WO2023070680A1 - 资源配置、确定方法和装置、通信装置和存储介质 - Google Patents

资源配置、确定方法和装置、通信装置和存储介质 Download PDF

Info

Publication number
WO2023070680A1
WO2023070680A1 PCT/CN2021/127998 CN2021127998W WO2023070680A1 WO 2023070680 A1 WO2023070680 A1 WO 2023070680A1 CN 2021127998 W CN2021127998 W CN 2021127998W WO 2023070680 A1 WO2023070680 A1 WO 2023070680A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial
bwp
terminal
resource allocation
allocation information
Prior art date
Application number
PCT/CN2021/127998
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003482.4A priority Critical patent/CN114175820A/zh
Priority to PCT/CN2021/127998 priority patent/WO2023070680A1/zh
Publication of WO2023070680A1 publication Critical patent/WO2023070680A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a resource configuration method, a resource determination method, a resource configuration device, a resource determination device, a communication device, and a computer-readable storage medium.
  • RedCap terminal a Reduced capability (Reduced capability) terminal
  • NR-lite NR-lite
  • This kind of terminal generally needs to meet low cost and low complexity. degree of enhanced coverage, power saving and other conditions.
  • the RedCap terminal can carry information indicating its own type when initiating random access, for example When initiating two-step random access, early indication can be performed through the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) in the random access message MsgA, which is used to indicate whether the terminal initiating random access is a RedCap terminal.
  • PUSCH Physical Uplink Shared Channel
  • the base station If the base station does not correctly obtain the PUSCH in MsgA, it can send a fallback random access response fallback RAR (Random Access Response) to the terminal, which carries configuration information, so that the terminal sends a random access message Msg3 to the base station according to the configuration information, Msg3 is the third message in the four-step random access process, and the content carried in it is the same or similar to the PUSCH in MsgA. But in some scenarios, the base station cannot determine how to configure the terminal to send Msg3.
  • RAR Random Access Response
  • the embodiments of the present disclosure propose a resource configuration method, a resource determination method, a resource configuration device, a resource determination device, a communication device, and a computer-readable storage medium to solve technical problems in related technologies.
  • a resource configuration method is proposed, which is applicable to a base station.
  • the base station configures the initial uplink bandwidth part Initial UL BWP of the first type of terminal as the first Initial UL BWP, and configures the initial uplink bandwidth part of the second type of terminal.
  • the Initial UL BWP is the second Initial UL BWP, and the method includes:
  • fallback RAR carries the resource allocation information and is used to instruct the terminal to send a random access message to the base station according to the resource allocation information Msg3.
  • a resource determination method which is applicable to a terminal, and the method includes:
  • a resource configuration device which is suitable for a base station, and the base station configures the initial uplink bandwidth part Initial UL BWP of the first type of terminal as the first Initial UL BWP, and configures the initial uplink bandwidth part of the second type of terminal
  • the Initial UL BWP is a second Initial UL BWP
  • the apparatus comprising one or more processors configured to perform:
  • fallback RAR carries the resource allocation information and is used to instruct the terminal to send a random access message to the base station according to the resource allocation information Msg3.
  • a resource determination device includes one or more processors, and the processors are configured to execute:
  • a communication device including: a processor; and a memory for storing a computer program; wherein, when the computer program is executed by the processor, the resource configuration method above is implemented.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the resource determination method above is implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the resource configuration method above are implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the resource determination method above are realized.
  • the terminal when the base station does not correctly acquire the PUSCH in MsgA, the terminal may be required by default to send Msg3 on the first Initial UL BWP, so as to determine the resource allocation information according to the configuration information of the first Initial UL BWP, and then Carry the resource allocation information in the fallback RAR and send it to the terminal.
  • the terminal After the terminal receives the RAR, if it is determined that the RAR is a fallback RAR, after obtaining the resource allocation information from the fallback RAR, no matter what type of terminal the terminal itself is, it needs to send Msg3 on the first Initial UL BWP by default, so that The resource allocation information is analyzed according to the configuration information of the first Initial UL BWP to determine the transmission resource, and then the Msg3 is sent to the base station on the determined transmission resource.
  • the base station has not correctly obtained the PUSCH in MsgA, and has not yet determined whether the type of terminal sending MsgA is a RedCap terminal, it can be assumed that the terminal needs to send Msg3 on the first Initial UL BWP, and after receiving the fallback RAR, the terminal, It is also possible to send Msg3 on the first Initial UL BWP by default, so that the base station can process the transmission resources according to the configuration information of the first Initial UL BWP to obtain resource allocation information, and the terminal can allocate resources according to the configuration information of the first Initial UL BWP. The allocation information is analyzed to determine transmission resources, and the transmission of Msg3 is completed on the determined transmission resources.
  • Fig. 1 is a schematic flowchart of a method for configuring resources according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart of another resource configuration method according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic flowchart of another resource configuration method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart of another resource configuration method according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart of a resource determination method according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flowchart of another method for determining resources according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flowchart of another method for determining resources according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic flowchart of another method for determining resources according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram of an apparatus for resource configuration according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram of an apparatus for resource determination according to an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the terms used herein are “greater than” or “less than”, “higher than” or “lower than” when representing a size relationship. But for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of "below” also covers the meaning of "less than or equal to”.
  • Fig. 1 is a schematic flowchart of a method for configuring resources according to an embodiment of the present disclosure.
  • the resource configuration method shown in this embodiment can be applied to a base station, and the base station can communicate with a terminal (for example, as User Equipment, UE), and the terminal includes but is not limited to a mobile phone, a tablet computer, a wearable device, a sensor, an object
  • a communication device such as a networking device
  • the base station includes but is not limited to a base station in a communication system such as a 4G base station, a 5G base station, and a 6G base station.
  • the resource allocation method may include the following steps:
  • step S101 receiving a random access message MsgA sent by the terminal;
  • step S102 in response to not correctly obtaining the physical uplink shared channel PUSCH in the MsgA, resource allocation information is determined according to the configuration information of the first Initial UL BWP;
  • step S103 a fallback random access response fallback RAR is sent to the terminal, wherein the fallback RAR carries the resource allocation information and is used to instruct the terminal to send the resource allocation information to the base station according to the resource allocation information.
  • the base station configures the Initial UL BWP of the first type of terminal as the first Initial UL BWP, and configures the Initial UL BWP of the second type of terminal as the second Initial UL BWP.
  • the first type of terminal includes a non-capability-reduced RedCap terminal
  • the second type of terminal includes a RedCap terminal.
  • the solution of the embodiment of the present disclosure may be: the base station receives the random access message MsgA sent by the terminal; in response to being able to determine that the terminal is a second type terminal (RedCap terminal), determine the resource allocation information according to the configuration information of the second Initial UL BWP ; sending a fallback random access response fallback RAR to the terminal, wherein the fallback RAR carries the resource allocation information, and is used to instruct the terminal to send random access to the base station according to the resource allocation information Message Msg3.
  • the base station receives the random access message MsgA sent by the terminal; in response to being able to determine that the terminal is a second type terminal (RedCap terminal), determine the resource allocation information according to the configuration information of the second Initial UL BWP ; sending a fallback random access response fallback RAR to the terminal, wherein the fallback RAR carries the resource allocation information, and is used to instruct the terminal to send random access to the base station according to the resource allocation information Message Msg3.
  • the solution of the embodiment of the present disclosure may also be as follows: the base station receives the random access message MsgA sent by the terminal; in response to being unable to determine the type of the terminal, determines the resource allocation information according to the configuration information of the first Initial UL BWP; sends to the terminal A fallback random access response fallback RAR, wherein the fallback RAR carries the resource allocation information and is used to instruct the terminal to send a random access message Msg3 to the base station according to the resource allocation information.
  • resource allocation information is determined according to the configuration information of the second Initial UL BWP. If the type of the terminal that initiates the random access cannot be determined, the resource allocation information is determined according to the configuration information of the first Initial UL BWP by default.
  • the base station can determine the type of the terminal according to MsgA, that is, if the physical uplink shared channel PUSCH can be correctly acquired (eg, correctly demodulated) from MsgA, the type of the terminal can be determined.
  • the terminal may initiate random access to the base station to access the base station, for example, initiate two-step random access or initiate four-step random access.
  • the terminal first sends a random access message Msg1 to the terminal, which carries a physical random access channel (Physical Random Access Channel, PRACH) preamble;
  • a physical random access channel Physical Random Access Channel, PRACH
  • the base station After the base station detects the preamble, it sends a random access response RAR to the terminal, which can also be called a random access message Msg2.
  • the RAR can carry the ID of the detected preamble, timing advance related commands, temporary C- RNTI (Cell-RadioNetworkTemporaryIdentifier, Cell Radio Network Temporary Identifier) may also be called TC-RNTI, and may also carry resource allocation information, and the resource allocation information is used to instruct the terminal to send the resource of the random access message Msg3;
  • the terminal After receiving the RAR, the terminal can send Msg3 to the base station; in a possible implementation, Msg3 is mainly PUSCH, and the specific content carried in it is not fixed and depends on the actual scene;
  • the base station After receiving Msg3, the base station uses the contention resolution identification ID to send a contention resolution message to the terminal, which may be called a random access message Msg4;
  • the terminal After receiving Msg4, the terminal obtains the contention resolution ID in it, and then sends an acknowledgment message to the base station on the Physical Uplink Control Channel (PUCCH), completing the four-step random access process.
  • PUCCH Physical Uplink Control Channel
  • the four-step access process requires at least two cycles of round-trip communication between the terminal and the base station, which will increase the delay of the access process to a certain extent, and also generate additional signaling overhead. Therefore, in some cases , these problems can be alleviated by two-step random access.
  • the terminal sends a random access message MsgA to the base station.
  • MsgA is composed of PRACH preamble and PUSCH, which is equivalent to Msg1 and Msg3 in the four-step random access process. It can be used in the four-step random access process
  • the PRACH occasion (PO) where Msg1 is transmitted can also be transmitted in an independent PO (for example, in a PO dedicated to two-step random access);
  • the base station After receiving MsgA, the base station sends MsgB to the terminal, including random access response and contention resolution message; it is equivalent to Msg2 and Msg4 in the four-step random access process.
  • the interaction between the base station and the terminal in the access process can be reduced, which is beneficial to reduce the delay of the access process and save signaling overhead.
  • the terminal and the base station communicate in the unlicensed frequency band.
  • the random access process requires fewer interactions, which is beneficial to the number of Listen Before Talk (LBT) attempts in the unlicensed frequency band.
  • LBT Listen Before Talk
  • the base station detects the PRACH preamble in MsgA, but fails to decode the PUSCH in MsgA correctly, then it can send a fallback RAR to the terminal.
  • the fallback RAR contains at least resource allocation information, such as the uplink authorization UL grant, It is used to instruct the terminal to transmit Msg3 resources. After the terminal receives the fallback RAR, it can send Msg3 according to the indicated resources, which is equivalent to falling back to the four-step random access process;
  • Case 3 The base station detects the PRACH preamble in MsgA and correctly decodes the PUSCH in MsgA, and can return MsgB to the terminal, which can carry a successful random access response successRAR, and successRAR can carry the contention resolution identification ID, C-RNTI , timing advance command, etc., the terminal can determine that the two-step random access process has been successfully completed after receiving the MsgB.
  • an early indication can be performed through the PUSCH in MsgA.
  • the indication method can be an explicit indication or an implicit indication. Indicates the terminal type of the terminal that initiates random access, for example, whether it is a RedCap terminal.
  • the base station may Configure different Initial UL BWP (Bandwidth Part) for RedCap terminals and non-RedCap terminals, so that RedCap terminals and non-RedCap terminals can use different Initial UL BWPs to initiate random access respectively.
  • Initial UL BWP Bandwidth Part
  • the Initial UL BWP configured by the base station for non-RedCap terminals is called the first Initial UL BWP
  • the Initial UL BWP configured for RedCap terminals is called the second Initial UL BWP
  • the first Initial UL BWP and the second Initial UL BWPs are different.
  • the difference between the first Initial UL BWP and the second Initial UL BWP may be exemplarily one or more of the following situations:
  • the bandwidth width of the first Initial UL BWP and the second Initial UL BWP are different;
  • the start position and/or end position of the first Initial UL BWP and the second Initial UL BWP are different.
  • the first Initial UL BWP and the second Initial UL BWP may overlap, or the first Initial UL BWP and the second Initial UL BWP do not overlap at all, or the first Initial UL BWP is completely contained in In the second Initial UL BWP, or the second Initial UL BWP is completely included in the first Initial UL BWP.
  • the Initial UL BWP configured for the RedCap terminal is called the first Initial UL BWP, which is exclusively used by the RedCap terminal.
  • the Initial UL BWP configured for non-RedCap terminals is called the second Initial UL BWP, which can be configured for both RedCap terminals and non-RedCap terminals.
  • the base station does not correctly obtain the PUSCH in MsgA, and cannot correctly obtain the early indication, so that it cannot determine the type of terminal that initiates the random access, which in turn causes the base station to It is uncertain whether to configure the terminal to send Msg3 on the first Initial UL BWP or send Msg3 on the second Initial UL BWP.
  • failure to correctly obtain the PUSCH in MsgA is only a case of triggering the delivery of fallback RAR.
  • the base station can trigger the delivery of fallback RAR based on communication protocols or other conditions. The embodiments of the present disclosure are not correct This is limited.
  • the base station may require the terminal to send Msg3 on the first Initial UL BWP by default, so as to determine resource allocation information according to the configuration information of the first Initial UL BWP, and then carry the resource allocation information in the fallback RAR and send it to the terminal.
  • the base station when the base station cannot determine the type of the terminal that sends the MsgA, it configures the terminal to send Msg3 on the first Initial UL BWP by default.
  • the terminal sending the MsgA is a RedCap terminal
  • the terminal can be configured to send Msg3 on the first Initial UL BWP, or the terminal can be configured to send Msg3 on the second Initial UL BWP; of course, due to the second Initial UL BWP It corresponds to the RedCap terminal, and the terminal can preferably be configured to send Msg3 on the second Initial UL BWP.
  • the base station may first determine the transmission resources for the terminal to transmit Msg3, and then process the determined transmission resources according to the configuration information of the first Initial UL BWP to obtain resource allocation information.
  • the terminal After the terminal receives the RAR, if it is determined that the RAR is a fallback RAR, after obtaining the resource allocation information from the fallback RAR, no matter what type of terminal the terminal itself is, it needs to send Msg3 on the first Initial UL BWP by default, so that The resource allocation information is analyzed according to the configuration information of the first Initial UL BWP to determine the transmission resource, and then the Msg3 is sent to the base station on the determined transmission resource.
  • the transmitted Msg3 may or may not be an early indication, which may be specifically set as required.
  • the base station failed to determine whether the type of terminal sending MsgA is a RedCap terminal, it can default that the terminal needs to send Msg3 on the first Initial UL BWP, and after receiving the fallback RAR, the terminal can also default to sending Msg3 on the first Initial UL BWP.
  • Msg3 is sent on the Initial UL BWP, so that the base station can process the transmission resources according to the configuration information of the first Initial UL BWP to obtain resource allocation information, and the terminal can analyze the resource allocation information according to the configuration information of the first Initial UL BWP to determine the transmission resources, and complete the transmission of Msg3 on the determined transmission resources.
