WO2021051402A1 - 传输配置状态激活方法、装置及存储介质 - Google Patents

传输配置状态激活方法、装置及存储介质 Download PDF

Info

Publication number
WO2021051402A1
WO2021051402A1 PCT/CN2019/107036 CN2019107036W WO2021051402A1 WO 2021051402 A1 WO2021051402 A1 WO 2021051402A1 CN 2019107036 W CN2019107036 W CN 2019107036W WO 2021051402 A1 WO2021051402 A1 WO 2021051402A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission configuration
configuration state
serving cell
signaling
terminal
Prior art date
Application number
PCT/CN2019/107036
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980002021.8A priority Critical patent/CN110785958B/zh
Priority to CN202310333358.5A priority patent/CN116367325A/zh
Priority to US17/641,338 priority patent/US20220377770A1/en
Priority to JP2022517464A priority patent/JP2022549174A/ja
Priority to BR112022004903A priority patent/BR112022004903A2/pt
Priority to EP19945986.8A priority patent/EP4033813A4/en
Priority to PCT/CN2019/107036 priority patent/WO2021051402A1/zh
Priority to KR1020227011885A priority patent/KR20220061199A/ko
Publication of WO2021051402A1 publication Critical patent/WO2021051402A1/zh
Priority to JP2024015926A priority patent/JP2024050809A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device and storage medium for activating a transmission configuration state.
  • a network device for example, a base station
  • TCI Transmission Configuration Indication
  • the network device determines multiple TCI states based on the measurement results reported by the terminal, and notifies the multiple TCI states to the terminal through Radio Resource Control (RRC) signaling. Then for each component carrier (Component Carrier, CC), serving cell/bandwidth part (BWP), through the Medium Access Control (MAC) control element (Control Element, CE) in multiple TCI states Indicates the TCI status that needs to be activated. If there are many serving cells/BWP configured by the terminal, the base station needs to send a lot of MAC CE signaling to activate the TCI state configuration on each serving cell/BWP, which causes more signaling overhead.
  • RRC Radio Resource Control
  • the present disclosure provides a transmission configuration state activation method, device, and storage medium.
  • the transmission configuration state activation method includes: receiving the first media access control control unit signaling, the first media access control control unit signaling is used to activate the first transmission configuration state; and the first transmission configuration state is regarded as all on the same frequency band The transmission configuration status of the serving cell.
  • the first transmission configuration state is the transmission configuration state of the physical downlink control channel; after the first transmission configuration state is taken as the transmission configuration state of all serving cells on the same frequency band, the method further includes: if it is determined on any serving cell Bandwidth partial switching occurs, and the second media access control control unit signaling is not received. The second media access control control unit signaling is used to activate the second transmission configuration state, and then the first transmission configuration state is used to receive the signal after the handover.
  • the physical downlink control channel sent on the bandwidth part of.
  • the first transmission configuration state is a set of transmission configuration states of the physical downlink shared channel; after the first transmission configuration state is taken as the transmission configuration state of all serving cells on the same frequency band, the method further includes: if in any serving cell If it is determined that a partial bandwidth switch occurs, and the second media access control control unit signaling is not received, the second media access control control unit signaling is used to activate the second transmission configuration state, then the downlink control signaling is received, and the downlink control The signaling is used to indicate a transmission configuration state in the first transmission configuration state; the transmission configuration state indicated by the downlink control signaling is used to receive the physical downlink shared channel sent on the bandwidth part after the handover.
  • the method further includes: if it is determined that a secondary cell handover occurs, reusing the secondary cell before the handover on the secondary cell after the handover.
  • the first transmission configuration state on the cell is used as the transmission configuration state of all serving cells on the same frequency band.
  • the method further includes: if it is determined that a primary cell or primary and secondary cell handover occurs, receiving the second medium access control control unit And update the first transmission configuration status of all serving cells to the second transmission configuration status activated by the second media access control control unit signaling.
  • the method further includes: if it is determined that there is a serving cell that has a beam failure, re-determining the transmission of the serving cell that has a beam failure Configuration status, and before receiving the second transmission configuration status activated by the second media access control control unit signaling, update the transmission configuration status of all serving cells except the serving cell where the beam failure occurred to occur Re-determine the transmission configuration status of the serving cell with the beam failure, or keep the transmission configuration status of all serving cells other than the serving cell where the beam failure occurs.
  • the method further includes: receiving second media access control control unit signaling, where the second media access control unit signaling is used to activate the second transmission configuration state; and updating the first transmission configuration state to the second transmission configuration state. Transfer configuration status.
  • receiving the first media access control unit signaling includes: using the determined initial bandwidth part or the activated bandwidth part of the first serving cell to receive the first media access control unit signaling.
  • the method before receiving the first media access control control unit signaling, the method further includes: receiving a configuration message, where the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal; using bandwidth and The carrier frequency position determines all the serving cells on the same frequency band.
  • a transmission configuration state activation method which is applied to a network device, including: selecting a first serving cell from all serving cells on the same frequency band of a terminal, and the first serving cell supports sending Media access control control unit signaling; a selected first serving cell is used to send the first media access control control unit signaling, and the first media access control control unit signaling is used to activate the first transmission configuration state.
  • selecting a first serving cell among all serving cells on the same frequency band of the terminal includes: randomly selecting a first serving cell among all serving cells on the same frequency band of the terminal; or selecting a first serving cell on the same frequency band of the terminal Select and designate the first serving cell among all serving cells.
  • the first serving cell is designated as the serving cell with the lowest carrier frequency among all serving cells; or the first serving cell is designated as the primary and secondary cell or primary cell among all serving cells; or the first serving cell is designated as A serving cell with an idle channel is detected on the unlicensed spectrum.
  • using a selected first serving cell to send media access control unit signaling includes: using an initial bandwidth portion or an activated bandwidth portion on the selected first serving cell to send media access control unit signaling .
  • the method for activating the transmission configuration state further includes: sending a second media access control control unit signaling, where the second media access control unit signaling is used to activate the second transmission configuration state.
  • the method before sending the second media access control control unit signaling, the method further includes: determining that one or a combination of the following events occurs: terminal channel conditions change, terminal bandwidth partial switching, terminal secondary cell switching, terminal A primary cell or primary/secondary cell handover occurs, and the terminal fails to serve cell beams.
  • the method for activating the transmission configuration state further includes: sending a configuration message, where the configuration message is used to notify the terminal of the bandwidth and carrier frequency position of each serving cell in all serving cells.
  • the first transmission configuration state includes: a transmission configuration state of a physical downlink control channel or a set of transmission configuration states of a physical downlink shared channel.
  • a transmission configuration state activation device which is applied to a terminal.
  • the transmission configuration state activation device includes: a receiving unit configured to receive first media access control control unit signaling, the first media access control unit signaling is used to activate the first transmission configuration state; and the processing unit is configured to The first transmission configuration state is taken as the transmission configuration state of all serving cells on the same frequency band.
  • the first transmission configuration state is the transmission configuration state of the physical downlink control channel; the processing unit is further configured to: determine whether a partial bandwidth handover occurs; the receiving unit is further configured to: determine whether the processing unit occurs on any serving cell.
  • the bandwidth part is switched, and the receiving unit does not receive the second media access control control unit signaling, the first transmission configuration state is used to receive the physical downlink control channel sent on the switched bandwidth part; the second media access control The control unit signaling is used to activate the second transmission configuration state.
  • the first transmission configuration state is a set of transmission configuration states of the physical downlink shared channel; the processing unit is further configured to: determine whether a bandwidth partial handover occurs; the receiving unit is further configured to: when the processing unit is on any serving cell When it is determined that the bandwidth part is switched and the receiving unit does not receive the second media access control control unit signaling, it receives the downlink control signaling, and uses the transmission configuration status indicated by the downlink control signaling to receive the bandwidth part after the switching.
  • the sent physical downlink shared channel; the second media access control control unit signaling is used to activate the second transmission configuration state, and the downlink control signaling is used to indicate a transmission configuration state in the first transmission configuration state.
  • the processing unit is further configured to: determine whether a secondary cell handover occurs; when determining that a secondary cell handover occurs, reuse the first transmission configuration state on the secondary cell before the handover on the secondary cell after the handover.
  • the processing unit is further configured to: determine whether a primary cell or primary-secondary cell handover occurs; the receiving unit is further configured to: when the processing unit determines that a primary cell or primary-secondary cell handover occurs, receive the second media access Control the control unit signaling, and update the first transmission configuration state of all serving cells to the second transmission configuration state activated by the second media access control control unit signaling.
  • the processing unit is further configured to: determine whether there is a serving cell that has a beam failure; when it is determined that there is a serving cell that has a beam failure, re-determine the transmission configuration status of the serving cell that has a beam failure, and perform the processing in the receiving unit Before receiving the second transmission configuration status activated by the second media access control control unit signaling, update the transmission configuration status of all serving cells except the serving cell where the beam failure occurred to the service cell where the beam failure occurred Re-determined transmission configuration status, or keep the transmission configuration status of all serving cells other than the serving cell where the beam failure occurred.
  • the receiving unit is further configured to: receive second media access control control unit signaling, where the second media access control unit signaling is used to activate the second transmission configuration state; the processing unit is further configured to: When the receiving unit receives the second media access control control unit signaling, the first transmission configuration state is updated to the second transmission configuration state.
  • the receiving unit is configured to receive the first media access control unit signaling in the following manner: use the determined initial bandwidth part or the activated bandwidth part of the first serving cell to receive the first media access control control unit Signaling.
  • the receiving unit is further configured to: receive a configuration message, the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal; the processing unit is also configured to: use the bandwidth and carrier frequency position , To determine all serving cells on the same frequency band.
  • a device for activating a transmission configuration state which is applied to a network device and includes: a processing unit configured to select a first serving cell among all serving cells on the same frequency band of a terminal, The first serving cell supports sending media access control control unit signaling; the sending unit is configured to use a selected first serving cell to send the first media access control control unit signaling, the first media access control control unit signaling Let is used to activate the first transmission configuration state.
  • the processing unit is configured to select a first serving cell among all serving cells on the same frequency band of the terminal in the following manner: randomly selecting a first serving cell among all serving cells on the same frequency band of the terminal; or Select and designate the first serving cell among all serving cells on the same frequency band of the terminal.
  • the first serving cell is designated as the serving cell with the lowest carrier frequency among all serving cells; or the first serving cell is designated as the primary and secondary cell or primary cell among all serving cells; or the first serving cell is designated as A serving cell with an idle channel is detected on the unlicensed spectrum.
  • the sending unit is configured to use a selected first serving cell to send media access control unit signaling in the following manner: use the initial bandwidth part or the activated bandwidth part on the selected first serving cell to send the media access Incoming control control unit signaling.
  • the sending unit is further configured to send second media access control control unit signaling, and the second media access control control unit signaling is used to activate the second transmission configuration state.
  • the processing unit is further configured to: before the sending unit sends the second media access control control unit signaling, determine that one or a combination of the following events occur: the terminal channel condition changes, the terminal bandwidth part is switched, the terminal A secondary cell handover occurs, a primary cell or primary secondary cell handover occurs at the terminal, and a serving cell beam failure occurs at the terminal.
  • the sending unit is further configured to send a configuration message, where the configuration message is used to notify the terminal of the bandwidth and carrier frequency position of each serving cell in all serving cells.
  • the first transmission configuration state includes: a transmission configuration state of a physical downlink control channel or a set of transmission configuration states of a physical downlink shared channel.
  • a transmission configuration state activation device the transmission configuration state activation includes: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to: execute the foregoing The transmission configuration state activation method of the first aspect or any one of the examples in the first aspect.
  • a non-transitory computer-readable storage medium When instructions in the storage medium are executed by a processor of a mobile terminal, the mobile terminal can execute the first aspect or the first aspect described above.
  • a transmission configuration state activation device the transmission configuration state activation includes: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to: execute the above The transmission configuration state activation method of the second aspect or any one example of the second aspect.
  • a non-transitory computer-readable storage medium is provided.
  • the instructions in the storage medium are executed by the processor of the network device, the mobile terminal can execute the second aspect or the second aspect.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: one serving cell of all serving cells on the same frequency band of the terminal sends the media access control control unit signaling for activating the transmission configuration state, so as to realize the access through the same media.
  • Incoming control unit signaling activates the transmission configuration status in all serving cells, reducing signaling overhead.
  • Fig. 1 is a schematic diagram showing a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for determining all serving cells on the same band according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for determining all serving cells on the same band according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 10 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 11 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment.
  • Fig. 12 is a block diagram showing a device for activating a TCI state according to an exemplary embodiment.
  • Fig. 13 is a block diagram showing a device for activating a TCI state according to an exemplary embodiment.
  • Fig. 14 is a block diagram showing a device for TCI state activation according to an exemplary embodiment.
  • Fig. 15 is a block diagram showing a device for TCI state activation according to an exemplary embodiment.
  • the TCI state activation method provided by the embodiments of the present disclosure can be applied to the wireless communication system shown in FIG. 1.
  • the wireless communication system includes network equipment and terminals.
  • the terminal is connected to the network equipment through wireless resources and performs data transmission.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment. Not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system in the embodiments of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , Frequency Division Multiple Access (FDMA), Orthogonal Frequency-Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (Single Carrier FDMA, SC-FDMA), Carrier Sense Multiple access/conflict avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • Single Carrier Frequency Division Multiple Access Single Carrier Frequency Division Multiple Access
  • SC-FDMA SC-FDMA
