WO2020019218A1 - 传输配置方法及装置 - Google Patents

传输配置方法及装置 Download PDF

Info

Publication number
WO2020019218A1
WO2020019218A1 PCT/CN2018/097103 CN2018097103W WO2020019218A1 WO 2020019218 A1 WO2020019218 A1 WO 2020019218A1 CN 2018097103 W CN2018097103 W CN 2018097103W WO 2020019218 A1 WO2020019218 A1 WO 2020019218A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
base station
tci
receiving
terminal
Prior art date
Application number
PCT/CN2018/097103
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/262,694 priority Critical patent/US11546867B2/en
Priority to CN201880001657.6A priority patent/CN109076593B/zh
Priority to PCT/CN2018/097103 priority patent/WO2020019218A1/zh
Priority to EP18927785.8A priority patent/EP3829251B1/en
Publication of WO2020019218A1 publication Critical patent/WO2020019218A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0891Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission configuration method and device.
  • a management process for a beam is started after a terminal completes random access with a base station and an RRC (Radio Resource Control) connection.
  • RRC Radio Resource Control
  • the base station must wait for a beam measurement configuration, beam measurement, and beam measurement report before configuring the TCI (Transmission Configuration Configuration Indication) status set for the terminal.
  • TCI Transmission Configuration Configuration Indication
  • the delay of the TCI configuration is increased, so that the terminal cannot use the most appropriate receiving beam in time, which further affects the throughput of the terminal.
  • the embodiments of the present disclosure provide a transmission configuration method and device.
  • a transmission configuration method is provided.
  • the method is used for a terminal, and the base station sends one or more synchronization signal blocks SSB to the terminal.
  • the method includes:
  • the detecting one or more first SSBs capable of triggering random access includes:
  • the other SSB is also determined as the first SSB.
  • the detecting one or more first SSBs capable of triggering random access includes:
  • the another SSB is also determined as the first SSB.
  • the specified received power condition is that the SSB received power is greater than a specified power threshold; the method further includes:
  • the specified stop condition includes at least one of the following:
  • a specified number of the first SSBs are detected.
  • the sending a first message corresponding to each of the first SSBs to initiating random access to the base station includes:
  • the method further includes:
  • the receiving a second message sent by the base station for random access feedback for the second SSB includes:
  • the specified time period includes a time period corresponding to each of the first SSBs for receiving random access feedback.
  • the method further includes:
  • Radio resource control RRC signaling sent by the base station where the RRC signaling includes a first transmission configuration indication TCI state set configured by the base station for the terminal to receive a PDCCH and / or A second TCI state set, where the first TCI state set includes a first correspondence between a TCI state identifier for receiving a PDCCH and a SSB identifier, and the second TCI state set includes a TCI state identifier for receiving a PDSCH and The second correspondence relationship identified by the SSB.
  • TCI state set configured by the base station for the terminal to receive a PDCCH and / or A second TCI state set
  • the first TCI state set includes a first correspondence between a TCI state identifier for receiving a PDCCH and a SSB identifier
  • the second TCI state set includes a TCI state identifier for receiving a PDSCH and The second correspondence relationship identified by the SSB.
  • the first TCI status set includes at least two TCI status identifiers; the method further includes:
  • the first MAC CE signaling is used to activate a first TCI status identifier, and the first TCI status identifier is the base station from the first TCI status set A selected TCI status identifier, which is used by the terminal to determine a receiving beam to be used when receiving a PDCCH from a base station;
  • the first receiving beam that is the same as the SSB designated or corresponding to the receiving the first SSB identifier is used.
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the method further includes:
  • the second MAC CE signaling being used to activate a second number of TCI status identifiers for PDSCH reception, the second number of TCI status identifiers being the base station And selecting from a first number of TCI status identifiers in the second TCI status set.
  • the second number is greater than 1; the method further includes:
  • DCI signaling of downlink control information sent by the base station where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier is the second TCI status identifier A TCI status identifier selected from the second number of TCI status identifiers;
  • a second receiving beam that is the same as the SSB designated or corresponding to the receiving the second SSB identifier is used.
  • a method for a base station the base station sending one or more SSBs to a terminal, the method including:
  • configuring the TCI state set for the terminal according to each of the first messages includes:
  • the terminal Configuring the terminal with a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH according to each of the first messages, where the first TCI state set includes A first correspondence between a TCI status identifier and an SSB identifier, and the second TCI status set includes a second correspondence between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the method further includes:
  • a fourth message is sent to the terminal to indicate that the contention resolution is successful.
  • the method further includes:
  • the first TCI status set includes at least two TCI status identifiers; the method further includes:
  • TCI status identifier from the first TCI status set, and the selected TCI status identifier is a first TCI status identifier
  • the first MAC CE signaling is used to activate the first TCI status identifier, and the first TCI status identifier is used by a terminal to determine a receiving beam to be used when receiving a PDCCH from a base station;
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the method further includes:
  • the second number is greater than 1; the method further includes:
  • the DCI signaling indicates a second TCI status identifier received by the PDSCH for the DCI signaling scheduling
  • the second TCI status identifier is the second TCI status identifier from the second number of TCI status identifiers of the base station.
  • a transmission configuration apparatus is provided.
  • the apparatus is used for a terminal.
  • the base station sends one or more SSBs to the terminal.
  • the apparatus includes:
  • a first detection module configured to detect one or more first SSBs capable of triggering random access
  • a first sending module configured to send to the base station a first message corresponding to each of the first SSBs for initiating random access, so that the base station configures the terminal according to each of the first messages
  • the transmission configuration indicates the set of TCI states.
  • the first detection module includes:
  • a first detection sub-module configured to determine the first SSB as the first SSB when a first SSB that meets a specified receive power condition is detected within a specified detection window;
  • the second detection sub-module is configured to, when any other SSB that meets the specified received power condition is detected within the specified detection window, the other SSB is also determined as the first SSB.
  • the first detection module includes:
  • a third detection sub-module configured to determine the first SSB as the first SSB when a first SSB that meets a specified receive power condition is detected within a specified detection window;
  • a fourth detection sub-module is configured to, when any other SSB that satisfies the specified received power condition is detected within the specified detection window, calculate the difference between the received power of the first SSB and the specified offset value. Difference between
  • the first determining sub-module is configured to determine the other SSB as the first SSB when the received power of the another SSB is greater than the difference.
  • the specified received power condition is that the SSB received power is greater than a specified power threshold; the apparatus further includes:
  • the second detection module is configured to stop the SSB detection when it is detected that a specified stop condition is met, the specified stop condition includes at least one of the following:
  • a specified number of the first SSBs are detected.
  • the first sending module includes:
  • a second determining submodule configured to determine, for any of the first SSBs, a random access time-frequency resource and a random access preamble corresponding to the first SSB;
  • the sending submodule is configured to send the first message corresponding to the first SSB to the base station through the random access time-frequency resource corresponding to the first SSB, and the first message corresponding to the first SSB includes the first SSB. Corresponding random access preamble.
  • the apparatus further includes:
  • a first receiving module configured to receive a second message sent by the base station for random access feedback for a second SSB, where the second SSB is any one of the first SSBs;
  • a second sending module configured to send a third message to the base station according to the second message, which is used to characterize contention resolution
  • the second receiving module is configured to receive a fourth message sent by the base station and used to indicate successful contention resolution.
  • the first receiving module includes:
  • the receiving sub-module is configured to receive the second message within a specified time period, where the specified time period includes a time period corresponding to each of the first SSBs for receiving random access feedback.
  • the apparatus further includes:
  • a third receiving module is configured to receive radio resource control RRC signaling sent by the base station at the same time or after receiving a fourth message sent by the base station to indicate successful contention resolution.
  • the first TCI state set for receiving the PDCCH configured by the base station for the terminal and / or the second TCI state set for receiving the PDSCH is included, and the first TCI state set includes the first TCI state set.
  • a first correspondence between the TCI status identifier and the SSB identifier, and the second TCI status set includes a second correspondence between the TCI status identifier and the SSB identifier for receiving a PDSCH.
  • the first TCI status set includes at least two TCI status identifiers; the apparatus further includes:
  • a fourth receiving module is configured to receive a first MAC CE signaling sent by the base station, where the first MAC CE signaling is used to activate a first TCI status identifier, where the first TCI status identifier is A TCI status identifier selected from the first TCI status set and used to determine a receiving beam that the terminal needs to use when receiving a PDCCH from a base station;
  • a first determining module configured to determine a first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship
  • the first processing module is configured to use, when receiving a PDCCH, a first receiving beam that is the same as an SSB designated or corresponding to the receiving the first SSB identifier.
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the device further includes:
  • a fifth receiving module configured to receive second MAC CE signaling sent by the base station, where the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception, the second number The TCI status identifiers are selected by the base station from a first number of TCI status identifiers in the second TCI status set.
  • the device further includes:
  • a sixth receiving module is configured to receive downlink control information DCI signaling sent by the base station, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI
  • the status identifier is a TCI status identifier selected by the base station from the second number of TCI status identifiers;
  • a second determining module configured to determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship
  • the second processing module is configured to use a second receiving beam that is the same as receiving the SSB designated or corresponding to the SSB when receiving the PDSCH scheduled by the DCI signaling.
  • a transmission configuration apparatus is provided.
  • the apparatus is used for a base station.
  • the base station sends one or more SSBs to a terminal.
  • the apparatus includes:
  • the first message receiving module is configured to receive one or more first messages sent by the terminal for initiating random access, where the first message is the first message detected by the terminal and capable of triggering random access.
  • the first message is the first message detected by the terminal and capable of triggering random access.
  • the configuration module is configured to configure a TCI state set for the terminal according to each of the first messages.
  • the configuration module includes:
  • a configuration submodule configured to configure, according to each of the first messages, a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH, the first TCI state set It includes a first correspondence between a TCI status identifier and an SSB identifier for receiving a PDCCH, and the second TCI state set includes a second correspondence between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the apparatus further includes:
  • a second message sending module configured to send, according to each of the first messages, a second message corresponding to a random access feedback corresponding to the first message of a second SSB to the terminal, where the second SSB is each of the One of the first SSBs corresponding to each of the first messages;
  • a third message receiving module configured to receive a third message sent by the terminal and used to characterize contention resolution
  • a fourth message sending module is configured to send a fourth message to the terminal indicating that the contention resolution is successful when it is determined that the contention resolution is successful.
  • the apparatus further includes:
  • An adding module configured to add the first TCI state set and / or the second TCI state set to RRC signaling at the same time or after sending a fourth message to the terminal to indicate successful contention resolution ;
  • a first signaling sending module is configured to send the RRC signaling to the terminal.
  • the first TCI status set includes at least two TCI status identifiers; the apparatus further includes:
  • a first selection module configured to select a TCI status identifier from the first TCI status set, where the selected TCI status identifier is a first TCI status identifier
  • a first generation module is configured to generate a first MAC CE signaling, where the first MAC CE signaling is used to activate the first TCI status identifier, and the first TCI status identifier is used by a terminal to determine to receive A receiving beam to be used in PDCCH;
  • a second signaling sending module is configured to send the first MAC CE signaling to the terminal.