  • non-RedCap terminals account for a relatively large number.
  • the base station will process the transmission resources according to the configuration information of the second Initial UL BWP to obtain resource allocation information.
  • the terminal that initiates random access is a non-RedCap terminal
  • RedCap As a new type of terminal, the number of RedCap terminals in the network is relatively small.
  • RedCap currently parses the resource allocation information according to the configuration information of the second Initial UL BWP by default, it is adjusted to follow the configuration information of the first Initial UL BWP.
  • the configuration information of the BWP analyzes the resource allocation information, and the number of terminals to be adjusted is not large, and the implementation is relatively easy.
  • the base station when the two-step random access is successful, correctly acquires (for example, correctly demodulates) the PUSCH in MsgA, and thus can determine the type of the terminal.
  • the resource allocation information can be determined according to the configuration information of the second Initial UL BWP, and carried in the successRAR and sent to the terminal.
  • the RedCap terminal determines that the successRAR is received, it can follow the first 2.
  • Initial UL BWP configuration information parses resource allocation information to determine transmission resources;
  • the resource allocation information can be determined according to the configuration information of the first Initial UL BWP, and sent to the terminal in the successRAR.
  • the non-RedCap terminal determines that the successRAR is received, it can The resource allocation information is parsed according to the configuration information of the first Initial UL BWP to determine the transmission resource.
  • the configuration information of the first Initial UL BWP includes at least one of the following:
  • the subcarrier spacing SCS (SubCarrier Spacing) of the first Initial UL BWP;
  • the terminal may store the configuration information of the first Initial UL BWP and the configuration information of the second Initial UL BWP in advance, for example, it may be specified by the communication protocol, or it may be broadcast by the base station, for example, carried in the system information broadcast .
  • the transmission resources required by the terminal to transmit Msg3 may include at least one of the following:
  • Frequency domain resources, time domain resources, and frequency hopping transmission (frequency hopping, such as intra-slot frequency hopping within a time slot) scheme The following mainly focuses on these three situations, respectively describing the resource allocation information determined according to the configuration information of the first Initial UL BWP.
  • Fig. 2 is a schematic flowchart of another resource configuration method according to an embodiment of the present disclosure.
  • the determination of resource allocation information according to the configuration information of the first Initial UL BWP includes:
  • step S201 determine the frequency domain resources that instruct the terminal to transmit Msg3;
  • step S202 according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP and the position of the PRB of the first Initial UL BWP, the information of the frequency domain resource is processed to Obtain the resource allocation information.
  • the base station may first determine the frequency domain resource that the terminal needs to transmit Msg3, and then process the information of the frequency domain resource according to the bandwidth size of the first Initial UL BWP, the position of the SCS and the PRB to obtain The resource allocation information.
  • the determined frequency domain resource is 10M bandwidth
  • the bandwidth of the first Initial UL BWP, the position of SCS, and PRB can limit the 10M bandwidth, so as to limit the start position and end position of the 10M bandwidth in the frequency domain.
  • the frequency domain resource may be determined to be a 10M bandwidth within the bandwidth range of the first Initial UL BWP.
  • the terminal may analyze the resource allocation information according to the bandwidth size of the first Initial UL BWP, the position of the SCS and the PRB, so as to determine the frequency domain resources used to transmit Msg3.
  • the resource allocation information indicates the PRB sequence number corresponding to the start position of the frequency domain resource and the PRB sequence number corresponding to the end position, then the terminal can determine the PRB corresponding to the start position of the frequency domain resource according to the PRB position of the first Initial UL BWP
  • the PRB positions corresponding to the sequence number and the PRB position corresponding to the first Initial UL BWP PRB position, and then according to the determined PRB position in the frequency domain, the corresponding resource is the frequency domain resource.
  • the embodiment shown in FIG. 2 may be implemented together with any embodiment of the present disclosure, or may be implemented independently, which is not limited herein.
  • Fig. 3 is a schematic flowchart of another resource configuration method according to an embodiment of the present disclosure. As shown in Figure 3, the determination of resource allocation information according to the configuration information of the first Initial UL BWP includes:
  • step S301 determine the time domain resources instructing the terminal to transmit Msg3;
  • step S302 according to the SCS of the first Initial UL BWP, the information of the time domain resource is processed to obtain the resource allocation information.
  • the base station may first determine the time-domain resource that the terminal needs to transmit Msg3, and then process the information of the time-domain resource according to the SCS of the first Initial UL BWP to obtain the resource allocation information.
  • the determined time-domain resources are 5 time-domain symbols
  • the SCS of the first Initial UL BWP can limit these 5 time-domain symbols.
  • a larger SCS corresponds to a larger length of time-domain symbols.
  • the terminal may analyze the resource allocation information according to the SCS of the first Initial UL BWP, so as to determine the time domain resources used for transmitting Msg3.
  • the resource allocation information indicates the number of symbols corresponding to the time-domain resource
  • the terminal can determine the size of each symbol according to the SCS of the first Initial UL BWP, and then determine the length of the time-domain resource according to the size of each symbol and the number of symbols.
  • the embodiment shown in FIG. 3 may be implemented together with any embodiment of the present disclosure, or may be implemented independently, which is not limited herein.
  • Fig. 4 is a schematic flowchart of another resource configuration method according to an embodiment of the present disclosure. As shown in Figure 4, the determination of resource allocation information according to the configuration information of the first Initial UL BWP includes:
  • step S401 determine a frequency hopping transmission scheme instructing the terminal to transmit Msg3;
  • step S402 according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP and the position of the PRB of the first Initial UL BWP, the frequency hopping transmission scheme is processed to obtain The resource allocation information.
  • the terminal when the base station determines that the terminal needs to transmit Msg3 in a frequency hopping manner, the terminal transmits Msg3 in a frequency hopping manner, which means that the terminal can divide Msg3 into multiple parts, such as two parts, one of which is from The first PRB starts to be transmitted, and the other part starts to be transmitted from the second PRB.
  • the first PRB and the second PRB are not adjacent, and the interval between the first PRB and the second PRB can be called offset.
  • the base station may first determine the frequency hopping transmission scheme that requires the terminal to transmit Msg3, and then process the frequency hopping transmission scheme according to the bandwidth size of the first Initial UL BWP, the position of the SCS, and the PRB to obtain the resource allocation information.
  • the determined offset of the frequency hopping transmission scheme is 15M bandwidth
  • the bandwidth size of the first Initial UL BWP the position of SCS and PRB can limit the 15M bandwidth, for example, according to the bandwidth size of the first Initial UL BWP, this The 15M bandwidth is limited within the range of the first Initial UL BWP.
  • the PRB corresponding to the start position and the end position of the frequency hopping transmission scheme in the first Initial UL BWP can be determined.
  • the terminal may allocate the resource allocation information according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP, and the position of the PRB of the first Initial UL BWP. Analyze to determine the frequency hopping transmission scheme used to transmit Msg3. For example, the resource allocation information indicates the sequence number of the start PRB and the sequence number of the end PRB of the frequency hopping transmission, then the terminal can determine the sequence number of the start PRB and the sequence number of the end PRB respectively corresponding to the position of the PRB of the first Initial UL BWP The position of the PRB, and then determine the offset of the frequency hopping transmission scheme. It should be noted that, the embodiment shown in FIG. 3 may be implemented together with any embodiment of the present disclosure, or may be implemented independently, which is not limited herein.
  • Fig. 5 is a schematic flowchart of a resource determination method according to an embodiment of the present disclosure.
  • the resource determination method shown in this embodiment can be applied to a terminal, and the terminal (for example, User Equipment, UE) can communicate with a base station, and the terminal includes but is not limited to a mobile phone, a tablet computer, a wearable device, a sensor,
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the resource determination method may include the following steps:
  • step S501 send MsgA to the base station, and receive the RAR sent by the base station, wherein the base station configures the Initial UL BWP of the first type of terminal as the first Initial UL BWP, and configures the Initial UL BWP of the second type of terminal as the first Initial UL BWP Two Initial UL BWP;
  • step S502 in response to the received RAR being a fallback RAR, resource allocation information is obtained from the fallback RAR, and the resource allocation information is analyzed according to the configuration information of the first Initial UL BWP to determine transmission resources;
  • step S503 send Msg3 to the base station in the transmission resource.
  • the base station configures the Initial UL BWP of the first type of terminal as the first Initial UL BWP, and configures the Initial UL BWP of the second type of terminal as the second Initial UL BWP.
  • the first type of terminal includes a non-capability-reduced RedCap terminal
  • the second type of terminal includes a RedCap terminal.
  • the solution of the embodiment of the present disclosure may be: the base station receives the random access message MsgA sent by the terminal; in response to being able to determine that the terminal is a second type terminal (RedCap terminal), determine the resource allocation information according to the configuration information of the second Initial UL BWP ; sending a fallback random access response fallback RAR to the terminal, wherein the fallback RAR carries the resource allocation information, and is used to instruct the terminal to send random access to the base station according to the resource allocation information Message Msg3.
  • the base station receives the random access message MsgA sent by the terminal; in response to being able to determine that the terminal is a second type terminal (RedCap terminal), determine the resource allocation information according to the configuration information of the second Initial UL BWP ; sending a fallback random access response fallback RAR to the terminal, wherein the fallback RAR carries the resource allocation information, and is used to instruct the terminal to send random access to the base station according to the resource allocation information Message Msg3.
  • the solution of the embodiment of the present disclosure may also be as follows: the base station receives the random access message MsgA sent by the terminal; in response to being unable to determine the type of the terminal, determines the resource allocation information according to the configuration information of the first Initial UL BWP; sends to the terminal A fallback random access response fallback RAR, wherein the fallback RAR carries the resource allocation information and is used to instruct the terminal to send a random access message Msg3 to the base station according to the resource allocation information.
  • resource allocation information is determined according to the configuration information of the second Initial UL BWP. If the type of the terminal that initiates the random access cannot be determined, the resource allocation information is determined according to the configuration information of the first Initial UL BWP by default.
  • the base station can determine the type of the terminal according to MsgA, that is, if the physical uplink shared channel PUSCH can be correctly acquired (eg, correctly demodulated) from MsgA, the type of the terminal can be determined.
  • the terminal may initiate random access to the base station to access the base station, for example, initiate two-step random access or initiate four-step random access.
  • the terminal first sends a random access message Msg1 to the terminal, which carries a physical random access channel (Physical Random Access Channel, PRACH) preamble;
  • a physical random access channel Physical Random Access Channel, PRACH
  • the base station After the base station detects the preamble, it sends a random access response RAR to the terminal, which can also be called a random access message Msg2.
  • the RAR can carry the ID of the detected preamble, timing advance related commands, temporary C- RNTI (Cell-RadioNetworkTemporaryIdentifier, Cell Radio Network Temporary Identifier) may also be called TC-RNTI, and may also carry resource allocation information, and the resource allocation information is used to instruct the terminal to send the resource of the random access message Msg3;
  • the terminal After receiving the RAR, the terminal can send Msg3 to the base station; in a possible implementation, Msg3 is mainly PUSCH, and the specific content carried in it is not fixed and depends on the actual scene;
  • the base station After receiving Msg3, the base station uses the contention resolution identification ID to send a contention resolution message to the terminal, which may be called a random access message Msg4;
  • the terminal After receiving Msg4, the terminal obtains the contention resolution ID in it, and then sends an acknowledgment message to the base station on the Physical Uplink Control Channel (PUCCH), completing the four-step random access process.
  • PUCCH Physical Uplink Control Channel
  • the four-step access process requires at least two cycles of round-trip communication between the terminal and the base station, which will increase the delay of the access process to a certain extent, and also generate additional signaling overhead. Therefore, in some cases , these problems can be alleviated by two-step random access.
  • the terminal sends a random access message MsgA to the base station.
  • MsgA is composed of PRACH preamble and PUSCH, which is equivalent to Msg1 and Msg3 in the four-step random access process. It can be used in the four-step random access process
  • the PRACH occasion (PO) where Msg1 is transmitted can also be transmitted in an independent PO (for example, in a PO dedicated to two-step random access);
  • the base station After receiving MsgA, the base station sends MsgB to the terminal, including random access response and contention resolution message; it is equivalent to Msg2 and Msg4 in the four-step random access process.
  • the interaction between the base station and the terminal in the access process can be reduced, which is beneficial to reduce the delay of the access process and save signaling overhead.
  • the terminal and the base station communicate in the unlicensed frequency band.
  • the random access process requires fewer interactions, which is beneficial to the number of Listen Before Talk (LBT) attempts in the unlicensed frequency band.
  • LBT Listen Before Talk
  • the base station detects the PRACH preamble in MsgA, but fails to decode the PUSCH in MsgA correctly, then it can send a fallback RAR to the terminal.
  • the fallback RAR contains at least resource allocation information, such as the uplink authorization UL grant, It is used to instruct the terminal to transmit Msg3 resources. After the terminal receives the fallback RAR, it can send Msg3 according to the indicated resources, which is equivalent to falling back to the four-step random access process;
  • Case 3 The base station detects the PRACH preamble in MsgA and correctly decodes the PUSCH in MsgA, and can return MsgB to the terminal, which can carry a successful random access response successRAR, and successRAR can carry the contention resolution identification ID, C-RNTI , timing advance command, etc., the terminal can determine that the two-step random access process has been successfully completed after receiving the MsgB.
  • an early indication can be performed through the PUSCH in MsgA.
  • the indication method can be an explicit indication or an implicit indication. Indicates the terminal type of the terminal that initiates random access, for example, whether it is a RedCap terminal.
  • the base station may Configure different Initial UL BWP (Bandwidth Part) for RedCap terminals and non-RedCap terminals, so that RedCap terminals and non-RedCap terminals can use different Initial UL BWPs to initiate random access respectively.
  • Initial UL BWP Bandwidth Part
  • the Initial UL BWP configured by the base station for non-RedCap terminals is called the first Initial UL BWP
  • the Initial UL BWP configured for RedCap terminals is called the second Initial UL BWP
  • the first Initial UL BWP and the second Initial UL BWPs are different.
  • the difference between the first Initial UL BWP and the second Initial UL BWP may be exemplarily one or more of the following situations:
  • the bandwidth width of the first Initial UL BWP and the second Initial UL BWP are different;
  • the start position and/or end position of the first Initial UL BWP and the second Initial UL BWP are different.
  • the first Initial UL BWP and the second Initial UL BWP may overlap, or the first Initial UL BWP and the second Initial UL BWP do not overlap at all, or the first Initial UL BWP is completely contained in In the second Initial UL BWP, or the second Initial UL BWP is completely included in the first Initial UL BWP.
  • the Initial UL BWP configured for the RedCap terminal is called the first Initial UL BWP, which is exclusively used by the RedCap terminal.
  • the Initial UL BWP configured for non-RedCap terminals is called the second Initial UL BWP, which can be configured for both RedCap terminals and non-RedCap terminals.
  • the base station does not correctly obtain the PUSCH in MsgA, and cannot correctly obtain the early indication, so that it cannot determine the type of terminal that initiates the random access, which in turn causes the base station to It is uncertain whether to configure the terminal to send Msg3 on the first Initial UL BWP or send Msg3 on the second Initial UL BWP.
  • failure to correctly obtain the PUSCH in MsgA is only a case of triggering the delivery of fallback RAR.
  • the base station can trigger the delivery of fallback RAR based on communication protocols or other conditions. The embodiments of the present disclosure are not correct This is limited.
  • the base station may require the terminal to send Msg3 on the first Initial UL BWP by default, so as to determine resource allocation information according to the configuration information of the first Initial UL BWP, and then carry the resource allocation information in the fallback RAR and send it to the terminal.