  • Carrier Sense Multiple access/conflict avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure sometimes refers to a wireless communication network as a network for short.
  • the wireless access network equipment can be: base station, evolved base station (evolved node B, base station), home base station, access point (AP) in wireless fidelity (WIFI) system, wireless relay Node, wireless backhaul node, transmission point (transmission point, TP), or transmission and reception point (transmission and reception point, TRP), etc., can also be the gNB in the NR system, or can also be a component or part of the equipment constituting the base station Wait. It should be understood that, in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network device are not limited.
  • the network device can provide communication coverage for a specific geographic area, and can communicate with terminals located in the coverage area (cell).
  • the network device may also be a vehicle-mounted device.
  • the terminal involved in this disclosure may also be called terminal equipment, user equipment (UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc., which are A device that provides voice and/or data connectivity.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals are: smart phones (Mobile Phone), pocket computers (Pocket Personal Computer, PPC), handheld computers, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-vehicle
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • the beam management process of the physical downlink control channel (PDCCH) or physical downlink shared channel (PDSCH) of the downlink (DL) is as follows: terminal and network equipment After the random access is completed and the RRC connection is established, the terminal performs measurement according to the measurement configuration of the network device, and then reports the measurement result of the beam to the network device, including the reference signal (Reference Signal, RS) type of the beam and the RS index (index) And layer 1 reference signal receiving power (Layer1-Reference Signal Receiving Power, L1-RSRP) or layer 1 signal to interference and noise ratio (Signal to Interfere&Noise&Noise Ratio, L1-SINR).
  • the network device determines multiple TCI states according to the measurement results reported by the terminal.
  • the TCI status includes the identification (ID) of the TCI status, and the RS type and RS index corresponding to the TCI status.
  • ID the identification
  • RS type and RS index corresponding to the TCI status.
  • the current number of TCI states is up to 64.
  • the network equipment informs the terminal of these 64 TCI states through RRC signaling, including the TCI state ID and the corresponding RS type and RS index.
  • the TCI status is shown in Table 1 below, and the terminal can determine the receiving beam through the TCI status.
  • the network device uses the MAC CE to activate one TCI state among the 64 TCI states, and indicate to the terminal.
  • the network device uses the MAC CE to activate the TCI state set (8 TCI states among the 64 TCI states) and indicate to the terminal.
  • the network device then uses Downlink Control Information (DCI) signaling to indicate one of the eight activated TCI states to the terminal for the terminal to receive the PDSCH.
  • DCI Downlink Control Information
  • the TCI state of the PDSCH scheduled in the DCI signaling that is, informs the terminal that the receiving beam used to receive the PDSCH should be the same as the receiving beam used when the terminal receives the RS in the TCI state when the received signal is the strongest.
  • a separate MAC CE is used for each CC/BWP to activate the TCI state.
  • a separate MAC CE is used for each CC/BWP to activate the TCI state, and the signaling overhead is relatively large.
  • the present disclosure provides a TCI state activation method.
  • a MAC CE activates the TCI state of all PDCCHs on the same frequency band (band) or the TCI state set of PDSCHs on all CCs/BWPs.
  • Fig. 2 is a flowchart showing a method for activating a TCI state according to an exemplary embodiment. As shown in Fig. 2, the method for activating a TCI state is used in a network device, and includes the following steps S11 and S12.
  • step S11 a serving cell that supports sending MAC CE is selected among all serving cells on the same band of the terminal.
  • each serving cell has an initial bandwidth part (initial BWP) or active bandwidth part (active BWP).
  • the network device selects a serving cell that supports sending MAC CE among all serving cells on the same band, and uses the initial BWP or MAC CE signaling on the active BWP of the terminal on the selected serving cell to activate TCI status.
  • the network device when a network device selects a serving cell, on the one hand, the network device randomly selects a serving cell among all serving cells on the same band of the terminal, or selects a designated serving cell among all serving cells on the same band of the terminal.
  • the designated serving cell selected by the network device is, for example, the serving cell with the lowest carrier frequency among all serving cells on the same band.
  • the designated serving cell selected by the network device is the primary and secondary cell (PSCell) or the primary cell (PCell) among all serving cells on the same band.
  • the designated serving cell selected by the network device is the serving cell where the channel is detected to be idle on the unlicensed spectrum, that is, when the frequency band is an unlicensed frequency band, the network device needs to listen first and then speak for each serving cell of the terminal on the frequency band.
  • the channel detection process only the serving cell whose channel is detected to be free can be used for transmission, so the designated serving cell must be the serving cell whose channel is detected to be free.
  • the network device activates the TCI state through MAC CE signaling sent by a serving cell.
  • the TCI state activated by the MAC CE may be the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • the network device needs to notify the terminal of all TCI states (for example, 64 TCI states) in advance.
  • the network device pre-notifies the terminal of all TCI states based on RRC signaling.
  • the TCI state activated through MAC CE signaling is a TCI state or a TCI state set among all TCI states.
  • step S12 the selected serving cell is used to send MAC CE signaling for activating the TCI state.
  • the network device selects one serving cell among all serving cells on the same band of the terminal to send MAC CE signaling for activating the TCI state of all serving cells, which can reduce signaling overhead.
  • Fig. 3 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment. As shown in Fig. 3, the method for activating a TCI state is used in a terminal and includes the following steps S21 and S22.
  • step S21 MAC CE signaling for activating the TCI state is received.
  • each serving cell has an initial bandwidth part (initial BWP) or active bandwidth part (BWP).
  • the terminal determines a serving cell that supports MAC CE signaling reception and transmission, and receives the MAC CE signaling through the determined serving cell.
  • the terminal uses the initial BWP or the active BWP of the determined serving cell to receive the MAC CE signaling.
  • the terminal uses one of the following methods to determine a serving cell for receiving MAC CE signaling: receiving MAC CE sent by all serving cells that support MAC CE signaling among all serving cells on the same frequency band of the terminal. Or based on the serving cell pre-configured by the network device for the terminal as the serving cell for receiving MAC CE signaling. Or by default, the primary and secondary cells or primary cells or the serving cell with the lowest carrier frequency in all serving cells on the same frequency band or the unlicensed spectrum cell where the channel is detected to be idle are used as the serving cell for receiving MAC CE signaling.
  • the MAC CE signaling received by the terminal is used to activate the TCI state
  • the TCI state may be the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • step S22 the received MAC CE activated TCI status is taken as the TCI status of all serving cells on the same band.
  • the terminal receives the RRC signaling sent by the network device in advance, and determines all TCI states based on the RRC signaling. After receiving the MAC CE signaling, the TCI status of the MAC CE activation is taken as the TCI status of the PDCCH of all serving cells on the same band. Or take the TCI state set activated by the MAC CE as the TCI state set of the PDSCH of all serving cells on the same band.
  • the terminal receives the MAC CE, and uses the received MAC CE activated TCI status as the TCI status of all serving cells on the same band, which can reduce signaling overhead.
  • the terminal needs to determine all serving cells on the same band.
  • the network device pre-sends a configuration message used to notify the terminal of the bandwidth and carrier frequency position of each serving cell in all serving cells, so that the terminal can pass the bandwidth and carrier frequency position of each serving cell. Determine all serving cells on the same band.
  • Fig. 4 is a flow chart showing a method for determining all serving cells on the same band according to an exemplary embodiment. As shown in Fig. 4, the method for determining all serving cells on the same band is used in a network device, including step S31.
  • step S31 a configuration message is sent, and the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • the network device sends the configuration message based on the system message and/or RRC signaling.
  • the network device in the present disclosure can perform the steps of selecting a serving cell and sending MACCE signaling. It is understandable that the network device in the present disclosure does not limit whether to perform the step of sending the configuration message every time it selects the serving cell and sends the MAC CE signaling. It can be the step of sending the configuration message every time, or it can be It is the step of sending a configuration message once.
  • the network device sends a configuration message indicating the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal to the terminal, so that the terminal can determine all serving cells of the same band.
  • Fig. 5 is a flowchart of a method for determining all serving cells on the same band according to an exemplary embodiment. As shown in Fig. 5, the method for determining all serving cells on the same band is used in a terminal, including steps S41 to S42.
  • step S41 a configuration message is received, and the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • the configuration message includes system information and/or serving cell configuration message.
  • a primary cell its bandwidth and carrier frequency position are obtained by the terminal receiving system information. If it is a secondary cell, it is the configuration of the secondary serving cell sent by the primary cell. The news is obtained.
  • the terminal receives the configuration message based on system information and/or RRC signaling.
  • step S42 based on the bandwidth and carrier frequency position of each serving cell, all serving cells of the same band are determined.
  • the terminal after the terminal receives the configuration message and determines all serving cells of the same band, it can receive the MAC CE signaling used to activate the TCI state, and use the TCI state activated by the MAC CE signaling as all services of the same band. Steps for the TCI status of the cell. It is understandable that in this disclosure, each time the terminal receives MACCE signaling and uses the TCI status activated by MAC CE signaling as the TCI status of all serving cells of the same band, it does not limit whether to perform receiving configuration messages and determine the same
  • the step of all serving cells of the band may be the step of receiving the configuration message and determining all the serving cells of the same band each time, or the step of receiving the configuration message and determining all the serving cells of the same band once.
  • the terminal receives the configuration message sent by the network equipment to indicate the bandwidth and carrier frequency position of each serving cell in all the serving cells of the terminal, determines all the serving cells of the same band, and then sets the information of all serving cells of the same band.
  • the TCI state adopts the TCI state activated by the received MAC CE, which saves signaling overhead.
  • the terminal channel condition changes a new TCI state is determined according to the measurement result fed back by the terminal
  • the terminal undergoes a BWP handover and the terminal produces a secondary cell (SCell)
  • SCell secondary cell
  • the MAC CE that activates the TCI state can be re-sent by the network device.
  • the MAC CE involved before the update is referred to as the first MAC CE.
  • the TCI state activated by the first MAC CE is called the first TCI state.
  • the serving cell selected for sending the first MAC CE is called the first serving cell.
  • the MAC CE involved in the TCI status update is called the second MAC CE.
  • the TCI state activated by the second MAC CE is called the second TCI state.
  • the serving cell selected for sending the second MAC CE is called the second serving cell.
  • Fig. 6 is a flowchart showing a method for activating a TCI state according to an exemplary embodiment.
  • the method for activating a TCI state is used in a network device, and includes step S51 to step S54.
  • step S51, step S52, step S53 and step S31, step S32 and step S33 are the same, and will not be described in detail in this disclosure.
  • step S54 a second MAC CE signaling is sent, and the second MAC CE signaling is used to activate the second TCI state.
  • the network device before sending the second MAC CE signaling, the network device needs to confirm that the TCI state needs to be updated, that is, the second TCI state needs to be activated.
  • the need to activate the second TCI state can be understood as one or a combination of the following events: the terminal channel condition changes (determined according to the measurement result fed back by the terminal), the terminal has a BWP handover, the terminal has a secondary cell (SCell) handover, and the terminal A PCell or PSCell handover occurs, a PCell or PSCell link failure occurs in the terminal, and a serving cell beam failure occurs in the terminal.
  • the network device when the terminal needs to update the TCI state, the network device retransmits a new MAC CE signaling (second MAC CE signaling) to activate the new TCI state and facilitate the terminal to update the TCI state.
  • second MAC CE signaling second MAC CE signaling
  • the terminal after the network device sends the second MAC CE signaling to the terminal, after receiving the MAC CE signaling, the terminal can update the first TCI state to the second TCI state activated by the second MAC CE signaling.
  • Fig. 7 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment. As shown in FIG. 7, the TCI state activation method is used in the terminal, and includes step S61 to step S69.
  • step S61 a configuration message is received, and the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • step S62 based on the bandwidth and carrier frequency position of each serving cell, all serving cells of the same band are determined.
  • a first serving cell is determined among all serving cells, and the initial BWP or active BWP of the first serving cell is used to receive the first MAC CE signaling used to activate the first TCI state.
  • step S64 the first TCI state activated by the first MAC CE signaling is taken as the TCI state of all serving cells in the same band.
  • step S65 it is determined that a BWP handover occurs, and it is determined whether a second MAC CE signaling for activating the second TCI state sent by the network device is received.
  • the BWP switching of the terminal can be understood as the terminal receiving the newly scheduled BWP of the network device and switching from the original BWP to the newly scheduled BWP.
  • the first TCI state activated by the first MAC CE signaling is the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • the second TCI state activated by the second MAC CE signaling is the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • step S66 when the terminal does not receive the second MAC CE signaling used to activate the second TCI state sent by the network device, and the first TCI state activated by the first MAC CE signaling is the TCI state of the PDCCH, step S66 is performed. In the present disclosure, when the terminal does not receive the second MAC CE signaling used to activate the second TCI state sent by the network device, and the first TCI state activated by the first MAC CE signaling is the TCI state set of the PDSCH, step S67 is performed And step S68.
  • step S66 on the BWP after the handover, the first TCI state is used to receive the PDCCH sent on the BWP after the handover.
  • step S67 DCI signaling is received.
  • the received DCI signaling is used to indicate a TCI state in the first TCI state, and the DCI signaling is received on the BWP before the handover on the serving cell, or after the handover on the serving cell Receive on BWP, or receive on BWP on other serving cells (for example, in the case of cross-carrier scheduling).
  • the first TCI state is the TCI state set of the PDSCH
  • the received DCI signaling is used to indicate one TCI state in the TCI state set.
  • step S68 the PDSCH transmitted on the BWP after the handover is received using the TCI state indicated by the DCI.
  • step S69 when the terminal receives the second MAC CE signaling for activating the second TCI state sent by the network device, step S69 is executed.
  • step S69 the first TCI state activated by the first MAC CE signaling is updated to the second TCI state activated by the second MAC CE signaling.
  • the network device schedules the RB on the new BWP to send the PDSCH to the terminal, then if there is no new MAC signaling during this period to activate the new TCI state (or TCI state) set).
  • the terminal receives the PDCCH sent on the new BWP based on the TCI state of the PDCCH on the BWP activated by the previous MAC signaling on the new BWP.
  • the TCI state set of the PDSCH it is also the TCI state set of the PDSCH on the BWP activated by the previous MAC signaling.
  • the DCI signaling of PDSCH is received from a TCI state in the TCI state set activated by MAC signaling: it may be sent by the BWP before the handover, or it may be sent by the new BWP after the terminal is switched to the new BWP. Or when it is cross-carrier scheduling, it is sent by the BWP on other serving cells.
  • the terminal combines the DCI signaling used to schedule the PDSCH on the new BWP and the TCI state set activated by the original MAC signaling to determine the TCI state used to receive the PDSCH on the new BWP. Until a new MAC signaling reactivates the new PDCCH TCI state or the new PDSCH TCI state set.
  • Fig. 8 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment. As shown in FIG. 8, the TCI state activation method is used in the terminal, and includes step S71 to step S76.
  • step S71 a configuration message is received, and the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • step S72 based on the bandwidth and carrier frequency position of each serving cell, all serving cells of the same band are determined.
  • a first serving cell is determined among all serving cells, and the initial BWP or active BWP of the first serving cell is used to receive the first MAC CE signaling used to activate the first TCI state.
  • step S74 the first TCI state activated by the first MAC CE signaling is taken as the TCI state of all serving cells in the same band.
  • step S75 it is determined that SCell handover occurs.
