维氏硬度按照ISO 14705:2016中记载的方法,采用HVS-50维氏硬 度仪进行测试,并根据下述公式计算出维氏硬度:
Figure PCTCN2019082763-appb-000006
式中:
HV—维氏硬度,单位GPa
F—作用在压头上的负荷(N)
d—压痕两对角线的算术平均值(mm)
(2)三点弯曲强度按照ISO 14704:2016中记载的方法进行测试,并根据下述公式计算三点弯曲强度:
Figure PCTCN2019082763-appb-000007
式中:
σ f—弯曲强度,单位MPa
F—断裂载荷,单位N
a—跨距,单位mm
b—测试样品的宽度,单位mm
d—测试样品的厚度,单位mm
(3)可见光透过率按照ISO 9050:2003中记载的方法进行测试,并根据下述公式计算可见光透过率:
Figure PCTCN2019082763-appb-000008
式中:
τ V—试样的可见光透过率,%;
τ(λ)—试样的可见光光谱透射比,%;
D λ—标准照明体D 65的相对光谱功率分布
V(λ)—明视觉光谱光视效率
Δλ—波长间隔
表10
Figure PCTCN2019082763-appb-000009
Figure PCTCN2019082763-appb-000010
注:表中的强度是指三点弯曲强度
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (21)