  • the base station when the base station cannot determine the type of the terminal that sends the MsgA, it configures the terminal to send Msg3 on the first Initial UL BWP by default.
  • the terminal sending the MsgA is a RedCap terminal
  • the terminal can be configured to send Msg3 on the first Initial UL BWP, or the terminal can be configured to send Msg3 on the second Initial UL BWP; of course, due to the second Initial UL BWP It corresponds to the RedCap terminal, and the terminal can preferably be configured to send Msg3 on the second Initial UL BWP.
  • the base station may first determine the transmission resources for the terminal to transmit Msg3, and then process the determined transmission resources according to the configuration information of the first Initial UL BWP to obtain resource allocation information.
  • the terminal After the terminal receives the RAR, if it is determined that the RAR is a fallback RAR, after obtaining the resource allocation information from the fallback RAR, no matter what type of terminal the terminal itself is, it needs to send Msg3 on the first Initial UL BWP by default, so that The resource allocation information is analyzed according to the configuration information of the first Initial UL BWP to determine the transmission resource, and then the Msg3 is sent to the base station on the determined transmission resource.
  • the transmitted Msg3 may or may not be an early indication, which may be specifically set as required.
  • the base station failed to determine whether the type of terminal sending MsgA is a RedCap terminal, it can default that the terminal needs to send Msg3 on the first Initial UL BWP, and after receiving the fallback RAR, the terminal can also default to sending Msg3 on the first Initial UL BWP.
  • Msg3 is sent on the Initial UL BWP, so that the base station can process the transmission resources according to the configuration information of the first Initial UL BWP to obtain resource allocation information, and the terminal can analyze the resource allocation information according to the configuration information of the first Initial UL BWP to determine the transmission resources, and complete the transmission of Msg3 on the determined transmission resources.
  • non-RedCap terminals account for a relatively large number.
  • the base station will process the transmission resources according to the configuration information of the second Initial UL BWP to obtain resource allocation information.
  • the terminal that initiates random access is a non-RedCap terminal
  • RedCap As a new type of terminal, the number of RedCap terminals in the network is relatively small.
  • RedCap currently parses the resource allocation information according to the configuration information of the second Initial UL BWP by default, it is adjusted to follow the configuration information of the first Initial UL BWP.
  • the configuration information of the BWP analyzes the resource allocation information, and the number of terminals to be adjusted is not large, and the implementation is relatively easy.
  • the base station correctly acquires (for example, correctly demodulates) the PUSCH in MsgA, and thus can determine the type of the terminal.
  • the resource allocation information can be determined according to the configuration information of the second Initial UL BWP, and carried in the successRAR and sent to the terminal.
  • the RedCap terminal determines that the successRAR is received, it can follow the first 2.
  • Initial UL BWP configuration information parses resource allocation information to determine transmission resources;
  • the resource allocation information can be determined according to the configuration information of the first Initial UL BWP, and sent to the terminal in the successRAR.
  • the non-RedCap terminal determines that the successRAR is received, it can The resource allocation information is parsed according to the configuration information of the first Initial UL BWP to determine the transmission resource.
  • the configuration information of the first Initial UL BWP includes at least one of the following:
  • the terminal may store the configuration information of the first Initial UL BWP and the configuration information of the second Initial UL BWP in advance, for example, it may be specified by the communication protocol, or it may be broadcast by the base station, for example, carried in the system information broadcast .
  • the transmission resources required by the terminal to transmit Msg3 may include at least one of the following:
  • Frequency domain resources, time domain resources, and frequency hopping transmission (frequency hopping, such as intra-slot frequency hopping within a time slot) scheme The following mainly focuses on these three situations, respectively describing the resource allocation information determined according to the configuration information of the first Initial UL BWP.
  • Fig. 6 is a schematic flowchart of another method for determining resources according to an embodiment of the present disclosure. As shown in FIG. 6, the parsing the resource allocation information according to the configuration information of the first Initial UL BWP to determine the transmission resources includes:
  • step S601 according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP, and the position of the PRB of the first Initial UL BWP, the resource allocation information is analyzed to determine Frequency domain resource used for transmitting Msg3.
  • the base station may first determine the frequency domain resource that the terminal needs to transmit Msg3, and then process the information of the frequency domain resource according to the bandwidth size of the first Initial UL BWP, the position of the SCS and the PRB to obtain The resource allocation information.
  • the determined frequency domain resource is 10M bandwidth
  • the bandwidth of the first Initial UL BWP, the position of SCS, and PRB can limit the 10M bandwidth, so as to limit the start position and end position of the 10M bandwidth in the frequency domain.
  • the frequency domain resource may be determined to be a 10M bandwidth within the bandwidth range of the first Initial UL BWP.
  • the terminal may analyze the resource allocation information according to the bandwidth size of the first Initial UL BWP, the position of the SCS and the PRB, so as to determine the frequency domain resources used to transmit Msg3.
  • the resource allocation information indicates the PRB sequence number corresponding to the start position of the frequency domain resource and the PRB sequence number corresponding to the end position, then the terminal can determine the PRB corresponding to the start position of the frequency domain resource according to the PRB position of the first Initial UL BWP
  • the PRB positions corresponding to the sequence number and the PRB position corresponding to the first Initial UL BWP PRB position, and then according to the determined PRB position in the frequency domain, the corresponding resource is the frequency domain resource.
  • the embodiment shown in FIG. 6 may be implemented together with any embodiment of the present disclosure, or may be implemented independently, which is not limited herein.
  • Fig. 7 is a schematic flowchart of another method for determining resources according to an embodiment of the present disclosure. As shown in FIG. 7, the parsing the resource allocation information according to the configuration information of the first Initial UL BWP to determine the transmission resources includes:
  • step S701 the resource allocation information is analyzed according to the SCS of the first Initial UL BWP, so as to determine the time domain resources used for transmitting Msg3.
  • the base station may first determine the time-domain resource that the terminal needs to transmit Msg3, and then process the information of the time-domain resource according to the SCS of the first Initial UL BWP to obtain the resource allocation information.
  • the determined time-domain resources are 5 time-domain symbols
  • the SCS of the first Initial UL BWP can limit these 5 time-domain symbols.
  • a larger SCS corresponds to a larger length of time-domain symbols.
  • the terminal may analyze the resource allocation information according to the SCS of the first Initial UL BWP, so as to determine the time domain resources used for transmitting Msg3.
  • the resource allocation information indicates the number of symbols corresponding to the time-domain resource
  • the terminal can determine the size of each symbol according to the SCS of the first Initial UL BWP, and then determine the length of the time-domain resource according to the size of each symbol and the number of symbols.
  • FIG. 7 may be implemented together with any embodiment of the present disclosure, or may be implemented independently, which is not limited herein.
  • Fig. 8 is a schematic flowchart of another method for determining resources according to an embodiment of the present disclosure. As shown in FIG. 8, the parsing the resource allocation information according to the configuration information of the first Initial UL BWP to determine the transmission resources includes:
  • step S801 according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP, and the position of the PRB of the first Initial UL BWP, the resource allocation information is analyzed to determine A frequency hopping transmission scheme for transmitting Msg3.
  • the terminal when the base station determines that the terminal needs to transmit Msg3 in a frequency hopping manner, the terminal transmits Msg3 in a frequency hopping manner, which means that the terminal can divide Msg3 into multiple parts, such as two parts, one of which is from The first PRB starts to be transmitted, and the other part starts to be transmitted from the second PRB.
  • the first PRB and the second PRB are not adjacent, and the interval between the first PRB and the second PRB can be called offset.
  • the embodiment shown in FIG. 8 may be implemented together with any embodiment of the present disclosure, or may be implemented independently, which is not limited herein.
  • the base station may first determine the frequency hopping transmission scheme that requires the terminal to transmit Msg3, and then process the frequency hopping transmission scheme according to the bandwidth size of the first Initial UL BWP, the position of the SCS, and the PRB to obtain the resource allocation information.
  • the determined offset of the frequency hopping transmission scheme is 15M bandwidth
  • the bandwidth size of the first Initial UL BWP the position of SCS and PRB can limit the 15M bandwidth, for example, according to the bandwidth size of the first Initial UL BWP, this The 15M bandwidth is limited within the range of the first Initial UL BWP.
  • the PRB corresponding to the start position and the end position of the frequency hopping transmission scheme in the first Initial UL BWP can be determined.
  • the terminal may allocate the resource allocation information according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP, and the position of the PRB of the first Initial UL BWP. Analyze to determine the frequency hopping transmission scheme used to transmit Msg3. For example, the resource allocation information indicates the sequence number of the start PRB and the sequence number of the end PRB of the frequency hopping transmission, then the terminal can determine the sequence number of the start PRB and the sequence number of the end PRB respectively corresponding to the position of the PRB of the first Initial UL BWP The position of the PRB, and then determine the offset of the frequency hopping transmission scheme.
  • the present disclosure also provides embodiments of the resource configuration device and the resource determination device.
  • An embodiment of the present disclosure proposes a resource configuration device, the device can be applied to a base station, and the base station can communicate with a terminal (for example, as User Equipment, UE), and the terminal includes but is not limited to a mobile phone, a tablet computer,
  • a terminal for example, as User Equipment, UE
  • the terminal includes but is not limited to a mobile phone, a tablet computer
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the base station configures the initial uplink bandwidth part Initial UL BWP of the first type terminal as the first Initial UL BWP, and configures the Initial UL BWP of the second type terminal as the second Initial UL BWP,
  • the apparatus includes one or more processors configured to:
  • fallback RAR carries the resource allocation information and is used to instruct the terminal to send a random access message to the base station according to the resource allocation information Msg3.
  • the first type of terminal includes a non-capability-reduced RedCap terminal
  • the second type of terminal includes a RedCap terminal
  • the configuration information of the first Initial UL BWP includes at least one of the following:
  • the processor is configured to execute: determine the frequency domain resource indicating that the terminal transmits Msg3; according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP and the The position of the PRB of the first Initial UL BWP is processed, and the information of the frequency domain resource is processed to obtain the resource allocation information.
  • the processor is configured to: determine the time domain resource indicating that the terminal transmits Msg3; process the information of the time domain resource according to the SCS of the first Initial UL BWP to obtain The resource allocation information.
  • the processor is configured to: determine a frequency hopping transmission scheme instructing the terminal to transmit Msg3; according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP and The position of the PRB of the first Initial UL BWP is obtained by processing the frequency hopping transmission scheme to obtain the resource allocation information.
  • Embodiments of the present disclosure propose an apparatus for determining resources, the apparatus may be applicable to a terminal, and the terminal (for example, User Equipment, UE) may communicate with a base station, and the terminal includes but is not limited to a mobile phone, a tablet computer,
  • the terminal for example, User Equipment, UE
  • the terminal includes but is not limited to a mobile phone, a tablet computer
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the apparatus includes one or more processors configured to:
  • the first type of terminal includes a non-capability-reduced RedCap terminal
  • the second type of terminal includes a RedCap terminal
  • the configuration information of the first Initial UL BWP includes at least one of the following:
  • the processor is configured to perform: according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP, and the position of the PRB of the first Initial UL BWP, to The resource allocation information is analyzed to determine frequency domain resources used for transmitting Msg3.
  • the processor is configured to perform: parsing the resource allocation information according to the SCS of the first Initial UL BWP, so as to determine the time domain resource used for transmitting Msg3.
  • the processor is configured to perform: according to the bandwidth size of the first Initial UL BWP, the SCS of the first Initial UL BWP, and the position of the PRB of the first Initial UL BWP, to The resource allocation information is analyzed to determine a frequency hopping transmission scheme for transmitting Msg3.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the resource configuration method described in any of the above embodiments is implemented .
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the resource determination method described in any of the above embodiments is implemented .
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the resource configuration method described in any of the above embodiments are implemented.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the method for determining resources described in any of the above embodiments are implemented.
  • FIG. 9 is a schematic block diagram of an apparatus 900 for resource configuration according to an embodiment of the present disclosure.
  • Apparatus 900 may be provided as a base station.
  • the device 900 includes a processing component 922, a wireless transmitting/receiving component 924, an antenna component 926, and a signal processing part specific to the wireless interface.
  • the processing component 922 may further include one or more processors.
  • One of the processors in the processing component 922 may be configured to implement the resource configuration method described in any of the foregoing embodiments.
  • Fig. 10 is a schematic block diagram of an apparatus 1000 for resource determination according to an embodiment of the present disclosure.
  • the apparatus 1000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 1000 may include one or more of the following components: processing component 1002, memory 1004, power supply component 1006, multimedia component 1008, audio component 1010, input/output (I/O) interface 1012, sensor component 1014, and communication component 1016.
  • the processing component 1002 generally controls the overall operations of the device 1000, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1020 to execute instructions, so as to complete all or part of the steps of the resource determination method described above.
  • processing component 1002 may include one or more modules that facilitate interaction between processing component 1002 and other components.
  • processing component 1002 may include a multimedia module to facilitate interaction between multimedia component 1008 and processing component 1002 .
  • the memory 1004 is configured to store various types of data to support operations at the device 1000 . Examples of such data include instructions for any application or method operating on device 1000, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1004 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1006 provides power to various components of the device 1000 .
  • Power components 1006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 1000 .
  • the multimedia component 1008 includes a screen that provides an output interface between the device 1000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC), which is configured to receive external audio signals when the device 1000 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 1004 or sent via communication component 1016 .
  • the audio component 1010 also includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1014 includes one or more sensors for providing status assessments of various aspects of device 1000 .
  • the sensor component 1014 can detect the open/closed state of the device 1000, the relative positioning of components, such as the display and keypad of the device 1000, and the sensor component 1014 can also detect a change in the position of the device 1000 or a component of the device 1000 , the presence or absence of user contact with the device 1000 , the device 1000 orientation or acceleration/deceleration and the temperature change of the device 1000 .
  • the sensor assembly 1014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1014 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the apparatus 1000 and other devices.
  • the device 1000 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR or a combination thereof.
  • the communication component 1016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 1000 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Realized by gate array (FPGA), controller, microcontroller, microprocessor or other electronic components, used to execute the resource determination method above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Realized by gate array
  • controller microcontroller, microprocessor or other electronic components, used to execute the resource determination method above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1004 including instructions, which can be executed by the processor 1020 of the device 1000 to complete the resource determination method above.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及资源配置方法,包括:接收终端发送的随机接入消息MsgA;响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。根据本公开,即使基站未正确获取MsgA中的PUSCH,也可以合理地配置终端传输Msg3。

