WO2023206036A1 - 一种随机接入的方法、装置、设备及存储介质 - Google Patents

一种随机接入的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023206036A1
WO2023206036A1 PCT/CN2022/089104 CN2022089104W WO2023206036A1 WO 2023206036 A1 WO2023206036 A1 WO 2023206036A1 CN 2022089104 W CN2022089104 W CN 2022089104W WO 2023206036 A1 WO2023206036 A1 WO 2023206036A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal
bwp
initial
initial downlink
Prior art date
Application number
PCT/CN2022/089104
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/089104 priority Critical patent/WO2023206036A1/zh
Priority to CN202280001410.0A priority patent/CN115004824A/zh
Publication of WO2023206036A1 publication Critical patent/WO2023206036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a random access method, device, equipment and storage medium.
  • NR 5G New Radio
  • this new terminal type is called a low-capability terminal, sometimes also called a Reduced capability UE, or a RedCap terminal, or simply NR-lite.
  • the RedCap terminal is compared to the ordinary terminal.
  • Initial BWP includes initial downlink bandwidth part (Initial DL BWP) and/or initial uplink bandwidth part (Initial uplink bandwidth part, Initial UL BWP).
  • the RedCap terminal will switch to the initial uplink BWP and/or the initial downlink BWP configured separately for the RedCap terminal for random access.
  • RACH random access channel
  • a random access method is provided, which is applied to a network device.
  • the method may include: determining configuration information.
  • the configuration information is used to determine the initial downlink partial bandwidth BWP configured for the terminal, and is used to determine Whether the initial downlink BWP supports random access by the terminal in the connected state.
  • the initial downlink BWP supports the terminal to perform random access in the connected state.
  • the initial downlink BWP is configured with synchronization signal block SSB.
  • the initial downlink BWP includes a common search space for random access and at least one other common search space.
  • other public search spaces are different from the public search space used for random access.
  • the center frequency of the initial downlink BWP is consistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the method may further include: sending exclusive information of the terminal using an initial downlink BWP.
  • the configuration information is also used to determine that the initial downlink BWP is not used to send terminal-specific information.
  • the initial downlink BWP does not include SSB.
  • the initial downlink BWP does not support random access by the terminal in the connected state.
  • the initial downlink BWP does not include SSB.
  • the center frequency of the initial downlink BWP is inconsistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the configuration information is also used to determine the activated BWP configured for the terminal, and the activated BWP includes random access resources for the terminal to perform random access.
  • the activated BWP is different from the initial downlink BWP.
  • a random access method is provided, which is applied to a terminal.
  • the method may include: determining configuration information.
  • the configuration information is used to determine the initial downlink partial bandwidth BWP configured for the terminal, and is used to determine the initial downlink partial bandwidth BWP. Whether the downlink BWP supports random access by the terminal in the connected state. Random access is performed based on configuration information.
  • the initial downlink BWP supports the terminal to perform random access in the connected state.
  • Performing random access based on configuration information may include: using the initial downlink BWP to perform random access.
  • the initial downlink BWP is configured with synchronization signal block SSB.
  • the initial downlink BWP includes a common search space used for random access and at least one other common search space, and the other common search spaces are different from the common search space used for random access.
  • the center frequency of the initial downlink BWP is consistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the method further includes: using the initial downlink BWP to receive exclusive information of the terminal.
  • the configuration information is also used to determine that the initial downlink BWP is not used to transmit terminal-specific information.
  • the initial downlink BWP does not include SSB.
  • the method may further include: stopping using the initial downlink BWP to receive exclusive information of the terminal.
  • the initial downlink BWP does not support random access by the terminal in the connected state.
  • Performing random access based on configuration information may include: stopping using the initial downlink BWP for random access.
  • the initial downlink BWP does not include SSB.
  • the center frequency of the initial downlink BWP is inconsistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the configuration information is also used to determine the activated BWP configured for the terminal, and the activated BWP includes random access resources for the terminal to perform random access.
  • the activated BWP is different from the initial downlink BWP; performing random access based on configuration information further includes: using the activated BWP to perform random access.
  • a random access device includes: a determining module, used to determine configuration information, the configuration information is used to determine the initial downlink partial bandwidth BWP configured for the terminal, and is used to determine the initial Whether the downlink BWP supports random access by the terminal in the connected state.
  • the initial downlink BWP supports the terminal to perform random access in the connected state.
  • the initial downlink BWP is configured with synchronization signal block SSB.
  • the initial downlink BWP includes a common search space used for random access and at least one other common search space, and the other common search spaces are different from the common search space used for random access.
  • the center frequency of the initial downlink BWP is consistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the device further includes: a sending module configured to send the terminal-specific information using the initial downlink BWP.
  • the configuration information is also used to determine that the initial downlink BWP is not used to send terminal-specific information.
  • the initial downlink BWP does not include SSB.
  • the initial downlink BWP does not support random access by the terminal in the connected state.
  • the initial downlink BWP does not include SSB.
  • the center frequency of the initial downlink BWP is inconsistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the configuration information is also used to determine the activated BWP configured for the terminal, and the activated BWP includes random access resources for the terminal to perform random access.
  • the activated BWP is different from the initial downlink BWP.
  • a random access device includes: a determining module for determining configuration information.
  • the configuration information is used to determine the initial downlink partial bandwidth BWP configured for the terminal, and is used to determine the initial downlink partial bandwidth BWP. Whether the downlink BWP supports random access by the terminal in the connected state; the access module is used for random access based on configuration information.
  • the initial downlink BWP supports the terminal to perform random access in the connected state; the access module is also configured to use the initial downlink BWP to perform random access.
  • the initial downlink BWP is configured with synchronization signal block SSB.
  • the initial downlink BWP includes a common search space used for random access and at least one other common search space, and the other common search spaces are different from the common search space used for random access.
  • the center frequency of the initial downlink BWP is consistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the device further includes: a receiving module configured to receive the terminal-specific information using the initial downlink BWP.
  • the configuration information is also used to determine that the initial downlink BWP is not used to transmit exclusive information of the terminal.
  • the initial downlink BWP does not include SSB.
  • the device further includes: a receiving module configured to stop using the initial downlink BWP to receive exclusive information of the terminal.
  • the initial downlink BWP does not support random access by the terminal in the connected state; the access module is further configured to stop using the initial downlink BWP for random access.
  • the initial downlink BWP does not include SSB.
  • the center frequency of the initial downlink BWP is inconsistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the configuration information is also used to determine the activated BWP configured for the terminal, and the activated BWP includes random access resources for the terminal to perform random access.
  • the activated BWP is different from the initial downlink BWP; the access module is further configured to use the activated BWP to perform random access.
  • a random access device including: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to execute the first aspect or the first aspect The method described in any one of the embodiments.
  • a random access device including: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to execute the second aspect or the second aspect The method described in any one of the embodiments.
  • a non-transitory computer-readable storage medium which when instructions in the storage medium are executed by a processor of a network device, enables the network device to perform the first aspect or aspects The method described in any one of the embodiments.
  • a non-transitory computer-readable storage medium which when instructions in the storage medium are executed by a processor of the mobile terminal, enables the mobile terminal to execute the second aspect or aspects The method described in any one of the embodiments.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: used to determine the configuration information of the initial downlink BWP configured for the terminal, and used to determine whether the initial downlink BWP supports random access of the terminal in the connected state, so that The terminal can perform corresponding random access operations according to the configured BWP to avoid communication failure.
  • Figure 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Figure 2 is a flow chart of a random access method according to an exemplary embodiment.
  • Figure 3 is a flow chart of another random access method according to an exemplary embodiment.
  • Figure 4 is a flow chart of yet another random access method according to an exemplary embodiment.
  • Figure 5 is a flow chart of yet another random access method according to an exemplary embodiment.
  • Figure 6 is a flow chart of another random access method according to an exemplary embodiment.
  • Figure 7 is a flow chart of yet another random access method according to an exemplary embodiment.
  • Figure 8 is a flow chart of yet another random access method according to an exemplary embodiment.
  • Figure 9 is a flow chart of another random access method according to an exemplary embodiment.
  • Figure 10 is a flow chart of yet another random access method according to an exemplary embodiment.
  • Figure 11 is a flow chart of yet another random access method according to an exemplary embodiment.
  • Figure 12 is a schematic diagram of a random access device according to an exemplary embodiment.
  • Figure 13 is a schematic diagram of another random access device according to an exemplary embodiment.
  • Figure 14 is a schematic diagram of a random access device according to an exemplary embodiment.
  • Figure 15 is a schematic diagram of another random access device according to an exemplary embodiment.
  • the wireless communication system 100 may include a network device 110 and a terminal 120 .
  • the network device 110 and the terminal 120 can communicate through wireless resources, such as sending and receiving corresponding information.
  • the wireless communication system shown in Figure 1 is only a schematic illustration, and the wireless communication system may also include other network equipment, such as core network equipment, wireless relay equipment, wireless backhaul equipment, etc., Not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and terminals included in the wireless communication system.
  • the wireless communication system of the embodiment of the present disclosure is a network that provides wireless communication functions.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single Carrier FDMA, SC-FDMA), carrier sensing Multiple Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency division multiple access single Carrier FDMA, SC-FDMA
  • carrier sensing Multiple Access/Conflict Avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network device 110 involved in this disclosure may also be called a wireless access network device.
  • the wireless access network device may be: a base station, an evolved base station (evolved node B, base station), a home base station, an access point (AP) in a wireless fidelity (wireless fidelity, WIFI) system, or a wireless relay Node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be a gNB in the NR system, or can also be a component or part of the equipment that constitutes the base station wait.
  • V2X vehicle-to-everything
  • the network device can also be a vehicle-mounted device. It should be understood that in the embodiments of the present disclosure, there are no limitations on the specific technology and specific equipment form used by the network equipment.
  • the terminal 120 involved in this disclosure may also be called a terminal device, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc., and is a kind of mobile terminal.
  • the terminal may be a handheld device with wireless connection capabilities, a vehicle-mounted device, etc.