  • the terminal switches over any SCell among all SCells in the same band, and determines that the SCell switch occurs.
  • step S76 the first TCI state on the SCell before the handover is multiplexed on the SCell after the handover.
  • the first TCI state activated by the first MAC CE signaling is the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • the second TCI state activated by the second MAC CE signaling is the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • the switched SCell when an SCell handover occurs in one of the SCells in the same band, the switched SCell also needs to reuse the TCI state of the PDCCH activated by the first MAC CE signaling on the original SCell and the TCI state set of the PDSCH.
  • Fig. 9 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment. As shown in FIG. 9, the TCI state activation method is used in the terminal, and includes step S81 to step S86.
  • step S81 a configuration message is received, and the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • step S82 based on the bandwidth and carrier frequency position of each serving cell, all serving cells of the same band are determined.
  • a first serving cell is determined among all serving cells, and the initial BWP or active BWP of the first serving cell is used to receive the first MAC CE signaling for activating the first TCI state.
  • step S84 the first TCI state activated by the first MAC CE signaling is taken as the TCI state of all serving cells in the same band.
  • step S85 it is determined that PSCell or PCell handover occurs.
  • step S86 the second MAC CE signaling is received, and the first TCI state of all serving cells is updated to the second TCI state activated by the second MAC CE signaling.
  • the first TCI state activated by the first MAC CE signaling is the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • the second TCI state activated by the second MAC CE signaling is the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • the TCI state needs to be reconfigured, so the TCI state of all CC/BWP on the band needs to be updated, that is, the new RRC signaling, MAC CE TCI state configuration is performed by signaling and so on.
  • Fig. 10 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment. As shown in FIG. 10, the TCI state activation method is used in the terminal, and includes step S91 to step S96.
  • step S91 a configuration message is received, where the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • step S92 based on the bandwidth and carrier frequency position of each serving cell, all serving cells of the same band are determined.
  • a first serving cell is determined among all serving cells, and the initial BWP or active BWP of the first serving cell is used to receive the first MAC CE signaling for activating the first TCI state.
  • step S94 the first TCI state activated by the first MAC CE signaling is taken as the TCI state of all serving cells of the same band.
  • step S95 it is determined that there is a serving cell where beam failure occurs, and the TCI state of the serving cell where beam failure occurs is re-determined.
  • the TCI status of the PDCCH on the SCell needs to be updated. Then the terminal re-determines the TCI status of the PDCCH or the TCI status of the PDSCH on the SCell. set.
  • the TCI state of the PDCCH can be determined by the terminal itself through measurement. For example, on the one hand, if the terminal detects the SSB used for new beam discovery and finds that the RSRP and/or SINR are high, it sends the corresponding random access preamble on the Physical Random Access Channel (PRACH) corresponding to the SSB , The network device can determine that it is appropriate to use the same beam of the SSB to send the PDCCH or PDSCH to the terminal. On the other hand, it can also be that the terminal reports the measurement result to the network device through measurement, or reports a selected new beam ID to the network device, and then the network device uses one or more of the one or more reported by the terminal. To send PDCCH or PDSCH to the terminal.
  • PRACH Physical Random Access Channel
  • step S96 it is determined whether the second MACCE signaling for activating the second TCI state sent by the network device is received.
  • step S97 is executed.
  • step S98 is executed.
  • step S97 the TCI status of all serving cells other than the serving cell where the beam failure occurred is updated to the re-determined TCI status of the serving cell where the beam failure occurred, or the TCI status of all serving cells except the one where the beam failure occurred The TCI status of other serving cells other than the serving cell remains unchanged.
  • step S98 the first TCI state activated by the first MAC CE signaling is updated to the second TCI state activated by the second MAC CE signaling.
  • the terminal when a beam failure occurs in one of the serving cells in the same band, the terminal re-determines the TCI status of the PDCCH or the TCI status set of the PDSCH on the SCell.
  • the TCI status of the PDCCH may be determined by the terminal through measurement.
  • the terminal because it is not the MAC CE signaling that reactivates the new TCI state for the SCell where the beam failure occurs, there are two options for other serving cells in the band except for the beam failure: one continues to use the previous MAC Signaling activated TCI state or TCI state set. The other is to use the same TCI status as the serving cell of beam failure.
  • the base station uses the new MAC signaling to activate the new TCI state for the serving cell where the beam failure occurs, all serving cells in the same band, that is, CC/BWP, use the new MAC activated TCI state.
  • the link failure of the terminal indicates that the TCI status of the PCell of the terminal or the PDCCH of the PSCell needs to be updated.
  • the TCI state of the serving cell other than the PCell or PSCell can also have two methods: one is to continue to use the first MAC CE activated. The first TCI state; the second is to use the same TCI state as the re-determined PCell or PSCell.
  • Fig. 11 is a flow chart showing a method for activating a TCI state according to an exemplary embodiment. As shown in FIG. 11, the TCI state activation method is used in the interaction process between the terminal and the network device, and includes step S101 to step S109.
  • step S101 the network device selects a first serving cell among all serving cells on the same band of the terminal, and the selected first serving cell supports sending MAC CE signaling.
  • step S102 the network device uses a selected first serving cell to send the first MAC CE signaling, and the first MAC CE signaling is used to activate the first TCI state.
  • the terminal receives the first MAC CE.
  • step S103 the network device sends a configuration message, which is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • the terminal receives the configuration message sent by the network device.
  • step S104 the terminal determines all serving cells of the same band according to the bandwidth and carrier frequency position of each serving cell in the configuration message.
  • steps S103 and S104 in the present disclosure are optional steps, and steps S103 and S104 may occur before step S101.
  • steps S103 and S104 may occur before step S101.
  • the terminal uses a predefined method to determine all serving cells of the same band, there is no need to perform step S103 and step S104.
  • step S105 the terminal uses the first TCI state as the TCI state of all serving cells on the same band.
  • the terminal uses the first TCI state as the TCI state of all serving cells on the same band, the following steps may be included according to actual application scenarios.
  • step S106a if it is determined that a BWP handover occurs on any serving cell and the second MAC CE signaling is not received, then on the handover BWP, use the first TCI state to receive the BWP sent on the handover BWP Physical downlink control channel. If the second MAC CE signaling is received, the first TCI state is updated to the second TCI state.
  • step S106b if it is determined that a BWP handover occurs on any serving cell and the second MAC CE signaling is not received, DCI is received, and the DCI is used to indicate a TCI state in the first TCI state. Use the TCI state indicated by the DCI to receive the physical downlink shared channel sent on the handover BWP. If the second MAC CE signaling is received, the first TCI state is updated to the second TCI state.
  • step S107 if it is determined that SCell switching occurs, the first TCI state on the SCell before the switching is multiplexed on the SCell after the switching.
  • step S108 if it is determined that a PCell or PSCell handover occurs, the second MAC CE signaling is received, and the first TCI status of all serving cells is updated to the second TCI status activated by the second MAC CE signaling.
  • step S109 if it is determined that there is a serving cell where beam failure occurs, the TCI status of the serving cell where beam failure occurs is re-determined. If the second TCI status activated by the second MAC CE signaling is not received, update the TCI status of all serving cells except the serving cell where the beam failure occurred to the re-determined TCI status of the serving cell where the beam failure occurred . Or, keep the TCI status of all serving cells other than the serving cell where the beam failure occurred. If the second MAC CE signaling is received, the first TCI state is updated to the second TCI state.
  • the terminal and the network device respectively have the TCI state activation process for the terminal and the network device involved in the above embodiments of the present disclosure.
  • Methods where the description of the TCI state activation method in the process of interaction between the terminal and the network device in the present disclosure is not detailed enough, please refer to the description of the related embodiment, which will not be repeated here.
  • embodiments of the present disclosure also provide a TCI state activation device.
  • the TCI state activation device provided by the embodiments of the present disclosure includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 12 is a block diagram showing a device 100 for activating a TCI state according to an exemplary embodiment.
  • the TCI state activation device 100 is applied to a terminal, and includes: a receiving unit 101 and a processing unit 102.
  • the receiving unit 101 is configured to receive the first MAC CE signaling, and the first MAC CE signaling is used to activate the first TCI state.
  • the processing unit 102 is configured to use the first TCI state as the TCI state of all serving cells on the same frequency band.
  • the first TCI state is the TCI state of the PDCCH.
  • the processing unit 102 is also configured to determine whether a BWP handover occurs.
  • the receiving unit 101 is further configured to: when the processing unit 102 determines that a BWP handover occurs on any serving cell, and the receiving unit 101 does not receive the second MAC CE signaling for activating the second TCI state, the BWP after the handover Above, the first TCI state is used to receive the PDCCH sent on the BWP after the handover.
  • the first TCI state is a TCI state set of PDSCH.
  • the processing unit 102 is also configured to determine whether a BWP handover occurs.
  • the receiving unit 101 is also configured to: when the processing unit 102 determines that a BWP handover occurs on any serving cell, and the receiving unit 101 does not receive the second MAC CE signaling, it receives DCI, and uses the TCI status indicated by the DCI to receive the handover. PDSCH sent on the subsequent BWP.
  • the second MAC CE signaling is used to activate the second TCI state
  • the DCI is used to indicate one TCI state in the first TCI state.
  • the processing unit 102 is further configured to determine whether an SCell handover occurs; when it is determined that an SCell handover occurs, multiplex the first TCI state on the SCell before the handover on the SCell after the handover.
  • the processing unit 102 is further configured to determine whether PCell or primary SCell handover occurs.
  • the receiving unit 101 is further configured to: when the processing unit 102 determines that a PCell or primary SCell handover occurs, receive the second MAC CE signaling, and update the first TCI status of all serving cells to the first activated by the second MAC CE signaling. Two TCI status.
  • the processing unit 102 is further configured to determine whether there is a serving cell in which a beam failure occurs.
  • the TCI state of the serving cell with a beam failure is re-determined, and before the receiving unit 101 receives the second TCI state activated by the second MAC CE signaling, all the serving cells are divided
  • the TCI status of other serving cells other than the serving cell where the beam failure occurred is updated to the re-determined TCI status of the serving cell where the beam failure occurred. Or keep the TCI status of all serving cells except the serving cell where the beam failure occurs.
  • the receiving unit 101 is further configured to receive the second MAC CE signaling, and the second MAC CE signaling is used to activate the second TCI state.
  • the processing unit 102 is further configured to: when the receiving unit 101 receives the second MAC CE signaling, update the first TCI state to the second TCI state.
  • the receiving unit 101 is configured to receive the first MAC CE signaling by using the determined initial BWP or activated BWP of the first serving cell.
  • the receiving unit 101 is further configured to receive a configuration message, where the configuration message is used to indicate the bandwidth and carrier frequency position of each serving cell in all serving cells of the terminal.
  • the processing unit 102 is further configured to determine all serving cells on the same frequency band by using the bandwidth and the position of the carrier frequency.
  • Fig. 13 is a block diagram showing a device 200 for activating a TCI state according to an exemplary embodiment.
  • the TCI state activation apparatus 200 is applied to a network device, and includes: a processing unit 201 and a sending unit 202.
  • the processing unit 201 is configured to select a first serving cell among all serving cells on the same frequency band of the terminal, and the first serving cell supports sending MAC CE signaling.
  • the sending unit 202 is configured to send the first MAC CE signaling by using a selected first serving cell, and the first MAC CE signaling is used to activate the first TCI state.
  • the processing unit 201 is configured to randomly select a first serving cell among all serving cells on the same frequency band of the terminal; or select a designated first serving cell among all serving cells on the same frequency band of the terminal.
  • the first serving cell is designated as the serving cell with the lowest carrier frequency among all serving cells. Or designate the first serving cell as the primary SCell or PCell in all serving cells. Or designate the first serving cell as a serving cell on the unlicensed spectrum that detects that the channel is idle.
  • the sending unit 202 is configured to use the initial BWP or the activated BWP on the selected first serving cell to send the MAC CE signaling.
  • the sending unit 202 is further configured to send the second MAC CE signaling, and the second MAC CE signaling is used to activate the second TCI state.
  • the processing unit 201 is further configured to: before the sending unit 202 sends the second MAC CE signaling, determine that one or a combination of the following events occur: terminal channel conditions change, terminal BWP switching, terminal occurrence SCell handover, PCell or PSCell handover of the terminal, PCell or PScell link failure of the terminal, and serving cell beam failure of the terminal.
  • the sending unit 202 is further configured to send a configuration message, which is used to notify the terminal of the bandwidth and carrier frequency position of each serving cell in all serving cells.
  • the first TCI state includes: the TCI state of the PDCCH or the TCI state set of the PDSCH.
  • Fig. 14 is a block diagram showing a device 300 for TCI state activation according to an exemplary embodiment.
  • the device 300 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 300 may include one or more of the following components: a processing component 302, a memory 304, a power component 306, a multimedia component 308, an audio component 310, an input/output (I/O) interface 312, a sensor component 314, And the communication component 316.
  • the processing component 302 generally controls the overall operations of the device 300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components.
  • the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
  • the memory 304 is configured to store various types of data to support the operation of the device 300. Examples of these data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 306 provides power to various components of the device 300.
  • the power component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), and when the device 300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 304 or sent via the communication component 316.
  • the audio component 310 further includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 314 includes one or more sensors for providing the device 300 with various aspects of state evaluation.
  • the sensor component 314 can detect the on/off status of the device 300 and the relative positioning of components.
  • the component is the display and the keypad of the device 300.
  • the sensor component 314 can also detect the position change of the device 300 or a component of the device 300. , The presence or absence of contact between the user and the device 300, the orientation or acceleration/deceleration of the device 300, and the temperature change of the device 300.
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 300 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 304 including instructions, and the foregoing instructions may be executed by the processor 820 of the device 300 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 15 is a block diagram showing a device 400 for TCI state activation according to an exemplary embodiment.
  • the device 400 may be provided as a server.
  • the apparatus 400 includes a processing component 422, which further includes one or more processors, and a memory resource represented by the memory 432, for storing instructions that can be executed by the processing component 422, such as an application program.
  • the application program stored in the memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above-mentioned method.
  • the device 400 may also include a power supply component 426 configured to perform power management of the device 400, a wired or wireless network interface 450 configured to connect the device 400 to a network, and an input output (I/O) interface 458.
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • non-transitory computer-readable storage medium including instructions, such as the memory 404 including instructions, and the foregoing instructions may be executed by the processor 420 of the device 400 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • “plurality” means two or more than two, and other quantifiers are similar.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be referred to as second information
  • second information may also be referred to as first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输配置状态激活方法、装置及存储介质。传输配置状态激活方法,应用于终端,包括:接收第一媒体接入控制控制单元信令,第一媒体接入控制控制单元信令用于激活第一传输配置状态;将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态。传输配置状态激活方法,应用于网络设备,包括:在终端的同一频段上的全部服务小区中选择一个第一服务小区,第一服务小区支持发送媒体接入控制控制单元信令;利用选择的一个第一服务小区发送第一媒体接入控制控制单元信令,第一媒体接入控制控制单元信令用于激活第一传输配置状态。通过上述方法,可实现通过同一媒体接入控制控制单元信令激活全部服务小区中的传输配置状态,降低信令开销。