Description

资源配置、确定方法和装置、通信装置和存储介质 技术领域
本公开涉及通信技术领域,具体而言,涉及资源配置方法、资源确定方法、资源配置装置、资源确定装置、通信装置和计算机可读存储介质。
背景技术
随着通信技术的发展,为了适应新的通信场景,提出了能力降低(Reduced capability)终端,简称RedCap终端,也可以称作NR-lite,这种终端一般需要满足低造价、低复杂度,一定程度的增强覆盖,功率节省等条件。
由于RedCap终端和非RedCap(Non-RedCap)终端存在一定区别,在接入网络时,为了使得网络确定接入终端的类型,RedCap终端在发起随机接入时,可以携带指示自身类型的信息,例如在发起两步随机接入时,可以通过随机接入消息MsgA中的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)进行早期指示early indication,用于指示发起随机接入的终端是否为RedCap终端。
如果基站没有正确获取MsgA中的PUSCH,可以通过向终端发送回退随机接入响应fallback RAR(Random Access Response),其中携带有配置信息,以使终端根据配置信息向基站发送随机接入消息Msg3,Msg3为四步随机接入过程中的第三条消息,其中携带的内容与MsgA中的PUSCH相同或相近。但是在一些场景下,基站不能确定如何配置终端发送Msg3。
发明内容
有鉴于此,本公开的实施例提出了资源配置方法、资源确定方法、资源配置装置、资源确定装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种资源配置方法,适用于基站,所述基站配置第一类型终端的初始上行带宽部分Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP,所述方法包括:
接收终端发送的随机接入消息MsgA;
响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;
向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
根据本公开实施例的第二方面,提出一种资源确定方法,适用于终端,所述方法包括:
向基站发送MsgA,接收所述基站发送的RAR,其中,所述基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP;
响应于接收到的RAR为fallback RAR,从所述fallback RAR中获取资源分配信息,根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源;
在所述传输资源向所述基站发送Msg3。
根据本公开实施例的第三方面,提出一种资源配置装置,适用于基站,所述基站配置第一类型终端的初始上行带宽部分Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP,所述装置包括一个或多个处理器,所述处理器被配置为执行:
接收终端发送的随机接入消息MsgA;
响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;
向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
根据本公开实施例的第四方面,提出一种资源确定装置,所述装置包括一个或多个处理器,所述处理器被配置为执行:
向基站发送MsgA,接收所述基站发送的RAR,其中,所述基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为 第二Initial UL BWP;
响应于接收到的RAR为fallback RAR,从所述fallback RAR中获取资源分配信息,根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源;
在所述传输资源向所述基站发送Msg3。
根据本公开实施例的第五方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述资源配置方法。
根据本公开实施例的第六方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述资源确定方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述资源配置方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述资源确定方法中的步骤。
根据本公开的实施例,基站在未正确获取MsgA中的PUSCH的情况下,可以默认需要终端在第一Initial UL BWP上发送Msg3,从而根据第一Initial UL BWP的配置信息确定资源分配信息,然后将资源分配信息携带在fallback RAR发送至终端。
进而终端在接收到RAR后,若确定RAR为fallback RAR后,在从fallback RAR中获取资源分配信息后,无论终端自身为何种类型的终端,都默认需要在第一Initial UL BWP上发送Msg3,从而根据第一Initial UL BWP的配置信息解析资源分配信息以确定传输资源,进而在确定的传输资源上向基站发送Msg3。
据此,虽然基站未正确获取MsgA中的PUSCH,尚未确定发送MsgA的终端的类型是否为RedCap终端,但是可以默认终端需要在第一Initial UL BWP上发送Msg3,并且终端在接收到fallback RAR后,也可以默认需要在第一Initial UL BWP上发送Msg3,从而基站可以根据第一Initial UL BWP的配置信息对传输资源进行处理得到资源分配信息,终端则可以根据第一Initial UL BWP的配置信息对资源分配信息进行解析以确定传输资源,并在确定的传输资源上完成Msg3的传输。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种资源配置方法的示意流程图。
图2是根据本公开的实施例示出的另一种资源配置方法的示意流程图。
图3是根据本公开的实施例示出的又一种资源配置方法的示意流程图。
图4是根据本公开的实施例示出的又一种资源配置方法的示意流程图。
图5是根据本公开的实施例示出的一种资源确定方法的示意流程图。
图6是根据本公开的实施例示出的另一种资源确定方法的示意流程图。
图7是根据本公开的实施例示出的又一种资源确定方法的示意流程图。
图8是根据本公开的实施例示出的又一种资源确定方法的示意流程图。
图9是根据本公开的实施例示出的一种用于资源配置的装置的示意框图。
图10是根据本公开的实施例示出的一种用于资源确定的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。 例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
图1是根据本公开的实施例示出的一种资源配置方法的示意流程图。本实施例所示的资源配置方法可以适用于基站,所述基站可以终端(例如作为用户设备User Equipment,UE)通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图1所示,所述种资源配置方法可以包括以下步骤:
在步骤S101中,接收终端发送的随机接入消息MsgA;
在步骤S102中,响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;
在步骤S103中,向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
在上述实施例中,基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP。在一个实施例中,所述第一类型终端包括非能力降低RedCap终端,所述第二类型终端包括RedCap终端。
本公开实施例的方案可以为:基站接收终端发送的随机接入消息MsgA;响应于能够确定所述终端为第二类型终端(RedCap终端),根据第二Initial UL BWP的配置信息确定资源分配信息;向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
本公开实施例的方案还可以为:基站接收终端发送的随机接入消息MsgA;响应于无法确定所述终端的类型,根据第一Initial UL BWP的配置信息确定资源分配信 息;向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
也可以说,如果能够确定发起随机接入的终端的类型为RedCap终端,则根据第二Initial UL BWP的配置信息确定资源分配信息。如果无法能够确定发起随机接入的终端的类型,则默认根据第一Initial UL BWP的配置信息确定资源分配信息。
在本公开实施例中,基站可以根据MsgA确定终端的类型,即:如果能够从MsgA中正确获取(例如正确解调出)物理上行共享信道PUSCH,则可以确定终端的类型。
在一个实施例中,终端可以向基站发起随机接入以接入基站,例如发起两步随机接入或者发起四步随机接入。
在四步随机接入过程中,终端首先向终端发送随机接入消息Msg1,其中携带有物理随机接入信道(Physical Random Access Channel,PRACH)前导码preamble;
基站在检测到前导码后,向终端发送随机接入响应RAR,也可以称作随机接入消息Msg2,RAR中可以携带有检测到的前导码的标识ID、定时提前量相关命令、临时C-RNTI(Cell-RadioNetworkTemporaryIdentifier,小区无线网络临时标识)也可以称作TC-RNTI,还可以携带有资源分配信息,资源分配信息用于指示终端发送随机接入消息Msg3的资源;
终端在接收到RAR后,可以向基站发送Msg3;在一种可能的实施方式中,Msg3主要是PUSCH,其中携带的具体内容不固定,取决于实际场景;
基站接收到Msg3后,使用竞争解决标识ID向终端发送竞争解决消息,可以称作随机接入消息Msg4;
终端接收到Msg4后,获取其中的竞争解决标识ID,然后在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上向基站发送确认消息,完成四步随机接入过程。
可见,四步接入过程至少需要终端与基站之间往返通信两个周期,这在一定程度上会增加接入过程的时延,并且还产生了额外的信令开销,因此,在一些情况下,可以通过两步随机接入来缓解这些问题。
在两步随机接入过程中,终端向基站发送随机接入消息MsgA,MsgA由PRACH前导码和PUSCH组成,相当于四步随时接入过程中的Msg1和Msg3,可以在四步随机接入过程传输Msg1的PRACH场合(PO)传输,也可以独立的PO(例如在两步随机接入专用PO)中传输;
基站接收到MsgA后,向终端发送MsgB,其中包括随机接入响应和竞争解决消息;相当于四步随机接入过程中的Msg2和Msg4。
可见,基于两步随机接入过程可以减少接入过程中基站与终端的交互过程,有利于降低接入过程的时延,节约信令开销,例如终端与基站在非授权频段通信,由于两步随机接入过程所需交互次数较少,有利于对非授权频段先听后说(Listen Before Talk,LBT)尝试次数。
在两步随机接入过程中,终端在发送MsgA后,接收基站发送MsgB,可以存三种情况:
情况一,基站没有检测到MsgA中的PRACH前导码,从而没有向终端发送响应,也就没有向终端发送MsgB,终端等待后没有接收到MsgB,可以重新发送MsgA,或者回退到四步随机接入过程发送Msg1;
情况二,基站检测到了MsgA中的PRACH前导码,但是对于MsgA中的PUSCH未能正确解码,那么可以向终端发送fallback RAR,fallback RAR中至少携带有资源分配信息,例如上行链路授权UL grant,用于指示终端传输Msg3的资源,终端接收到fallback RAR后,则可以根据所指示的资源发送Msg3,相当于回退到四步随机接入过程;
情况三,基站检测到了MsgA中的PRACH前导码,对于MsgA中的PUSCH也正确解码了,可以向终端返回MsgB,其中可以携带成功随机接入响应successRAR,successRAR可以携带竞争解决标识ID、C-RNTI、定时提前量命令等,终端接收到MsgB可以确定成功完成两步随机接入过程。
对于RedCap终端,为了使得网络能够尽快确定终端的类型,在发起两步随机接入过程时,可以通过MsgA中的PUSCH进行early indication,指示方式可以是显示指示,也可以是隐式指示,用于指示终端发起随机接入的终端的类型,例如是否为RedCap终端。
另外,由于网络中可以存在传统(legacy)终端,也即非能力降低RedCap (Non-RedCap)终端,也可以存在能力降低RedCap终端,为了避免不同类型终端之间发起随机接入出现冲突,基站可以给RedCap终端和非RedCap终端配置不同的初始上行带宽部分Initial UL BWP(Bandwidth Part),使得RedCap终端和非RedCap终端可以分别使用不同的Initial UL BWP发起随机接入。
以下为了方便描述,将基站给非RedCap终端配置的Initial UL BWP称作第一Initial UL BWP,给RedCap终端配置的Initial UL BWP称作第二Initial UL BWP,第一Initial UL BWP和第二Initial UL BWP不同。
在本公开的所有实施例中,第一Initial UL BWP和第二Initial UL BWP不同可以示例性的为以下的一种或多种情况:
第一Initial UL BWP和第二Initial UL BWP的宽带宽度不同;
第一Initial UL BWP和第二Initial UL BWP的起始位置和/或结束位置不同。
在一些可能的实施方式中,第一Initial UL BWP和第二Initial UL BWP可以由重叠的部分,或第一Initial UL BWP和第二Initial UL BWP完全不重叠,或第一Initial UL BWP完全包含在第二Initial UL BWP内,或第二Initial UL BWP完全包含在第一Initial UL BWP内。
在一种可能的实现方式中,给RedCap终端配置的Initial UL BWP称作第一Initial UL BWP,专供RedCap终端使用。给非RedCap终端配置的Initial UL BWP称作第二Initial UL BWP,既可以配置给RedCap终端使用,也可以配置给非RedCap终端使用。
在这种情况下,对于上述两步随机接入的情况二,基站没有正确获取MsgA中的PUSCH,也就不能正确获取到early indication,从而不能确定发起随机接入的终端的类型,进而导致基站不能确定配置终端在第一Initial UL BWP上发送Msg3,还是在第二Initial UL BWP上发送Msg3。当然,未能正确获取MsgA中的PUSCH只是触发下发fallback RAR的一种情况,本领域内技术人员可以理解,基站可以基于通信协议或其他条件,触发下发fallback RAR,本公开实施例并不对此做出限定。
根据本公开的实施例,基站可以默认需要终端在第一Initial UL BWP上发送Msg3,从而根据第一Initial UL BWP的配置信息确定资源分配信息,然后将资源分配信息携带在fallback RAR发送至终端。例如:基站在无法确定发送该MsgA的终端的类型的情况下,默认配置终端在第一Initial UL BWP上发送Msg3。在能够确定发送该 MsgA的终端为RedCap终端的情况下,可以配置终端在第一Initial UL BWP上发送Msg3,也可以配置终端在第二Initial UL BWP上发送Msg3;当然,由于第二Initial UL BWP是对应于RedCap终端的,可以优选配置终端在第二Initial UL BWP上发送Msg3。
例如基站可以先确定终端传输Msg3的传输资源,然后根据第一Initial UL BWP的配置信息对所确定的传输资源进行处理,以得到资源分配信息。
进而终端在接收到RAR后,若确定RAR为fallback RAR后,在从fallback RAR中获取资源分配信息后,无论终端自身为何种类型的终端,都默认需要在第一Initial UL BWP上发送Msg3,从而根据第一Initial UL BWP的配置信息解析资源分配信息以确定传输资源,进而在确定的传输资源上向基站发送Msg3。其中,传输的Msg3可以进行早期指示,也可以不进行早期指示,具体可以根据需要进行设置。