  • some examples of terminals are: smartphones (Mobile Phone), pocket computers (Pocket Personal Computer, PPC), PDAs, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal.
  • the terminals involved in the embodiments of this disclosure can be understood as a new type of terminal designed in 5G NR: low-capability terminals.
  • Low-capability terminals are sometimes called Reduced capability UE, or RedCap terminals, or simply NR-lite.
  • RedCap Reduced capability UE
  • the embodiment of the present disclosure will be described below by taking a terminal called RedCap as an example.
  • the terminal involved in the embodiment of the present disclosure may be a RedCap terminal.
  • the network device involved in the embodiment of the present disclosure may be a base station. It can be further understood that in the embodiment of the present disclosure, the network device is a base station and the terminal is a RedCap terminal for description.
  • the network device can also be any other possible network device, and the terminal can also be any other possible terminal, which is not limited by this disclosure.
  • 5G NR-lite Similar to Internet of Things (IoT) devices in Long Term Evolution (LTE), 5G NR-lite usually needs to meet the following requirements:
  • the current NR system Since the current NR system is designed for high-end terminals such as high speed and low latency, the current design cannot meet the above requirements of RedCap terminals. Therefore, the current NR system needs to be modified to meet the requirements of RedCap terminals. For example, in order to meet requirements such as low cost and low complexity, the radio frequency (RF) bandwidth of NR-IoT can be limited, such as to 5MHz or 10MHz, or the size of the buffer of NR-lite can be limited. Then limit the size of each received transmission block and so on. For power saving, possible optimization directions are to simplify the communication process and reduce the number of times the RedCap terminal detects the downlink control channel.
  • RF radio frequency
  • RedCap terminals need to be configured Separate initial bandwidth part (Initial bandwidth part, Initial BWP).
  • Initial BWP includes initial downlink bandwidth part (Initial DL BWP) and/or initial uplink bandwidth part (Initial uplink bandwidth part, Initial UL BWP).
  • TA timing advance
  • RRC radio resource control
  • uplink (uplink, UL) synchronization status is "unsynchronized", downlink (downlink, DL) or UL data arrives during the RRC_CONNECTED period
  • PUCCH physical uplink control channel
  • SR scheduling request
  • RRC request during synchronous reconfiguration (such as handover)
  • TAG auxiliary timing advance group
  • the BWP during random access can be selected in the following ways. For example, the terminal may first confirm whether the monitored active UL BWP contains random access resources. If the active UL BWP does not include random access resources, and the uplink initial BWP is pre-configured for the RedCap terminal, the RedCap terminal can switch to the configured uplink initial BWP for random access. Of course, in order to ensure the unification of uplink and downlink, when the RedCap terminal switches to the uplink initial BWP, the downlink BWP will also be switched. For example, if the downlink initial BWP is configured for the RedCap terminal in advance, the RedCap terminal can switch to the configured downlink initial BWP to receive.
  • the initial downlink BWP will be configured with a common search space (CSS), such as a search space (SS) for system information block (SIB), scheduling, search space SIB1, search space for scheduling other public messages (searchspaceOthersystemInformation), search space for paging (pagingsearchSpace), search space for random access (ra-SearchSpace).
  • SS search space
  • SIB1 search space for scheduling other public messages
  • searchspaceOthersystemInformation search space for paging
  • pagingsearchSpace search space for random access
  • the terminal can monitor terminal-specific information in these search spaces, such as monitoring dedicated downlink control information (DCI) scrambled by the cell-radio network temporary identifier (C-RNTI).
  • DCI dedicated downlink control information
  • C-RNTI cell-radio network temporary identifier
  • RedCap terminals require that all BWPs used must have SSB.
  • RedCap terminals that can communicate with network devices on BWP without SSB.
  • This type of RedCap terminal that communicates with network devices on BWP without SSB is a terminal with higher capabilities. It can be considered that this ability to work on BWP without SSB is an optional capability and not supported by all RedCap terminals.
  • the initial DL BWP may not have SSB.
  • TDD time division duplex
  • the initial DL BWP and the initial UL BWP may not have the same center frequency.
  • the RedCap terminal when the RedCap terminal is in the connected state and switches to initial UL BWP/initial DL BWP due to RACH triggering, for the RedCap terminal that does not support BWP operation without SSB, the BWP is not configured with SSB, causing the RedCap terminal to communicate (for example, Communication failure occurs when transmitting proprietary information).
  • the BWP is not configured with SSB, causing the RedCap terminal to communicate (for example, Communication failure occurs when transmitting proprietary information).
  • communication failure will also occur.
  • the network device configures the configuration information for the terminal to determine the initial downlink BWP.
  • the configuration information is used to determine whether the configured initial downlink BWP supports the terminal for random access in the connected state. entry, so that the terminal can accurately determine whether to use the configured initial downlink BWP for random access based on the configuration information, thereby avoiding communication failure.
  • terminals mentioned below in the embodiments of the present disclosure may be RedCap terminals.
  • FIG. 2 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 2, the random access method can be used in network equipment. The method can include the following steps:
  • step S11 configuration information is determined.
  • the configuration information is used to determine the initial downlink BWP configured for the terminal, and is used to determine whether the initial downlink BWP supports random access by the terminal in the connected state.
  • the configuration information configured by the network device for the terminal is used to determine whether the initial downlink BWP supports random access by the terminal in the connected state, so that the terminal can accurately determine whether to use the configured initial downlink based on the configuration information.
  • BWP performs random access to avoid communication failures.
  • the configuration information may be predefined rules, and the network device may store the predefined rules in advance, and directly determine the configuration information based on the predefined rules.
  • the configuration information may also be signaling. The signaling may be determined and sent to the terminal by the network device, or may be determined and sent to the network device by other devices, and the network device may receive and determine the signaling. command to determine the configuration information.
  • the configuration information can be sent through other network devices, and this disclosure does not limit the method of obtaining the configuration information.
  • the network device may also send the configuration information to the terminal after determining the configuration information, so that the terminal performs corresponding operations based on the configuration information.
  • the configuration information determined by the network device can support the terminal to perform random access in the connected state.
  • the configuration information may include an initial DL BWP configured for the terminal, which may support random access by the terminal in the connected state.
  • the initial DL BWP configured for a RedCap terminal can be expressed as initial DL BWP-RedCap.
  • initial DL BWP supports the terminal to perform random access in the connected state.
  • Network devices can be configured with SSB for this initial DL BWP.
  • Figure 3 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 3, the random access method can be used in network equipment. The method can include the following steps:
  • an initial DL BWP is configured for the terminal.
  • the initial DL BWP supports random access of the terminal in the connected state, and the initial DL BWP includes SSB.
  • the network device configures SSB for the initial DL BWP, and the RedCap terminal will be able to complete random access on the initial DL BWP. It is further understandable that when the network device configures SSB for the initial DL BWP, especially for RedCap terminals that require all BWPs to have SSB, random access can be completed on the initial DL BWP without communication failure.
  • the network device configures SSB for the initial DL BWP after determining that the set conditions are met.
  • the network device can configure SSB for the initial DL BWP.
  • the other public search spaces are any possible public search spaces different from the public search space used for random access.
  • the initial DL BWP when the initial DL BWP includes a public search space for random access and at least one other public search space, the initial DL BWP configured by the network device includes SSB, and the initial DL BWP Supports random access of terminals in the connected state, ensuring that RedCap terminals that need to transmit terminal-specific information can complete random access on the initial DL BWP. Especially for RedCap terminals that require all BWPs to have SSB, there will be no communication failure.
  • the network device can configure the center frequency point of the initial DL BWP to be consistent with the center frequency point of the initial UL BWP configured for the terminal under set conditions. For example, in a TDD system, the network device can configure the center frequency of the initial DL BWP to be consistent with the center frequency of the initial UL BWP configured for the terminal.
  • Figure 4 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 4, the random access method can be used in network equipment. The method can include the following steps:
  • an initial DL BWP is configured for the terminal.
  • the initial DL BWP supports random access by the terminal in the connected state, and the center frequency point of the initial DL BWP is consistent with the center frequency point of the initial UL BWP.
  • the network device configures the center frequency point of the initial DL BWP to be consistent with the center frequency point of the initial UL BWP, thereby avoiding the inconsistency in the center frequency points of the initial DL BWP and the initial UL BWP. Communication failure occurs on the terminal.
  • the network device when the initial DL BWP can support the terminal to perform random access in the connected state, the network device can also use the initial DL BWP to send the terminal's exclusive information.
  • the exclusive information may also be called terminal exclusive information.
  • the terminal-specific information may be DCI scrambled by C-RNTI. It can be understood that the exclusive information of the terminal sent by the network device can be transmitted on the public search space configured in the initial DL BWP.
  • the initial DL BWP configured by the network device for the terminal supports the terminal to perform random access in the connected state, and the center frequency point of the initial DL BWP is consistent with the initial UL BWP.
  • the network device uses the initial DL BWP to send the terminal's exclusive information.
  • the configuration information of the network device configuration can also be used to determine that the initial DL BWP is not used for sending Exclusive information of the terminal.
  • the network device can inform the RedCap terminal through configuration information that the network device will not send terminal-specific information on the initial DL BWP, so the terminal does not need to monitor the initial DL BWP to determine whether it has received terminal-specific information. Therefore, through the present disclosure, communication failure caused by the RedCap terminal being unable to transmit terminal-specific information can be avoided.
  • the network device can be configured to determine that the initial DL BWP is not used to send terminal-specific information when the initial DL BWP does not contain SSB. So that when the RedCap terminal switches to the initial DL BWP for random access, the terminal-specific information can not be monitored in the common search space (CSS). For example, terminal-specific DCI is not detected in CSS.
  • CSS common search space
  • the initial DL BWP configured on the network device can ensure that the RedCap terminal completes the corresponding random access based on the initial DL BWP and avoids communication failure.
  • the initial DL BWP configured on the network device can ensure that the RedCap terminal completes the corresponding random access based on the initial DL BWP and avoids communication failure.