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the device further includes:
  • a second selection module configured to select a second number of TCI status identifiers for PDSCH reception from a first number of TCI status identifiers in the second TCI status set;
  • a second generation module configured to generate a second MAC CE signaling, where the second MAC CE signaling is used to activate the second number of TCI status identifiers for PDSCH reception;
  • a third signaling sending module is configured to send the second MAC CE signaling to the terminal.
  • the device further includes:
  • a third generation module is configured to generate DCI signaling, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier is the base station A TCI status identifier selected from the second number of TCI status identifiers;
  • a fourth signaling sending module is configured to send the DCI signaling to the terminal.
  • a non-transitory computer-readable storage medium stores a computer program, and the computer program is configured to execute the transmission configuration method according to the first aspect.
  • a non-transitory computer-readable storage medium stores a computer program, and the computer program is configured to execute the transmission configuration method according to the second aspect.
  • a transmission configuration device the device is used for a terminal, the base station sends one or more SSBs to the terminal, and the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a transmission configuration apparatus is provided.
  • the apparatus is used for a base station, and the base station sends one or more SSBs to a terminal.
  • the apparatus includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a terminal in the present disclosure When a terminal in the present disclosure detects one or more first SSBs capable of triggering random access, it can send a first message corresponding to each first SSB to the base station to initiate random access, so that the base station can The first message configures the TCI state set for the terminal, thereby improving the efficiency of transmission configuration and reducing the delay.
  • the terminal in the present disclosure can receive one or more first messages sent by the terminal for initiating random access, and configure a TCI state set for the terminal according to each first message, thereby improving the efficiency of transmission configuration and reducing Delay.
  • Fig. 1 is a flow chart showing a transmission configuration method according to an exemplary embodiment
  • Fig. 2 is an application scenario diagram of a transmission configuration method according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing a transmission configuration according to an exemplary embodiment
  • Fig. 4 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 5 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 6 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 7 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 8 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 9 is a flow chart showing a transmission configuration method according to an exemplary embodiment
  • Fig. 10 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 11 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 12 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 13 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 14 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 15 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment
  • Fig. 16 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 17 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 18 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 19 is a block diagram illustrating another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 20 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 21 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 22 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 23 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 24 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 25 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 26 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment
  • Fig. 27 is a block diagram illustrating another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 28 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 29 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 30 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 31 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 32 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 33 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment
  • Fig. 34 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the terms first, second, third, etc. may be used in this disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the indication information may also be referred to as the second information, and similarly, the second information may also be referred to as the indication information.
  • the word "if” as used herein can be interpreted as “at” or "when” or "in response to determination”.
  • Fig. 1 is a flowchart illustrating a transmission configuration method according to an exemplary embodiment
  • Fig. 2 is an application scenario diagram of a transmission configuration method according to an exemplary embodiment
  • the transmission configuration method may be used for a terminal
  • the terminal may be a UE (User Equipment)
  • the base station sends one or more SSBs (Synchronization Signal Block) to the terminal, and these SSBs may be sent to the terminal by the base station based on different beams; for example,
  • the transmission configuration method may include the following steps 110-120:
  • step 110 one or more first SSBs capable of triggering random access are detected.
  • the first SSB may specify an SSB capable of triggering random access.
  • the received power of the first SSB is greater than a specified power threshold, that is, for the terminal, the signal strength of the first SSB Better, it can guarantee to provide better network services for the terminal.
  • the terminal Because the terminal detects the different beam-based SSBs sent by the base station, it determines which SSBs can trigger random access and which SSBs cannot trigger random access according to the actual situation. As for how to determine which SSBs can trigger random access, there are many determination methods, including but not limited to the following two determination methods:
  • Method 1 Determine all SSBs that meet the specified receive power conditions as the first SSB that can trigger random access. In other words, the received power of the first SSB only needs to meet a specified received power condition.
  • the specific implementation methods include:
  • the first SSB When the first SSB that meets the specified reception power condition is detected within the specified detection window, the first SSB may be determined as the first SSB;
  • the other SSB may also be determined as the first SSB.
  • Method 2 The first SSB that meets the specified receive power condition is determined as the first SSB that can trigger random access, and other SSBs that meet the specified receive power condition need to be greater than the received power of the first SSB and the specified offset value. Can be determined as the first SSB that can trigger random access. That is, the received power of the first first SSB may meet the specified received power condition, and the other first SSBs not only meet the specified received power condition, but also cannot be much lower than the received power of the first first SSB.
  • the specific implementation methods include:
  • the first SSB When the first SSB that meets the specified receiving power condition is detected within the specified detection window, the first SSB may be determined as the first SSB;
  • the other SSB is also determined as the first SSB.
  • the specified received power conditions in the above manners 1 and 2 may be that the received power of the terminal on the SSB is greater than the specified power threshold, that is, when the detected received power of the SSB must be greater than the specified power threshold, the Only the SSB can be the first SSB that can trigger random access.
  • the specified power threshold and the specified offset value may be notified by the base station to the terminal through a system message.
  • step 110 is performed, and the transmission configuration method may further include:
  • the specified stop condition may include at least one of the following:
  • all the SSBs to be detected in the above (3-1) may be all the SSBs sent by the base station, for example, all the SSBs sent by the base station are detected at least once (since these SSBs are sent periodically, then a period of detection Time must ensure that all SSBs sent by the base station are detected at least once);
  • the specified number in (3-2) above may be prescribed by the communication protocol, or may be notified by the base station to the terminal through a system message.
  • the specified quantity is 64.
  • step 120 a first message corresponding to each first SSB for initiating random access is sent to the base station, so that the base station configures a TCI state set for the terminal according to each first message.
  • the first message corresponding to the first SSB may include a random access preamble corresponding to the first SSB.
  • step 120 when step 120 is performed, the following implementation manners may be specifically adopted:
  • the first message corresponding to the first SSB is sent to the base station through the random access time-frequency resource corresponding to the first SSB, and the first message corresponding to the first SSB includes the random access corresponding to the first SSB. Enter the preamble.
  • a base station and a terminal are included.
  • the base station sends one or more SSBs to the terminal.
  • the terminal sends to the base station the first corresponding one of the first SSBs for initiating random access.
  • the terminal sends Msg.1-i corresponding to SSB # i, Msg.1-j corresponding to SSB # j, Msg.1-k corresponding to SSB # k, and SSB # m corresponding to the base station.
  • Msg.1-m after receiving one or more first messages sent by the terminal for initiating random access, the base station configures a TCI state set for the terminal according to each first message.
  • the base station receives Msg.1-i.
  • the base station knows that the terminal detects that the received power on SSB # i is relatively low. OK, so only send the corresponding random access preamble on the time-frequency resource corresponding to SSB # i, then the base station can determine a TCI status, such as TCI # 0, corresponding to SSB # i, and TCI # 0 corresponding QCL (Quasi-co-location, quasi co-location) type is type D, type D is used for spatial Rx parameters (beam indication), as shown in Table 1 TCI state set:
  • a first message corresponding to each first SSB for initiating random access can be sent to the base station, so that the base station can Each first message configures the TCI state set for the terminal, thereby improving the efficiency of transmission configuration and reducing delay.
  • Fig. 4 is a flow chart showing another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used for a terminal and is based on the method shown in Fig. 1. As shown in Fig. 4, it may include: The following steps 410-430:
  • step 410 a second message (as shown in Msg. 2 shown in FIG. 3) for random access feedback for the second SSB sent by the base station is received.
  • the second SSB is any one of the first SSBs.
  • the base station only responds to a second message, and may reply to any one of the plurality of first SSBs.
  • the base station may determine according to certain rules. For example, the received power of each first message is compared, and the first SSB corresponding to the first message with the strongest received power is selected as the second SSB; or the first SSB corresponding to the earliest received first message is selected as the second SSB.
  • the second message includes a temporary C-RNTI (Cell Radio Network Temporary Identifier).
  • the temporary C-RNTI is a dynamic identifier assigned by the base station to the terminal, and the base station will configure the terminal.
  • PUSCH Physical Uplink Shared Channel
  • the second message when step 410 is performed, may be received within a specified time period, and the specified time period includes a time period for receiving random access feedback corresponding to the first message corresponding to each first SSB.
  • the specified time period starts from the start time of the time period for random access feedback corresponding to the first message corresponding to the first first SSB, and ends at the time corresponding to the first message corresponding to the last first SSB. Ends at the end of the time period of the random access feedback.
  • the third message may be sent before the end of the specified time period, instead of waiting to send the third message after the end of the specified time period.
  • the terminal sends Msg.1-i corresponding to SSB # i, Msg.1-j corresponding to SSB # j, Msg.1-k corresponding to SSB # k, and Msg corresponding to SSB # m to the base station.
  • the terminal After 1-m (that is, the terminal sends 4 first messages to the base station), it will be in window # 1 of Msg.2-i, window # 2 of Msg.2-j, and window of Msg.2-k # 3 ⁇ Msg.2-m's window # 4
  • These windows receive Msg.2 returned by the base station (that is, if the terminal does not receive Msg.2 in window # 1 of Msg.2-i, Receive Msg.2 within the time period corresponding to window # 2 of Msg.2-j for receiving random access feedback, if still not received, still receive the random corresponding to window # 3 of Msg.2-k Receive Msg.2 within the time period of access feedback, and so on).
  • step 420 a third message (as shown in FIG. 3) indicating the contention resolution is sent to the base station according to the second message.
  • the terminal sends information including the temporary C-RNTI on the PUSCH resource allocated in the second message.
  • step 430 a fourth message (Msg. 4 shown in FIG. 3) sent by the base station to indicate successful contention resolution is received.
  • the base station sends a PDSCH (Physical Downlink Shared Channel) to the terminal, and the terminal learns that the random access is successful.
  • PDSCH Physical Downlink Shared Channel
  • the second SSB is any of the first SSBs, and is sent to the base station for characterizing competition according to the second message.
  • Reliability also improves the quality of service provided by the base station to the terminal.
  • Fig. 5 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a terminal and is based on the method shown in Fig. 4 while performing step 430 or after As shown in FIG. 5, the transmission configuration method may further include the following step 510:
  • step 510 RRC signaling sent by the base station is received, and the RRC signaling includes a first TCI (Transmission Configuration Configuration Indication) configured by the base station for the terminal to receive a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel). Indication) state set and / or a second TCI state set for receiving PDSCH.
  • the first TCI state set includes a first correspondence between a TCI state identifier and an SSB identifier for receiving a PDCCH
  • the second TCI state set includes a second correspondence between a TCI state identifier and an SSB identifier for receiving a PDSCH.
  • the first correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDCCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDCCH is type D, which is used for spatial Rx parameters (beam indication).
  • the second correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDSCH is type D, which is used for spatial Rx parameters, that is, beam indication.