据此,虽然基站未成功确定发送MsgA的终端的类型是否为RedCap终端,但是可以默认终端需要在第一Initial UL BWP上发送Msg3,并且终端在接收到fallback RAR后,也可以默认需要在第一Initial UL BWP上发送Msg3,从而基站可以根据第一Initial UL BWP的配置信息对传输资源进行处理得到资源分配信息,终端则可以根据第一Initial UL BWP的配置信息对资源分配信息进行解析以确定传输资源,并在确定的传输资源上完成Msg3的传输。
另外,在一般情况下,网络中的传统终端,也即非RedCap终端占相对多数。如果默认终端在第二Initial UL BWP上发送Msg3,那么基站就会按照第二Initial UL BWP的配置信息对传输资源进行处理得到资源分配信息,相应地,如果发起随机接入的终端为非RedCap终端,也就需要非RedCap终端按照第二Initial UL BWP的配置信息对资源分配信息进行解析来确定传输资源了,但是目前非RedCap默认是按照第一Initial UL BWP的配置信息对资源分配信息进行解析的,若调整为按照第二Initial UL BWP的配置信息对资源分配信息进行解析来确定传输资源,将需要对大量的传统终端进行调整,实现难度过大。
因此,而RedCap终端作为新类型的终端,在网络中的数量相对较少,虽然目前RedCap默认是按照第二Initial UL BWP的配置信息对资源分配信息进行解析的,但是调整为按照第一Initial UL BWP的配置信息对资源分配信息进行解析,所需调整的终端的数量并不多,实现相对容易。
在一个实施例中,对于两步随机接入成功的情况,基站正确获取(例如正确解 调出)了MsgA中的PUSCH,也就能够确定终端的类型。
那么在确定终端类型为RedCap终端的情况下,可以根据第二Initial UL BWP的配置信息确定资源分配信息,并携带在successRAR中发送至终端,RedCap终端在确定接收到successRAR的情况下,可以按照第二Initial UL BWP的配置信息解析资源分配信息以确定传输资源;
而在确定终端类型为非RedCap终端的情况下,可以根据第一Initial UL BWP的配置信息确定资源分配信息,并携带在successRAR中发送至终端,非RedCap终端在确定接收到successRAR的情况下,可以按照第一Initial UL BWP的配置信息解析资源分配信息以确定传输资源。
在一个实施例中,所述第一Initial UL BWP的配置信息包括以下至少之一:
所述第一Initial UL BWP的带宽大小;
所述第一Initial UL BWP的子载波间隔SCS(SubCarrier Spacing);
所述第一Initial UL BWP的物理资源块PRB(Physical Resource Block)的位置。
在一个实施例中,关于第一Initial UL BWP的配置信息和第二Initial UL BWP的配置信息,终端可以预先存储,例如可以由通信协议规定,也可以由基站广播,例如携带在系统信息中广播。
在一个实施例中,终端传输Msg3所需的传输资源,可以包括以下至少之一:
频域资源、时域资源、跳频传输(frequency hopping,例如时隙内intra-slot跳频)方案。以下主要针对这三种情况,分别描述根据第一Initial UL BWP的配置信息确定资源分配信息。
图2是根据本公开的实施例示出的另一种资源配置方法的示意流程图。如图2所示,所述根据第一Initial UL BWP的配置信息确定资源分配信息包括:
在步骤S201中,确定指示所述终端传输Msg3的频域资源;
在步骤S202中,根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述频域资源的信息进行处理以得到所述资源分配信息。
在一个实施例中,基站可以先确定需要终端传输Msg3的频域资源,然后根据所述第一Initial UL BWP的带宽大小、SCS和PRB的位置,对所述频域资源的信息进 行处理以得到所述资源分配信息。
例如确定的频域资源为10M带宽,第一Initial UL BWP的带宽、SCS、PRB的位置可以对这10M带宽起到限定作用,以限定这10M带宽在频域上的起始位置和结束位置,例如,可以确定频域资源为第一Initial UL BWP的带宽范围内的10M带宽。
进而终端接收到资源分配信息后,可以根据第一Initial UL BWP的带宽大小、SCS和PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的频域资源。例如资源分配信息指示了频域资源的起始位置对应的PRB序号和结束位置对应的PRB序号,那么终端可以根据第一Initial UL BWP的PRB的位置,确定频域资源的起始位置对应的PRB序号和结束位置对应的PRB序号第一Initial UL BWP的PRB的位置中分别对应的PRB的位置,进而根据确定的PRB的位置在频域上对应的资源为所述频域资源。需要说明的是,如图2所示的实施例可以与本公开的任一实施例一起被实施,也可以单独被实施,在此并不限定。
图3是根据本公开的实施例示出的又一种资源配置方法的示意流程图。如图3所示,所述根据第一Initial UL BWP的配置信息确定资源分配信息包括:
在步骤S301中,确定指示所述终端传输Msg3的时域资源;
在步骤S302中,根据所述第一Initial UL BWP的SCS,对所述时域资源的信息进行处理以得到所述资源分配信息。
在一个实施例中,基站可以先确定需要终端传输Msg3的时域资源,然后根据所述第一Initial UL BWP的SCS,对所述时域资源的信息进行处理以得到所述资源分配信息。
例如确定的时域资源为5个时域符号,第一Initial UL BWP的SCS可以对这5个时域符号起到限定作用,例如相对较大的SCS对应时域符号的长度较短,相对较大的SCS对应时域符号的长度较大。
进而终端接收到资源分配信息后,可以根据第一Initial UL BWP的SCS,对所述资源分配信息进行解析,以确定用于传输Msg3的时域资源。例如资源分配信息指示了时域资源对应的符号数量,那么终端可以根据第一Initial UL BWP的SCS,可以确定每个符号的大小,进而根据每个符号的大小符号数量确定时域资源的长度。需要说明的是,如图3所示的实施例可以与本公开的任一实施例一起被实施,也可以单独被实施,在此并不限定。
图4是根据本公开的实施例示出的又一种资源配置方法的示意流程图。如图4所示,所述根据第一Initial UL BWP的配置信息确定资源分配信息包括:
在步骤S401中,确定指示所述终端传输Msg3的跳频传输方案;
在步骤S402中,根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述跳频传输方案进行处理以得到所述资源分配信息。
在一个实施例中,基站在确定需要终端以跳频方式传输Msg3时,终端通过跳频方式传输Msg3,是指终端可以将Msg3划分为多个部分,例如划分为两个部分,其中一个部分从第一PRB开始传输,另一个部分从第二PRB开始传输,第一PRB和第二PRB不相邻,第一PRB和第二PRB之间的间隔可以称作offset。
基站可以先确定需要终端传输Msg3的跳频传输方案,然后根据第一Initial UL BWP的带宽大小、SCS和PRB的位置,对所述跳频传输方案进行处理以得到所述资源分配信息。
例如确定的跳频传输方案的offset为15M带宽,第一Initial UL BWP的带宽大小、SCS和PRB的位置可以对这15M带宽起到限定作用,例如根据第一Initial UL BWP的带宽大小可以将这15M带宽限制在第一Initial UL BWP范围内,根据第一Initial UL BWP的PRB的位置可以确定跳频传输方案在第一Initial UL BWP中起始位置对应的PRB和结束位置对应的PRB。
进而终端接收到资源分配信息后,可以根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的跳频传输方案。例如资源分配信息指示了跳频传输的起始PRB的序号和结束PRB的序号,那么终端可以根据第一Initial UL BWP的PRB的位置,可以确定起始PRB的序号和结束PRB的序号分别对应的PRB的位置,进而确定跳频传输方案的offset。需要说明的是,如图3所示的实施例可以与本公开的任一实施例一起被实施,也可以单独被实施,在此并不限定。
图5是根据本公开的实施例示出的一种资源确定方法的示意流程图。本实施例所示的资源确定方法可以适用于终端,所述终端(例如作为用户设备User Equipment,UE)可以与基站通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置,所述基站包括但不限于4G基站、5G基站、6G基站等通信 系统中的基站。
如图5所示,所述种资源确定方法可以包括以下步骤:
在步骤S501中,向基站发送MsgA,接收所述基站发送的RAR,其中,所述基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP;
在步骤S502中,响应于接收到的RAR为fallback RAR,从所述fallback RAR中获取资源分配信息,根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源;
在步骤S503中,在所述传输资源向所述基站发送Msg3。
在上述实施例中,基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP。在一个实施例中,所述第一类型终端包括非能力降低RedCap终端,所述第二类型终端包括RedCap终端。
本公开实施例的方案可以为:基站接收终端发送的随机接入消息MsgA;响应于能够确定所述终端为第二类型终端(RedCap终端),根据第二Initial UL BWP的配置信息确定资源分配信息;向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
本公开实施例的方案还可以为:基站接收终端发送的随机接入消息MsgA;响应于无法确定所述终端的类型,根据第一Initial UL BWP的配置信息确定资源分配信息;向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
也可以说,如果能够确定发起随机接入的终端的类型为RedCap终端,则根据第二Initial UL BWP的配置信息确定资源分配信息。如果无法能够确定发起随机接入的终端的类型,则默认根据第一Initial UL BWP的配置信息确定资源分配信息。
在本公开实施例中,基站可以根据MsgA确定终端的类型,即:如果能够从MsgA中正确获取(例如正确解调出)物理上行共享信道PUSCH,则可以确定终端的类型。
在一个实施例中,终端可以向基站发起随机接入以接入基站,例如发起两步随机接入或者发起四步随机接入。
在四步随机接入过程中,终端首先向终端发送随机接入消息Msg1,其中携带有物理随机接入信道(Physical Random Access Channel,PRACH)前导码preamble;
基站在检测到前导码后,向终端发送随机接入响应RAR,也可以称作随机接入消息Msg2,RAR中可以携带有检测到的前导码的标识ID、定时提前量相关命令、临时C-RNTI(Cell-RadioNetworkTemporaryIdentifier,小区无线网络临时标识)也可以称作TC-RNTI,还可以携带有资源分配信息,资源分配信息用于指示终端发送随机接入消息Msg3的资源;
终端在接收到RAR后,可以向基站发送Msg3;在一种可能的实施方式中,Msg3主要是PUSCH,其中携带的具体内容不固定,取决于实际场景;
基站接收到Msg3后,使用竞争解决标识ID向终端发送竞争解决消息,可以称作随机接入消息Msg4;
终端接收到Msg4后,获取其中的竞争解决标识ID,然后在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上向基站发送确认消息,完成四步随机接入过程。
可见,四步接入过程至少需要终端与基站之间往返通信两个周期,这在一定程度上会增加接入过程的时延,并且还产生了额外的信令开销,因此,在一些情况下,可以通过两步随机接入来缓解这些问题。
在两步随机接入过程中,终端向基站发送随机接入消息MsgA,MsgA由PRACH前导码和PUSCH组成,相当于四步随时接入过程中的Msg1和Msg3,可以在四步随机接入过程传输Msg1的PRACH场合(PO)传输,也可以独立的PO(例如在两步随机接入专用PO)中传输;
基站接收到MsgA后,向终端发送MsgB,其中包括随机接入响应和竞争解决消息;相当于四步随机接入过程中的Msg2和Msg4。
可见,基于两步随机接入过程可以减少接入过程中基站与终端的交互过程,有利于降低接入过程的时延,节约信令开销,例如终端与基站在非授权频段通信,由于两步随机接入过程所需交互次数较少,有利于对非授权频段先听后说(Listen Before Talk,LBT)尝试次数。
在两步随机接入过程中,终端在发送MsgA后,接收基站发送MsgB,可以存三种情况:
情况一,基站没有检测到MsgA中的PRACH前导码,从而没有向终端发送响应,也就没有向终端发送MsgB,终端等待后没有接收到MsgB,可以重新发送MsgA,或者回退到四步随机接入过程发送Msg1;
情况二,基站检测到了MsgA中的PRACH前导码,但是对于MsgA中的PUSCH未能正确解码,那么可以向终端发送fallback RAR,fallback RAR中至少携带有资源分配信息,例如上行链路授权UL grant,用于指示终端传输Msg3的资源,终端接收到fallback RAR后,则可以根据所指示的资源发送Msg3,相当于回退到四步随机接入过程;
情况三,基站检测到了MsgA中的PRACH前导码,对于MsgA中的PUSCH也正确解码了,可以向终端返回MsgB,其中可以携带成功随机接入响应successRAR,successRAR可以携带竞争解决标识ID、C-RNTI、定时提前量命令等,终端接收到MsgB可以确定成功完成两步随机接入过程。
对于RedCap终端,为了使得网络能够尽快确定终端的类型,在发起两步随机接入过程时,可以通过MsgA中的PUSCH进行early indication,指示方式可以是显示指示,也可以是隐式指示,用于指示终端发起随机接入的终端的类型,例如是否为RedCap终端。
另外,由于网络中可以存在传统(legacy)终端,也即非能力降低RedCap(Non-RedCap)终端,也可以存在能力降低RedCap终端,为了避免不同类型终端之间发起随机接入出现冲突,基站可以给RedCap终端和非RedCap终端配置不同的初始上行带宽部分Initial UL BWP(Bandwidth Part),使得RedCap终端和非RedCap终端可以分别使用不同的Initial UL BWP发起随机接入。
以下为了方便描述,将基站给非RedCap终端配置的Initial UL BWP称作第一Initial UL BWP,给RedCap终端配置的Initial UL BWP称作第二Initial UL BWP,第一Initial UL BWP和第二Initial UL BWP不同。
在本公开的所有实施例中,第一Initial UL BWP和第二Initial UL BWP不同可以示例性的为以下的一种或多种情况:
第一Initial UL BWP和第二Initial UL BWP的宽带宽度不同;
第一Initial UL BWP和第二Initial UL BWP的起始位置和/或结束位置不同。
在一些可能的实施方式中,第一Initial UL BWP和第二Initial UL BWP可以由重叠的部分,或第一Initial UL BWP和第二Initial UL BWP完全不重叠,或第一Initial UL BWP完全包含在第二Initial UL BWP内,或第二Initial UL BWP完全包含在第一Initial UL BWP内。
在一种可能的实现方式中,给RedCap终端配置的Initial UL BWP称作第一Initial UL BWP,专供RedCap终端使用。给非RedCap终端配置的Initial UL BWP称作第二Initial UL BWP,既可以配置给RedCap终端使用,也可以配置给非RedCap终端使用。