  • random access can be completed on the initial DL BWP, and the terminal-specific DCI on the initial DL BWP can not be monitored to avoid communication failures.
  • the initial DL BWP configured by the network device for the terminal may not support random access by the terminal in the connected state.
  • the initial DL BWP configured by the network device for the terminal does not support random access of RedCap terminals in the connected state, it can be avoided, especially requiring that all BWPs must have RedCap terminals with SSB, to complete random access on the initial DL BWP. communication failure occurs.
  • the initial DL BWP is configured not to support random access by the terminal in the connected state.
  • the network device configures the initial DL BWP to not support random access by the terminal in the connected state.
  • Figure 5 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 5, the random access method can be used in network equipment. The method can include the following steps:
  • an initial DL BWP is configured for the terminal.
  • the initial DL BWP does not include SSB, and the initial DL BWP does not support random access by the terminal in the connected state.
  • the initial DL BWP configured by the network device when the initial DL BWP configured by the network device does not include SSB, the initial DL BWP can be configured not to support the RedCap terminal in the connected state for random access, thus avoiding the need for all The BWP must have a RedCap terminal with SSB. Communication failure occurs when random access is completed on the initial DL BWP that does not contain SSB.
  • a random access method in a TDD system, when the center frequency point of the initial DL BWP configured by the network device is inconsistent with the center frequency point of the configured initial UL BWP, the network device configures the initial DL BWP.
  • DL BWP does not support random access by terminals in the connected state.
  • Figure 6 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 6, the random access method can be used in network equipment. The method can include the following steps:
  • step S51 an initial DL BWP is configured for the terminal.
  • the center frequency point of the initial DL BWP is inconsistent with the center frequency point of the initial UL BWP, and the initial DL BWP does not support random access by the terminal in the connected state.
  • the center frequency point of the initial DL BWP configured by the network device is inconsistent with the center frequency point of the initial UL BWP.
  • the initial DL BWP configured by the network device does not support the terminal in the connected state. Random access can be performed to avoid communication failure caused by RedCap terminals performing random access when the center frequency of the initial DL BWP is inconsistent with the center frequency of the initial UL BWP.
  • the configuration information determined by the network device can also be used to determine the active BWP configured for the terminal.
  • the active BWP includes random access resources for terminals to perform random access.
  • the random access resource may be a random access channel (physical random access channel, PRACH) resource.
  • PRACH physical random access channel
  • the active BWP monitored by the RedCap terminal contains PRACH resources. It is understandable that the active BWP is a UL BWP different from the initial UL BWP.
  • the network device configures a certain initial DL BWP that does not support random access by the terminal in the connected state and active BWP.
  • the active BWP includes random access resources for terminals to perform random access.
  • the active BWP is different from the initial DL BWP that does not support random access by the terminal in the connected state.
  • the network device does not support the terminal's random access in the connected state, and the active BWP can ensure that the terminal does not perform random access on the initial UL BWP and can use other BWPs to complete the corresponding random access. to avoid communication failure.
  • the configuration information determined by the network device may be signaling or predefined rules.
  • the network device configures the corresponding BWP for the terminal, so that the terminal can perform the corresponding random access operation according to the configured BWP to avoid communication failure.
  • the terminal can avoid communication failure when the uplink and downlink BWP center frequencies are inconsistent.
  • embodiments of the present disclosure also provide a random access method performed by a terminal.
  • Figure 7 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 7, the random access method can be used in a terminal, for example, it can be a RedCap terminal. The method can include the following steps :
  • step S61 configuration information is determined.
  • the configuration information is used to determine the initial DL BWP configured for the terminal, and is used to determine whether the initial DL BWP supports random access by the terminal in the connected state.
  • the terminal may pre-store the completed configuration information, and the terminal may directly determine the configuration information.
  • the configuration information may be sent by a network device, and the terminal may receive and determine the configuration information. This disclosure does not limit the method of obtaining the configuration information.
  • step S62 random access is performed based on the configuration information.
  • the terminal can complete the corresponding random access based on the initial DL BWP used to determine whether the terminal is supported for random access in the connected state.
  • the configuration information may be a predefined rule, and the terminal may store the predefined rule in advance, and directly determine the configuration information based on the predefined rule.
  • the configuration information may also be signaling, and the signaling may be determined by the network device and sent to the terminal, and the terminal receives the signaling sent by the network device.
  • the initial DL BWP can support the terminal to perform random access in the connected state.
  • the terminal can use the initial DL BWP to perform random access.
  • the initial DL BWP supports the terminal to perform random access in the connected state, and the initial DL BWP is configured with SSB.
  • the RedCap terminal completes random access on the initial DL BWP with SSB. Especially for RedCap terminals that require all BWPs to have SSB, there will be no communication failure.
  • the initial DL BWP can include a public search space for random access and at least one other public search space, and the initial DL BWP is configured with SSB, and the terminal can use the initial DL BWP performs random access.
  • other public search spaces are any possible public search spaces different from the public search space used for random access. This ensures that the RedCap terminal can transmit terminal-specific information without communication failure.
  • the center frequency point of the initial DL BWP is consistent with the center frequency point of the initial UL BWP configured for the terminal.
  • the center frequency of the initial DL BWP is consistent with the center frequency of the initial UL BWP configured for the terminal. This avoids communication failure in the terminal due to the inconsistent center frequencies of the initial DL BWP and initial UL BWP.
  • Figure 8 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 8, when the initial DL BWP can support the terminal to perform random access in the connected state, the method may include Following steps:
  • step S71 the initial downlink BWP is used to receive terminal-specific information.
  • the terminal in the connected state can perform random access according to the initial DL BWP, and the center frequency point of the initial DL BWP is consistent with the center frequency point of the initial UL BWP.
  • the terminal uses the initial DL BWP to receive terminal-specific information.
  • the terminal can use the initial DL BWP to receive terminal-specific information (or terminal-specific information) sent by the network device.
  • terminal-specific information or terminal-specific information
  • it may be DCI scrambled by C-RNTI. It can be understood that the terminal can monitor the terminal-specific information on the public search space configured in the initial DL BWP, so that when the terminal-specific information is detected, the terminal-specific information can be received.
  • the terminal can complete corresponding random access based on the configuration information and avoid communication failure.
  • the configuration information is also used to determine that the initial downlink BWP is not used to transmit exclusive information of the terminal. Therefore, the terminal can learn that the network device will not send terminal-specific information on the initial DL BWP.
  • the initial DL BWP when the initial DL BWP does not include SSB, it can be determined that the initial DL BWP is not used to send exclusive information of the terminal.
  • the terminal can not monitor terminal-specific information in CSS when switching to initial DL BWP for random access. For example, terminal-specific DCI is not detected in CSS.
  • Figure 9 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 9, when the initial DL BWP does not include SSB, the method may include the following steps:
  • step S81 stop using the initial downlink BWP to receive terminal-specific information.
  • the terminal in the connected state can perform random access according to the initial DL BWP, and the terminal stops using the initial DL BWP to receive terminals. exclusive information.
  • the terminal stops using the initial DL BWP to receive terminal-specific information (or terminal-specific information) sent by the network device. It can be understood that the terminal can stop monitoring terminal-specific information on the public search space configured in the initial DL BWP, that is, the initial DL BWP does not contain SSB, and when the terminal switches to the initial DL BWP, the terminal can within the CSS Terminal-specific DCI is not monitored.
  • the configured initial DL BWP can ensure that the RedCap terminal completes the corresponding random access based on the initial DL BWP and avoids communication failure.
  • random access can be completed on the initial DL BWP, and the terminal-specific DCI on the initial DL BWP can not be monitored to avoid communication failures.
  • Figure 10 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 10, the method may include the following steps:
  • step S91 the configured initial DL BWP does not support random access by the terminal in the connected state, and the terminal stops using the initial DL BWP for random access.
  • the configured initial DL BWP does not include SSB, and the configured initial DL BWP does not support random access by the terminal in the connected state. This avoids communication failure when RedCap terminals, which require all BWPs to have SSB, complete random access on the initial DL BWP that does not contain SSB.
  • the center frequency point of the configured initial DL BWP is inconsistent with the center frequency point of the initial UL BWP configured for the terminal, and the configured initial DL BWP is not consistent with the center frequency point of the initial UL BWP configured for the terminal.
  • the configuration information can also be used to determine the active BWP configured for the terminal.
  • the active BWP includes random access resources for terminals to perform random access.
  • the random access resources may be PRACH resources.
  • the active BWP monitored by the RedCap terminal contains PRACH resources.
  • the active BWP is other UL BWP that is different from the initial UL BWP.
  • Figure 11 is a flow chart of a random access method according to an exemplary embodiment. As shown in Figure 11, the method may include the following steps:
  • step S101 active BWP is used to perform random access.
  • the terminal does not support the terminal's random access in the connected state, and the active BWP can ensure that the terminal does not perform random access on the initial UL BWP and can use other BWPs to complete the corresponding random access. , to avoid communication failure.
  • the configuration information described above may be signaling or predefined rules.
  • the terminal uses the configured BWP so that the terminal can perform corresponding random access operations and avoid communication failure.
  • the terminal can avoid communication failure of the terminal when the uplink and downlink BWP center frequencies are inconsistent.
  • embodiments of the present disclosure also provide a random access device.
  • the random access device provided by the embodiments of the present disclosure includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to go beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Figure 12 is a schematic diagram of a random access device according to an exemplary embodiment.
  • the device 200 may be a base station, and the device 200 may include:
  • the determination module 201 is used to determine configuration information.
  • the configuration information is used to determine the initial downlink partial bandwidth BWP configured for the terminal, and is used to determine whether the initial downlink BWP supports random access by the terminal in the connected state.
  • the initial downlink BWP supports the terminal to perform random access in the connected state.
  • the initial downlink BWP is configured with synchronization signal block SSB.
  • the initial downlink BWP includes a common search space used for random access and at least one other common search space, and the other common search spaces are different from the common search space used for random access.
  • the center frequency of the initial downlink BWP is consistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the device 200 further includes: a sending module 202, configured to send the terminal-specific information using the initial downlink BWP.