  1. 一种用于牙科修复体的预烧结瓷块,其中所述预烧结瓷块
    含有二氧化硅主晶相,
    维氏硬度为0.5-3GPa,优选为1-2.5GPa,且
    不透明。
  2. 如权利要求1所述的预烧结瓷块,其中,所述预烧结瓷块的三点弯曲强度10-110MPa;优选为10-90MPa;更优选为30-70MPa。
  3. 如权利要求1或2所述的预烧结瓷块,其中,所述预烧结瓷块不含偏硅酸锂晶相。
  4. 如权利要求1-3中任一项所述的预烧结瓷块,其含有以下组分:
    SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
    Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
    ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
    Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
    La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
    ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
    K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选1-7%wt
    GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
    成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
    着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
    其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
    其中,所述成核剂选自P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;所述其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO中的一种或至少两种的组合。
  5. 如权利要求4所述的预烧结瓷块,其中,所述着色剂选自玻璃着色剂或陶瓷着色剂;优选地,所述玻璃着色剂选自以下元素中至少一种的氧化物:钒、铬、锰、铁、钴、镍、铜、铈、镨、钕、钐、钷、铽、镝、钬、铒、铥、 镱、钐和铕;所述陶瓷着色剂选自锆铁红、锆铈镨黄和镍黑中的一种或至少两种的组合。
  6. 如权利要求1-5中任一项所述的预烧结瓷块的制备方法,其包括以下步骤:
    (1)制备基质玻璃粉体;
    (2)将所制备的基质玻璃粉体装入模具中,压制成型,得到基质玻璃坯体;
    (3)将基质玻璃坯体在真空条件下预烧结,得到预烧结瓷块,所述预烧结的烧结温度为530-590℃。
  7. 如权利要求6所述的预烧结瓷块的制备方法,其中,所述基质玻璃粉体含有以下组分:
    SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
    Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
    ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
    Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
    La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
    ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
    K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选1-7%wt
    GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
    成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
    着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
    其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
    其中,所述成核剂选自P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;所述其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO中的一种或至少两种的组合。
  8. 如权利要求6或7所述的预烧结瓷块的制备方法,其中预烧结的烧结温度为530-560℃。
  9. 如权利要求6-8中任一项所述的预烧结瓷块的制备方法,预烧结的保温时间为20-240分钟,优选为30-120分钟,更优为60-120分钟。
  10. 一种用于牙科修复体的预烧结瓷块,其中所述预烧结瓷块
    含有二氧化硅主晶相,
    维氏硬度为0.5-3GPa,优选为1-2.5GPa,
    不透明,且
    所述预烧结瓷块经过800℃-1100℃的致密烧结后,显示出渐变的透光性和/或颜色。
  11. 如权利要求10所述的预烧结瓷块,其中,所述预烧结瓷块的三点弯曲强度10-110MPa;优选为10-90MPa;更优选为30-70MPa。
  12. 如权利要求10或11所述的预烧结瓷块,其中,所述预烧结瓷块不含偏硅酸锂晶相。
  13. 如权利要求10-12中任一项所述的预烧结瓷块,其含有以下组分:
    SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
    Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
    ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
    Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
    La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
    ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
    K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选1-7%wt
    GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
    成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
    着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
    其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
    其中,所述成核剂选自于P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;
    所述其它添加剂选自B 2O 3、F、Na 2O、ZrO 2、BaO、SrO、CaO、MgO中的一种或至少两种的组合。
  14. 如权利要求13所述的预烧结瓷块,其中,所述着色剂选自玻璃着色剂或陶瓷着色剂;优选地,所述玻璃着色剂选自以下元素中至少一种的氧化物:钒、铬、锰、铁、钴、镍、铜、铈、镨、钕、钐、钷、铽、镝、钬、铒、铥、镱、钐和铕;所述陶瓷着色剂选自锆铁红、锆铈镨黄和镍黑中的一种或至少两种的组合。
  15. 如权利要求10-14中任一项所述的预烧结瓷块的制备方法,其包括以下步骤:
    (1)制备至少两种不同透光性和/或颜色的基质玻璃粉体;
    (2)将所制备的至少两种基质玻璃粉体,按透光性和/或颜色渐变的顺序依次装入模具中,压制成型,得到基质玻璃坯体;
    (3)将基质玻璃坯体在真空条件下预烧结,得到预烧结瓷块,所述预烧结的烧结温度为530-590℃。
  16. 如权利要求15所述的预烧结瓷块的制备方法,其中,所述基质玻璃粉体含有以下组分:
    SiO 2 55-85%wt,优选55-80%wt,更优选60-80%wt,最优选64-75%wt
    Li 2O:10-25%wt,优选12-25%wt,更优选13-17%wt
    ZrO 2 0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0-4%wt
    Al 2O 3:0.3-8%wt,优选0.5-6%wt,更优选0.5-5%wt,最优选0.5-4%wt
    La 2O 3:0-7%wt,优选0-5%wt,更优选0-4.5%wt,最优选0-4%wt
    ZnO:0-10%wt,优选0-8%wt,更优选0-7%wt,最优选0.1-5%wt
    K 2O:0.1-10%wt,优选0.1-9%wt,更优选0.1-7%wt,最优选1-7%wt
    GeO 2:0.1-7%wt,优选0.1-6%wt,更优选0.3-5%wt,最优选0.5-4%wt
    成核剂:0-10%wt,优选0-8%wt,更优选0.5-8%wt,最优选0.5-5%wt
    着色剂:0-10%wt,优选0-8%wt,更优选0-6%wt,最优选0.1-5%wt
    其它添加剂:0-15%wt,优选0-10%wt,更优选0-4%wt;
    其中,所述成核剂选自P 2O 5、TiO 2、V 2O 5、Cr 2O 3、Fe 2O 3中的一种或至少两种的组合;所述其它添加剂选自B 2O 3、F、Na 2O、BaO、SrO、CaO、MgO中的一种或至少两种的组合。
  17. 如权利要求15或16所述的预烧结瓷块的制备方法,其中预烧结的烧结温度为530-560℃。
  18. 如权利要求15-17中任一项所述的预烧结瓷块的制备方法,预烧结的保温时间为20-240分钟,优选为30-120分钟,更优为60-120分钟。
  19. 一种用于牙科修复体的瓷块的制备方法,其包括以下步骤:
    制备权利要求1-5或权利要求10-14所述的预烧结瓷块;
    将所述预烧结瓷块在真空条件下进行致密烧结;其中致密烧结的烧结温度为800℃-1100℃。
  20. 一种牙科修复体的制备方法,其包括以下步骤:
    制备权利要求1-5或权利要求10-14所述的预烧结瓷块;
    将所述预烧结瓷块加工成牙科修复体形状,得到修复体坯体;
    将所述修复体坯体在真空条件下进行致密烧结,得到所述牙科修复体;其中致密烧结的烧结温度为800℃-1100℃。
  21. 如权利要求20所述的牙科修复体的制备方法,其中,在致密烧结后,还包括对所述牙科修复体进行上釉和/或饰瓷处理。
PCT/CN2019/082763 2019-04-15 2019-04-15 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用 WO2020210958A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2019/082763 WO2020210958A1 (zh) 2019-04-15 2019-04-15 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用
BR112021020521A BR112021020521A2 (pt) 2019-04-15 2019-04-15 Bloco cerâmico pré-sinterizado para restauração dentária, método de preparação do mesmo e uso do mesmo
KR1020217034932A KR20210143884A (ko) 2019-04-15 2019-04-15 치과수복체에 사용되는 예비소결 세라믹 블록, 그 제조방법 및 그 응용
US17/603,753 US20220177358A1 (en) 2019-04-15 2019-04-15 Pre-sintered ceramic block for dental restoration, preparation method therefor and use thereof
EP19925234.7A EP3957614A4 (en) 2019-04-15 2019-04-15 PRE-SINTERED CERAMIC BLOCK FOR DENTAL RESTORATION, PROCESS FOR ITS PRODUCTION AND ITS USE
CN201980094573.6A CN113614044A (zh) 2019-04-15 2019-04-15 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用
CA3136724A CA3136724C (en) 2019-04-15 2019-04-15 Pre-sintered ceramic block for dental restoration, preparation method therefor and use thereof
AU2019441599A AU2019441599B2 (en) 2019-04-15 2019-04-15 Pre-sintered ceramic block for dental restoration, preparation method therefor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082763 WO2020210958A1 (zh) 2019-04-15 2019-04-15 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2020210958A1 true WO2020210958A1 (zh) 2020-10-22