  • the base station may send the RRC signaling carrying the first TCI status set and / or the second TCI status set while sending the fourth message; it may also send the first TCI status set after sending the fourth message. And / or RRC signaling for the second TCI state set. Therefore, the terminal may receive the RRC signaling carrying the first TCI status set and / or the second TCI status set while receiving the fourth message; or after receiving the fourth message, the terminal may receive the RRC signaling RRC signaling for a TCI state set and / or a second TCI state set.
  • the first TCI status set or the second TCI status set configured by the base station for the terminal may include only one TCI status identifier, or may include multiple TCI status identifiers. If only one TCI status identifier is included, when receiving a PDCCH or receiving a PDSCH, the terminal may directly use the same receiving beam as specified by the corresponding SSB identifier or the corresponding SSB when receiving the TCI status identifier; if multiple TCI status identifiers are included , When receiving the PDCCH or receiving the PDSCH, the terminal also needs to receive the TCI status identifier activated or indicated by the base station again (see the embodiments shown in FIG. 6 and FIG. 7).
  • the RRC signaling sent by the base station is received, and the RRC signaling includes a terminal configured by the base station for receiving the PDCCH.
  • the first TCI state set and / or the second TCI state set for receiving PDSCH thereby improving the reliability of receiving the TCI state set and also avoiding delay.
  • Fig. 6 is a flow chart showing another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in Fig. 5 in the first TCI state set. Including at least two TCI status identifiers; as shown in FIG. 6, the transmission configuration method may further include the following steps 610-630:
  • a first MAC CE signaling sent by a base station is received, and the first MAC CE signaling is used to activate a first TCI status identifier.
  • the first TCI status identifier is selected by the base station from the first TCI status set.
  • a TCI status identifier is used by the terminal to determine a receiving beam to be used when receiving a PDCCH from a base station.
  • the first MAC CE signaling is used to activate a first TCI status identifier.
  • the first TCI status set includes 64 TCI status identifiers, and the base station may select one of the 64 TCI status identifiers as the first TCI status identifier.
  • a first SSB identifier corresponding to the first TCI status identifier is determined according to the first correspondence.
  • the first correspondence relationship is located in a first TCI state set.
  • step 630 when receiving the PDCCH, the same first receiving beam as the SSB designated or corresponding to the receiving first SSB identification is used.
  • the first MAC CE signaling is used to activate the first TCI status identifier, which is selected by the base station from the first TCI status set. And determine the first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship, and use the same first receiving beam as the SSB designated or corresponding to the first SSB identifier when receiving the PDCCH, thereby realizing the use of
  • the transmission configuration received for the PDCCH also improves the reliability of the transmission configuration.
  • Fig. 7 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in Fig. 5 in the second TCI state set. Including a first number of TCI status identifiers, the first number is greater than one; as shown in FIG. 7, the transmission configuration method may further include the following step 710:
  • step 710 a second MAC CE signaling sent by the base station is received, and the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception, where the second number of TCI status identifiers are Selected from the first number of TCI status identifiers in the second TCI status set.
  • the second number is smaller than the first number.
  • the first number is 64 and the second number is 8.
  • the base station can select 8 from 64 TCI status identifiers and use the second MAC CE signaling to inform the terminal.
  • the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception.
  • the second number of TCI status identifiers is The base station selects from the first number of TCI status identifiers, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • FIG. 8 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in FIG. 7, where the second number is greater than 1; As shown in FIG. 8, the transmission configuration method may further include the following steps 810-830:
  • step 810 DCI (Downlink Control Information) signaling sent by the base station is received, and the DCI signaling indicates a second TCI status identifier for the PDSCH reception used for the DCI signaling scheduling, and the second TCI status.
  • the identifier is a TCI status identifier selected by the base station from the second number of TCI status identifiers.
  • the second number is greater than one.
  • the second quantity is 8.
  • the base station may select one of the eight TCI status identifiers as the second TCI status identifier.
  • a second SSB identifier corresponding to the second TCI status identifier is determined according to the second correspondence.
  • the second correspondence relationship is located in a second TCI state set.
  • step 830 when receiving the PDSCH scheduled by the DCI signaling, a second receiving beam that is the same as the SSB designated or corresponding to the receiving second SSB identifier is used.
  • the DCI signaling indicates the second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is the second number from the base station.
  • a TCI status identifier selected from the TCI status identifiers, and determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship, and specify and use the second SSB identifier when receiving the PDSCH scheduled by the DCI signaling Or the same second receiving beam with the same SSB, thereby realizing the transmission configuration for PDSCH reception used for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • Fig. 9 is a flowchart illustrating a transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station, which sends one or more SSBs to a terminal, and these SSBs may be different based on different base stations.
  • the beam transmitted to the terminal is shown in FIG. 9.
  • the transmission configuration method may include the following steps 910-920:
  • step 910 one or more first messages (Msg.1) for initiating random access sent by the terminal are received, and the first messages correspond to the first SSBs that the terminal can detect to trigger random access. of.
  • the first SSB may specify an SSB determined by the terminal according to an actual situation and capable of triggering random access.
  • the first message corresponding to the first SSB may include a random access preamble corresponding to the first SSB.
  • a TCI status set is configured for the terminal according to each first message.
  • the TCI state set configured by the terminal may include a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH.
  • step 920 when step 920 is performed, the following implementation manners may be adopted:
  • the terminal Configuring the terminal with a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH according to each of the first messages, where the first TCI state set includes A first correspondence between a TCI status identifier and an SSB identifier, and the second TCI status set includes a second correspondence between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the first correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDCCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDCCH is type D, which is used for spatial Rx parameters, that is, beam indications, as shown in Table 1.
  • the second correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDSCH is type D, which is used for spatial Rx parameters, that is, beam indications, as shown in Table 1.
  • Fig. 10 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used in a base station and is based on the method shown in Fig. 9. As shown in Fig. 10, the transmission The configuration method may further include the following steps 1010-1030:
  • step 1010 a second message corresponding to the random access feedback corresponding to the first message of the second SSB is sent to the terminal according to each first message (as shown in Msg. 2 in FIG. 3), and the second SSB is each Each of the first messages corresponds to one of the first SSBs.
  • step 1020 a third message (see Msg. 3 shown in FIG. 3) sent by the receiving terminal for characterizing contention resolution is sent.
  • step 1030 when it is determined that the contention resolution is successful, a fourth message (as shown in FIG. 3) indicating the success of the contention resolution is sent to the terminal.
  • a second message corresponding to the random access feedback corresponding to the first message of the second SSB may be sent to the terminal according to each first message, where the second SSB is one of the first SSBs, Receive a third message sent by the terminal for characterizing the contention resolution, and when it is determined that the contention resolution is successful, send a fourth message for characterizing the contention resolution success to the terminal, so that the base station can better determine the relationship with the terminal according to each first message. Random access between them, thereby improving the reliability of random access, and also improving the quality of service provided by the base station to the terminal.
  • Fig. 11 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in Fig. 10, as shown in Fig. 11, At the same time as or after step 1030, the following steps 1110-1120 may be included:
  • the first TCI state set and / or the second TCI state set are added to the RRC signaling.
  • the first TCI state set is a TCI state set for receiving a PDCCH
  • the second TCI state set is used for receiving The TCI status set of the PDSCH.
  • step 1120 the RRC signaling is sent to the terminal.
  • the first TCI state set and / or the second TCI state set may be added to the RRC signaling, and RRC signaling is sent to the terminal, thereby improving the reliability of transmitting the TCI state set and also avoiding delay.
  • Fig. 12 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in Fig. 11.
  • the first TCI state set Including at least two TCI status identifiers; as shown in FIG. 12, the transmission configuration method may further include the following steps 1210-1230:
  • a TCI status identifier is selected from the first TCI status set, and the selected TCI status identifier is the first TCI status identifier.
  • a first MAC CE signaling is generated, and the first MAC CE signaling is used to activate a first TCI status identifier, and the first TCI status identifier is used by a terminal to determine a receiving beam to be used when receiving a PDCCH from a base station. .
  • step 1230 the first MAC CE signaling is sent to the terminal.
  • the first TCI status identifier is selected from the first TCI status set, and the first TCI status identifier is activated by using the first MAC CE signaling, so that it is used by the terminal to receive the PDCCH from the base station, thereby achieving The transmission configuration for PDCCH reception is improved, and the reliability of the transmission configuration is also improved.
  • Fig. 13 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in Fig. 11 in the second TCI state set. Including a first number of TCI status identifiers, the first number is greater than one; as shown in FIG. 13, the transmission configuration method may further include the following steps 1310 to 1330:
  • a second number of TCI status identifiers for PDSCH reception are selected from the first number of TCI status identifiers in the second TCI status set.
  • a second MAC CE signaling is generated, and the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception.
  • step 1330 the second MAC CE signaling is sent to the terminal.
  • the second MAC CE signaling is used to activate The second number of TCI status identifiers received by the PDSCH and the second MAC CE signaling are sent to the terminal, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • FIG. 14 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in FIG. 13, where the second number is greater than 1; As shown in FIG. 14, the transmission configuration method may further include the following steps 1410-1420:
  • step 1410 DCI signaling is generated, and the DCI signaling indicates a second TCI status identifier received by the PDSCH for scheduling the DCI signaling.
  • the second TCI status identifier is the second TCI status identifier from the base station. The selected TCI status identifier.
  • step 1420 DCI signaling is sent to the terminal.
  • the DCI signaling indicates a second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is a second number of TCI statuses from the base station.
  • a TCI status identifier selected from the identifiers and the DCI signaling is sent to the terminal, thereby realizing the transmission configuration for PDSCH reception for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • the present disclosure also provides an embodiment of a transmission configuration device.
  • Fig. 15 is a block diagram of a transmission configuration device according to an exemplary embodiment.
  • the device is used for a terminal.
  • the terminal may be a UE.
  • the base station sends one or more SSBs to the terminal.
  • the SSBs may be based on the base station. Different beams are sent to the terminal; and are used to execute the transmission configuration method shown in FIG. 1, as shown in FIG. 15, the transmission configuration device may include:
  • a first detection module 151 configured to detect one or more first SSBs capable of triggering random access
  • the first sending module 152 is configured to send, to the base station, first messages corresponding to each of the first SSBs for initiating random access, so that the base station is the terminal according to the first messages.
  • the configuration transmission configuration indicates the set of TCI states.
  • a first message corresponding to each first SSB for initiating random access can be sent to the base station, so that the base station can Each first message configures the TCI state set for the terminal, thereby improving the efficiency of transmission configuration and reducing delay.
  • the first detection module 151 may include:
  • a first detection sub-module 161 configured to determine the first SSB as the first SSB when a first SSB that meets a specified receive power condition is detected within a specified detection window;
  • the second detection sub-module 162 is configured to, when any other SSB that meets the specified received power condition is detected within the specified detection window, the other SSB is also determined as the first SSB. .
  • the first detection module 151 may include:
  • a third detection submodule 171 configured to determine the first SSB as the first SSB when a first SSB that meets a specified receive power condition is detected within a specified detection window;
  • a fourth detection submodule 172 configured to calculate the received power of the first SSB and a specified offset value when any other SSB that meets the specified received power condition is detected within the specified detection window The difference between
  • the first determining sub-module 173 is configured to determine the other SSB as the first SSB when the received power of the another SSB is greater than the difference.