  • the configuration information is also used to determine that the initial downlink BWP is not used to send terminal-specific information.
  • the initial downlink BWP does not include SSB.
  • the initial downlink BWP does not support random access by the terminal in the connected state.
  • the initial downlink BWP does not include SSB.
  • the center frequency of the initial downlink BWP is inconsistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the configuration information is also used to determine the activated BWP configured for the terminal, and the activated BWP includes random access resources for the terminal to perform random access.
  • the activated BWP is different from the initial downlink BWP.
  • the configuration information is signaling or predefined rules.
  • Figure 13 is a schematic diagram of a random access device according to an exemplary embodiment.
  • the device 300 may be a terminal, such as a RedCap terminal, and the device 300 may include:
  • the determination module 301 is used to determine configuration information.
  • the configuration information is used to determine the initial downlink partial bandwidth BWP configured for the terminal, and is used to determine whether the initial downlink BWP supports random access by the terminal in the connected state.
  • the access module 302 is used to perform random access based on configuration information.
  • the initial downlink BWP supports the terminal to perform random access in the connected state.
  • the access module 302 is also configured to perform random access using the initial downlink BWP.
  • the initial downlink BWP is configured with synchronization signal block SSB.
  • the initial downlink BWP includes a common search space used for random access and at least one other common search space, and the other common search spaces are different from the common search space used for random access.
  • the center frequency of the initial downlink BWP is consistent with the center frequency of the initial uplink BWP configured for the terminal.
  • the device 300 further includes: a receiving module 303, configured to receive the terminal-specific information using the initial downlink BWP.
  • the configuration information is also used to determine that the initial downlink BWP is not used to transmit terminal-specific information.
  • the initial downlink BWP does not include SSB.
  • the device 300 further includes: a receiving module 303, configured to stop using the initial downlink BWP to receive exclusive information of the terminal.
  • the initial downlink BWP does not support random access by the terminal in the connected state; the access module 302 is further configured to stop using the initial downlink BWP for random access.
  • the initial downlink BWP does not include SSB.
  • the center frequency point of the initial downlink BWP is inconsistent with the center frequency point of the initial uplink BWP configured for the terminal.
  • the configuration information is also used to determine the activated BWP configured for the terminal, and the activated BWP includes random access resources for the terminal to perform random access.
  • the activated BWP is different from the initial downlink BWP; random access is performed based on the configuration information, and the access module 302 is further configured to use the activated BWP to perform random access.
  • the configuration information is signaling or predefined rules.
  • Figure 14 is a schematic diagram of a device 400 for random access according to an exemplary embodiment.
  • the device 400 may be provided as a base station, or as a server.
  • device 400 includes processing component 422, which further includes one or more processors, and memory resources, represented by memory 432, for storing instructions, such as application programs, executable by processing component 422.
  • the application program stored in memory 432 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to execute the random access method corresponding to the network device in the above method.
  • Device 400 may also include a power supply component 426 configured to perform power management of device 400, a wired or wireless network interface 450 configured to connect device 400 to a network, and an input-output (I/O) interface 458.
  • Device 400 may operate based on an operating system stored in memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • Figure 15 is a block diagram of a device 500 for random access according to an exemplary embodiment.
  • the device 500 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a RedCap terminal, and other devices.
  • device 500 may include one or more of the following components: processing component 502, memory 504, power component 506, multimedia component 508, audio component 510, input/output (I/O) interface 512, sensor component 514, and Communication component 516.
  • Processing component 502 generally controls the overall operations of device 500, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 502 may include one or more processors 520 to execute instructions to complete all or part of the steps of the above method.
  • processing component 502 may include one or more modules that facilitate interaction between processing component 502 and other components.
  • processing component 502 may include a multimedia module to facilitate interaction between multimedia component 508 and processing component 502.
  • Memory 504 is configured to store various types of data to support operations at device 500 . Examples of such data include instructions for any application or method operating on device 500, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 504 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 506 provides power to various components of device 500 .
  • Power components 506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 500 .
  • Multimedia component 508 includes a screen that provides an output interface between the device 500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 508 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 510 is configured to output and/or input audio signals.
  • audio component 510 includes a microphone (MIC) configured to receive external audio signals when device 500 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 504 or sent via communication component 516 .
  • audio component 510 also includes a speaker for outputting audio signals.
  • the I/O interface 512 provides an interface between the processing component 502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 514 includes one or more sensors that provide various aspects of status assessment for device 500 .