Family

ID=72837621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082763 WO2020210958A1 (zh) 2019-04-15 2019-04-15 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用

Country Status (8)

Country Link
US (1) US20220177358A1 (zh)
EP (1) EP3957614A4 (zh)
KR (1) KR20210143884A (zh)
CN (1) CN113614044A (zh)
AU (1) AU2019441599B2 (zh)
BR (1) BR112021020521A2 (zh)
CA (1) CA3136724C (zh)
WO (1) WO2020210958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461336A (zh) * 2021-06-18 2021-10-01 辽宁爱尔创生物材料有限公司 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175450A1 (en) * 2011-06-22 2012-12-27 Fraunhofer-Gesellschaft zur Förderung der Angwandten Forschung E.V. Dental restoration, method for production thereof and glass ceramic
CN104334509A (zh) * 2012-05-11 2015-02-04 义获嘉伟瓦登特公司 用于牙科目的的预烧结坯料
CN104334506A (zh) * 2012-05-11 2015-02-04 义获嘉伟瓦登特公司 用于牙科目的的预烧结坯料
CN104909571A (zh) * 2015-05-14 2015-09-16 西安交通大学 牙科用二硅酸锂微晶玻璃的制备方法
CN105174724A (zh) * 2014-06-18 2015-12-23 深圳爱尔创口腔技术有限公司 一种用于牙科修复体的锂基玻璃陶瓷制备方法
CN105217959A (zh) * 2014-06-18 2016-01-06 深圳爱尔创口腔技术有限公司 一种用于牙科修复体的锂基玻璃陶瓷制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892995B2 (en) * 2008-04-11 2011-02-22 James R. Glidewell Dental Ceramics, Inc. Lithium silicate glass ceramic and method for fabrication of dental appliances
US10377661B2 (en) * 2014-05-16 2019-08-13 Ivoclar Vivadent Ag Glass ceramic with SiO2 as the main crystalline phase
EP3168199B1 (de) * 2015-11-11 2022-04-13 Ivoclar Vivadent AG Verfahren zur herstellung von gläsern und glaskeramiken mit sio2 als hauptkristallphase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175450A1 (en) * 2011-06-22 2012-12-27 Fraunhofer-Gesellschaft zur Förderung der Angwandten Forschung E.V. Dental restoration, method for production thereof and glass ceramic
CN104334509A (zh) * 2012-05-11 2015-02-04 义获嘉伟瓦登特公司 用于牙科目的的预烧结坯料
CN104334506A (zh) * 2012-05-11 2015-02-04 义获嘉伟瓦登特公司 用于牙科目的的预烧结坯料
CN105174724A (zh) * 2014-06-18 2015-12-23 深圳爱尔创口腔技术有限公司 一种用于牙科修复体的锂基玻璃陶瓷制备方法
CN105217959A (zh) * 2014-06-18 2016-01-06 深圳爱尔创口腔技术有限公司 一种用于牙科修复体的锂基玻璃陶瓷制备方法
CN104909571A (zh) * 2015-05-14 2015-09-16 西安交通大学 牙科用二硅酸锂微晶玻璃的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957614A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461336A (zh) * 2021-06-18 2021-10-01 辽宁爱尔创生物材料有限公司 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体