在这种情况下,对于上述两步随机接入的情况二,基站没有正确获取MsgA中的PUSCH,也就不能正确获取到early indication,从而不能确定发起随机接入的终端的类型,进而导致基站不能确定配置终端在第一Initial UL BWP上发送Msg3,还是在第二Initial UL BWP上发送Msg3。当然,未能正确获取MsgA中的PUSCH只是触发下发fallback RAR的一种情况,本领域内技术人员可以理解,基站可以基于通信协议或其他条件,触发下发fallback RAR,本公开实施例并不对此做出限定。
根据本公开的实施例,基站可以默认需要终端在第一Initial UL BWP上发送Msg3,从而根据第一Initial UL BWP的配置信息确定资源分配信息,然后将资源分配信息携带在fallback RAR发送至终端。例如:基站在无法确定发送该MsgA的终端的类型的情况下,默认配置终端在第一Initial UL BWP上发送Msg3。在能够确定发送该MsgA的终端为RedCap终端的情况下,可以配置终端在第一Initial UL BWP上发送Msg3,也可以配置终端在第二Initial UL BWP上发送Msg3;当然,由于第二Initial UL BWP是对应于RedCap终端的,可以优选配置终端在第二Initial UL BWP上发送Msg3。
例如基站可以先确定终端传输Msg3的传输资源,然后根据第一Initial UL BWP的配置信息对所确定的传输资源进行处理,以得到资源分配信息。
进而终端在接收到RAR后,若确定RAR为fallback RAR后,在从fallback RAR中获取资源分配信息后,无论终端自身为何种类型的终端,都默认需要在第一Initial UL BWP上发送Msg3,从而根据第一Initial UL BWP的配置信息解析资源分配信息以确定传输资源,进而在确定的传输资源上向基站发送Msg3。其中,传输的Msg3可以进行早期指示,也可以不进行早期指示,具体可以根据需要进行设置。
据此,虽然基站未成功确定发送MsgA的终端的类型是否为RedCap终端,但是可以默认终端需要在第一Initial UL BWP上发送Msg3,并且终端在接收到fallback RAR后,也可以默认需要在第一Initial UL BWP上发送Msg3,从而基站可以根据第一Initial UL BWP的配置信息对传输资源进行处理得到资源分配信息,终端则可以根据第一Initial UL BWP的配置信息对资源分配信息进行解析以确定传输资源,并在确定的传输资源上完成Msg3的传输。
另外,在一般情况下,网络中的传统终端,也即非RedCap终端占相对多数。如果默认终端在第二Initial UL BWP上发送Msg3,那么基站就会按照第二Initial UL BWP的配置信息对传输资源进行处理得到资源分配信息,相应地,如果发起随机接入的终端为非RedCap终端,也就需要非RedCap终端按照第二Initial UL BWP的配置信息对资源分配信息进行解析来确定传输资源了,但是目前非RedCap默认是按照第一Initial UL BWP的配置信息对资源分配信息进行解析的,若调整为按照第二Initial UL BWP的配置信息对资源分配信息进行解析来确定传输资源,将需要对大量的传统终端进行调整,实现难度过大。
因此,而RedCap终端作为新类型的终端,在网络中的数量相对较少,虽然目前RedCap默认是按照第二Initial UL BWP的配置信息对资源分配信息进行解析的,但是调整为按照第一Initial UL BWP的配置信息对资源分配信息进行解析,所需调整的终端的数量并不多,实现相对容易。
在一个实施例中,对于两步随机接入成功的情况,基站正确获取(例如正确解调出)了MsgA中的PUSCH,也就能够确定终端的类型。
那么在确定终端类型为RedCap终端的情况下,可以根据第二Initial UL BWP的配置信息确定资源分配信息,并携带在successRAR中发送至终端,RedCap终端在确定接收到successRAR的情况下,可以按照第二Initial UL BWP的配置信息解析资源分配信息以确定传输资源;
而在确定终端类型为非RedCap终端的情况下,可以根据第一Initial UL BWP的配置信息确定资源分配信息,并携带在successRAR中发送至终端,非RedCap终端在确定接收到successRAR的情况下,可以按照第一Initial UL BWP的配置信息解析资源分配信息以确定传输资源。
在一个实施例中,所述第一Initial UL BWP的配置信息包括以下至少之一:
所述第一Initial UL BWP的带宽大小;
所述第一Initial UL BWP的SCS;
所述第一Initial UL BWP的PRB的位置。
在一个实施例中,关于第一Initial UL BWP的配置信息和第二Initial UL BWP的配置信息,终端可以预先存储,例如可以由通信协议规定,也可以由基站广播,例如携带在系统信息中广播。
在一个实施例中,终端传输Msg3所需的传输资源,可以包括以下至少之一:
频域资源、时域资源、跳频传输(frequency hopping,例如时隙内intra-slot跳频)方案。以下主要针对这三种情况,分别描述根据第一Initial UL BWP的配置信息确定资源分配信息。
图6是根据本公开的实施例示出的另一种资源确定方法的示意流程图。如图6所示,所述根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源包括:
在步骤S601中,根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的频域资源。
在一个实施例中,基站可以先确定需要终端传输Msg3的频域资源,然后根据所述第一Initial UL BWP的带宽大小、SCS和PRB的位置,对所述频域资源的信息进行处理以得到所述资源分配信息。
例如确定的频域资源为10M带宽,第一Initial UL BWP的带宽、SCS、PRB的位置可以对这10M带宽起到限定作用,以限定这10M带宽在频域上的起始位置和结束位置,例如,可以确定频域资源为第一Initial UL BWP的带宽范围内的10M带宽。
进而终端接收到资源分配信息后,可以根据第一Initial UL BWP的带宽大小、SCS和PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的频域资源。例如资源分配信息指示了频域资源的起始位置对应的PRB序号和结束位置对应的PRB序号,那么终端可以根据第一Initial UL BWP的PRB的位置,确定频域资源的起始位置对应的PRB序号和结束位置对应的PRB序号第一Initial UL BWP的PRB的位置中分别对应的PRB的位置,进而根据确定的PRB的位置在频域上对应的资源为所 述频域资源。需要说明的是,如图6所示的实施例可以与本公开的任一实施例一起被实施,也可以单独被实施,在此并不限定。
图7是根据本公开的实施例示出的又一种资源确定方法的示意流程图。如图7所示,所述根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源包括:
在步骤S701中,根据所述第一Initial UL BWP的SCS,对所述资源分配信息进行解析,以确定用于传输Msg3的时域资源。
在一个实施例中,基站可以先确定需要终端传输Msg3的时域资源,然后根据所述第一Initial UL BWP的SCS,对所述时域资源的信息进行处理以得到所述资源分配信息。
例如确定的时域资源为5个时域符号,第一Initial UL BWP的SCS可以对这5个时域符号起到限定作用,例如相对较大的SCS对应时域符号的长度较短,相对较大的SCS对应时域符号的长度较大。
进而终端接收到资源分配信息后,可以根据第一Initial UL BWP的SCS,对所述资源分配信息进行解析,以确定用于传输Msg3的时域资源。例如资源分配信息指示了时域资源对应的符号数量,那么终端可以根据第一Initial UL BWP的SCS,可以确定每个符号的大小,进而根据每个符号的大小符号数量确定时域资源的长度。需要说明的是,如图7所示的实施例可以与本公开的任一实施例一起被实施,也可以单独被实施,在此并不限定。
图8是根据本公开的实施例示出的又一种资源确定方法的示意流程图。如图8所示,所述根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源包括:
在步骤S801中,根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的跳频传输方案。
在一个实施例中,基站在确定需要终端以跳频方式传输Msg3时,终端通过跳频方式传输Msg3,是指终端可以将Msg3划分为多个部分,例如划分为两个部分,其中一个部分从第一PRB开始传输,另一个部分从第二PRB开始传输,第一PRB和第二PRB不相邻,第一PRB和第二PRB之间的间隔可以称作offset。需要说明的是, 如图8所示的实施例可以与本公开的任一实施例一起被实施,也可以单独被实施,在此并不限定。
基站可以先确定需要终端传输Msg3的跳频传输方案,然后根据第一Initial UL BWP的带宽大小、SCS和PRB的位置,对所述跳频传输方案进行处理以得到所述资源分配信息。
例如确定的跳频传输方案的offset为15M带宽,第一Initial UL BWP的带宽大小、SCS和PRB的位置可以对这15M带宽起到限定作用,例如根据第一Initial UL BWP的带宽大小可以将这15M带宽限制在第一Initial UL BWP范围内,根据第一Initial UL BWP的PRB的位置可以确定跳频传输方案在第一Initial UL BWP中起始位置对应的PRB和结束位置对应的PRB。
进而终端接收到资源分配信息后,可以根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的跳频传输方案。例如资源分配信息指示了跳频传输的起始PRB的序号和结束PRB的序号,那么终端可以根据第一Initial UL BWP的PRB的位置,可以确定起始PRB的序号和结束PRB的序号分别对应的PRB的位置,进而确定跳频传输方案的offset。
与前述的资源配置方法和资源确定方法的实施例相对应,本公开还提供了资源配置装置和资源确定装置的实施例。
本公开的实施例提出的一种资源配置装置,所述装置可以适用于基站,所述基站可以终端(例如作为用户设备User Equipment,UE)通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
所述基站配置第一类型终端的初始上行带宽部分Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP,
在一个实施例中,所述装置包括一个或多个处理器,所述处理器被配置为执行:
接收终端发送的随机接入消息MsgA;
响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;
向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
在一个实施例中,所述第一类型终端包括非能力降低RedCap终端,所述第二类型终端包括RedCap终端。
在一个实施例中,所述第一Initial UL BWP的配置信息包括以下至少之一:
所述第一Initial UL BWP的带宽大小;
所述第一Initial UL BWP的子载波间隔SCS;
所述第一Initial UL BWP的物理资源块PRB的位置。
在一个实施例中,所述处理器被配置为执行:确定指示所述终端传输Msg3的频域资源;根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述频域资源的信息进行处理以得到所述资源分配信息。
在一个实施例中,所述处理器被配置为执行:确定指示所述终端传输Msg3的时域资源;根据所述第一Initial UL BWP的SCS,对所述时域资源的信息进行处理以得到所述资源分配信息。
在一个实施例中,所述处理器被配置为执行:确定指示所述终端传输Msg3的跳频传输方案;根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述跳频传输方案进行处理以得到所述资源分配信息。
本公开的实施例提出一种资源确定装置,所述装置可以适用于终端,所述终端(例如作为用户设备User Equipment,UE)可以与基站通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
在一个实施例中,所述装置包括一个或多个处理器,所述处理器被配置为执行:
向基站发送MsgA,接收所述基站发送的RAR,其中,所述基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP;
响应于接收到的RAR为fallback RAR,从所述fallback RAR中获取资源分配信息,根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源;
在所述传输资源向所述基站发送Msg3。
在一个实施例中,所述第一类型终端包括非能力降低RedCap终端,所述第二类型终端包括RedCap终端。
在一个实施例中,所述第一Initial UL BWP的配置信息包括以下至少之一:
所述第一Initial UL BWP的带宽大小;
所述第一Initial UL BWP的SCS;
所述第一Initial UL BWP的PRB的位置。
在一个实施例中,所述处理器被配置为执行:根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的频域资源。
在一个实施例中,所述处理器被配置为执行:根据所述第一Initial UL BWP的SCS,对所述资源分配信息进行解析,以确定用于传输Msg3的时域资源。
在一个实施例中,所述处理器被配置为执行:根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的跳频传输方案。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源 配置方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源确定方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源配置方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的资源确定方法中的步骤。
如图9所示,图9是根据本公开的实施例示出的一种用于资源配置的装置900的示意框图。装置900可以被提供为一基站。参照图9,装置900包括处理组件922、无线发射/接收组件924、天线组件926、以及无线接口特有的信号处理部分,处理组件922可进一步包括一个或多个处理器。处理组件922中的其中一个处理器可以被配置为实现上述任一实施例所述的资源配置方法。
图10是根据本公开的实施例示出的一种用于资源确定的装置1000的示意框图。例如,装置1000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)的接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1020来执行指令,以完成上述的资源确定方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在装置1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器 (PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在所述装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当装置1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到装置1000的打开/关闭状态,组件的相对定位,例如所述组件为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其他设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述资源确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1020执行以完成上述资源确定方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的 相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (18)