Description

传输配置状态激活方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及传输配置状态激活方法、装置及存储介质。
背景技术
在新无线技术(New Radio,NR)通信系统中,为了保证覆盖范围以及抵抗路径损耗,通常需要基于波束(beam)进行数据传输。基于波束进行数据传输过程中,网络设备(例如基站)通过信令指示传输配置(Transmission Configuration Indication,TCI)状态,进而指示终端的接收波束或发送波束。
相关技术中,网络设备基于终端上报的测量结果确定多个TCI状态,并通过无线资源控制(Radio Resource Control,RRC)信令将所述多个TCI状态通知给终端。然后针对每个成员载波(Component Carrier,CC)即服务小区/带宽部分(bandwidth part,BWP),通过媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)在多个TCI状态中指示需要激活的TCI状态。如果终端配置的服务小区/BWP较多时,基站需要发送很多个MAC CE信令去激活各个服务小区/BWP上的TCI状态配置,这样使得信令开销较多。
发明内容
为克服相关技术中存在的问题,本公开提供传输配置状态激活方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种传输配置状态激活方法,应用于终端。传输配置状态激活方法包括:接收第一媒体接入控制控制单元信令,第一媒体接入控制控制单元信令用于激活第一传输配置状态;将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态。
一示例中,第一传输配置状态为物理下行控制信道的传输配置状态;将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,方法还包括:若在任意服务小区上确定发生带宽部分切换,且未接收到第二媒体接入控制控制单元信令,第二媒体接入控制控制单元信令用于激活第二传输配置状态,则利用第一传输配置状态接收在切换后的带宽部分上所发送的物理下行控制信道。
另一示例中,第一传输配置状态为物理下行共享信道的传输配置状态集合;将第一传 输配置状态作为同一频段上的全部服务小区的传输配置状态之后,方法还包括:若在任意服务小区上确定发生带宽部分切换,且未接收到第二媒体接入控制控制单元信令,第二媒体接入控制控制单元信令用于激活第二传输配置状态,则接收下行控制信令,下行控制信令用于指示第一传输配置状态中的一个传输配置状态;利用下行控制信令指示的传输配置状态接收在切换后的带宽部分上所发送的物理下行共享信道。
又一示例中,将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,方法还包括:若确定发生辅小区切换,则在切换后的辅小区上复用切换前的辅小区上的第一传输配置状态。
又一示例中,将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,方法还包括:若确定发生主小区或主辅小区切换,则接收第二媒体接入控制控制单元信令,并将全部服务小区的第一传输配置状态更新为第二媒体接入控制控制单元信令激活的第二传输配置状态。
又一示例中,将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,方法还包括:若确定存在发生波束失败的服务小区,则重新确定发生波束失败的服务小区的传输配置状态,并在接收到第二媒体接入控制控制单元信令激活的第二传输配置状态之前,将全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态更新为发生波束失败的服务小区重新确定的传输配置状态,或者将全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态保持不变。
又一示例中,方法还包括:接收第二媒体接入控制控制单元信令,第二媒体接入控制控制单元信令用于激活第二传输配置状态;将第一传输配置状态更新为第二传输配置状态。
又一示例中,接收第一媒体接入控制控制单元信令,包括:利用确定的第一服务小区的初始带宽部分或激活带宽部分来接收第一媒体接入控制控制单元信令。
又一示例中,接收第一媒体接入控制控制单元信令之前,方法还包括:接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置;利用带宽以及载频位置,确定同一频段上的全部服务小区。
根据本公开实施例的第二方面,提供一种传输配置状态激活方法,应用于网络设备,包括:在终端的同一频段上的全部服务小区中选择一个第一服务小区,第一服务小区支持发送媒体接入控制控制单元信令;利用选择的一个第一服务小区发送第一媒体接入控制控 制单元信令,第一媒体接入控制控制单元信令用于激活第一传输配置状态。
一示例中,在终端的同一频段上的全部服务小区中选择一个第一服务小区,包括:在终端的同一频段上的全部服务小区中随机选择一个第一服务小区;或在终端的同一频段上的全部服务小区中选择指定第一服务小区。
另一示例中,指定第一服务小区为全部服务小区中载频为最低频的服务小区;或指定第一服务小区为全部服务小区中的主辅小区或主小区;或指定第一服务小区为非授权频谱上检测到信道空闲的服务小区。
又一示例中,利用选择的一个第一服务小区发送媒体接入控制控制单元信令,包括:利用选择的第一服务小区上的初始带宽部分或激活带宽部分发送媒体接入控制控制单元信令。
又一示例中,传输配置状态激活方法还包括:发送第二媒体接入控制控制单元信令,第二媒体接入控制控制单元信令用于激活第二传输配置状态。
又一示例中,发送第二媒体接入控制控制单元信令之前,方法还包括:确定发生如下事件之一或组合:终端信道条件发生变化、终端发生带宽部分切换、终端发生辅小区切换、终端发生主小区或主辅小区切换、以及终端发生服务小区波束失败。
又一示例中,传输配置状态激活方法还包括:发送配置消息,配置消息用于通知终端全部服务小区中每个服务小区的带宽以及载频位置。
又一示例中,第一传输配置状态,包括:物理下行控制信道的传输配置状态或物理下行共享信道的传输配置状态集合。
根据本公开实施例的第三方面,提供一种传输配置状态激活装置,应用于终端。传输配置状态激活装置包括:接收单元,被配置为接收第一媒体接入控制控制单元信令,第一媒体接入控制控制单元信令用于激活第一传输配置状态;处理单元,被配置为将第一传输配置状态作为同一频段上的全部服务小区的传输配置状态。
一示例中,第一传输配置状态为物理下行控制信道的传输配置状态;处理单元还被配置为:确定是否发生带宽部分切换;接收单元还被配置为:在处理单元在任意服务小区上确定发生带宽部分切换,且接收单元未接收到第二媒体接入控制控制单元信令时,利用第一传输配置状态接收在切换后的带宽部分上所发送的物理下行控制信道;第二媒体接入控制控制单元信令用于激活第二传输配置状态。
另一示例中,第一传输配置状态为物理下行共享信道的传输配置状态集合;处理单元 还被配置为:确定是否发生带宽部分切换;接收单元还被配置为:在处理单元在任意服务小区上确定发生带宽部分切换,且接收单元未接收到第二媒体接入控制控制单元信令时,接收下行控制信令,并利用下行控制信令指示的传输配置状态接收在切换后的带宽部分上所发送的物理下行共享信道;第二媒体接入控制控制单元信令用于激活第二传输配置状态,下行控制信令用于指示第一传输配置状态中的一个传输配置状态。
又一示例中,处理单元还被配置为:确定是否发生辅小区切换;在确定发生辅小区切换时,在切换后的辅小区上复用切换前的辅小区上的第一传输配置状态。
又一示例中,处理单元还被配置为:确定是否发生主小区或主辅小区切换;接收单元还被配置为:在处理单元确定发生主小区或主辅小区切换时,接收第二媒体接入控制控制单元信令,并将全部服务小区的第一传输配置状态更新为第二媒体接入控制控制单元信令激活的第二传输配置状态。
又一示例中,处理单元还被配置为:确定是否存在发生波束失败的服务小区;在确定存在发生波束失败的服务小区时,重新确定发生波束失败的服务小区的传输配置状态,并在接收单元接收到第二媒体接入控制控制单元信令激活的第二传输配置状态之前,将全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态更新为发生波束失败的服务小区重新确定的传输配置状态,或者将全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态保持不变。
又一示例中,接收单元还被配置为:接收第二媒体接入控制控制单元信令,第二媒体接入控制控制单元信令用于激活第二传输配置状态;处理单元还被配置为:在接收单元接收到第二媒体接入控制控制单元信令时,将第一传输配置状态更新为第二传输配置状态。
又一示例中,接收单元被配置为采用如下方式接收第一媒体接入控制控制单元信令:利用确定的第一服务小区的初始带宽部分或激活带宽部分来接收第一媒体接入控制控制单元信令。
又一示例中,接收单元还被配置为:接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置;处理单元还被配置为:利用带宽以及载频位置,确定同一频段上的全部服务小区。
根据本公开实施例的第四方面,提供一种传输配置状态激活装置,应用于网络设备,包括:处理单元,被配置为在终端的同一频段上的全部服务小区中选择一个第一服务小区,第一服务小区支持发送媒体接入控制控制单元信令;发送单元,被配置为利用选择的一个 第一服务小区发送第一媒体接入控制控制单元信令,第一媒体接入控制控制单元信令用于激活第一传输配置状态。
一示例中,处理单元被配置为采用如下方式在终端的同一频段上的全部服务小区中选择一个第一服务小区:在终端的同一频段上的全部服务小区中随机选择一个第一服务小区;或在终端的同一频段上的全部服务小区中选择指定第一服务小区。
另一示例中,指定第一服务小区为全部服务小区中载频为最低频的服务小区;或指定第一服务小区为全部服务小区中的主辅小区或主小区;或指定第一服务小区为非授权频谱上检测到信道空闲的服务小区。
又一示例中,发送单元被配置为采用如下方式利用选择的一个第一服务小区发送媒体接入控制控制单元信令:利用选择的第一服务小区上的初始带宽部分或激活带宽部分发送媒体接入控制控制单元信令。
又一示例中,发送单元还被配置为:发送第二媒体接入控制控制单元信令,第二媒体接入控制控制单元信令用于激活第二传输配置状态。
又一示例中,处理单元还被配置为:在发送单元发送第二媒体接入控制控制单元信令之前,确定发生如下事件之一或组合:终端信道条件发生变化、终端发生带宽部分切换、终端发生辅小区切换、终端发生主小区或主辅小区切换、以及终端发生服务小区波束失败。
又一示例中,发送单元还被配置为:发送配置消息,配置消息用于通知终端全部服务小区中每个服务小区的带宽以及载频位置。
又一示例中,第一传输配置状态,包括:物理下行控制信道的传输配置状态或物理下行共享信道的传输配置状态集合。
根据本公开实施例的第五方面,提供一种传输配置状态激活装置,该传输配置状态激活包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行上述第一方面或第一方面中任意一示例的传输配置状态激活方法。
根据本公开实施例的第六方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行上述第一方面或第一方面中任意一示例的传输配置状态激活方法。
根据本公开实施例的第七方面,提供一种传输配置状态激活装置,该传输配置状态激活包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行上述第二方面或第二方面中任意一示例的传输配置状态激活方法。
根据本公开实施例的第八方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由网络设备的处理器执行时,使得移动终端能够执行上述第二方面或第二方面中任意一示例的传输配置状态激活方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过终端同一频段上全部服务小区中的一个服务小区发送用于激活传输配置状态的媒体接入控制控制单元信令,实现通过同一媒体接入控制控制单元信令激活全部服务小区中的传输配置状态,降低信令开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意性。
图2是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图3是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图4是根据一示例性实施例示出的一种确定同一band上全部服务小区的方法流程图。
图5是根据一示例性实施例示出的一种确定同一band上全部服务小区的方法流程图。
图6是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图7是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图8是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图9是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图10是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图11是根据一示例性实施例示出的一种TCI状态激活方法的流程图。
图12是根据一示例性实施例示出的一种TCI状态激活装置框图。
图13是根据一示例性实施例示出的一种TCI状态激活装置框图。
图14是根据一示例性实施例示出的一种用于TCI状态激活的装置的框图。
图15是根据一示例性实施例示出的一种用于TCI状态激活的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图 时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的TCI状态激活方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment, UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
在NR中,特别是通信频段在frequency range 2时,由于高频信道衰减较快,为了保证覆盖范围,终端和网络设备之间需要使用基于波束(beam)的发送和接收。
相关技术中,下行(Downlink,DL)的物理下行控制信道(physical downlink control channel,PDCCH)或物理下行共享信道(physical downlink shared channel,PDSCH)的波束管理(beam management)过程如下:终端与网络设备随机接入完成,并建立好RRC连接之后,终端按照网络设备的测量配置进行测量之后,上报beam的测量结果给网络设备,包括beam的参考信号(Reference Signal,RS)类型和RS索引(index)和层1参考信号接收功率(Layer1-Reference Signal Receiving Power,L1-RSRP)或层1的信号与干扰和噪声比(Signal to Interfere&Noise Ratio,L1-SINR)。网络设备根据终端上报的测量结果确定多个TCI状态。TCI状态包括TCI状态的标识(ID),以及TCI状态对应的RS类型和RS index。目前TCI状态的数目最多是64个。网络设备通过RRC信令将这64个TCI状态通知给终端,包括TCI状态ID和对应的RS类型和RS index。TCI状态如下表1所示,终端通过TCI状态可确定出接收波束。