  • the specified received power condition is that the SSB received power is greater than a specified power threshold; as shown in FIG. 18, the device may further include:
  • the second detection module 181 is configured to stop SSB detection when it is detected that a specified stop condition is met, the specified stop condition includes at least one of the following: detection is completed for all SSBs that need to be detected; or; a specified number is detected Or the first SSB; or need to start monitoring random access feedback corresponding to the random access initiated by the first SSB.
  • the first sending module 152 may include:
  • a second determining submodule 191 configured to determine, for any of the first SSBs, a random access time-frequency resource and a random access preamble corresponding to the first SSB;
  • the sending submodule 192 is configured to send a first message corresponding to the first SSB to the base station through a random access time-frequency resource corresponding to the first SSB, and the first message corresponding to the first SSB includes the first message. Random access preamble corresponding to SSB.
  • the device may further include:
  • a first receiving module 201 configured to receive a second message sent by the base station for random access feedback for a second SSB, where the second SSB is any one of the first SSBs;
  • a second sending module 202 configured to send a third message to the base station according to the second message, which is used to characterize contention resolution;
  • the second receiving module 203 is configured to receive a fourth message sent by the base station and used to indicate successful contention resolution.
  • the second SSB is any of the first SSBs, and is sent to the base station for characterizing competition according to the second message.
  • Reliability also improves the quality of service provided by the base station to the terminal.
  • the first receiving module 201 may include:
  • the receiving submodule 211 is configured to receive the second message within a specified time period, where the specified time period includes a time period corresponding to each of the first SSBs for receiving random access feedback.
  • the apparatus may further include:
  • the third receiving module 222 is configured to receive radio resource control RRC signaling sent by the base station at the same time or after receiving a fourth message sent by the base station to indicate successful contention resolution.
  • the first transmission configuration indication TCI state set configured by the base station for the terminal to receive the PDCCH and / or the second TCI state set used to receive the PDSCH are included, and the first TCI state set includes the first TCI state set.
  • the first correspondence between the TCI status identifier and the SSB identifier of the PDCCH, and the second TCI status set includes the second correspondence between the TCI status identifier and the SSB identifier for receiving the PDSCH.
  • the RRC signaling sent by the base station is received, and the RRC signaling includes a terminal configured by the base station for receiving the PDCCH.
  • the first TCI state set and / or the second TCI state set for receiving PDSCH thereby improving the reliability of receiving the TCI state set and also avoiding delay.
  • the first TCI state set includes at least two TCI state identifiers.
  • the apparatus may further include:
  • the fourth receiving module 231 is configured to receive the first MAC CE signaling sent by the base station, where the first MAC CE signaling is used to activate a first TCI status identifier, and the first TCI status identifier is the base station.
  • a first determining module 232 configured to determine a first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship
  • the first processing module 233 is configured to use a first receiving beam that is the same as the SSB specified or corresponding to the first SSB identifier when receiving the PDCCH.
  • the first MAC CE signaling is used to activate the first TCI status identifier, which is selected by the base station from the first TCI status set. And determine the first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship, and use the same first receiving beam as the SSB designated or corresponding to the first SSB identifier when receiving the PDCCH, thereby realizing the use of
  • the transmission configuration received for the PDCCH also improves the reliability of the transmission configuration.
  • the second TCI state set includes a first number of TCI state identifiers, and the first number is greater than 1; as shown in FIG. 24, the The device may also include:
  • a fifth receiving module 241 is configured to receive second MAC CE signaling sent by the base station, where the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception, and the second The number of TCI status identifiers is selected by the base station from a first number of TCI status identifiers in the second TCI status set.
  • the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception.
  • the second number of TCI status identifiers is The base station selects from the first number of TCI status identifiers, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • the second number is greater than 1.
  • the device may further include:
  • a sixth receiving module 251 is configured to receive downlink control information DCI signaling sent by the base station, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second The TCI status identifier is a TCI status identifier selected by the base station from the second number of TCI status identifiers;
  • a second determining module 252 configured to determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship
  • the second processing module 253 is configured to, when receiving the PDSCH scheduled by the DCI signaling, use a second receive beam that is the same as the SSB indicated by or received by the second SSB identifier.
  • the DCI signaling indicates the second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is the second number from the base station.
  • a TCI status identifier selected from the TCI status identifiers, and determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship, and specify and use the second SSB identifier when receiving the PDCCH scheduled by the DCI signaling Or the same second receiving beam with the same SSB, thereby realizing the transmission configuration for PDSCH reception used for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • Fig. 26 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the apparatus is used in a base station.
  • the base station sends one or more SSBs to a terminal. These SSBs may be sent by the base station to different base stations based on different beams.
  • the terminal is configured to execute the transmission configuration method shown in FIG. 9.
  • the transmission configuration device may include:
  • a first message receiving module 261 is configured to receive one or more first messages sent by the terminal for initiating random access, where the first messages are related to those detected by the terminal that can trigger random access.
  • the first messages are related to those detected by the terminal that can trigger random access.
  • the configuration module 262 is configured to configure a TCI state set for the terminal according to each of the first messages.
  • the configuration module 262 may include:
  • a configuration submodule 271 configured to configure, according to each of the first messages, a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH, and the first TCI state
  • the set includes a first correspondence between a TCI status identifier and an SSB identifier for receiving a PDCCH
  • the second TCI status set includes a second correspondence between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the device may further include:
  • the second message sending module 281 is configured to send, according to each of the first messages, a second message of random access feedback corresponding to the first message of the second SSB to the terminal, where the second SSB is One of the first SSBs corresponding to each of the first messages;
  • a third message receiving module 282 configured to receive a third message sent by the terminal and used to indicate contention resolution
  • the fourth message sending module 283 is configured to, when it is determined that the contention resolution is successful, send a fourth message to the terminal to indicate that the contention resolution is successful.
  • a second message for random access feedback to the terminal for the second SSB may be performed according to each first message.
  • the second SSB is one of the first SSBs and is used by the receiving terminal for characterization.
  • the third message for contention resolution and when it is determined that the contention resolution is successful, sending a fourth message to the terminal to indicate that the contention resolution is successful, so that the base station can better determine the random access with the terminal according to each first message, As a result, the reliability of random access is improved, and the quality of service provided by the base station to the terminal is also improved.
  • the apparatus may further include:
  • Adding module 291 is configured to add the first TCI state set and / or the second TCI state set to RRC signaling at the same time or after sending a fourth message to the terminal to indicate successful contention resolution. in;
  • the first signaling sending module 292 is configured to send the RRC signaling to the terminal.
  • the first TCI state set and / or the second TCI state set may be added to the RRC signaling, and RRC signaling is sent to the terminal, thereby improving the reliability of transmitting the TCI state set and also avoiding delay.
  • the apparatus may further include:
  • a first selection module 301 configured to select a TCI status identifier from the first TCI status set, and the selected TCI status identifier is a first TCI status identifier;
  • a first generating module 302 is configured to generate a first MAC CE signaling, where the first MAC CE signaling is used to activate the first TCI status identifier, and the first TCI status identifier is used by a terminal to determine that a reception is from a base station. Receiving beam needed for the PDCCH;
  • the second signaling sending module 303 is configured to send the first MAC CE signaling to the terminal.
  • the first TCI status identifier is selected from the first TCI status set, and the first TCI status identifier is activated by using the first MAC CE signaling, so that it is used by the terminal to receive the PDCCH from the base station, thereby achieving The transmission configuration for PDCCH reception is improved, and the reliability of the transmission configuration is also improved.
  • the second TCI state set includes a first number of TCI state identifiers, and the first number is greater than 1; as shown in FIG. 31, the The device may also include:
  • a second selection module 311 configured to select a second number of TCI status identifiers for PDSCH reception from a first number of TCI status identifiers in the second TCI status set;
  • a second generation module 312 configured to generate a second MAC CE signaling, where the second MAC CE signaling is used to activate the second number of TCI status identifiers for PDSCH reception;
  • the third signaling sending module 313 is configured to send the second MAC CE signaling to the terminal.
  • the second MAC CE signaling is used to activate The second number of TCI status identifiers received by the PDSCH and the second MAC CE signaling are sent to the terminal, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • the device may further include:
  • the third generating module 321 is configured to generate DCI signaling, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier is the base station from One TCI status identifier selected from the second number of TCI status identifiers;
  • the fourth signaling sending module 322 is configured to send the DCI signaling to the terminal.
  • the DCI signaling indicates a second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is a second number of TCI statuses from the base station.
  • a TCI status identifier selected from the identifiers and the DCI signaling is sent to the terminal, thereby realizing the transmission configuration for PDSCH reception for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, in which the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one Place, or can be distributed across multiple network elements. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solution of the present disclosure. Those of ordinary skill in the art can understand and implement without creative efforts.
  • the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and the computer program is configured to execute the transmission configuration method described in any one of FIG. 1 to FIG. 8 described above.
  • the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and the computer program is configured to execute the transmission configuration method described in any one of FIG. 9 to FIG. 14 described above.
  • the present disclosure also provides a transmission configuration device.
  • the device is used for a terminal.
  • the base station sends one or more SSBs to the terminal.
  • the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • Fig. 33 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • a transmission configuration device 3300 is shown according to an exemplary embodiment.
  • the device 3300 may be a computer, a mobile phone, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness equipment Devices, personal digital assistants and other terminals.
  • the device 3300 may include one or more of the following components: processing component 3301, memory 3302, power component 3303, multimedia component 3304, audio component 3305, input / output (I / O) interface 3306, sensor component 3307, And communication component 3308.
  • the processing component 3301 generally controls the overall operation of the device 3300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3301 may include one or more processors 3309 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 3301 may include one or more modules to facilitate the interaction between the processing component 3301 and other components.
  • the processing component 3301 may include a multimedia module to facilitate the interaction between the multimedia component 3304 and the processing component 3301.
  • the memory 3302 is configured to store various types of data to support operation at the device 3300. Examples of such data include instructions for any application or method for operating on the device 3300, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 3302 can be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply assembly 3303 provides power to various components of the device 3300.
  • the power component 3303 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 3300.
  • the multimedia component 3304 includes a screen that provides an output interface between the device 3300 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 3304 includes a front camera and / or a rear camera. When the device 3300 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3305 is configured to output and / or input audio signals.
  • the audio component 3305 includes a microphone (MIC) that is configured to receive an external audio signal when the device 3300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 3302 or transmitted via the communication component 3308.
  • the audio component 3305 further includes a speaker for outputting audio signals.
  • the I / O interface 3306 provides an interface between the processing component 3301 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 3307 includes one or more sensors for providing a status assessment of the device 3300 in various aspects.
  • the sensor component 3307 can detect the on / off state of the device 3300 and the relative positioning of the components.
  • the component is the display and keypad of the device 3300.
  • the sensor component 3307 can also detect the change in the position of the device 3300 or a component of the device 3300. , The presence or absence of the user's contact with the device 3300, the orientation or acceleration / deceleration of the device 3300, and the temperature change of the device 3300.