Also Published As

Publication number Publication date
AU2019441599B2 (en) 2023-01-12
EP3957614A4 (en) 2022-04-20
KR20210143884A (ko) 2021-11-29
EP3957614A1 (en) 2022-02-23
CN113614044A (zh) 2021-11-05
AU2019441599A1 (en) 2021-11-18
CA3136724A1 (en) 2020-10-22
CA3136724C (en) 2023-08-01
US20220177358A1 (en) 2022-06-09
BR112021020521A2 (pt) 2021-12-07

Similar Documents

Publication Publication Date Title
US10206761B2 (en) Pre-sintered blank for dental purposes
CN110981204B (zh) 一种荧光硅酸锂玻璃材料及其制备方法与应用
CN103889391B (zh) 包含二价金属氧化物的硅酸锂玻璃陶瓷和硅酸锂玻璃
CN112694253B (zh) 起始玻璃、具有核的硅酸锂玻璃及其制备方法和应用
WO2022257624A1 (zh) 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体
CA2466620C (en) Opalescent glass-ceramic product
CN112551894A (zh) 起始玻璃、具有核的硅酸锂玻璃及其制备方法和应用
CN110255911B (zh) 一种有色二硅酸锂微晶玻璃及其制备方法
JP2019500300A (ja) 主要な結晶相としてSiO2を有するガラスおよびガラスセラミックを調製する方法
CN113087389A (zh) 具有不同透光性的硅酸锂玻璃或硅酸锂玻璃陶瓷坯体的制备方法
EP4194415A1 (en) High-transparency fluorescent glass-ceramic, and preparation method therefor and application thereof
WO2022262419A1 (zh) 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体
CN116867750A (zh) 具有石英固溶相的玻璃陶瓷
WO2020210958A1 (zh) 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用
CN108467205A (zh) 一种Ce、V、Er共掺的齿科微晶玻璃及其制备和应用
CN103086603B (zh) 一种用于制作牙科修复体的着色玻璃陶瓷及其制备方法
JPH0245048A (ja) 歯冠修復物の製造方法及びそれに用いるキット
WO2020210956A1 (zh) 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用
RU2785730C1 (ru) Подвергнутый предварительному спеканию керамический блок для восстановления зубов, способ его изготовления и его применение
TW202300115A (zh) 牙科用塊體及其製造方法
RU2790555C1 (ru) Подвергнутый предварительному спеканию керамический блок для восстановления зубов, способ его изготовления и его применение
CN115448599B (zh) 一种具有乳光效果的玻璃陶瓷及其制备方法
WO2022209706A1 (ja) ガラスセラミックスブランクの製造方法、ガラスセラミックスブランク
CN116409935A (zh) 二硅酸锂玻璃陶瓷及其制备方法和牙科修复体
CN117295468A (zh) 用于切削加工的牙科用大型块体及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3136724

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020521

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217034932

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019441599

Country of ref document: AU

Date of ref document: 20190415

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019925234

Country of ref document: EP

Effective date: 20211115

ENP Entry into the national phase

Ref document number: 112021020521

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211013