表1
Figure PCTCN2019107036-appb-000001
其中,针对PDCCH,网络设备使用MAC CE激活64个TCI状态中的1个TCI状态, 并指示给终端。针对PDSCH,网络设备使用MAC CE激活TCI状态集合(64个TCI状态中的8个TCI状态),并指示给终端。网络设备再使用下行控制信息(Downlink Control Information,DCI)信令从激活的8个TCI状态中指示其中一个给终端用于终端接收PDSCH。DCI信令中调度的PDSCH的TCI状态,即告知终端接收该PDSCH使用的接收beam要与终端接收该TCI状态中的RS时接收信号最强时使用的接收beam一样。
相关技术中,针对每个CC/BWP使用单独MAC CE激活TCI状态。在多个CC/BWP场景中,针对每个CC/BWP使用单独MAC CE激活TCI状态,信令开销较大。
有鉴于此,本公开提供一种TCI状态激活方法。本公开提供的TCI状态激活方法中,通过一个MAC CE激活同一频段(band)上所有CC/BWP上的PDCCH的TCI状态或所有CC/BWP上的PDSCH的TCI状态集合。
图2是根据一示例性实施例示出的一种TCI状态激活方法的流程图,如图2所示,TCI状态激活方法用于网络设备中,包括以下步骤S11和步骤S12。
在步骤S11中,在终端的同一band上的全部服务小区中选择一个支持发送MAC CE的服务小区。
本公开中对应某个终端,在同一band上配置有多个服务小区(即CC),每个服务小区上都有一个初始带宽部分(initial BWP)或激活带宽部分(active BWP)。本公开中,网络设备在该同一band上的全部服务小区中选择一个支持发送MAC CE的服务小区,并利用选择的服务小区上的该终端的initial BWP或active BWP上的MAC CE信令激活TCI状态。
本公开中,网络设备选择服务小区时,一方面,网络设备在终端的同一band上的全部服务小区中随机选择一个服务小区,或者在终端的同一band上的全部服务小区中选择指定服务小区。本公开中,网络设备选择的指定服务小区例如为同一band上全部服务小区中载频为最低频的服务小区。或网络设备选择的指定服务小区为同一band上全部服务小区中的主辅小区(PSCell)或主小区(PCell)。或网络设备选择的指定服务小区为非授权频谱上检测到信道空闲的服务小区,即当该频段为非授权频段时,网络设备需要针对该频段上终端的各个服务小区分别进行先听后说的信道检测过程,只有检测到信道空闲的服务小区才能用于发送,所以指定服务小区必须是检测到信道空闲的服务小区。
本公开中,网络设备通过一个服务小区发送的MAC CE信令激活TCI状态。MAC CE激活的TCI状态可以是PDCCH的TCI状态或PDSCH的TCI状态集合。
一种实施方式中,网络设备需将全部TCI状态(例如64个TCI状态)预先通知给终端。例如网络设备基于RRC信令将全部TCI状态预先通知给终端。通过MAC CE信令激活的TCI状态为全部TCI状态中的一个TCI状态或TCI状态集合。
在步骤S12中,利用选择的服务小区发送用于激活TCI状态的MAC CE信令。
本公开中,网络设备在终端的同一band上的全部服务小区中选择一个服务小区发送用于激活全部服务小区TCI状态的MAC CE信令,能够降低信令开销。
图3是根据一示例性实施例示出的一种TCI状态激活方法的流程图,如图3所示,TCI状态激活方法用于终端中,包括以下步骤S21和步骤S22。
在步骤S21中,接收用于激活TCI状态的MAC CE信令。
本公开中对应某个终端,在同一band上配置有多个服务小区即CC,每个服务小区上都有一个初始带宽部分(initial BWP)或激活带宽部分(active BWP)。本公开一方面,终端确定支持MAC CE信令接收和发送的服务小区,并通过确定的服务小区接收MAC CE信令。其中,终端利用确定的服务小区的initial BWP或active BWP来接收MAC CE信令。
其中,终端采用如下方式之一确定用于接收MAC CE信令的服务小区:在终端的同一频段上的全部服务小区中接收所有支持发送MAC CE的服务小区发送的MAC CE。或基于网络设备为终端预配置的服务小区作为接收MAC CE信令的服务小区。或默认将同一频段上全部服务小区中的主辅小区或主小区或载频处在最低频位置的服务小区或检测到信道空闲的非授权频谱小区作为接收MAC CE信令的服务小区。
本公开中,终端接收的MAC CE信令用于激活TCI状态,该TCI状态可以是PDCCH的TCI状态或PDSCH的TCI状态集合。
在步骤S22中,将接收到的MAC CE激活的TCI状态作为同一band上的全部服务小区的TCI状态。
本公开一示例中,终端预先接收网络设备发送的RRC信令,基于RRC信令确定出全部TCI状态。在接收到MAC CE信令后,将MAC CE激活的TCI状态作为同一band上的全部服务小区的PDCCH的TCI状态。或者将MAC CE激活的TCI状态集合作为同一band上的全部服务小区的PDSCH的TCI状态集合。
本公开中,终端接收MAC CE,将接收到的MAC CE激活的TCI状态作为同一band上的全部服务小区的TCI状态,能够减少信令开销。
进一步的,本公开中终端还需确定同一band上的全部服务小区。
一种实施方式中,本公开由网络设备预先发送用于通知终端全部服务小区中每个服务小区的带宽以及载频位置的配置消息,以使终端通过每个服务小区的带宽以及载频位置,确定同一band上的全部服务小区。
图4是根据一示例性实施例示出的一种确定同一band上全部服务小区的方法流程图,如图4所示,确定同一band上全部服务小区的方法用于网络设备中,包括步骤S31。
在步骤S31中,发送配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。
本公开一示例中,网络设备基于系统消息和/或RRC信令发送配置消息。
进一步的,本公开中网络设备发送配置消息后,可执行选择服务小区以及发送MACCE信令的步骤。可以理解的是,本公开中网络设备在每次选择服务小区以及发送MAC CE信令的过程中,不限定是否执行发送配置消息的步骤,可以是每次都执行发送配置消息的步骤,也可以是执行一次发送配置消息的步骤。
本公开中网络设备向终端发送指示终端全部服务小区中每个服务小区的带宽以及载频位置的配置消息,使得终端能够确定出同一band的全部服务小区。
图5是根据一示例性实施例示出的一种确定同一band上全部服务小区的方法流程图,如图5所示,确定同一band上全部服务小区的方法用于终端中,包括步骤S41至步骤S42。
在步骤S41中,接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。
配置消息包括系统信息和/或服务小区配置消息,当是主小区的话,其带宽和载频位置是终端接收系统信息获得的,如果是辅小区的话,则是通过主小区发送的辅服务小区配置消息获得的。
本公开一示例中,终端基于系统信息和/或RRC信令接收配置消息。
在步骤S42中,基于每个服务小区的带宽以及载频位置,确定同一band的全部服务小区。
进一步的,本公开中终端接收配置消息并确定同一band的全部服务小区后,可执行接收用于激活TCI状态的MAC CE信令,以及将MAC CE信令激活的TCI状态作为同一band的全部服务小区的TCI状态的步骤。可以理解的是,本公开中终端在每次接收MACCE信令以及将MAC CE信令激活的TCI状态作为同一band的全部服务小区的TCI状态的过程中,不限定是否执行接收配置消息并确定同一band的全部服务小区的步骤,可以 是每次都执行接收配置消息并确定同一band的全部服务小区的步骤,也可以是执行一次接收配置消息并确定同一band的全部服务小区的步骤。
本公开中,终端接收网络设备发送的用于指示终端全部服务小区中每个服务小区的带宽以及载频位置的配置消息,确定出同一band的全部服务小区,进而将同一band的全部服务小区的TCI状态均采用接收到的MAC CE激活的TCI状态,节省信令开销。
进一步的,本公开中,在需要更新激活的TCI状态时,例如,终端信道条件发生变化(根据终端反馈的测量结果确定出新的TCI状态),终端发生BWP切换、终端发生辅小区(SCell)切换、终端发生PCell或PSCell切换、终端发生PCell或PScell链路失败以及终端发生服务小区波束失败(beam failure),可由网络设备重新发送激活TCI状态的MAC CE。
本公开中为区分更新前后的不同MAC CE、TCI状态、发送MAC CE的服务小区,将更新前涉及的MAC CE称为第一MAC CE。第一MAC CE激活的TCI状态称为第一TCI状态。为发送第一MAC CE选择的服务小区称为第一服务小区。将进行TCI状态更新时涉及的MAC CE称为第二MAC CE。第二MAC CE激活的TCI状态称为第二TCI状态。为发送第二MAC CE选择的服务小区称为第二服务小区。
图6是根据一示例性实施例示出的一种TCI状态激活方法的流程图,如图6所示,TCI状态激活方法用于网络设备中,包括步骤S51至步骤S54。其中,步骤S51、步骤S52、步骤S53和步骤S31、步骤S32和步骤S33相同,本公开在此不再详述。
在步骤S54中,发送第二MAC CE信令,所述第二MAC CE信令用于激活第二TCI状态。
本公开中,网络设备在发送第二MAC CE信令之前,需确认需要更新TCI状态,即需要激活第二TCI状态。其中,需要激活第二TCI状态可以理解为是发生如下事件之一或组合:终端信道条件发生变化(根据终端反馈的测量结果确定),终端发生BWP切换、终端发生辅小区(SCell)切换、终端发生PCell或PSCell切换、终端发生PCell或PSCell链路失败以及终端发生服务小区波束失败(beam failure)。
本公开中,在终端需要进行TCI状态更新时,网络设备重新发送新的MAC CE信令(第二MAC CE信令),以激活新的TCI状态,便于终端进行TCI状态更新。
本公开中,网络设备向终端发送第二MAC CE信令后,终端在接收到MAC CE信令之后,则可将第一TCI状态更新为第二MAC CE信令激活的第二TCI状态。
然而,终端在发生BWP切换、辅小区(SCell)切换、PCell或PSCell切换、PCell或PSCell链路失败以及服务小区波束失败(beam failure)时,终端如何进行TCI状态的处理,是需要解决的问题。本公开以下将示例性的针对此种情况进行说明。
情形一:发生BWP切换
图7是根据一示例性实施例示出的一种TCI状态激活方法的流程图。如图7所示,TCI状态激活方法用于终端中,包括步骤S61至步骤S69。
在步骤S61中,接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。
在步骤S62中,基于每个服务小区的带宽以及载频位置,确定同一band的全部服务小区。
在步骤S63中,在全部服务小区中确定一个第一服务小区,利用第一服务小区的initial BWP或active BWP来接收用于激活第一TCI状态的第一MAC CE信令。
在步骤S64中,将第一MAC CE信令激活的第一TCI状态作为同一band的全部服务小区的TCI状态。
在步骤S65中,确定发生BWP切换,确定是否接收到网络设备发送的用于激活第二TCI状态的第二MAC CE信令。
本公开中,若在同一band的全部服务小区中任意服务小区上发生BWP切换,则确定发生BWP切换。本公开中,终端发生BWP切换可以理解为是终端收到了网络设备新调度的BWP,并由原BWP切换到新调度的BWP上。
本公开中,第一MAC CE信令激活的第一TCI状态为PDCCH的TCI状态或者PDSCH的TCI状态集合。相应的,第二MAC CE信令激活的第二TCI状态为PDCCH的TCI状态或者PDSCH的TCI状态集合。
本公开中终端未接收到网络设备发送的用于激活第二TCI状态的第二MAC CE信令,且第一MAC CE信令激活的第一TCI状态为PDCCH的TCI状态时,执行步骤S66。本公开中终端未接收到网络设备发送的用于激活第二TCI状态的第二MAC CE信令,且第一MAC CE信令激活的第一TCI状态为PDSCH的TCI状态集合时,执行步骤S67和步骤S68。
在步骤S66中,在切换后的BWP上,利用第一TCI状态接收在切换后的BWP上所发送的PDCCH。
在步骤S67中,接收DCI信令。
本公开中,接收的DCI信令用于指示第一TCI状态中的一个TCI状态,而该DCI信令是在该服务小区上切换前的BWP上接收,或是在该服务小区上切换后的BWP上接收,或是在其它服务小区上的BWP上接收(比如跨载波调度的情况下)。第一TCI状态为PDSCH的TCI状态集合时,接收的DCI信令用于指示TCI状态集合中的一个TCI状态。
在步骤S68中,利用DCI指示的TCI状态接收在切换后的BWP上所发送的PDSCH。
本公开中在终端接收到网络设备发送的用于激活第二TCI状态的第二MAC CE信令时,执行步骤S69。
在步骤S69中,将第一MAC CE信令激活的第一TCI状态更新为第二MAC CE信令激活的第二TCI状态。
本公开中,在终端的任意服务小区发生BWP切换时,网络设备调度新的BWP上的RB给终端发送PDSCH,那么如果在此期间没有新的MAC信令来激活新的TCI状态(或TCI状态集合)。对于PDCCH,终端在新的BWP上基于之前MAC信令激活的BWP上的PDCCH的TCI状态来接收新的BWP上发送的PDCCH。而对于PDSCH的TCI状态集合,也是使用之前MAC信令激活的BWP上的PDSCH的TCI状态集合。而用于指示从MAC信令激活的TCI状态集合中的一个TCI状态来接收PDSCH的DCI信令:可能由切换前的BWP发送,也可能在终端切换到新的BWP后由新的BWP发送,或者当为跨载波调度情况下由其它服务小区上的BWP发送。终端结合用于调度新的BWP上的PDSCH的DCI信令和原MAC信令激活的TCI状态集合来确定用于接收新的BWP上的PDSCH的TCI状态。直到有新的MAC信令重新激活新的PDCCH的TCI状态或新的PDSCH的TCI状态集合为止。
情形二:发生SCell切换
图8是根据一示例性实施例示出的一种TCI状态激活方法的流程图。如图8所示,TCI状态激活方法用于终端中,包括步骤S71至步骤S76。
在步骤S71中,接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。
在步骤S72中,基于每个服务小区的带宽以及载频位置,确定同一band的全部服务小区。
在步骤S73中,在全部服务小区中确定一个第一服务小区,利用第一服务小区的initial BWP或active BWP来接收用于激活第一TCI状态的第一MAC CE信令。
在步骤S74中,将第一MAC CE信令激活的第一TCI状态作为同一band的全部服务小区的TCI状态。
在步骤S75中,确定发生SCell切换。
本公开中,终端在同一band的全部SCell中任意一SCell发生切换,确定发生SCell切换。
在步骤S76中,在切换后的SCell上复用切换前的SCell上的第一TCI状态。