  • the sensor component 514 can detect the open/closed state of the device 500, the relative positioning of components, such as the display and keypad of the device 500, and the sensor component 514 can also detect a change in position of the device 500 or a component of the device 500. , the presence or absence of user contact with device 500 , device 500 orientation or acceleration/deceleration and temperature changes of device 500 .
  • Sensor assembly 514 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 514 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 516 is configured to facilitate wired or wireless communications between device 500 and other devices.
  • Device 500 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 516 receives broadcast signals or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communications component 516 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 500 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 504 including instructions, which are executable by the processor 520 of the device 500 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • This disclosure determines the configuration information of the initial downlink BWP configured by the terminal, and is used to determine whether the initial downlink BWP supports random access by the terminal in the connected state, so that the terminal can perform corresponding random access operations according to the configured BWP to avoid Communication failed.
  • “plurality” in this disclosure refers to two or more, and other quantifiers are similar.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • the singular forms “a”, “the” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other and do not imply a specific order or importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, the second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种随机接入方法,可以包括:确定配置信息,配置信息用于确定为终端配置初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。通过为终端配置相应的BWP,使得终端可以根据配置的BWP进行相应的随机接入操作,避免通信失败。

Description

[根据细则91更正 26.05.2022]一种随机接入方法、装置、设备及存储介质 技术领域
[根据细则91更正 26.05.2022]
本公开涉及通信技术领域,尤其涉及一种随机接入方法、装置、设备及存储介质。
背景技术
相关技术中,在5G新空口(New Radio,NR)中提出一种新的终端类型用以覆盖中端物联网设备的要求。在目前的3GPP标准化中,这种新的终端类型叫做低能力终端,有时也称为Reduced capability UE,或者称为RedCap终端,或者简称为NR-lite。该RedCap终端是相对于普通终端而言。
考虑到终端带宽限制、时分复用的中心频点分布(TDD center frequency-alignment)以及同步信号块(Synchronization Signal and PBCH block,SSB)开销(overhead)等因素,需要为RedCap终端配置单独的初始部分带宽(Initial bandwidth part,Initial BWP)。Initial BWP包括初始下行部分带宽(Initial downlink bandwidth part,Initial DL BWP)和/或初始上行部分带宽(Initial uplink bandwidth part,Initial UL BWP)。
在一些情况下,RedCap终端会切换至为RedCap终端单独配置的初始上行BWP和/或初始下行BWP以进行随机接入。然而,针对连接态的RedCap终端由于随机接入信道(random access channel,RACH)触发,切换到初始下行BWP时,对于一些RedCap终端传输专属信息会存在问题,导致无法正常通信。
发明内容
[根据细则91更正 26.05.2022]
为克服相关技术中存在的问题,本公开提供一种随机接入方法、装置、设备及存储介质。
根据本公开实施例的第一方面,提供了一种随机接入方法,应用于网络设备,方法可以包括:确定配置信息,配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。
在一种可能的实施方式中,初始下行BWP支持终端在连接态下进行随机接入。
在一种可能的实施方式中,初始下行BWP配置有同步信号块SSB。
在一种可能的实施方式中,初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间。其中,其它公共搜索空间为不同于用于随机接入的公共搜索空间。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP 的中心频点一致。
在一种可能的实施方式中,方法还可以包括:利用初始下行BWP发送终端的专属信息。
在一种可能的实施方式中,配置信息还用于确定初始下行BWP不用于发送终端的专属信息。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,初始下行BWP不支持终端在连接态下进行随机接入。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点不一致。
在一种可能的实施方式中,配置信息还用于确定为终端配置的激活BWP,激活BWP中包括用于终端进行随机接入的随机接入资源。
在一种可能的实施方式中,激活BWP不同于初始下行BWP。
根据本公开实施例的第二方面,提供了一种随机接入方法,应用于终端,方法可以包括:确定配置信息,配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。基于配置信息进行随机接入。
在一种可能的实施方式中,初始下行BWP支持终端在连接态下进行随机接入。基于配置信息进行随机接入,可以包括:利用初始下行BWP进行随机接入。
在一种可能的实施方式中,初始下行BWP配置有同步信号块SSB。
在一种可能的实施方式中,初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,其它公共搜索空间为不同于用于随机接入的公共搜索空间。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点一致。
在一种可能的实施方式中,方法还包括:利用初始下行BWP接收终端的专属信息。
在一种可能的实施方式中,配置信息还用于确定初始下行BWP不用于传输终端的专属信息。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,方法还可以包括:停止利用初始下行BWP接收终端的专属信息。
在一种可能的实施方式中,初始下行BWP不支持终端在连接态下进行随机接入。基于配置信息进行随机接入,可以包括:停止利用初始下行BWP进行随机接入。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点不一致。
在一种可能的实施方式中,配置信息还用于确定为终端配置的激活BWP,激活BWP中包括用于终端进行随机接入的随机接入资源。
在一种可能的实施方式中,激活BWP不同于初始下行BWP;基于配置信息进行随机接入,还包括:利用激活BWP进行随机接入。
根据本公开实施例的第三方面,提供了一种随机接入装置,装置包括:确定模块,用于确定配置信息,配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。
在一种可能的实施方式中,初始下行BWP支持终端在连接态下进行随机接入。
在一种可能的实施方式中,初始下行BWP配置有同步信号块SSB。
在一种可能的实施方式中,初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,其它公共搜索空间为不同于用于随机接入的公共搜索空间。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点一致。
在一种可能的实施方式中,装置还包括:发送模块,用于利用初始下行BWP发送终端的专属信息。
在一种可能的实施方式中,配置信息还用于确定初始下行BWP不用于发送终端的专属信息。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,初始下行BWP不支持终端在连接态下进行随机接入。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点不一致。
在一种可能的实施方式中,配置信息还用于确定为终端配置的激活BWP,激活BWP中包括用于终端进行随机接入的随机接入资源。
在一种可能的实施方式中,激活BWP不同于初始下行BWP。
根据本公开实施例的第四方面,提供了一种随机接入装置,装置包括:确定模块,用于确定配置信息,配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入;接入模块,用于基于配置信息进行 随机接入。
在一种可能的实施方式中,初始下行BWP支持终端在连接态下进行随机接入;接入模块还用于,利用初始下行BWP进行随机接入。
在一种可能的实施方式中,初始下行BWP配置有同步信号块SSB。
在一种可能的实施方式中,初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,其它公共搜索空间为不同于用于随机接入的公共搜索空间。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点一致。
在一种可能的实施方式中,装置还包括:接收模块,用于利用初始下行BWP接收终端的专属信息。
在一种可能的实施方式中,配置信息还用于确定初始下行BWP不用于传输所述终端的专属信息。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,装置还包括:接收模块,用于停止利用初始下行BWP接收终端的专属信息。
在一种可能的实施方式中,初始下行BWP不支持终端在连接态下进行随机接入;接入模块还用于,停止利用初始下行BWP进行随机接入。
在一种可能的实施方式中,初始下行BWP不包含SSB。
在一种可能的实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点不一致。
在一种可能的实施方式中,配置信息还用于确定为终端配置的激活BWP,激活BWP中包括用于终端进行随机接入的随机接入资源。
在一种可能的实施方式中,激活BWP不同于初始下行BWP;接入模块还用于,利用激活BWP进行随机接入。
根据本公开实施例的第五方面,提供了一种随机接入设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为执行第一方面或第一方面任意一种实施方式中所述的方法。
根据本公开实施例的第六方面,提供了一种随机接入设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为执行第二方面或第二方面任意一种实施方式中所述的方法。
根据本公开实施例的第七方面,提供了一种非临时性计算机可读存储介质,当存储介 质中的指令由网络设备的处理器执行时,使得网络设备能够执行第一方面或第一方面任意一种实施方式中所述的方法。
根据本公开实施例的第八方面,提供了一种非临时性计算机可读存储介质,当存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行第二方面或第二方面任意一种实施方式中所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:用于确定为终端配置的初始下行BWP的配置信息,用于确定该初始下行BWP是否支持终端在连接态下进行随机接入,以使得终端可以根据配置的BWP进行相应的随机接入操作,避免通信失败。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种随机接入方法的流程图。
图3是根据一示例性实施例示出的另一种随机接入方法的流程图。
图4是根据一示例性实施例示出的又一种随机接入方法的流程图。
图5是根据一示例性实施例示出的再一种随机接入方法的流程图。
图6是根据一示例性实施例示出的另一种随机接入方法的流程图。
图7是根据一示例性实施例示出的又一种随机接入方法的流程图。
图8是根据一示例性实施例示出的再一种随机接入方法的流程图。
图9是根据一示例性实施例示出的另一种随机接入方法的流程图。
图10是根据一示例性实施例示出的又一种随机接入方法的流程图。
图11是根据一示例性实施例示出的再一种随机接入方法的流程图。
图12是根据一示例性实施例示出的一种随机接入装置的示意图。
图13是根据一示例性实施例示出的另一种随机接入装置的示意图。
图14是根据一示例性实施例示出的一种随机接入设备示意图。
图15是根据一示例性实施例示出的另一种随机接入设备示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图 时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开所涉及的随机接入方法可以应用于图1所示出的无线通信系统中。通过图1可以看出,该无线通信系统100可以包括网络设备110和终端120。网络设备110和终端120可以通过无线资源进行通信,例如发送和接收相应的信息。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网络设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备110也可以称为无线接入网络设备。该无线接入网络设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端120,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、 笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开实施例涉及的终端可以理解为是在5G NR中设计的新的类型终端:低能力终端。低能力终端有时也称为Reduced capability UE,或者称为RedCap终端,或者简称为NR-lite。本公开实施例以下以称为RedCap终端为例进行说明。