  1. 一种资源配置方法,其特征在于,适用于基站,所述基站配置第一类型终端的初始上行带宽部分Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP,所述方法包括:
    接收终端发送的随机接入消息MsgA;
    响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;
    向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
  2. 根据权利要求1所述的方法,其特征在于,所述第一类型终端包括非能力降低RedCap终端,所述第二类型终端包括RedCap终端。
  3. 根据权利要求1所述的方法,其特征在于,所述第一Initial UL BWP的配置信息包括以下至少之一:
    所述第一Initial UL BWP的带宽大小;
    所述第一Initial UL BWP的子载波间隔SCS;
    所述第一Initial UL BWP的物理资源块PRB的位置。
  4. 根据权利要求3所述的方法,其特征在于,所述根据第一Initial UL BWP的配置信息确定资源分配信息包括:
    确定指示所述终端传输Msg3的频域资源;
    根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述频域资源的信息进行处理以得到所述资源分配信息。
  5. 根据权利要求3所述的方法,其特征在于,所述根据第一Initial UL BWP的配置信息确定资源分配信息包括:
    确定指示所述终端传输Msg3的时域资源;
    根据所述第一Initial UL BWP的SCS,对所述时域资源的信息进行处理以得到所述资源分配信息。
  6. 根据权利要求3所述的方法,其特征在于,所述根据第一Initial UL BWP的配置信息确定资源分配信息包括:
    确定指示所述终端传输Msg3的跳频传输方案;
    根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述跳频传输方案进行处理以得到所述资源分配信息。
  7. 一种资源确定方法,其特征在于,适用于终端,所述方法包括:
    向基站发送MsgA,接收所述基站发送的RAR,其中,所述基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP;
    响应于接收到的RAR为fallback RAR,从所述fallback RAR中获取资源分配信息,根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源;
    在所述传输资源向所述基站发送Msg3。
  8. 根据权利要求7所述的方法,其特征在于,所述第一类型终端包括非能力降低RedCap终端,所述第二类型终端包括RedCap终端。
  9. 根据权利要求7所述的方法,其特征在于,所述第一Initial UL BWP的配置信息包括以下至少之一:
    所述第一Initial UL BWP的带宽大小;
    所述第一Initial UL BWP的SCS;
    所述第一Initial UL BWP的PRB的位置。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源包括:
    根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的频域资源。
  11. 根据权利要求7所述的方法,其特征在于,所述根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源包括:
    根据所述第一Initial UL BWP的SCS,对所述资源分配信息进行解析,以确定用于传输Msg3的时域资源。
  12. 根据权利要求7所述的方法,其特征在于,所述根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源包括:
    根据所述第一Initial UL BWP的带宽大小、所述第一Initial UL BWP的SCS和所述第一Initial UL BWP的PRB的位置,对所述资源分配信息进行解析,以确定用于传输Msg3的跳频传输方案。
  13. 一种资源配置装置,其特征在于,适用于基站,所述基站配置第一类型终端的初始上行带宽部分Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP,所述装置包括一个或多个处理器,所述处理器被配置为执行:
    接收终端发送的随机接入消息MsgA;
    响应于未正确获取所述MsgA中的物理上行共享信道PUSCH,根据第一Initial UL BWP的配置信息确定资源分配信息;
    向所述终端发送回退随机接入响应fallback RAR,其中,所述fallback RAR中携带有所述资源分配信息,用于指示所述终端根据所述资源分配信息向所述基站发送随机接入消息Msg3。
  14. 一种资源确定装置,其特征在于,所述装置包括一个或多个处理器,所述处理器被配置为执行:
    向基站发送MsgA,接收所述基站发送的RAR,其中,所述基站配置第一类型终端的Initial UL BWP为第一Initial UL BWP,配置第二类型终端的Initial UL BWP为第二Initial UL BWP;
    响应于接收到的RAR为fallback RAR,从所述fallback RAR中获取资源分配信息,根据所述第一Initial UL BWP的配置信息解析所述资源分配信息以确定传输资源;
    在所述传输资源向所述基站发送Msg3。
  15. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至6中任一项所述的资源配置方法。
  16. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求7至13中任一项所述的资源确定方法。
  17. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至6中任一项所述的资源配置方法中的步骤。
  18. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算 机程序被处理器执行时,实现权利要求7至13中任一项所述的资源确定方法中的步骤。
PCT/CN2021/127998 2021-11-01 2021-11-01 资源配置、确定方法和装置、通信装置和存储介质 WO2023070680A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003482.4A CN114175820A (zh) 2021-11-01 2021-11-01 资源配置、确定方法和装置、通信装置和存储介质
PCT/CN2021/127998 WO2023070680A1 (zh) 2021-11-01 2021-11-01 资源配置、确定方法和装置、通信装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127998 WO2023070680A1 (zh) 2021-11-01 2021-11-01 资源配置、确定方法和装置、通信装置和存储介质