本公开中,第一MAC CE信令激活的第一TCI状态为PDCCH的TCI状态或者PDSCH的TCI状态集合。相应的,第二MAC CE信令激活的第二TCI状态为PDCCH的TCI状态或者PDSCH的TCI状态集合。
本公开中,当同一band下的其中一个SCell发生SCell切换时,切换后的SCell也需要复用原SCell上第一MAC CE信令激活的PDCCH的TCI状态和PDSCH的TCI状态集合。
情形三:发生PSCell或PCell切换
图9是根据一示例性实施例示出的一种TCI状态激活方法的流程图。如图9所示,TCI状态激活方法用于终端中,包括步骤S81至步骤S86。
在步骤S81中,接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。
在步骤S82中,基于每个服务小区的带宽以及载频位置,确定同一band的全部服务小区。
在步骤S83中,在全部服务小区中确定一个第一服务小区,利用第一服务小区的initial BWP或active BWP来接收用于激活第一TCI状态的第一MAC CE信令。
在步骤S84中,将第一MAC CE信令激活的第一TCI状态作为同一band的全部服务小区的TCI状态。
在步骤S85中,确定发生PSCell或PCell切换。
在步骤S86中,接收第二MAC CE信令,并将全部服务小区的第一TCI状态更新为第二MAC CE信令激活的第二TCI状态。
本公开中,第一MAC CE信令激活的第一TCI状态为PDCCH的TCI状态或者PDSCH的TCI状态集合。相应的,第二MAC CE信令激活的第二TCI状态为PDCCH的TCI状 态或者PDSCH的TCI状态集合。
本公开中,当同一band下的PSCell或PCell发生切换时,需要重新对TCI状态进行配置,所以需要对该band上所有CC/BWP的TCI状态进行更新,即使用新的RRC信令、MAC CE信令等进行TCI状态配置。
情形四:发生beam failure
图10是根据一示例性实施例示出的一种TCI状态激活方法的流程图。如图10所示,TCI状态激活方法用于终端中,包括步骤S91至步骤S96。
在步骤S91中,接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。
在步骤S92中,基于每个服务小区的带宽以及载频位置,确定同一band的全部服务小区。
在步骤S93中,在全部服务小区中确定一个第一服务小区,利用第一服务小区的initial BWP或active BWP来接收用于激活第一TCI状态的第一MAC CE信令。
在步骤S94中,将第一MAC CE信令激活的第一TCI状态作为同一band的全部服务小区的TCI状态。
在步骤S95中,确定存在发生beam failure的服务小区,重新确定发生beam failure的服务小区的TCI状态。
本公开中,当同一band下的其中一个服务小区发生beam failure时,相当于该SCell上的PDCCH的TCI状态需要更新了,那么终端重新确定接收该SCell上的PDCCH的TCI状态或PDSCH的TCI状态集合。
其中,PDCCH的TCI状态可以是终端通过测量自行确定。比如一方面,终端检测用于新的beam发现的SSB发现RSRP和/或SINR较高,则在该SSB对应的物理随机接入信道(Physical Random Access Channel,PRACH)发送对应的随机接入前导码,则网络设备就能够确定使用该SSB相同的波束给该终端发送PDCCH或PDSCH比较合适。另一方面,也可以是终端通过测量然后将测量结果上报给网络设备,或将选择出的一个新的beam ID上报给网络设备,然后网络设备使用终端上报的一个或多个中的一个或多个来给终端发送PDCCH或PDSCH。
在步骤S96中,确定是否接收到网络设备发送的用于激活第二TCI状态的第二MACCE信令。
在终端未接收到第二MAC CE激活的第二TCI状态时,执行步骤S97。在终端接收到第二MAC CE激活的第二TCI状态时,执行步骤S98。
在步骤S97中,将全部服务小区中除发生beam failure的服务小区以外的其它服务小区的TCI状态更新为发生beam failure的服务小区重新确定的TCI状态,或者将全部服务小区中除发生beam failure的服务小区以外的其它服务小区的TCI状态保持不变。
在步骤S98中,将第一MAC CE信令激活的第一TCI状态更新为第二MAC CE信令激活的第二TCI状态。
本公开中,同一band下的其中一个服务小区发生beam failure时,终端重新确定接收该SCell上的PDCCH的TCI状态或PDSCH的TCI状态集合。其中PDCCH的TCI状态可以是终端通过测量确定。在这个过程中,由于不是MAC CE信令给该发生beam failure的SCell重新激活新的TCI状态,故该band下除发生beam failure以外的其它服务小区可以有两种选择:一种继续使用之前MAC信令激活的TCI状态或TCI状态集合。另一种是使用与beam failure的服务小区相同的TCI状态。待基站使用新的MAC信令给发生beam failure的服务小区激活新的TCI状态时,则同一band下所有的服务小区即CC/BWP都使用新的MAC激活的TCI状态。
情形五:发生链路失败
终端发生链路失败表明终端的PCell或PSCell的PDCCH的TCI状态需要更新。这种情况下,在没有接收到第二MAC CE激活的第二TCI状态之前,除PCell或PSCell之外的服务小区的TCI状态同样可以有两种方法:一是继续使用第一MAC CE激活的第一TCI状态;二是使用与重新确定的PCell或PSCell中的TCI状态相同的TCI状态。
图11是根据一示例性实施例示出的一种TCI状态激活方法的流程图。如图11所示,TCI状态激活方法用于终端与网络设备交互过程中,包括步骤S101至步骤S109。
在步骤S101中,网络设备在终端的同一band上的全部服务小区中选择一个第一服务小区,选择的第一服务小区支持发送MAC CE信令。
在步骤S102中,网络设备利用选择的一个第一服务小区发送第一MAC CE信令,第一MAC CE信令用于激活第一TCI状态。终端接收第一MAC CE。
在步骤S103中,网络设备发送配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。终端接收网络设备发送的配置消息。
在步骤S104中,终端根据配置消息中每个服务小区的带宽以及载频位置,确定同一 band的全部服务小区。
可以理解的是,本公开中步骤S103和步骤S104为可选步骤,步骤S103和S104可以在步骤S101之前发生。例如,终端采用预定义方式确定同一band的全部服务小区时,无需执行步骤S103和步骤S104。
在步骤S105中,终端将第一TCI状态作为同一band上的全部服务小区的TCI状态。
本公开中,终端将第一TCI状态作为同一band上的全部服务小区的TCI状态之后,根据实际应用场景可包括如下步骤。
在步骤S106a中,若在任意服务小区上确定发生BWP切换,且未接收到第二MAC CE信令,则在切换后的BWP上,利用第一TCI状态接收在切换后的BWP上所发送的物理下行控制信道。若接收到第二MAC CE信令,将第一TCI状态更新为第二TCI状态。
在步骤S106b中,若在任意服务小区上确定发生BWP切换,且未接收到第二MAC CE信令,则接收DCI,DCI用于指示第一TCI状态中的一个TCI状态。利用DCI指示的TCI状态接收在切换后的BWP上所发送的物理下行共享信道。若接收到第二MAC CE信令,将第一TCI状态更新为第二TCI状态。
在步骤S107中,若确定发生SCell切换,则在切换后的SCell上复用切换前的SCell上的第一TCI状态。
在步骤S108中,若确定发生PCell或PSCell切换,则接收第二MAC CE信令,并将全部服务小区的第一TCI状态更新为第二MAC CE信令激活的第二TCI状态。
在步骤S109中,若确定存在发生beam failure的服务小区,则重新确定发生beam failure的服务小区的TCI状态。若未接收到第二MAC CE信令激活的第二TCI状态,将全部服务小区中除发生beam failure的服务小区以外的其它服务小区的TCI状态更新为发生beam failure的服务小区重新确定的TCI状态。或者将全部服务小区中除发生beam failure的服务小区以外的其它服务小区的TCI状态保持不变。若接收到第二MAC CE信令,将第一TCI状态更新为第二TCI状态。
可以理解的是,本公开中用于终端与网络设备交互过程中的TCI状态激活方法中,对于终端和网络设备分别具有本公开以上实施例中涉及的针对终端和网络设备实施TCI状态激活过程中的方法。对于本公开中终端与网络设备交互过程中的TCI状态激活方法描述不够详尽的地方,可参阅相关实施例的描述,在此不再赘述。
基于相同的构思,本公开实施例还提供一种TCI状态激活装置。
可以理解的是,本公开实施例提供的TCI状态激活装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图12是根据一示例性实施例示出的一种TCI状态激活装置100框图。参照图12,TCI状态激活装置100应用于终端,包括:接收单元101和处理单元102。
接收单元101,被配置为接收第一MAC CE信令,第一MAC CE信令用于激活第一TCI状态。处理单元102,被配置为将第一TCI状态作为同一频段上的全部服务小区的TCI状态。
一种实施方式中,第一TCI状态为PDCCH的TCI状态。
处理单元102还被配置为:确定是否发生BWP切换。
接收单元101还被配置为:在处理单元102在任意服务小区上确定发生BWP切换,且接收单元101未接收到用于激活第二TCI状态的第二MAC CE信令时,在切换后的BWP上,利用第一TCI状态接收在切换后的BWP上所发送的PDCCH。
另一实施方式中,第一TCI状态为PDSCH的TCI状态集合。
处理单元102还被配置为:确定是否发生BWP切换。
接收单元101还被配置为:在处理单元102在任意服务小区上确定发生BWP切换,且接收单元101未接收到第二MAC CE信令时,接收DCI,并利用DCI指示的TCI状态接收在切换后的BWP上所发送的PDSCH。
其中,第二MAC CE信令用于激活第二TCI状态,DCI用于指示第一TCI状态中的一个TCI状态。
又一种实施方式中,处理单元102还被配置为:确定是否发生SCell切换;在确定发生SCell切换时,在切换后的SCell上复用切换前的SCell上的第一TCI状态。
又一种实施方式中,处理单元102还被配置为:确定是否发生PCell或主SCell切换。
接收单元101还被配置为:在处理单元102确定发生PCell或主SCell切换时,接收第二MAC CE信令,并将全部服务小区的第一TCI状态更新为第二MAC CE信令激活的第二TCI状态。
又一种实施方式中,处理单元102还被配置为:确定是否存在发生波束失败的服务小区。
在确定存在发生波束失败的服务小区时,重新确定发生波束失败的服务小区的TCI状态,并在接收单元101接收到第二MAC CE信令激活的第二TCI状态之前,将全部服务小区中除发生波束失败的服务小区以外的其它服务小区的TCI状态更新为发生波束失败的服务小区重新确定的TCI状态。或者将全部服务小区中除发生波束失败的服务小区以外的其它服务小区的TCI状态保持不变。
又一种实施方式中,接收单元101还被配置为:接收第二MAC CE信令,第二MAC CE信令用于激活第二TCI状态。
处理单元102还被配置为:在接收单元101接收到第二MAC CE信令时,将第一TCI状态更新为第二TCI状态。
又一种实施方式中,接收单元101被配置为利用确定的第一服务小区的初始BWP或激活BWP来接收第一MAC CE信令。
又一种实施方式中,接收单元101还被配置为:接收配置消息,配置消息用于指示终端全部服务小区中每个服务小区的带宽以及载频位置。处理单元102还被配置为:利用带宽以及载频位置,确定同一频段上的全部服务小区。
图13是根据一示例性实施例示出的一种TCI状态激活装置200框图。参照图13,TCI状态激活装置200应用于网络设备,包括:处理单元201和发送单元202。
处理单元201,被配置为在终端的同一频段上的全部服务小区中选择一个第一服务小区,第一服务小区支持发送MAC CE信令。
发送单元202,被配置为利用选择的一个第一服务小区发送第一MAC CE信令,第一MAC CE信令用于激活第一TCI状态。
一种实施方式中,处理单元201被配置为在终端的同一频段上的全部服务小区中随机选择一个第一服务小区;或在终端的同一频段上的全部服务小区中选择指定第一服务小区。
其中,指定第一服务小区为全部服务小区中载频为最低频的服务小区。或指定第一服务小区为全部服务小区中的主SCell或PCell。或指定第一服务小区为非授权频谱上检测到信道空闲的服务小区。
另一实施方式中,发送单元202被配置为利用选择的第一服务小区上的初始BWP或 激活BWP发送MAC CE信令。
又一种实施方式中,发送单元202还被配置为:发送第二MAC CE信令,第二MAC CE信令用于激活第二TCI状态。
又一种实施方式中,处理单元201还被配置为:在发送单元202发送第二MAC CE信令之前,确定发生如下事件之一或组合:终端信道条件发生变化、终端发生BWP切换、终端发生SCell切换、终端发生PCell或PSCell切换、终端发生PCell或PScell链路失败以及终端发生服务小区波束失败。
又一种实施方式中,发送单元202还被配置为:发送配置消息,配置消息用于通知终端全部服务小区中每个服务小区的带宽以及载频位置。
其中,第一TCI状态包括:PDCCH的TCI状态或PDSCH的TCI状态集合。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关所述方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图14是根据一示例性实施例示出的一种用于TCI状态激活的装置300的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)的接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在设备300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当设备300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到设备300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,所述传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相 关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图15是根据一示例性实施例示出的一种用于TCI状态激活的装置400的框图。例如,装置400可以被提供为一服务器。参照图15,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器404,上述指令可由装置400的处理器420执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (38)