可以理解的是,本公开实施例中所涉及的终端可以是RedCap终端。本公开实施例中涉及的网络设备可以是基站。进一步可以理解的是,本公开实施例中以网络设备为基站,终端为RedCap终端为例进行描述。当然网络设备还可以是其它任意可能的网络设备,以及终端还可以是其它任意可能的终端,本公开不作限定。
同长期演进(Long Term Evolution,LTE)中的物联网(Internet of Thing,IoT)设备类似,5G NR-lite通常需要满足如下要求:
-低造价,低复杂度
-一定程度的覆盖增强
-功率节省
由于目前的NR系统是针对高速率低时延等高端终端设计的,因此当前的设计无法满足RedCap终端的上述要求。因此需要对目前的NR系统进行改造用以满足RedCap终端的要求。比如,为了满足低造价,低复杂度等要求,可以限制NR-IoT的射频(Radio Frequency,RF)带宽,比如限制到5M Hz或者10M Hz,或者限制NR-lite的缓存(buffer)的大小,进而限制每次接收传输块的大小等等。针对功率节省,可能的优化方向是简化通信流程,减少RedCap终端检测下行控制信道的次数等。
相关技术中,考虑到终端带宽限制、时分复用的中心频点分布(TDD center frequency-alignment)以及同步信号块(Synchronization Signal and PBCH block,SSB)开销(overhead)等因素,需要为RedCap终端配置单独的初始部分带宽(Initial bandwidth part,Initial BWP)。Initial BWP包括初始下行部分带宽(Initial downlink bandwidth part,Initial DL BWP)和/或初始上行部分带宽(Initial uplink bandwidth part,Initial UL BWP)。
在一些情况下,对于处于连接态的RedCap终端,由于可能存在的定时提前(timing advance,TA)失步、波束失效(beam failure)、上行资源请求等原因而发起随机接入。在一些例子中,可能会触发以下一种或多种事件。如无线资源控制(radio resource control,RRC)连接重建过程;当上行链路(uplink,UL)同步状态为“未同步”时,在RRC_CONNECTED期间下行链路(downlink,DL)或UL数据到达;当没有可用于调度 请求(scheduling request,SR)的物理上行控制信道(physical uplink control channel,PUCCH)资源时,在RRC_CONNECTED期间UL数据到达;调度请求失败;在同步重新配置时的RRC请求(例如切换);为辅助定时提前组(timing advance group,TAG)建立时间校准;索取其他系统信息;波束故障恢复。当然还可能触发更多其它可能的事件,本公开不作限定。
在一些情况下,对于连接态的RedCap终端,可以通过以下方式选择在进行随机接入时的BWP。例如,终端可以首先确认所监控的激活(active)UL BWP是否包含随机接入资源。若active UL BWP不包含随机接入资源,且为RedCap终端预先配置了上行初始BWP,则对于RedCap终端可以切换到配置的上行初始BWP上进行随机接入。当然,为了保证上行与下行的统一,当RedCap终端切换到上行初始BWP时,也会对下行BWP进行切换。例如若预先为RedCap终端配置了下行初始BWP,则RedCap终端可以切换到配置的下行初始BWP上接收。
当然,一般情况下,初始下行BWP会配置有公共搜索空间(common search space,CSS),例如包括用于系统信息块(system information block,SIB)、调度的搜索空间(search space,SS)、search space SIB1,调度其它公共消息的搜索空间(searchspaceOthersystemInformation),用于寻呼的搜索空间(pagingsearchSpace),用于随机接入的搜索空间(ra-SearchSpace)。可以理解,终端在这些搜索空间内可以监测终端所专属的信息,例如监测由小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)加扰的专属下行控制信息(downlink control information,DCI)。
然而,对于不同的RedCap终端,针对SSB具有不同的要求。例如,一些RedCap终端要求所有用到的BWP必须具有SSB。而还有一些RedCap终端可以在没有SSB的BWP上与网络设备进行通信。而这类在没有SSB的BWP上与网络设备进行通信的RedCap终端是具有较高能力的终端。可以认为,在没有SSB的BWP上工作的这种能力是一种可选的能力,并不是所有RedCap终端都支持。
当然,在另一些情况下,若初始(initial)DL BWP用作随机接入信道(random access channel,RACH),但不用作寻呼目的时,为RedCap终端配置的initial DL BWP可以没有SSB。并且在时分复用(time division duplex,TDD)的情况下,initial DL BWP与initial UL BWP可能并不具有相同的中心频点。对于RedCap终端由PACH切换到initial DL BWP上时,此时仍然可能会传输终端的专属信息。
但当RedCap终端在连接态下,由于RACH触发切换到initial UL BWP/initial DL BWP时,对于并不支持没有SSB的BWP工作的RedCap终端,由于BWP未配置SSB,使得该 RedCap终端进行通信(例如传输专属信息)时会出现通信失败。对于在TDD系统中,由于initial DL BWP与initial UL BWP具有不同的中心频点,也会导致通信失败。
因此,本公开提供了一种随机接入方法,网络设备为终端配置用于确定初始下行BWP的配置信息,该配置信息用于确定该配置的初始下行BWP是否支持终端在连接态下进行随机接入,以使终端能够根据该配置信息准确确定出是否利用配置的初始下行BWP进行随机接入,从而避免通信失败。
可以理解的是,本公开实施例中以下涉及的终端可以是RedCap终端。
图2是根据一示例性实施例示出的一种随机接入方法的流程图,如图2所示,该随机接入方法可以用于网络设备中,该方法可以包括以下步骤:
在步骤S11中,确定配置信息,该配置信息用于确定为终端配置的初始下行BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。
本公开实施例中,网络设备为终端配置的配置信息,用于确定初始下行BWP是否支持终端在连接态下进行随机接入,进而使得终端能够根据该配置信息准确确定出是否利用配置的初始下行BWP进行随机接入,从而避免通信失败。
本公开实施例提供的随机接入方法中,一些实施例中,配置信息可以是预定义的规则,网络设备可以预先存储该预定义规则,基于该预定义规则直接确定出该配置信息。当然在又一些例子中,该配置信息还可以是信令,该信令可以是网络设备确定并发送给终端的,也可是其它设备确定并发送给网络设备,网络设备则可以接收并确定该信令,进而确定配置信息。例如,配置信息可以通过其它网络设备发送,本公开不对配置信息的获取方式进行限定。
本公开实施例提供的随机接入方法中,在一些示例中,网络设备还可以在确定配置信息后将该配置信息发送至终端,以便终端根据该配置信息执行相应操作。
本公开实施例提供的一种随机接入方法中,网络设备所确定的配置信息可以支持终端在连接态下进行随机接入。
在一些示例中,配置信息可以包括为终端配置的initial DL BWP,该initial DL BWP可以支持终端在连接态下进行随机接入。在一些例子中,为RedCap终端配置的initial DL BWP可以表示为initial DL BWP-RedCap。
本公开实施例提供的一种随机接入方法中,initial DL BWP支持终端在连接态下进行随机接入。网络设备可以为该initial DL BWP配置SSB。
图3是根据一示例性实施例示出的一种随机接入方法的流程图,如图3所示,该随机接入方法可以用于网络设备中,该方法可以包括以下步骤:
在步骤S21中,为终端配置initial DL BWP,该initial DL BWP支持终端在连接态下进行随机接入,且该initial DL BWP包括SSB。
本公开实施例中,网络设备为该initial DL BWP配置SSB,对于RedCap终端将可以在该initial DL BWP上完成随机接入。进一步可以理解的是,当网络设备为该initial DL BWP配置SSB,尤其针对要求所有BWP必须具有SSB的RedCap终端,则可以在该initial DL BWP上完成随机接入,而不会出现通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备在确定满足设定条件的情况下,为该initial DL BWP配置SSB。
例如,当该initial DL BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间时,网络设备可以为该initial DL BWP配置SSB。
可以理解的是,其它公共搜索空间为不同于用于随机接入的公共搜索空间的任意可能的公共搜索空间。
本公开实施例提供的随机接入方法中,initial DL BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间时,网络设备配置的initial DL BWP包括SSB,并且该initial DL BWP支持终端在连接态下进行随机接入,保证了需要传输终端专属信息的RedCap终端,可以在该initial DL BWP上完成随机接入。尤其对于要求所有BWP必须具有SSB的RedCap终端而言,将不会出现通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备可以在设定条件下配置该initial DL BWP的中心频点与为终端配置的initial UL BWP的中心频点一致。例如在TDD系统中,网络设备可以配置该initial DL BWP的中心频点与为终端配置的initial UL BWP的中心频点一致。
图4是根据一示例性实施例示出的一种随机接入方法的流程图,如图4所示,该随机接入方法可以用于网络设备中,该方法可以包括以下步骤:
在步骤S31中,为终端配置initial DL BWP,该initial DL BWP支持终端在连接态下进行随机接入,且该initial DL BWP的中心频点与initial UL BWP的中心频点一致。
本公开实施例提供的一种随机接入方法中网络设备配置initial DL BWP的中心频点与initial UL BWP的中心频点一致,从而避免由于initial DL BWP与initial UL BWP的中心频点不一致导致的终端出现通信失败情况。
本公开实施例提供的一种随机接入方法中,在initial DL BWP可以支持终端在连接态下进行随机接入的情况下,网络设备还可以利用该initial DL BWP发送终端的专属信息。其中,该专属信息也可以称为终端专属信息。例如,终端专属信息可以是由C-RNTI加扰 的DCI。可以理解的是,网络设备发送终端的专属信息可以是在该initial DL BWP配置的公共搜索空间上传输。
一示例中,本公开实施例提供的随机接入方法中,网络设备为终端配置的initial DL BWP支持终端在连接态下进行随机接入,且该initial DL BWP的中心频点与initial UL BWP的中心频点一致的情况下,网络设备利用该initial DL BWP发送终端的专属信息。
本公开实施例提供的一种随机接入方法中,在initial DL BWP可以支持终端在连接态下进行随机接入的情况下,网络设备配置的配置信息还可以用于确定initial DL BWP不用于发送终端的专属信息。也就是说,网络设备通过配置信息可以告知RedCap终端,网络设备不会在initial DL BWP上发送终端的专属信息,因此终端可以无需对initial DL BWP进行监测,以确定是否接收到终端专属信息。从而通过本公开,可以避免RedCap终端无法传输终端专属信息而导致的通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备可以配置当该initial DL BWP不包含SSB时,确定initial DL BWP不用于发送终端的专属信息。以便当RedCap终端切换到initial DL BWP进行随机接入时,可以不在公共搜索空间(common search space,CSS)内监测终端专属信息。如,在CSS内不检测终端专属的DCI。
通过上述方式,网络设备配置的initial DL BWP可以保证RedCap终端基于该initial DL BWP完成相应的随机接入,而避免出现通信失败情况。尤其针对要求所有BWP必须具有SSB的RedCap终端,则可以在该initial DL BWP上完成随机接入,并且可以不监测initial DL BWP上的终端专属的DCI,以避免出现通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备为终端配置的initial DL BWP可以不支持终端在连接态下进行随机接入。
可以理解,当网络设备为终端配置的initial DL BWP不支持RedCap终端在连接态下进行随机接入,则可以避免尤其要求所有BWP必须具有SSB的RedCap终端,在该initial DL BWP上完成随机接入时出现的通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备在确定满足设定条件的情况下,配置该initial DL BWP不支持终端在连接态下进行随机接入。
本公开实施例提供的一种随机接入方法中,可以当配置的initial DL BWP不包含SSB时,网络设备配置该initial DL BWP不支持终端在连接态下进行随机接入。
图5是根据一示例性实施例示出的一种随机接入方法的流程图,如图5所示,该随机接入方法可以用于网络设备中,该方法可以包括以下步骤:
在步骤S41中,为终端配置initial DL BWP,该initial DL BWP不包括SSB,且该initial  DL BWP不支持终端在连接态下进行随机接入。
本公开实施例提供的随机接入方法中,可以在网络设备配置的initial DL BWP不包含SSB时,配置该initial DL BWP不支持RedCap终端在连接态下进行随机接入,则可以避免尤其要求所有BWP必须具有SSB的RedCap终端,在不包含SSB的initial DL BWP上完成随机接入时出现通信失败情况。
本公开实施例提供的一种随机接入方法中,可以在TDD系统中,当网络设备配置的initial DL BWP的中心频点与配置的initial UL BWP的中心频点不一致时,网络设备配置该initial DL BWP不支持终端在连接态下进行随机接入。
图6是根据一示例性实施例示出的一种随机接入方法的流程图,如图6所示,该随机接入方法可以用于网络设备中,该方法可以包括以下步骤:
在步骤S51中,为终端配置initial DL BWP,该initial DL BWP的中心频点与initial UL BWP的中心频点不一致,且该initial DL BWP不支持终端在连接态下进行随机接入。