  • the sensor component 3307 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 3307 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3307 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 3308 is configured to facilitate wired or wireless communication between the device 3300 and other devices.
  • the device 3300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 3308 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 3308 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 3300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 3309 of the device 3300 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • the device 3300 can execute any one of the above-mentioned transmission configuration methods.
  • the present disclosure also provides a transmission configuration device.
  • the device is used in a base station.
  • the base station sends one or more SSBs to a terminal.
  • the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • FIG. 34 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the device 3400 may be provided as a base station.
  • the device 3400 includes a processing component 3422, a wireless transmitting / receiving component 3424, an antenna component 3426, and a signal processing portion unique to a wireless interface.
  • the processing component 3422 may further include one or more processors.
  • One of the processors in the processing component 3422 may be configured to perform any one of the transmission configuration methods described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输配置方法及装置,所述方法用于终端,基站向所述终端发送一个或多个同步信号块SSB,所述方法包括:检测到一个或多个能够触发随机接入的第一SSB;向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置TCI状态集合。因此,本公开可以提高传输配置的效率,减少了时延。

Description

传输配置方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种传输配置方法及装置。
背景技术
在新一代通信系统中,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于beam(波束)的发送和接收。相关技术中,针对波束的管理过程都是在终端完成与基站的随机接入和RRC(Radio Resource Control,无线资源控制)连接之后才开始的。但是,在随机接入过程完成后,基站在为该终端配置TCI(Transmission Configuration Indication,传输配置指示)状态集合之前,还得等待一个beam测量配置,beam测量以及beam测量报告的一个过程,从而加大了TCI配置的时延,使得终端无法及时使用最合适的接收波束,进一步影响了终端的吞吐量。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种传输配置方法及装置。
根据本公开实施例的第一方面,提供一种传输配置方法,所述方法用于终端,基站向所述终端发送一个或多个同步信号块SSB,所述方法包括:
检测到一个或多个能够触发随机接入的第一SSB;
向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置传输配置指示TCI状态集合。
可选地,所述检测到一个或多个能够触发随机接入的第一SSB,包括:
当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则将所述另一SSB也确定为所述第一SSB。
可选地,所述检测到一个或多个能够触发随机接入的第一SSB,包括:
当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个 SSB确定为所述第一SSB;
当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则计算所述首个SSB的接收功率与指定偏移值之间的差值;
当所述另一SSB的接收功率大于所述差值时,则将所述另一SSB也确定为所述第一SSB。
可选地,所述指定接收功率条件为SSB接收功率大于指定功率阈值;所述方法还包括:
当检测到满足指定停止条件时,停止SSB检测,所述指定停止条件包括以下至少一项:
针对所有需要检测的SSB,都检测完毕;或
检测到指定数量个所述第一SSB;或
需要开始监听所述首个SSB发起的随机接入所对应的随机接入反馈。
可选地,所述向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,包括:
针对任一所述第一SSB,确定该第一SSB对应的随机接入时频资源和随机接入前导码;
通过该第一SSB对应的随机接入时频资源向所述基站发送该第一SSB对应的第一消息,该第一SSB对应的第一消息中包括该第一SSB对应的随机接入前导码。
可选地,所述方法还包括:
接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,所述第二SSB是各个所述第一SSB中的任一个;
根据所述第二消息向所述基站发送用于表征竞争解决的第三消息;
接收所述基站发送的用于表征竞争解决成功的第四消息。
可选地,所述接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,包括:
在指定时间段内接收所述第二消息,所述指定时间段包括各个所述第一SSB各自对应的用于接收随机接入反馈的时间段。
可选地,所述接收所述基站发送的用于表征竞争解决成功的第四消息的同时或之后,所述方法还包括:
接收所述基站发送的无线资源控制RRC信令,所述RRC信令中包括所述基站为所述终端配置的用于接收PDCCH的第一传输配置指示TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
可选地,所述第二数量大于1;所述方法还包括:
接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波束。
根据本公开实施例的第二方面,提供一种所述方法用于基站,所述基站向终端发送一个或多个SSB,所述方法包括:
接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
根据各个所述第一消息为所述终端配置TCI状态集合。
可选地,所述根据各个所述第一消息为所述终端配置TCI状态集合,包括:
根据各个所述第一消息为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述方法还包括:
根据各个所述第一消息向所述终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息,所述第二SSB是各个所述第一消息各自对应的所述第一SSB中的一个;
接收所述终端发送的用于表征竞争解决的第三消息;
当确定竞争解决成功时,向所述终端发送用于表征竞争解决成功的第四消息。
可选地,所述向所述终端发送用于表征竞争解决成功的第四消息的同时或之后,还包括:
将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中;
将所述RRC信令发送至所述终端。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
将所述第一MAC CE信令发送至所述终端。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
将所述第二MAC CE信令发送至所述终端。
可选地,所述第二数量大于1;所述方法还包括:
生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
将所述DCI信令发送至所述终端。
根据本公开实施例的第三方面,提供一种传输配置装置,所述装置用于终端,所述基站向所述终端发送一个或多个的SSB,所述装置包括:
第一检测模块,被配置为检测到一个或多个能够触发随机接入的第一SSB;
第一发送模块,被配置为向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置传输配置指示TCI状态集合。
可选地,所述第一检测模块包括:
第一检测子模块,被配置为当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
第二检测子模块,被配置为当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则将所述另一SSB也确定为所述第一SSB。
可选地,所述第一检测模块包括:
第三检测子模块,被配置为当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
第四检测子模块,被配置为当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则计算所述首个SSB的接收功率与指定偏移值之间的差值;
第一确定子模块,被配置为当所述另一SSB的接收功率大于所述差值时,则将所述另一SSB也确定为所述第一SSB。
可选地,所述指定接收功率条件为SSB接收功率大于指定功率阈值;所述装置还包括:
第二检测模块,被配置为当检测到满足指定停止条件时,停止SSB检测,所述指定停止条件包括以下至少一项:
针对所有需要检测的SSB,都检测完毕;或
检测到指定数量个所述第一SSB;或
需要开始监听所述首个SSB发起的随机接入所对应的随机接入反馈。
可选地,所述第一发送模块包括:
第二确定子模块,被配置为针对任一所述第一SSB,确定该第一SSB对应的随机接入时频资源和随机接入前导码;
发送子模块,被配置为通过该第一SSB对应的随机接入时频资源向所述基站发送该第一SSB对应的第一消息,该第一SSB对应的第一消息中包括该第一SSB对应的随机接入前导码。
可选地,所述装置还包括:
第一接收模块,被配置为接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,所述第二SSB是各个所述第一SSB中的任一个;
第二发送模块,被配置为根据所述第二消息向所述基站发送用于表征竞争解决的第三消息;
第二接收模块,被配置为接收所述基站发送的用于表征竞争解决成功的第四消息。
可选地,所述第一接收模块包括:
接收子模块,被配置为在指定时间段内接收所述第二消息,所述指定时间段包 括各个所述第一SSB各自对应的用于接收随机接入反馈的时间段。
可选地,所述装置还包括:
第三接收模块,被配置为所述接收所述基站发送的用于表征竞争解决成功的第四消息的同时或之后,接收所述基站发送的无线资源控制RRC信令,所述RRC信令中包括所述基站为所述终端配置的用于接收PDCCH的第一传输配置指示TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
第四接收模块,被配置为接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第一确定模块,被配置为根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
第一处理模块,被配置为在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
第五接收模块,被配置为接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
可选地,所述第二数量大于1;所述装置还包括:
第六接收模块,被配置为接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第二确定模块,被配置为根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
第二处理模块,被配置为在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波束。
根据本公开实施例的第四方面,提供一种传输配置装置,所述装置用于基站,所述基站向终端发送一个或多个SSB,所述装置包括:
第一消息接收模块,被配置为接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
配置模块,被配置为根据各个所述第一消息为所述终端配置TCI状态集合。
可选地,所述配置模块包括:
配置子模块,被配置为根据各个所述第一消息为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述装置还包括:
第二消息发送模块,被配置为根据各个所述第一消息向所述终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息,所述第二SSB是各个所述第一消息各自对应的所述第一SSB中的一个;
第三消息接收模块,被配置为接收所述终端发送的用于表征竞争解决的第三消息;
第四消息发送模块,被配置为当确定竞争解决成功时,向所述终端发送用于表征竞争解决成功的第四消息。
可选地,所述装置还包括:
添加模块,被配置为向所述终端发送用于表征竞争解决成功的第四消息的同时或之后,将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中;
第一信令发送模块,被配置为将所述RRC信令发送至所述终端。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
第一选取模块,被配置为从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
第一生成模块,被配置为生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第二信令发送模块,被配置为将所述第一MAC CE信令发送至所述终端。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
第二选取模块,被配置为从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
第二生成模块,被配置为生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
第三信令发送模块,被配置为将所述第二MAC CE信令发送至所述终端。
可选地,所述第二数量大于1;所述装置还包括:
第三生成模块,被配置为生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第四信令发送模块,被配置为将所述DCI信令发送至所述终端。
根据本公开实施例的第五方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述第一方面所述的传输配置方法。
根据本公开实施例的第六方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述第二方面所述的传输配置方法。