  1. 一种传输配置状态激活方法,其特征在于,应用于终端,包括:
    接收第一媒体接入控制控制单元信令,所述第一媒体接入控制控制单元信令用于激活第一传输配置状态;
    将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态。
  2. 根据权利要求1所述的传输配置状态激活方法,其特征在于,所述第一传输配置状态为物理下行控制信道的传输配置状态;
    将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,所述方法还包括:
    若在任意服务小区上确定发生带宽部分切换,且未接收到第二媒体接入控制控制单元信令,所述第二媒体接入控制控制单元信令用于激活第二传输配置状态,则
    在切换后的带宽部分上,利用第一传输配置状态接收在所述切换后的带宽部分上所发送的物理下行控制信道。
  3. 根据权利要求1所述的传输配置状态激活方法,其特征在于,所述第一传输配置状态为物理下行共享信道的传输配置状态集合;
    将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,所述方法还包括:
    若在任意服务小区上确定发生带宽部分切换,且未接收到第二媒体接入控制控制单元信令,所述第二媒体接入控制控制单元信令用于激活第二传输配置状态,则
    接收下行控制信令,所述下行控制信令用于指示所述第一传输配置状态中的一个传输配置状态;
    利用所述下行控制信令指示的传输配置状态接收在切换后的带宽部分上所发送的物理下行共享信道。
  4. 根据权利要求1所述的传输配置状态激活方法,其特征在于,将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,所述方法还包括:
    若确定发生辅小区切换,则在切换后的辅小区上复用切换前的辅小区上的第一传输配置状态。
  5. 根据权利要求1所述的传输配置状态激活方法,其特征在于,将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,所述方法还包括:
    若确定发生主小区或主辅小区切换,则接收第二媒体接入控制控制单元信令,并将所述全部服务小区的第一传输配置状态更新为所述第二媒体接入控制控制单元信令激活的第二传输配置状态。
  6. 根据权利要求1所述的传输配置状态激活方法,其特征在于,将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态之后,所述方法还包括:
    若确定存在发生波束失败的服务小区,则重新确定所述发生波束失败的服务小区的传输配置状态,并在接收到第二媒体接入控制控制单元信令激活的第二传输配置状态之前,
    将所述全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态更新为发生波束失败的服务小区重新确定的传输配置状态,或者将所述全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态保持不变。
  7. 根据权利要求2、3、或6所述的传输配置状态激活方法,其特征在于,所述方法还包括:
    接收第二媒体接入控制控制单元信令,所述第二媒体接入控制控制单元信令用于激活第二传输配置状态;
    将所述第一传输配置状态更新为所述第二传输配置状态。
  8. 根据权利要求1至6中任意一项所述的传输配置状态激活方法,其特征在于,接收第一媒体接入控制控制单元信令,包括:
    利用确定的第一服务小区的初始带宽部分或激活带宽部分来接收第一媒体接入控制控制单元信令。
  9. 根据权利要求1所述的传输配置状态激活方法,其特征在于,接收第一媒体接入控制控制单元信令之前,所述方法还包括:
    接收配置消息,所述配置消息用于指示终端所述全部服务小区中每个服务小区的带宽以及载频位置;
    利用所述带宽以及所述载频位置,确定同一频段上的全部服务小区。
  10. 一种传输配置状态激活方法,其特征在于,应用于网络设备,包括:
    在终端的同一频段上的全部服务小区中选择一个第一服务小区,所述第一服务小区支持发送媒体接入控制控制单元信令;
    利用选择的一个第一服务小区发送第一媒体接入控制控制单元信令,所述第一媒体接入控制控制单元信令用于激活第一传输配置状态。
  11. 根据权利要求10所述的传输配置状态激活方法,其特征在于,在终端的同一频段上的全部服务小区中选择一个第一服务小区,包括:
    在终端的同一频段上的全部服务小区中随机选择一个第一服务小区;或
    在终端的同一频段上的全部服务小区中选择指定第一服务小区。
  12. 根据权利要求11所述的传输配置状态激活方法,其特征在于,所述指定第一服务小区为所述全部服务小区中载频为最低频的服务小区;或
    所述指定第一服务小区为所述全部服务小区中的主辅小区或主小区;或
    所述指定第一服务小区为非授权频谱上检测到信道空闲的服务小区。
  13. 根据权利要求10所述的传输配置状态激活方法,其特征在于,利用选择的一个第一服务小区发送媒体接入控制控制单元信令,包括:
    利用选择的第一服务小区上的初始带宽部分或激活带宽部分发送媒体接入控制控制单元信令。
  14. 根据权利要求10至13中任意一项所述的传输配置状态激活方法,其特征在于,所述方法还包括:
    发送第二媒体接入控制控制单元信令,所述第二媒体接入控制控制单元信令用于激活第二传输配置状态。
  15. 根据权利要求14所述的传输配置状态激活方法,其特征在于,发送第二媒体接入控制控制单元信令之前,所述方法还包括:
    确定发生如下事件之一或组合:
    终端信道条件发生变化、终端发生带宽部分切换、终端发生辅小区切换、终端发生主小区或主辅小区切换、以及终端发生服务小区波束失败。
  16. 根据权利要求10所述的传输配置状态激活方法,其特征在于,所述方法还包括:
    发送配置消息,所述配置消息用于通知终端所述全部服务小区中每个服务小区的带宽以及载频位置。
  17. 根据权利要求10所述的传输配置状态激活方法,其特征在于,所述第一传输配置状态,包括:
    物理下行控制信道的传输配置状态或物理下行共享信道的传输配置状态集合。
  18. 一种传输配置状态激活装置,其特征在于,应用于终端,包括:
    接收单元,被配置为接收第一媒体接入控制控制单元信令,所述第一媒体接入控制控 制单元信令用于激活第一传输配置状态;
    处理单元,被配置为将所述第一传输配置状态作为同一频段上的全部服务小区的传输配置状态。
  19. 根据权利要求18所述的传输配置状态激活装置,其特征在于,所述第一传输配置状态为物理下行控制信道的传输配置状态;
    所述处理单元还被配置为:确定是否发生带宽部分切换;
    所述接收单元还被配置为:在所述处理单元在任意服务小区上确定发生带宽部分切换,且所述接收单元未接收到第二媒体接入控制控制单元信令时,在切换后的带宽部分上,利用第一传输配置状态接收在切换后的带宽部分上所发送的物理下行控制信道;
    所述第二媒体接入控制控制单元信令用于激活第二传输配置状态。
  20. 根据权利要求18所述的传输配置状态激活装置,其特征在于,所述第一传输配置状态为物理下行共享信道的传输配置状态集合;
    所述处理单元还被配置为:确定是否发生带宽部分切换;
    所述接收单元还被配置为:在所述处理单元在任意服务小区上确定发生带宽部分切换,且所述接收单元未接收到第二媒体接入控制控制单元信令时,接收下行控制信令,并利用所述下行控制信令指示的传输配置状态接收在所述切换后的带宽部分上所发送的物理下行共享信道;
    所述第二媒体接入控制控制单元信令用于激活第二传输配置状态,所述下行控制信令用于指示所述第一传输配置状态中的一个传输配置状态。
  21. 根据权利要求18所述的传输配置状态激活装置,其特征在于,所述处理单元还被配置为:
    确定是否发生辅小区切换;
    在确定发生辅小区切换时,在切换后的辅小区上复用切换前的辅小区上的第一传输配置状态。
  22. 根据权利要求18所述的传输配置状态激活装置,其特征在于,
    所述处理单元还被配置为:确定是否发生主小区或主辅小区切换;
    所述接收单元还被配置为:在所述处理单元确定发生主小区或主辅小区切换时,接收第二媒体接入控制控制单元信令,并将所述全部服务小区的第一传输配置状态更新为所述第二媒体接入控制控制单元信令激活的第二传输配置状态。
  23. 根据权利要求18所述的传输配置状态激活装置,其特征在于,所述处理单元还被配置为:
    确定是否存在发生波束失败的服务小区;
    在确定存在发生波束失败的服务小区时,重新确定所述发生波束失败的服务小区的传输配置状态,并在所述接收单元接收到第二媒体接入控制控制单元信令激活的第二传输配置状态之前,
    将所述全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态更新为发生波束失败的服务小区重新确定的传输配置状态,或者将所述全部服务小区中除发生波束失败的服务小区以外的其它服务小区的传输配置状态保持不变。
  24. 根据权利要求19、20、或23所述的传输配置状态激活装置,其特征在于,所述接收单元还被配置为:
    接收第二媒体接入控制控制单元信令,所述第二媒体接入控制控制单元信令用于激活第二传输配置状态;
    所述处理单元还被配置为:在所述接收单元接收到第二媒体接入控制控制单元信令时,将所述第一传输配置状态更新为所述第二传输配置状态。
  25. 根据权利要求18至23中任意一项所述的传输配置状态激活装置,其特征在于,所述接收单元被配置为采用如下方式接收第一媒体接入控制控制单元信令:
    利用确定的第一服务小区的初始带宽部分或激活带宽部分来接收第一媒体接入控制控制单元信令。
  26. 根据权利要求18所述的传输配置状态激活装置,其特征在于,所述接收单元还被配置为:接收配置消息,所述配置消息用于指示终端所述全部服务小区中每个服务小区的带宽以及载频位置;
    所述处理单元还被配置为:利用所述带宽以及所述载频位置,确定同一频段上的全部服务小区。
  27. 一种传输配置状态激活装置,其特征在于,应用于网络设备,包括:
    处理单元,被配置为在终端的同一频段上的全部服务小区中选择一个第一服务小区,所述第一服务小区支持发送媒体接入控制控制单元信令;
    发送单元,被配置为利用选择的一个第一服务小区发送第一媒体接入控制控制单元信令,所述第一媒体接入控制控制单元信令用于激活第一传输配置状态。
  28. 根据权利要求27所述的传输配置状态激活装置,其特征在于,所述处理单元被配置为采用如下方式在终端的同一频段上的全部服务小区中选择一个第一服务小区:
    在终端的同一频段上的全部服务小区中随机选择一个第一服务小区;或
    在终端的同一频段上的全部服务小区中选择指定第一服务小区。
  29. 根据权利要求28所述的传输配置状态激活装置,其特征在于,所述指定第一服务小区为所述全部服务小区中载频为最低频的服务小区;或
    所述指定第一服务小区为所述全部服务小区中的主辅小区或主小区;或
    所述指定第一服务小区为非授权频谱上检测到信道空闲的服务小区。
  30. 根据权利要求27所述的传输配置状态激活装置,其特征在于,所述发送单元被配置为采用如下方式利用选择的一个第一服务小区发送媒体接入控制控制单元信令:
    利用选择的第一服务小区上的初始带宽部分或激活带宽部分发送媒体接入控制控制单元信令。
  31. 根据权利要求27至30中任意一项所述的传输配置状态激活装置,其特征在于,所述发送单元还被配置为:
    发送第二媒体接入控制控制单元信令,所述第二媒体接入控制控制单元信令用于激活第二传输配置状态。
  32. 根据权利要求31所述的传输配置状态激活装置,其特征在于,所述处理单元还被配置为:
    在所述发送单元发送第二媒体接入控制控制单元信令之前,确定发生如下事件之一或组合:
    终端信道条件发生变化、终端发生带宽部分切换、终端发生辅小区切换、终端发生主小区或主辅小区切换、以及终端发生服务小区波束失败。
  33. 根据权利要求27所述的传输配置状态激活装置,其特征在于,所述发送单元还被配置为:
    发送配置消息,所述配置消息用于通知终端所述全部服务小区中每个服务小区的带宽以及载频位置。
  34. 根据权利要求27所述的传输配置状态激活装置,其特征在于,所述第一传输配置状态,包括:
    物理下行控制信道的传输配置状态或物理下行共享信道的传输配置状态集合。
  35. 一种传输配置状态激活装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至9中任意一项所述的传输配置状态激活方法。
  36. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行权利要求1至9中任意一项所述的传输配置状态激活方法。
  37. 一种传输配置状态激活装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求10至17中任意一项所述的传输配置状态激活方法。
  38. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求10至17中任意一项所述的传输配置状态激活方法。
PCT/CN2019/107036 2019-09-20 2019-09-20 传输配置状态激活方法、装置及存储介质 WO2021051402A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201980002021.8A CN110785958B (zh) 2019-09-20 2019-09-20 传输配置状态激活方法、装置及存储介质
CN202310333358.5A CN116367325A (zh) 2019-09-20 2019-09-20 传输配置状态激活方法、装置及存储介质
US17/641,338 US20220377770A1 (en) 2019-09-20 2019-09-20 Method and device for activating transmission configuration indicator state, and storage medium
JP2022517464A JP2022549174A (ja) 2019-09-20 2019-09-20 伝送構成状態アクティベーション方法、装置及び記憶媒体
BR112022004903A BR112022004903A2 (pt) 2019-09-20 2019-09-20 Método e dispositivo para ativar um estado de indicador de configuração de transmissão, e, meio de armazenamento de memória
EP19945986.8A EP4033813A4 (en) 2019-09-20 2019-09-20 TRANSMISSION CONFIGURATION STATE ENABLING METHOD AND APPARATUS, AND STORAGE MEDIA
PCT/CN2019/107036 WO2021051402A1 (zh) 2019-09-20 2019-09-20 传输配置状态激活方法、装置及存储介质
KR1020227011885A KR20220061199A (ko) 2019-09-20 2019-09-20 전송 구성 상태 활성화 방법, 장치 및 저장 매체
JP2024015926A JP2024050809A (ja) 2019-09-20 2024-02-05 伝送構成状態アクティベーション方法、装置及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107036 WO2021051402A1 (zh) 2019-09-20 2019-09-20 传输配置状态激活方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021051402A1 true WO2021051402A1 (zh) 2021-03-25