本公开实施例提供的随机接入方法中,在TDD系统中,网络设备配置initial DL BWP的中心频点与initial UL BWP的中心频点不一致,网络设备配置该initial DL BWP不支持终端在连接态下进行随机接入,可以避免RedCap终端在initial DL BWP的中心频点与initial UL BWP的中心频点不一致时进行随机接入,而出现通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备确定的配置信息还可以用于确定为终端配置的active BWP。其中,该active BWP中包括用于终端进行随机接入的随机接入资源。该随机接入资源可以是随机接入信道(physical random access channel,PRACH)资源。换句话说,即RedCap终端所监测的active BWP包含PRACH资源。可以理解的是,active BWP为不同于initial UL BWP的其它UL BWP。
本公开实施例提供的一种随机接入方法的一示例中,网络设备配置某一initial DL BWP不支持终端在连接态下进行随机接入,以及active BWP。其中,该active BWP中包括用于终端进行随机接入的随机接入资源。
本公开实施例提供的一种随机接入方法中,该active BWP不同于不支持终端在连接态下进行随机接入的initial DL BWP。
网络设备通过上述配置某一initial DL BWP不支持终端在连接态下进行随机接入,以及active BWP,可以保证终端不在initial UL BWP上进行随机接入的同时,可以利用其它BWP完成相应的随机接入,避免出现通信失败情况。
本公开实施例提供的一种随机接入方法中,网络设备确定的配置信息可以是信令,也可以是预定义规则。
可以理解,本公开实施例提供的由网络设备执行的随机接入方法,网络设备通过为终端配置相应的BWP,使得终端可以根据配置的BWP进行相应的随机接入操作,避免通信失败。在一些情况下,可以避免连接态下的终端在不具有SSB的BWP上进行工作。在另一些情况下,可以避免终端在上下行BWP中心频点不一致时出现通信失败情况。
基于相同的构思,本公开实施例还提供一种由终端执行的随机接入方法。
图7是根据一示例性实施例示出的一种随机接入方法的流程图,如图7所示,该随机接入方法可以用于终端中,例如可以是RedCap终端,该方法可以包括以下步骤:
在步骤S61中,确定配置信息,该配置信息用于确定为终端配置的initial DL BWP,并用于确定initial DL BWP是否支持终端在连接态下进行随机接入。
在一些例子中,终端可以预先存储有设定完成的配置信息,终端则可以直接确定出该配置信息。当然在又一些例子中,该配置信息可以是网络设备发送的,终端则可以接收并确定该配置信息,本公开不对配置信息的获取方式进行限定。
在步骤S62中,基于配置信息进行随机接入。
本公开实施例中,终端可以根据用于确定是否支持终端在连接态下进行随机接入的initial DL BWP,完成相应的随机接入。
本公开实施例提供的随机接入方法中,一些实施例中,配置信息可以是预定义的规则,终端可以预先存储该预定义规则,基于该预定义规则直接确定出该配置信息。当然在又一些例子中,该配置信息还可以信令,该信令可以是网络设备确定并发送给终端的,终端接收网络设备发送的信令。
本公开实施例提供的一种随机接入方法中,initial DL BWP可以支持终端在连接态下进行随机接入。终端则可以利用该initial DL BWP进行随机接入。
本公开实施例提供的一种随机接入方法中,initial DL BWP支持终端在连接态下进行随机接入,该initial DL BWP配置有SSB。
本公开实施例中,RedCap终端在具有SSB的initial DL BWP上完成随机接入。尤其针对要求所有BWP必须具有SSB的RedCap终端,将不会出现通信失败情况。
本公开实施例提供的一种随机接入方法中initial DL BWP可以包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,且initial DL BWP配置有SSB,终端则可以利用该initial DL BWP进行随机接入。其中,其它公共搜索空间为不同于用于随机接入的公共搜索空间的任意可能的公共搜索空间。保证了RedCap终端可以传输终端专属信息,而不会出现通信失败情况。
本公开实施例提供的一种随机接入方法中,initial DL BWP的中心频点与为终端配置 的initial UL BWP的中心频点一致。例如在TDD系统中,该initial DL BWP的中心频点与为终端配置的initial UL BWP的中心频点一致。避免了由于initial DL BWP和initial UL BWP的中心频点不一致,使得终端出现通信失败情况。
图8是根据一示例性实施例示出的一种随机接入方法的流程图,如图8所示,在initial DL BWP可以支持终端在连接态下进行随机接入的情况下,该方法可以包括以下步骤:
在步骤S71中,利用初始下行BWP接收终端的专属信息。
一示例中,本公开实施例提供的随机接入方法中,连接态下的终端可以根据initial DL BWP进行随机接入,且该initial DL BWP的中心频点与initial UL BWP的中心频点一致的情况下,终端利用该initial DL BWP接收终端的专属信息。
在一些示例中,终端可以利用initial DL BWP接收网络设备发送的终端的专属信息(或称终端专属信息)。例如可以是由C-RNTI加扰的DCI。可以理解的是,终端可以是在该initial DL BWP配置的公共搜索空间上监测终端专属信息,以便在监测到终端专属信息时,接收该终端专属信息。
通过上述方式,终端可以基于该配置信息完成相应的随机接入,而避免出现通信失败情况。
本公开实施例提供的一种随机接入方法中,在initial DL BWP可以支持终端在连接态下进行随机接入的情况下,配置信息还用于确定初始下行BWP不用于传输终端的专属信息。因此,终端可以获知网络设备不会在initial DL BWP上发送终端的专属信息。
本公开实施例提供的一种随机接入方法中,可以当该initial DL BWP不包含SSB时,确定initial DL BWP不用于发送终端的专属信息。终端则可以在切换到initial DL BWP进行随机接入时,不在CSS内监测终端专属信息。如,在CSS内不检测终端专属的DCI。
图9是根据一示例性实施例示出的一种随机接入方法的流程图,如图9所示,当该initial DL BWP不包含SSB时,该方法可以包括以下步骤:
在步骤S81中,停止利用初始下行BWP接收终端的专属信息。
一示例中,本公开实施例提供的随机接入方法中,当initial DL BWP不包含SSB时,连接态下的终端可以根据initial DL BWP进行随机接入,以及终端停止利用该initial DL BWP接收终端的专属信息。
在一些示例中,终端停止利用initial DL BWP接收网络设备发送的终端的专属信息(或称终端专属信息)。可以理解的是,终端可以停止在该initial DL BWP配置的公共搜索空间上监测终端专属信息,即该initial DL BWP不包含SSB,并当终端在切换到该initial DL BWP时,终端可以在CSS内不监测终端专属的DCI。
通过上述方式,配置的initial DL BWP可以保证RedCap终端基于该initial DL BWP完成相应的随机接入,而避免出现通信失败情况。尤其针对要求所有BWP必须具有SSB的RedCap终端,则可以在该initial DL BWP上完成随机接入,并且可以不监测initial DL BWP上的终端专属的DCI,以避免出现通信失败情况。
图10是根据一示例性实施例示出的一种随机接入方法的流程图,如图10所示,该方法可以包括以下步骤:
在步骤S91中,配置的initial DL BWP不支持终端在连接态下进行随机接入,终端停止利用该initial DL BWP进行随机接入。
本公开实施例提供的一种随机接入方法中,配置的initial DL BWP不包含SSB,以及配置的initial DL BWP不支持终端在连接态下进行随机接入。从而避免尤其要求所有BWP必须具有SSB的RedCap终端,在不包含SSB的initial DL BWP上完成随机接入时出现通信失败情况。
本公开实施例提供的一种随机接入方法中,可以在TDD系统中,配置的initial DL BWP的中心频点与为终端配置的initial UL BWP的中心频点不一致,以及配置的initial DL BWP不支持终端在连接态下进行随机接入。可以避免RedCap终端在initial DL BWP的中心频点与initial UL BWP的中心频点不一致时进行随机接入,而出现通信失败情况。
本公开实施例提供的一种随机接入方法中,配置信息还可以用于确定为终端配置的active BWP。其中,该active BWP中包括用于终端进行随机接入的随机接入资源。随机接入资源可以是PRACH资源。换句话说,即RedCap终端所监测的active BWP包含PRACH资源。
本公开实施例提供的一种随机接入方法中,active BWP为不同于initial UL BWP的其它UL BWP。在一些实施例中,图11是根据一示例性实施例示出的一种随机接入方法的流程图,如图11所示,该方法可以包括以下步骤:
在步骤S101中,利用active BWP进行随机接入。
终端通过上述配置某一initial DL BWP不支持终端在连接态下进行随机接入,以及active BWP,可以保证终端不在initial UL BWP上进行随机接入的同时,可以利用其它BWP完成相应的随机接入,避免出现通信失败情况。
在一些实施例中,上述所描述的配置信息可以是信令或预定义规则。
可以理解,本公开实施例提供的由终端执行的随机接入方法,终端通过利用配置的BWP,以使得终端可以进行相应的随机接入操作,避免通信失败。在一些情况下,可以避免连接态下的终端在不具有SSB的BWP上进行工作。在另一些情况下,可以避免终端在 上下行BWP中心频点不一致时出现通信失败情况。
应当理解,终端与网络设备的执行方式相类似,因此,具体可以参考网络设备中相应的描述,本公开在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种随机接入装置。
可以理解的是,本公开实施例提供的随机接入装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图12是根据一示例性实施例示出的一种随机接入装置的示意图。参照图12,该装置200可以是基站,该装置200可以包括:
确定模块201,用于确定配置信息,配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。
一种实施方式中,初始下行BWP支持终端在连接态下进行随机接入。
一种实施方式中,初始下行BWP配置有同步信号块SSB。
一种实施方式中,初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,其它公共搜索空间为不同于用于随机接入的公共搜索空间。
一种实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点一致。
一种实施方式中,装置200还包括:发送模块202,用于利用初始下行BWP发送终端的专属信息。
一种实施方式中,配置信息还用于确定初始下行BWP不用于发送终端的专属信息。
一种实施方式中,初始下行BWP不包含SSB。
一种实施方式中,初始下行BWP不支持终端在连接态下进行随机接入。
一种实施方式中,初始下行BWP不包含SSB。
在一个例子一种实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点不一致。
一种实施方式中,配置信息还用于确定为终端配置的激活BWP,激活BWP中包括用于终端进行随机接入的随机接入资源。
一种实施方式中,激活BWP不同于初始下行BWP。
一种实施方式中,配置信息为信令或预定义规则。
关于上述实施例中的装置200,其中各个模块执行操作的具体方式已经在有关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图13是根据一示例性实施例示出的一种随机接入装置的示意图。参照图13,该装置300可以是终端,例如RedCap终端,该装置300可以包括:
确定模块301,用于确定配置信息,配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定初始下行BWP是否支持终端在连接态下进行随机接入。
接入模块302,用于基于配置信息进行随机接入。
一种实施方式中,初始下行BWP支持终端在连接态下进行随机接入。接入模块302还用于,利用初始下行BWP进行随机接入。
一种实施方式中,初始下行BWP配置有同步信号块SSB。
一种实施方式中,初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,其它公共搜索空间为不同于用于随机接入的公共搜索空间。
一种实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点一致。
一种实施方式中,装置300还包括:接收模块303,用于利用初始下行BWP接收终端的专属信息。
一种实施方式中,配置信息还用于确定初始下行BWP不用于传输终端的专属信息。
一种实施方式中,初始下行BWP不包含SSB。
一种实施方式中,装置300还包括:接收模块303,用于停止利用初始下行BWP接收终端的专属信息。
一种实施方式中,初始下行BWP不支持终端在连接态下进行随机接入;接入模块302还用于,停止利用初始下行BWP进行随机接入。
一种实施方式中,初始下行BWP不包含SSB。
一种实施方式中,初始下行BWP的中心频点与为终端配置的初始上行BWP的中心频点不一致。
一种实施方式中,配置信息还用于确定为终端配置的激活BWP,激活BWP中包括用于终端进行随机接入的随机接入资源。
[根据细则91更正 26.05.2022]
一种实施方式中,激活BWP不同于初始下行BWP;基于配置信息进行随机接入,接入模块302还用于,利用激活BWP进行随机接入。
一种实施方式中,配置信息为信令或预定义规则。
关于上述实施例中的装置300,其中各个模块执行操作的具体方式已经在有关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图14是根据一示例性实施例示出的一种用于随机接入的设备400示意图。例如,设备400可以被提供为一基站,或者是服务器。参照图14,设备400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法中网络设备对应的随机接入方法。
设备400还可以包括一个电源组件426被配置为执行设备400的电源管理,一个有线或无线网络接口450被配置为将设备400连接到网络,和一个输入输出(I/O)接口458。设备400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
图15是根据一示例性实施例示出的一种用于随机接入的设备500的框图。例如,设备500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理、RedCap终端等设备。
参照图15,设备500可以包括以下一个或多个组件:处理组件502,存储器504,电力组件506,多媒体组件508,音频组件510,输入/输出(I/O)接口512,传感器组件514,以及通信组件516。
处理组件502通常控制设备500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件502可以包括一个或多个处理器520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件502可以包括一个或多个模块,便于处理组件502和其他组件之间的交互。例如,处理组件502可以包括多媒体模块,以方便多媒体组件508和处理组件502之间的交互。