Publications (1)

Publication Number Publication Date
WO2023070680A1 true WO2023070680A1 (zh) 2023-05-04

Family

ID=80489967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127998 WO2023070680A1 (zh) 2021-11-01 2021-11-01 资源配置、确定方法和装置、通信装置和存储介质

Country Status (2)

Country Link
CN (1) CN114175820A (zh)
WO (1) WO2023070680A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004617A (zh) * 2022-04-26 2022-09-02 北京小米移动软件有限公司 一种终端设备调度方法及其装置
CN117597951A (zh) * 2022-06-02 2024-02-23 北京小米移动软件有限公司 一种传输块的处理方法及其装置
CN117715057A (zh) * 2022-09-05 2024-03-15 中兴通讯股份有限公司 小区组网方法、装置、存储介质及电子装置
CN116582231B (zh) * 2023-07-12 2023-12-22 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263464A (zh) * 2019-01-30 2020-06-09 维沃移动通信有限公司 随机接入方法及设备
WO2021010786A1 (en) * 2019-07-17 2021-01-21 Samsung Electronics Co., Ltd. Method and device for reporting information, method and device for receiving message
WO2021161622A1 (ja) * 2020-02-13 2021-08-19 日本電気株式会社 Ranノード、無線端末、及びこれらのための方法
CN113395734A (zh) * 2020-03-13 2021-09-14 华为技术有限公司 一种通信方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719633B (zh) * 2018-07-13 2022-08-09 大唐移动通信设备有限公司 一种上行资源分配方法、装置、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263464A (zh) * 2019-01-30 2020-06-09 维沃移动通信有限公司 随机接入方法及设备
WO2021010786A1 (en) * 2019-07-17 2021-01-21 Samsung Electronics Co., Ltd. Method and device for reporting information, method and device for receiving message
WO2021161622A1 (ja) * 2020-02-13 2021-08-19 日本電気株式会社 Ranノード、無線端末、及びこれらのための方法
CN113395734A (zh) * 2020-03-13 2021-09-14 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (APPLE): "FL summary #1 on RAN1 aspects for RAN2-led features for RedCap", 3GPP DRAFT; R1-2109688, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 11 October 2021 (2021-10-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052060263 *

Also Published As

Publication number Publication date
CN114175820A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023070680A1 (zh) 资源配置、确定方法和装置、通信装置和存储介质
WO2020147577A1 (zh) 数据传输方法及装置
US11968721B2 (en) Method and apparatus for transmitting random access indication information
US11516832B2 (en) Method and device for transmitting data in unlicensed cell, base station and user equipment
WO2021189202A1 (zh) 用于随机接入的通信方法、装置及计算机可读存储介质
EP4207890A1 (en) Response indication method and device, and response determination method and device
WO2021012279A1 (zh) 随机接入方法、装置及存储介质
WO2022236748A1 (zh) 随机接入方法和装置、通信装置和计算机可读存储介质
US11871449B2 (en) Backoff method and apparatus in transmission process, device, system, and storage medium
WO2023070679A1 (zh) 随机接入方法、装置、通信装置和计算机可读存储介质
WO2021063153A1 (zh) 信息处理方法、网元设备、终端及存储介质
CN113517963A (zh) 上行信号/信道处理方法、装置及可读存储介质
CN106793150B (zh) 无线链路的建立方法及终端
WO2022155935A9 (zh) 请求信息发送方法和装置、请求信息接收方法和装置
EP3923660B1 (en) Methods and apparatuses for processing random access
WO2024092802A1 (zh) 随机接入方法及装置、存储介质
WO2022116166A1 (zh) 配置确定方法和装置、配置指示方法和装置
WO2023102939A1 (zh) 随机接入时机资源信息的确定、指示方法和装置
WO2022061734A1 (zh) 资源选择方法、资源选择装置及存储介质
WO2023206036A1 (zh) 一种随机接入的方法、装置、设备及存储介质
WO2023044863A1 (zh) 一种随机接入方法、随机接入装置及存储介质
WO2024031690A1 (zh) 随机接入方法及装置、存储介质
WO2022198572A1 (zh) 资源选择方法、资源选择装置及存储介质
WO2022104809A1 (zh) 信息请求方法和信息请求装置
WO2020252643A1 (zh) 一种信息处理方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962030

Country of ref document: EP

Kind code of ref document: A1