根据本公开实施例的第七方面,提供一种传输配置装置,所述装置用于终端,所述基站向所述终端发送一个或多个的SSB,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
检测到一个或多个能够触发随机接入的第一SSB;
向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置传输配置指示TCI状态集合。
根据本公开实施例的第八方面,提供一种传输配置装置,所述装置用于基站,所述基站向终端发送一个或多个SSB,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
根据各个所述第一消息为所述终端配置TCI状态集合。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中的终端在检测到一个或多个能够触发随机接入的第一SSB时,可以向基站发送各个第一SSB各自对应的用于发起随机接入的第一消息,这样基站可以根据各个第一消息为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
本公开中的终端可以通过接收终端发送的一个或多个用于发起随机接入的第一消息,并根据各个第一消息为该终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种传输配置方法的流程图;
图2是根据一示例性实施例示出的一种传输配置方法的应用场景图;
图3是根据一示例性实施例示出的一种传输配置的示意图;
图4是根据一示例性实施例示出的另一种传输配置方法的流程图;
图5是根据一示例性实施例示出的另一种传输配置方法的流程图;
图6是根据一示例性实施例示出的另一种传输配置方法的流程图;
图7是根据一示例性实施例示出的另一种传输配置方法的流程图;
图8是根据一示例性实施例示出的另一种传输配置方法的流程图;
图9是根据一示例性实施例示出的一种传输配置方法的流程图;
图10是根据一示例性实施例示出的另一种传输配置方法的流程图;
图11是根据一示例性实施例示出的另一种传输配置方法的流程图;
图12是根据一示例性实施例示出的另一种传输配置方法的流程图;
图13是根据一示例性实施例示出的另一种传输配置方法的流程图;
图14是根据一示例性实施例示出的另一种传输配置方法的流程图;
图15是根据一示例性实施例示出的一种传输配置装置的框图;
图16是根据一示例性实施例示出的另一种传输配置装置的框图;
图17是根据一示例性实施例示出的另一种传输配置装置的框图;
图18是根据一示例性实施例示出的另一种传输配置装置的框图;
图19是根据一示例性实施例示出的另一种传输配置装置的框图;
图20是根据一示例性实施例示出的另一种传输配置装置的框图;
图21是根据一示例性实施例示出的另一种传输配置装置的框图;
图22是根据一示例性实施例示出的另一种传输配置装置的框图;
图23是根据一示例性实施例示出的另一种传输配置装置的框图;
图24是根据一示例性实施例示出的另一种传输配置装置的框图;
图25是根据一示例性实施例示出的另一种传输配置装置的框图;
图26是根据一示例性实施例示出的一种传输配置装置的框图;
图27是根据一示例性实施例示出的另一种传输配置装置的框图;
图28是根据一示例性实施例示出的另一种传输配置装置的框图;
图29是根据一示例性实施例示出的另一种传输配置装置的框图;
图30是根据一示例性实施例示出的另一种传输配置装置的框图;
图31是根据一示例性实施例示出的另一种传输配置装置的框图;
图32是根据一示例性实施例示出的另一种传输配置装置的框图;
图33是根据一示例性实施例示出的一种传输配置装置的结构示意图;
图34是根据一示例性实施例示出的一种传输配置装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,指示信息也可以被称为第二信息,类似地,第二信息也可以被称为指示信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种传输配置方法的流程图,图2是根据一示例性实施例示出的一种传输配置方法的应用场景图;该传输配置方法可以用于终端,该终端可以为UE(User Equipment,用户设备),基站向该终端发送一个或多个SSB(Synchronization Signal Block,同步信号块),并且,这些SSB可以是基站基于不同 的波束发送至终端的;如图1所示,该传输配置方法可以包括以下步骤110-120:
在步骤110中,检测到一个或多个能够触发随机接入的第一SSB。
本公开实施例中,第一SSB可以指定的是能够触发随机接入的SSB,比如:第一SSB的接收功率大于指定功率阈值,也就是说,对该终端来说,第一SSB的信号强度较好,可以保障为终端提供更好的网络服务。
由于终端检测到基站发送的基于不同波束的SSB后,会根据实际情形确定哪些SSB能够触发随机接入,哪些SSB不能够触发随机接入。至于如何确定哪些SSB能够触发随机接入,其确定方式有很多,包括但不限于以下两种确定方式:
方式一:将满足指定接收功率条件的所有SSB都确定为能够触发随机接入的第一SSB。也就是说,第一SSB的接收功率只要满足指定接收功率条件即可。
此种方式下,具体实现方式包括:
(1-1)当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,可以将该首个SSB确定为第一SSB;
(1-2)当在指定检测窗口内检测到任一个满足指定接收功率条件的另一SSB时,可以将该另一SSB也确定为第一SSB。
方式二:将满足指定接收功率条件的首个SSB确定为能够触发随机接入的第一SSB,而其他满足指定接收功率条件的SSB,还需要大于首个SSB的接收功率与指定偏移值之间的差值时,才可以确定为能够触发随机接入的第一SSB。也就是说,首个第一SSB的接收功率满足指定接收功率条件即可,而其他第一SSB不仅满足指定接收功率条件、还不能比首个第一SSB的接收功率低太多。
此种方式下,具体实现方式包括:
(2-1)当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,可以将该首个SSB确定为第一SSB;
(2-2)当在指定检测窗口内检测到任一个满足指定接收功率条件的另一SSB时,则计算首个SSB的接收功率与指定偏移值之间的差值;
(2-3)当另一SSB的接收功率大于首个SSB的接收功率与指定偏移值之间的差值时,则将该另一SSB也确定为第一SSB。
在一实施例中,上述方式一和方式二中的指定接收功率条件可以是终端在SSB 上的接收功率大于指定功率阈值,也就是说检测到的SSB的接收功率必须大于指定功率阈值时,该SSB才可以为能够触发随机接入的第一SSB。
另外,上述指定功率阈值和指定偏移值可以是基站通过系统消息通知终端的。
在一实施例中,执行步骤110,该传输配置方法还可以包括:
当检测到满足指定停止条件时,停止SSB检测,该指定停止条件可以包括以下至少一项:
(3-1)针对所有需要检测的SSB,都检测完毕;或;
(3-2)检测到指定数量个第一SSB;或
(3-3)需要开始监听首个SSB发起的随机接入所对应的随机接入反馈。
其中,上述(3-1)中的所有需要检测的SSB可以是基站发送的所有SSB,比如至少将基站发送的所有SSB都检测了一遍(由于这些SSB都是周期性发送的,那么检测一个周期的时间则肯定能保证将基站发送的所有SSB都至少检测了一遍);上述(3-2)中的指定数量可以是通信协议规定的,也可以是基站通过系统消息通知终端的。比如:该指定数量为64。
另外,若满足(3-3)所示条件,此时不管(3-1)中所有需要检测的SSB是否检测完毕,也不管(3-2)中是否检测到指定数量个满足指定接收功率条件的SSB,都需要停止SSB检测,开启监听首个SSB发起的随机接入所对应的随机接入反馈。
在步骤120中,向基站发送各个第一SSB各自对应的用于发起随机接入的第一消息,以使基站根据各个第一消息为终端配置TCI状态集合。
本公开实施例中,第一SSB对应的第一消息中可以包括该第一SSB对应的随机接入前导码。
在一实施例中,在执行步骤120时,可以具体采用以下实现方式:
(4-1)针对任一第一SSB,确定该第一SSB对应的随机接入时频资源和随机接入前导码;
(4-2)通过该第一SSB对应的随机接入时频资源向基站发送该第一SSB对应的第一消息,该第一SSB对应的第一消息中包括该第一SSB对应的随机接入前导码。
在一实例性场景中,如图2所示,包括基站和终端。基站会向终端发送一个或 多个SSB,终端针对检测到的一个或多个能够触发随机接入的第一SSB,会向基站发送各个第一SSB各自对应的用于发起随机接入的第一消息,如图3所示,终端向基站发送SSB#i对应的Msg.1-i、SSB#j对应的Msg.1-j、SSB#k对应的Msg.1-k、SSB#m对应的Msg.1-m;基站接收到终端发送的一个或多个用于发起随机接入的第一消息后,会根据各个第一消息为终端配置TCI状态集合。
比如:如图3所示,基站接收到Msg.1-i,根据该Msg.1-i所在的时频资源和随机接入前导码,基站知道是由于终端检测到SSB#i上接收功率较好,所以才在SSB#i对应的时频资源上发送对应的随机接入前导码,那么基站就可以确定一个TCI状态,比如TCI#0,对应的是SSB#i,而且TCI#0对应的QCL(Quasi-co-location,准共址)类型为类型D,类型D是用于spatial Rx parameter(空间接收参数),即波束指示(beam indication),如表1所示的TCI状态集合:
表1
Figure PCTCN2018097103-appb-000001
由上述实施例可见,在检测到一个或多个能够触发随机接入的第一SSB时,可以向基站发送各个第一SSB各自对应的用于发起随机接入的第一消息,这样基站可以根据各个第一消息为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
图4是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图1所示方法的基础上,如图4所示,可以包括以下步骤410-430:
在步骤410中,接收基站发送的针对第二SSB进行随机接入反馈的第二消息(如图3所示的Msg.2),该第二SSB是各个第一SSB中的任一个。
本公开实施例中,不管终端向基站发送了多少个第一消息,而基站只回复一个第二消息,并且可以是针对多个第一SSB中任何一个进行回复的。至于具体是针对哪个第一SSB,基站可以根据一定的规则来确定。比如:比较各个第一消息的接收功率,选取接收功率最强的第一消息对应的第一SSB作为第二SSB;或者选取最早接收到的第一消息对应的第一SSB为第二SSB。
其中,第二消息中有一个临时的C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识),该临时的C-RNTI是由基站分配给终端的一个动态标识,而且基站会给终端配置发送第三消息(Msg.3)的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源。
在一实施例中,执行步骤410时,可以在指定时间段内接收第二消息,该指定时间段包括各个第一SSB各自对应的第一消息对应的用于接收随机接入反馈的时间段。
具体地,该指定时间段是从首个第一SSB对应的第一消息对应的用于随机接入反馈的时间段的起始时间开始,到最后一个第一SSB对应的第一消息对应的用于随机接入反馈的时间段的结束时间结束。其中,若在该指定时间段内接收到第二消息,就可以在该指定时间段结束之前发送第三消息,而不用等到该指定时间段结束后再发送第三消息。
如图3所示,终端向基站发送SSB#i对应的Msg.1-i、SSB#j对应的Msg.1-j、SSB#k对应的Msg.1-k、SSB#m对应的Msg.1-m(也就是说,终端向基站发送了4个第一消息)之后,会在Msg.2-i的窗口#1、Msg.2-j的窗口#2、Msg.2-k的窗口#3、Msg.2-m的窗口#4这些窗口内接收基站返回的Msg.2(也就是说,若终端在Msg.2-i的窗口#1内没有接收到Msg.2,还需要在Msg.2-j的窗口#2对应的用于接收随机接入反馈的时间段内接收Msg.2,若仍然没有接收到,还在Msg.2-k的窗口#3对应的用于接收随机接入反馈的时间段内接收Msg.2,以此类推)。
在步骤420中,根据第二消息向基站发送用于表征竞争解决的第三消息(如图3所示的Msg.3)。
本公开实施例中,终端会在第二消息分配的PUSCH资源上发送包含临时的C-RNTI的信息。
在步骤430中,接收基站发送的用于表征竞争解决成功的第四消息(如图3所 示的Msg.4)。
本公开实施例中,第四消息中基站发送PDSCH(Physical Downlink Shared Channel,物理下行共享信道)携带竞争解除标识给终端,终端获知随机接入成功。
由上述实施例可见,通过接收基站发送的针对第二SSB进行随机接入反馈的第二消息,该第二SSB是各个第一SSB中的任一个,根据第二消息向基站发送用于表征竞争解决的第三消息,以及接收基站发送的用于表征竞争解决成功的第四消息,这样基站可以根据各个第一消息更好地确定与终端之间的随机接入,从而提高了随机接入的可靠性,还提高了基站为终端提供的服务质量。
图5是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图4所示方法的基础上,在执行步骤430的同时或之后,如图5所示,该传输配置方法还可以包括以下步骤510:
在步骤510中,接收基站发送的RRC信令,该RRC信令中包括基站为终端配置的用于接收PDCCH(Physical Downlink Control Channel,物理下行控制信道)的第一TCI(Transmission Configuration Indication,传输配置指示)状态集合和/或用于接收PDSCH的第二TCI状态集合。其中,第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
本公开实施例中,第一对应关系可以指的是用于接收PDCCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDCCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示(beam indication)。
第二对应关系可以指的是用于接收PDSCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDSCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示。
由于基站可能在发送第四消息的同时,发送携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令;也可能在发送第四消息之后,再发送携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令。因此,终端可能在接收到第四消息的同时,接收到携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令;也可能在接收到第四消息之后,接收到携带有第一TCI状态集合和/或第二TCI状态集合的 RRC信令。
另外,基站为终端配置的第一TCI状态集合或第二TCI状态集合中可能只包括一个TCI状态标识,也可能包括多个TCI状态标识。若只包括一个TCI状态标识,则终端在接收PDCCH时或在接收PDSCH,可以直接使用与接收该TCI状态标识对应的SSB标识指定的或对应的SSB相同的接收波束;若包括多个TCI状态标识,则终端在接收PDCCH时或在接收PDSCH,还需要接收基站再次激活或指示的TCI状态标识(参见图6和图7所示实施例)。
由上述实施例可见,在接收基站发送的用于表征竞争解决成功的第四消息的同时或之后,接收基站发送的RRC信令,该RRC信令中包括基站为终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,从而提高了接收TCI状态集合的可靠性,还避免了时延。
图6是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图5所示方法的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图6所示,该传输配置方法还可以包括以下步骤610-630:
在步骤610中,接收基站发送的第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,第一TCI状态标识是基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束。
本公开实施例中,第一MAC CE信令用于激活第一TCI状态标识。比如:第一TCI状态集合中包括64个TCI状态标识,基站可以从这64个TCI状态标识中选取一个作为第一TCI状态标识。
在步骤620中,根据第一对应关系确定第一TCI状态标识对应的第一SSB标识。其中,第一对应关系位于第一TCI状态集合中。
在步骤630中,在接收PDCCH时使用与接收第一SSB标识指定的或对应的SSB相同的第一接收波束。