Family

ID=69394818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107036 WO2021051402A1 (zh) 2019-09-20 2019-09-20 传输配置状态激活方法、装置及存储介质

Country Status (7)

Country Link
US (1) US20220377770A1 (zh)
EP (1) EP4033813A4 (zh)
JP (2) JP2022549174A (zh)
KR (1) KR20220061199A (zh)
CN (2) CN116367325A (zh)
BR (1) BR112022004903A2 (zh)
WO (1) WO2021051402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510082B2 (en) * 2019-03-29 2022-11-22 Qualcomm Incorporated Beam indication reuse

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3863211A1 (en) * 2020-02-04 2021-08-11 Comcast Cable Communications LLC Resource management and control for wireless communications
EP4133787A4 (en) * 2020-04-08 2024-04-03 Apple Inc CONTROL MESSAGING FOR MULTIPLE BEAM COMMUNICATIONS
EP4066561A4 (en) 2020-05-20 2023-01-04 ZTE Corporation TRANSMISSION CONFIGURATION INDICATIONS (TCI) SWITCHING USING LISTEN BEFORE TALK (LBT) COUNTERS
US20220006600A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Bandwidth part switching by activation and signaling
CN116848934A (zh) * 2021-01-14 2023-10-03 苹果公司 用于增强的直接辅小区激活的方法
CN116996837A (zh) * 2021-03-16 2023-11-03 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
EP4362584A1 (en) * 2021-06-25 2024-05-01 Beijing Xiaomi Mobile Software Co., Ltd. Bwp indication method and apparatus, communication device, and storage medium
CN115915296A (zh) * 2021-08-06 2023-04-04 维沃移动通信有限公司 小区切换方法、装置、用户设备及存储介质
WO2023130394A1 (zh) * 2022-01-07 2023-07-13 富士通株式会社 系统信息的提供方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076560A (zh) * 2018-07-27 2018-12-21 北京小米移动软件有限公司 传输配置指示的配置方法及装置
CN109962765A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种通过pdsch传输无线信号的方法及装置
US20190230545A1 (en) * 2018-01-19 2019-07-25 Asustek Computer Inc. Method and apparatus for beam failure reporting under multicell configuration in a wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024268B (zh) * 2016-11-03 2023-04-18 中兴通讯股份有限公司 一种传输配置方法、传输配置确定方法、基站和终端
CN109788558A (zh) * 2017-11-14 2019-05-21 北京展讯高科通信技术有限公司 部分载波带宽激活/去激活方法、装置及基站
CN111757410B (zh) * 2018-02-11 2022-11-25 维沃移动通信有限公司 下行信道的接收方法、发送方法、终端和基站
JP6831040B2 (ja) * 2018-02-21 2021-02-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムでbwp又はビーム切り替えによって制御チャネルを構成する方法及び装置
EP3829251B1 (en) * 2018-07-25 2023-10-25 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962765A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种通过pdsch传输无线信号的方法及装置
US20190230545A1 (en) * 2018-01-19 2019-07-25 Asustek Computer Inc. Method and apparatus for beam failure reporting under multicell configuration in a wireless communication system
CN109076560A (zh) * 2018-07-27 2018-12-21 北京小米移动软件有限公司 传输配置指示的配置方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Enhancements on MIMO for NR", 3GPP DRAFT; RP-191953 SR FOR RAN_85_NR-EMIMO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 9 September 2019 (2019-09-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051782509 *
SONY: "Remaining issues on Rel.15 beam management", 3GPP DRAFT; R1-1810628, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051518034 *
ZTE: "Remaining issues on QCL", 3GPP DRAFT; R1-1805836 REMAINING ISSUES ON QCL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051441056 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510082B2 (en) * 2019-03-29 2022-11-22 Qualcomm Incorporated Beam indication reuse
US11540158B2 (en) 2019-03-29 2022-12-27 Qualcomm Incorporated Avoiding TCI reselection due to active BWP switching

Also Published As

Publication number Publication date
BR112022004903A2 (pt) 2022-06-07
JP2022549174A (ja) 2022-11-24
JP2024050809A (ja) 2024-04-10
CN110785958A (zh) 2020-02-11
KR20220061199A (ko) 2022-05-12
US20220377770A1 (en) 2022-11-24
EP4033813A4 (en) 2022-09-14
EP4033813A1 (en) 2022-07-27
CN110785958B (zh) 2023-05-02
CN116367325A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2021051402A1 (zh) 传输配置状态激活方法、装置及存储介质
US20230081293A1 (en) Data transmission method and data transmission apparatus
WO2020215335A1 (zh) 天线面板的应用方法、装置及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2022141405A1 (zh) 资源集合配置方法、装置及存储介质
WO2021007787A1 (zh) 资源分配方法、装置及存储介质
WO2021007786A1 (zh) 数据传输方法、装置及存储介质
US20230198720A1 (en) Method for frequency resource authorization and device
WO2021087786A1 (zh) 波束失败请求资源分配方法、装置及存储介质
EP3836433A1 (en) Monitoring method and apparatus, device, and storage medium
KR20240018656A (ko) 빔 실패 회복 방법, 장치 및 저장 매체
US11431366B2 (en) Data transmission method and device
RU2793334C1 (ru) Способ и устройство для активирования состояния индикатора конфигурации передачи и носитель информации
WO2024092584A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024098433A1 (zh) 一种通信方法、装置、设备及存储介质
WO2023010465A1 (zh) 上行pusch的开环功率控制方法、装置及存储介质
WO2024087258A1 (zh) 波束失败检测参考信号资源的确定方法、装置及存储介质
US20240163804A1 (en) Open-loop power control method and apparatus for pusch, and storage medium
WO2024082289A1 (zh) 一种监听或发送信息的方法、装置、设备以及存储介质
US20240057171A1 (en) Method and apparatus for configuring random access parameter, and storage medium
WO2022077234A1 (zh) 下行控制信息调度方法、装置及存储介质
WO2023206036A1 (zh) 一种随机接入的方法、装置、设备及存储介质
WO2023245503A1 (zh) 一种监听方法、发送方法、装置、设备以及可读存储介质
WO2023198026A1 (zh) 发射功率确定方法、装置、终端、网络侧设备及存储介质
WO2021232308A1 (zh) 信息发送方法、信息发送装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004903

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227011885

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019945986

Country of ref document: EP

Effective date: 20220420

ENP Entry into the national phase

Ref document number: 112022004903

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220316