存储器504被配置为存储各种类型的数据以支持在设备500的操作。这些数据的示例包括用于在设备500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器504可以由任何类型的易失性或非易失性存储设备或者它们的 组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件506为设备500的各种组件提供电力。电力组件506可以包括电源管理系统,一个或多个电源,及其他与为设备500生成、管理和分配电力相关联的组件。
多媒体组件508包括在所述设备500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件508包括一个前置摄像头和/或后置摄像头。当设备500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件510被配置为输出和/或输入音频信号。例如,音频组件510包括一个麦克风(MIC),当设备500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器504或经由通信组件516发送。在一些实施例中,音频组件510还包括一个扬声器,用于输出音频信号。
I/O接口512为处理组件502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件514包括一个或多个传感器,用于为设备500提供各个方面的状态评估。例如,传感器组件514可以检测到设备500的打开/关闭状态,组件的相对定位,例如所述组件为设备500的显示器和小键盘,传感器组件514还可以检测设备500或设备500一个组件的位置改变,用户与设备500接触的存在或不存在,设备500方位或加速/减速和设备500的温度变化。传感器组件514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件516被配置为便于设备500和其他设备之间有线或无线方式的通信。设备500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信 息。在一个示例性实施例中,所述通信组件516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,设备500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
[根据细则91更正 26.05.2022]
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器504,上述指令可由设备500的处理器520执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开确定为终端配置的初始下行BWP的配置信息,用于确定该初始下行BWP是否支持终端在连接态下进行随机接入,以使得终端可以根据配置的BWP进行相应的随机接入操作,避免通信失败。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可 以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (33)

  1. 一种随机接入方法,其特征在于,应用于网络设备,所述方法包括:
    确定配置信息,所述配置信息用于确定为终端配置初始下行部分带宽BWP,并用于确定所述初始下行BWP是否支持所述终端在连接态下进行随机接入。
  2. 根据权利要求1所述的方法,其特征在于,所述初始下行BWP支持所述终端在连接态下进行随机接入。
  3. 根据权利要求2所述的方法,其特征在于,所述初始下行BWP配置有同步信号块SSB。
  4. 根据权利要求3所述的方法,其特征在于,所述初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,所述其它公共搜索空间为不同于所述用于随机接入的公共搜索空间。
  5. 根据权利要求2至4中任意一项所述的方法,其特征在于,所述初始下行BWP的中心频点与为所述终端配置的初始上行BWP的中心频点一致。
  6. 根据权利要求2至5中任意一项所述的方法,其特征在于,所述方法还包括:
    利用所述初始下行BWP发送所述终端的专属信息。
  7. 根据权利要求2所述的方法,其特征在于,所述配置信息还用于确定所述初始下行BWP不用于发送所述终端的专属信息。
  8. 根据权利要求7所述的方法,其特征在于,所述初始下行BWP不包含SSB。
  9. 根据权利要求1所述的方法,其特征在于,所述初始下行BWP不支持所述终端在连接态下进行随机接入。
  10. 根据权利要求9所述的方法,其特征在于,所述初始下行BWP不包含SSB。
  11. 根据权利要求9或10所述的方法,其特征在于,所述初始下行BWP的中心频点与为所述终端配置的初始上行BWP的中心频点不一致。
  12. 根据权利要求9至11中任意一项所述的方法,其特征在于,所述配置信息还用于确定为所述终端配置激活BWP,所述激活BWP中包括用于所述终端进行随机接入的随机接入资源。
  13. 根据权利要求13所述的方法,其特征在于,所述激活BWP不同于所述初始下行BWP。
  14. 一种随机接入方法,其特征在于,应用于终端,所述方法包括:
    确定配置信息,所述配置信息用于确定为终端配置初始下行部分带宽BWP,并用于确 定所述初始下行BWP是否支持所述终端在连接态下进行随机接入;
    基于所述配置信息进行随机接入。
  15. 根据权利要求14所述的方法,其特征在于,所述初始下行BWP支持所述终端在连接态下进行随机接入;
    所述基于所述配置信息进行随机接入,包括:
    利用所述初始下行BWP进行随机接入。
  16. 根据权利要求15所述的方法,其特征在于,所述初始下行BWP配置有同步信号块SSB。
  17. 根据权利要求16所述的方法,其特征在于,所述初始下行BWP包含用于随机接入的公共搜索空间,以及至少一个其它公共搜索空间,所述其它公共搜索空间为不同于所述用于随机接入的公共搜索空间。
  18. 根据权利要求15至17中任意一项所述的方法,其特征在于,所述初始下行BWP的中心频点与为所述终端配置的初始上行BWP的中心频点一致。
  19. 根据权利要求15至18中任意一项所述的方法,其特征在于,所述方法还包括:
    利用所述初始下行BWP接收所述终端的专属信息。
  20. 根据权利要求15所述的方法,其特征在于,所述配置信息还用于确定所述初始下行BWP不用于传输所述终端的专属信息。
  21. 根据权利要求20所述的方法,其特征在于,所述初始下行BWP不包含SSB。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    停止利用所述初始下行BWP接收所述终端的专属信息。
  23. 根据权利要求14所述的方法,其特征在于,所述初始下行BWP不支持所述终端在连接态下进行随机接入;
    所述基于所述配置信息进行随机接入,包括:
    停止利用所述初始下行BWP进行随机接入。
  24. 根据权利要求23所述的方法,其特征在于,所述初始下行BWP不包含SSB。
  25. 根据权利要求23或24所述的方法,其特征在于,所述初始下行BWP的中心频点与为所述终端配置的初始上行BWP的中心频点不一致。
  26. 根据权利要求23至25中任意一项所述的方法,其特征在于,所述配置信息还用于确定为所述终端配置的激活BWP,所述激活BWP中包括用于所述终端进行随机接入的随机接入资源。
  27. 根据权利要求26所述的方法,其特征在于,所述激活BWP不同于所述初始下行 BWP;
    所述基于所述配置信息进行随机接入,还包括:
    利用所述激活BWP进行随机接入。
  28. 一种随机接入装置,其特征在于,所述装置为网络设备,所述装置包括:
    确定模块,用于确定配置信息,所述配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定所述初始下行BWP是否支持所述终端在连接态下进行随机接入。
  29. 一种随机接入装置,其特征在于,所述装置为终端,所述装置包括:
    确定模块,用于确定配置信息,所述配置信息用于确定为终端配置的初始下行部分带宽BWP,并用于确定所述初始下行BWP是否支持所述终端在连接态下进行随机接入;
    接入模块,用于基于所述配置信息进行随机接入。
  30. 一种随机接入设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至13中任意一项所述的方法。
  31. 一种随机接入设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求14至27中任意一项所述的方法。
  32. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求1至13中任意一项所述的方法。
  33. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行权利要求14至27中任意一项所述的方法。
PCT/CN2022/089104 2022-04-25 2022-04-25 一种随机接入的方法、装置、设备及存储介质 WO2023206036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/089104 WO2023206036A1 (zh) 2022-04-25 2022-04-25 一种随机接入的方法、装置、设备及存储介质
CN202280001410.0A CN115004824A (zh) 2022-04-25 2022-04-25 一种随机接入方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089104 WO2023206036A1 (zh) 2022-04-25 2022-04-25 一种随机接入的方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023206036A1 true WO2023206036A1 (zh) 2023-11-02

Family

ID=83023249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089104 WO2023206036A1 (zh) 2022-04-25 2022-04-25 一种随机接入的方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115004824A (zh)
WO (1) WO2023206036A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632581A (zh) * 2021-07-07 2021-11-09 北京小米移动软件有限公司 随机接入方法、装置及存储介质
WO2022030867A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030867A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
CN113632581A (zh) * 2021-07-07 2021-11-09 北京小米移动软件有限公司 随机接入方法、装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On reduced BW support for RedCap", 3GPP DRAFT; R1-2201702, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052114674 *
QUALCOMM INCORPORATED: "Remaining Issues on UE Complexity Reduction", 3GPP DRAFT; R1-2202146, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052110030 *
QUALCOMM INCORPORATED: "Remaining Issues on UE Complexity Reduction", 3GPP DRAFT; R1-2204987, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20220509 - 20220520, 24 April 2022 (2022-04-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052137489 *

Also Published As

Publication number Publication date
CN115004824A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2021051402A1 (zh) 传输配置状态激活方法、装置及存储介质
EP4175338A1 (en) Communication processing method, communication processing apparatus and storage medium
WO2021012279A1 (zh) 随机接入方法、装置及存储介质
WO2022141405A1 (zh) 资源集合配置方法、装置及存储介质
WO2020237484A1 (zh) 小区切换方法、装置及存储介质
CN113994765B (zh) 一种bwp切换方法、装置及存储介质
EP4369811A1 (en) Random access method and apparatus, and storage medium
WO2021109154A1 (zh) 通信失败处理方法、通信失败处理装置及存储介质
EP4002738A1 (en) Resource allocation method and apparatus, and storage medium
WO2023050354A1 (zh) 一种sdt传输方法、装置及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
US20240114422A1 (en) Indication methods, indication device and storage medium
WO2022257136A1 (zh) 波束失败恢复方法、装置及存储介质
WO2022188076A1 (zh) 传输配置指示状态配置方法、装置及存储介质
EP4319317A1 (en) Search space monitoring method, search space monitoring apparatus and storage medium
WO2023077271A1 (zh) 一种bwp确定方法、装置及存储介质
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2023206036A1 (zh) 一种随机接入的方法、装置、设备及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
US20210037578A1 (en) Method, apparatus and system for establishing connection between terminal and core network to be accessed
US20240106608A1 (en) Method and device for beam indication, and storage medium
WO2023070564A1 (zh) 一种部分带宽确定方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938893

Country of ref document: EP

Kind code of ref document: A1