由上述实施例可见,通过接收基站发送的第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,该第一TCI状态标识是基站从第一TCI状态集合中选取的,并根据第一对应关系确定第一TCI状态标识对应的第一SSB标识,以及在接收PDCCH时使用与接收第一SSB标识指定的或对应的SSB相同的第一接收波束,从 而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
图7是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图5所示方法的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图7所示,该传输配置方法还可以包括以下步骤710:
在步骤710中,接收基站发送的第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,该第二数量个TCI状态标识是基站从第二TCI状态集合中的第一数量个TCI状态标识中选取的。
本公开实施例中,第二数量小于第一数量。比如:第一数量为64,第二数量为8,对于PDSCH,基站可以从64个TCI状态标识选取8个,并使用第二MAC CE信令告知终端。
由上述实施例可见,通过接收基站发送的第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,该第二数量个TCI状态标识是基站从第一数量个TCI状态标识中选取的,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图8是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图7所示方法的基础上,所述第二数量大于1;如图8所示,该传输配置方法还可以包括以下步骤810-830:
在步骤810中,接收基站发送的DCI(Downlink Control Information,下行控制信息)信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识。
本公开实施例中,第二数量大于1。比如:第二数量为8。基站可以从这8个TCI状态标识中选取一个作为第二TCI状态标识。
在步骤820中,根据第二对应关系确定第二TCI状态标识对应的第二SSB标识。其中,第二对应关系位于第二TCI状态集合中。
在步骤830中,在接收该DCI信令调度的PDSCH时使用与接收第二SSB标识指定的或对应的SSB相同的第二接收波束。
由上述实施例可见,通过接收基站发送的DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,并根据第二对应关系确定第二TCI状态标识对应的第二SSB标识,以及在接收该DCI信令调度的PDSCH时使用与接收第二SSB标识指定的或对应的SSB相同的第二接收波束,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图9是根据一示例性实施例示出的一种传输配置方法的流程图,该传输配置方法可以用于基站,该基站向终端发送一个或多个的SSB,并且,这些SSB可以是基站基于不同的波束发送至终端的,如图9所示,该传输配置方法可以包括以下步骤910-920:
在步骤910中,接收终端发送的一个或多个用于发起随机接入的第一消息(Msg.1),该第一消息是与终端检测到的能够触发随机接入的第一SSB相对应的。
本公开实施例中,第一SSB可以指定的是终端根据实际情况确定的能够触发随机接入的SSB。
在一实施例中,所述第一SSB对应的第一消息中可以包括该第一SSB对应的随机接入前导码。
在步骤920中,根据各个第一消息为该终端配置TCI状态集合。
本公开实施例中,该终端配置的TCI状态集合可以包括用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合。
在一实施例中,在执行步骤920时,可以采用以下实现方式:
根据各个所述第一消息为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
其中,第一对应关系可以指的是用于接收PDCCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDCCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示,可参见表1所示内容。
第二对应关系可以指的是用于接收PDSCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDSCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示,可参见表1所示内容。
由上述实施例可见,通过接收终端发送的一个或多个用于发起随机接入的第一消息,并根据各个第一消息为该终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
图10是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图9所示方法的基础上,如图10所示,该传输配置方法还可以包括以下步骤1010-1030:
在步骤1010中,根据各个第一消息向终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息(如图3所示的Msg.2),该第二SSB是各个第一消息各自对应的第一SSB中的一个。
在步骤1020中,接收终端发送的用于表征竞争解决的第三消息(如图3所示的Msg.3)。
在步骤1030中,当确定竞争解决成功时,向终端发送用于表征竞争解决成功的第四消息(如图3所示的Msg.4)。
由上述实施例可见,可以根据各个第一消息向所述终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息,该第二SSB是各个第一SSB中的一个,接收终端发送的用于表征竞争解决的第三消息,以及当确定竞争解决成功时,向终端发送用于表征竞争解决成功的第四消息,这样基站可以根据各个第一消息更好地确定与终端之间的随机接入,从而提高了随机接入的可靠性,还提高了基站为终端提供的服务质量。
图11是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图10所示方法的基础上,如图11所示,在执行步骤1030的同时或之后,可以包括以下步骤1110-1120:
在步骤1110中,将第一TCI状态集合和/或第二TCI状态集合添加到RRC信令中,第一TCI状态集合是用于接收PDCCH的TCI状态集合,第二TCI状态集合是用于接收PDSCH的TCI状态集合。
在步骤1120中,将RRC信令发送至终端。
由上述实施例可见,在向终端发送用于表征竞争解决成功的第四消息的同时或之后,可以第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将RRC信令发送至终端,从而提高了传输TCI状态集合的可靠性,还避免了时延。
图12是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图11所示方法的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图12所示,该传输配置方法还可以包括以下步骤1210-1230:
在步骤1210中,从第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识。
在步骤1220中,生成第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,该第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束。
在步骤1230中,将第一MAC CE信令发送至终端。
由上述实施例可见,通过从第一TCI状态集合中选取第一TCI状态标识,并利用第一MAC CE信令激活该第一TCI状态标识,使其用于终端接收来自基站的PDCCH,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
图13是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图11所示方法的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图13所示,该传输配置方法还可以包括以下步骤1310-1330:
在步骤1310中,从第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识。
在步骤1320中,生成第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识。
在步骤1330中,将第二MAC CE信令发送至终端。
由上述实施例可见,通过从第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识,并生成第二MAC CE信令,该第二MAC CE信令用于激 活用于PDSCH接收的第二数量个TCI状态标识,以及将第二MAC CE信令发送至终端,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图14是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图13所示方法的基础上,所述第二数量大于1;如图14所示,该传输配置方法还可以包括以下步骤1410-1420:
在步骤1410中,生成DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识。
在步骤1420中,将DCI信令发送至终端。
由上述实施例可见,通过生成DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,以及将DCI信令发送至终端,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
与前述传输配置方法的实施例相对应,本公开还提供了传输配置装置的实施例。
图15是根据一示例性实施例示出的一种传输配置装置的框图,该装置用于终端,该终端可以为UE,基站向该终端发送一个或多个SSB,并且,这些SSB可以是基站基于不同的波束发送至终端的;并用于执行图1所示的传输配置方法,如图15所示,该传输配置装置可以包括:
第一检测模块151,被配置为检测到一个或多个能够触发随机接入的第一SSB;
第一发送模块152,被配置为向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置传输配置指示TCI状态集合。
由上述实施例可见,在检测到一个或多个能够触发随机接入的第一SSB时,可以向基站发送各个第一SSB各自对应的用于发起随机接入的第一消息,这样基站可以根据各个第一消息为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
在一实施例中,建立在图15所示装置的基础上,如图16所示,所述第一检测 模块151可以包括:
第一检测子模块161,被配置为当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
第二检测子模块162,被配置为当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则将所述另一SSB也确定为所述第一SSB。
在一实施例中,建立在图15所示装置的基础上,如图17所示,所述第一检测模块151可以包括:
第三检测子模块171,被配置为当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
第四检测子模块172,被配置为当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则计算所述首个SSB的接收功率与指定偏移值之间的差值;
第一确定子模块173,被配置为当所述另一SSB的接收功率大于所述差值时,则将所述另一SSB也确定为所述第一SSB。
在一实施例中,建立在图16或图17所示装置的基础上,所述指定接收功率条件为SSB接收功率大于指定功率阈值;如图18所示,所述装置还可以包括:
第二检测模块181,被配置为当检测到满足指定停止条件时,停止SSB检测,所述指定停止条件包括以下至少一项:针对所有需要检测的SSB,都检测完毕;或;检测到指定数量个所述第一SSB;或需要开始监听所述首个SSB发起的随机接入所对应的随机接入反馈。
在一实施例中,建立在图15所示装置的基础上,如图19所示,所述第一发送模块152可以包括:
第二确定子模块191,被配置为针对任一所述第一SSB,确定该第一SSB对应的随机接入时频资源和随机接入前导码;
发送子模块192,被配置为通过该第一SSB对应的随机接入时频资源向所述基站发送该第一SSB对应的第一消息,该第一SSB对应的第一消息中包括该第一SSB对应的随机接入前导码。
在一实施例中,建立在图15所示装置的基础上,如图20所示,所述装置还可 以包括:
第一接收模块201,被配置为接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,所述第二SSB是各个所述第一SSB中的任一个;
第二发送模块202,被配置为根据所述第二消息向所述基站发送用于表征竞争解决的第三消息;
第二接收模块203,被配置为接收所述基站发送的用于表征竞争解决成功的第四消息。
由上述实施例可见,通过接收基站发送的针对第二SSB进行随机接入反馈的第二消息,该第二SSB是各个第一SSB中的任一个,根据第二消息向基站发送用于表征竞争解决的第三消息,以及接收基站发送的用于表征竞争解决成功的第四消息,这样基站可以根据各个第一消息更好地确定与终端之间的随机接入,从而提高了随机接入的可靠性,还提高了基站为终端提供的服务质量。
在一实施例中,建立在图20所示装置的基础上,如图21所示,所述第一接收模块201可以包括:
接收子模块211,被配置为在指定时间段内接收所述第二消息,所述指定时间段包括各个所述第一SSB各自对应的用于接收随机接入反馈的时间段。
在一实施例中,建立在图20所示装置的基础上,如图22所示,所述装置还可以包括:
第三接收模块222,被配置为所述接收所述基站发送的用于表征竞争解决成功的第四消息的同时或之后,接收所述基站发送的无线资源控制RRC信令,所述RRC信令中包括所述基站为所述终端配置的用于接收PDCCH的第一传输配置指示TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
由上述实施例可见,在接收基站发送的用于表征竞争解决成功的第四消息的同时或之后,接收基站发送的RRC信令,该RRC信令中包括基站为终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,从而提高了接收TCI状态集合的可靠性,还避免了时延。
在一实施例中,建立在图22所示装置的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图23所示,所述装置还可以包括:
第四接收模块231,被配置为接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第一确定模块232,被配置为根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
第一处理模块233,被配置为在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
由上述实施例可见,通过接收基站发送的第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,该第一TCI状态标识是基站从第一TCI状态集合中选取的,并根据第一对应关系确定第一TCI状态标识对应的第一SSB标识,以及在接收PDCCH时使用与接收第一SSB标识指定的或对应的SSB相同的第一接收波束,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图22所示装置的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图24所示,所述装置还可以包括:
第五接收模块241,被配置为接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
由上述实施例可见,通过接收基站发送的第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,该第二数量个TCI状态标识是基站从第一数量个TCI状态标识中选取的,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图24所示装置的基础上,所述第二数量大于1;如图25所示,所述装置还可以包括:
第六接收模块251,被配置为接收所述基站发送的下行控制信息DCI信令,所 述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第二确定模块252,被配置为根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
第二处理模块253,被配置为在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指示的或对应的SSB相同的第二接收波束。
由上述实施例可见,通过接收基站发送的DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,并根据第二对应关系确定第二TCI状态标识对应的第二SSB标识,以及在接收该DCI信令调度的PDCCH时使用与接收第二SSB标识指定的或对应的SSB相同的第二接收波束,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图26是根据一示例性实施例示出的一种传输配置装置的框图,该装置用于基站,该基站向终端发送一个或多个的SSB,并且,这些SSB可以是基站基于不同的波束发送至终端的;并用于执行图9所示的传输配置方法,如图26所示,该传输配置装置可以包括:
第一消息接收模块261,被配置为接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
配置模块262,被配置为根据各个所述第一消息为所述终端配置TCI状态集合。
由上述实施例可见,通过接收终端发送的一个或多个用于发起随机接入的第一消息,并根据各个第一消息为该终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
在一实施例中,建立在图26所示装置的基础上,如图27所示,所述配置模块262可以包括:
配置子模块271,被配置为根据各个所述第一消息为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系, 所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
在一实施例中,建立在图27所示装置的基础上,如图28所示,所述装置还可以包括:
第二消息发送模块281,被配置为根据各个所述第一消息向所述终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息,所述第二SSB是各个所述第一消息各自对应的所述第一SSB中的一个;
第三消息接收模块282,被配置为接收所述终端发送的用于表征竞争解决的第三消息;
第四消息发送模块283,被配置为当确定竞争解决成功时,向所述终端发送用于表征竞争解决成功的第四消息。
由上述实施例可见,可以根据各个第一消息向所述终端针对第二SSB进行随机接入反馈的第二消息,该第二SSB是各个第一SSB中的一个,接收终端发送的用于表征竞争解决的第三消息,以及当确定竞争解决成功时,向终端发送用于表征竞争解决成功的第四消息,这样基站可以根据各个第一消息更好地确定与终端之间的随机接入,从而提高了随机接入的可靠性,还提高了基站为终端提供的服务质量。
在一实施例中,建立在图28所示装置的基础上,如图29所示,所述装置还可以包括:
添加模块291,被配置为向所述终端发送用于表征竞争解决成功的第四消息的同时或之后,将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中;
第一信令发送模块292,被配置为将所述RRC信令发送至所述终端。
由上述实施例可见,在向终端发送用于表征竞争解决成功的第四消息的同时或之后,可以第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将RRC信令发送至终端,从而提高了传输TCI状态集合的可靠性,还避免了时延。
在一实施例中,建立在图29所示装置的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图30所示,所述装置还可以包括:
第一选取模块301,被配置为从所述第一TCI状态集合中选取一个TCI状态标 识,该选取的TCI状态标识为第一TCI状态标识;
第一生成模块302,被配置为生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第二信令发送模块303,被配置为将所述第一MAC CE信令发送至所述终端。
由上述实施例可见,通过从第一TCI状态集合中选取第一TCI状态标识,并利用第一MAC CE信令激活该第一TCI状态标识,使其用于终端接收来自基站的PDCCH,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图29所示装置的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图31所示,所述装置还可以包括:
第二选取模块311,被配置为从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
第二生成模块312,被配置为生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
第三信令发送模块313,被配置为将所述第二MAC CE信令发送至所述终端。
由上述实施例可见,通过从第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识,并生成第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,以及将第二MAC CE信令发送至终端,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图31所示装置的基础上,所述第二数量大于1;如图32所示,所述装置还可以包括:
第三生成模块321,被配置为生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第四信令发送模块322,被配置为将所述DCI信令发送至所述终端。
由上述实施例可见,通过生成DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个 TCI状态标识中选取的一个TCI状态标识,以及将DCI信令发送至终端,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图1至图8任一所述的传输配置方法。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图9至图14任一所述的传输配置方法。
本公开还提供了一种传输配置装置,所述装置用于终端,所述基站向所述终端发送一个或多个的SSB,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
检测到一个或多个能够触发随机接入的第一SSB;
向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置TCI状态集合。
图33是根据一示例性实施例示出的一种传输配置装置的结构示意图。如图33所示,根据一示例性实施例示出的一种传输配置装置3300,该装置3300可以是计算机,移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图33,装置3300可以包括以下一个或多个组件:处理组件3301,存储器3302,电源组件3303,多媒体组件3304,音频组件3305,输入/输出(I/O)的接口3306,传感器组件3307,以及通信组件3308。
处理组件3301通常控制装置3300的整体操作,诸如与显示,电话呼叫,数据 通信,相机操作和记录操作相关联的操作。处理组件3301可以包括一个或多个处理器3309来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3301可以包括一个或多个模块,便于处理组件3301和其它组件之间的交互。例如,处理组件3301可以包括多媒体模块,以方便多媒体组件3304和处理组件3301之间的交互。
存储器3302被配置为存储各种类型的数据以支持在装置3300的操作。这些数据的示例包括用于在装置3300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3302可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3303为装置3300的各种组件提供电力。电源组件3303可以包括电源管理系统,一个或多个电源,及其它与为装置3300生成、管理和分配电力相关联的组件。
多媒体组件3304包括在所述装置3300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3304包括一个前置摄像头和/或后置摄像头。当装置3300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3305被配置为输出和/或输入音频信号。例如,音频组件3305包括一个麦克风(MIC),当装置3300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3302或经由通信组件3308发送。在一些实施例中,音频组件3305还包括一个扬声器,用于输出音频信号。
I/O接口3306为处理组件3301和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3307包括一个或多个传感器,用于为装置3300提供各个方面的状态评估。例如,传感器组件3307可以检测到装置3300的打开/关闭状态,组件的相对定位,例如所述组件为装置3300的显示器和小键盘,传感器组件3307还可以检测装置3300或装置3300一个组件的位置改变,用户与装置3300接触的存在或不存在,装置3300方位或加速/减速和装置3300的温度变化。传感器组件3307可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3307还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3307还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3308被配置为便于装置3300和其它设备之间有线或无线方式的通信。装置3300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3308经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件3308还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置3300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3302,上述指令可由装置3300的处理器3309执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
其中,当所述存储介质中的指令由所述处理器执行时,使得装置3300能够执行上述任一所述的传输配置方法。
本公开还提供了一种传输配置装置,所述装置用于基站,所述基站向终端发送一个或多个的SSB,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
根据各个所述第一消息为所述终端配置TCI状态集合。
如图34所示,图34是根据一示例性实施例示出的一种传输配置装置的结构示意图。装置3400可以被提供为一基站。参照图34,装置3400包括处理组件3422、无线发射/接收组件3424、天线组件3426、以及无线接口特有的信号处理部分,处理组件3422可进一步包括一个或多个处理器。
处理组件3422中的其中一个处理器可以被配置为用于执行上述任一所述的传输配置方法。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种传输配置方法,其特征在于,所述方法用于终端,基站向所述终端发送一个或多个同步信号块SSB,所述方法包括:
    检测到一个或多个能够触发随机接入的第一SSB;
    向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置传输配置指示TCI状态集合。
  2. 根据权利要求1所述的方法,其特征在于,所述检测到一个或多个能够触发随机接入的第一SSB,包括:
    当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
    当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则将所述另一SSB也确定为所述第一SSB。
  3. 根据权利要求1所述的方法,其特征在于,所述检测到一个或多个能够触发随机接入的第一SSB,包括:
    当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
    当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则计算所述首个SSB的接收功率与指定偏移值之间的差值;
    当所述另一SSB的接收功率大于所述差值时,则将所述另一SSB也确定为所述第一SSB。
  4. 根据权利要求2或3所述的方法,其特征在于,所述指定接收功率条件为SSB接收功率大于指定功率阈值;所述方法还包括:
    当检测到满足指定停止条件时,停止SSB检测,所述指定停止条件包括以下至少一项:
    针对所有需要检测的SSB,都检测完毕;或
    检测到指定数量个所述第一SSB;或
    需要开始监听所述首个SSB发起的随机接入所对应的随机接入反馈。
  5. 根据权利要求1所述的方法,其特征在于,所述向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,包括:
    针对任一所述第一SSB,确定该第一SSB对应的随机接入时频资源和随机接入前导码;
    通过该第一SSB对应的随机接入时频资源向所述基站发送该第一SSB对应的第一消息,该第一SSB对应的第一消息中包括该第一SSB对应的随机接入前导码。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,所述第二SSB是各个所述第一SSB中的任一个;
    根据所述第二消息向所述基站发送用于表征竞争解决的第三消息;
    接收所述基站发送的用于表征竞争解决成功的第四消息。
  7. 根据权利要求6所述的方法,其特征在于,所述接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,包括:
    在指定时间段内接收所述第二消息,所述指定时间段包括各个所述第一SSB各自对应的用于接收随机接入反馈的时间段。
  8. 根据权利要求6所述的方法,其特征在于,所述接收所述基站发送的用于表征竞争解决成功的第四消息的同时或之后,所述方法还包括:
    接收所述基站发送的无线资源控制RRC信令,所述RRC信令中包括所述基站为所述终端配置的用于接收PDCCH的第一传输配置指示TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  9. 根据权利要求8所述的方法,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
    接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
    在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
  10. 根据权利要求8所述的方法,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
    接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
  11. 根据权利要求10所述的方法,其特征在于,所述第二数量大于1;所述方法还包括:
    接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
    在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波束。
  12. 一种传输配置方法,其特征在于,所述方法用于基站,所述基站向终端发送一个或多个SSB,所述方法包括:
    接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
    根据各个所述第一消息为所述终端配置TCI状态集合。
  13. 根据权利要求12所述的方法,其特征在于,所述根据各个所述第一消息为所述终端配置TCI状态集合,包括:
    根据各个所述第一消息为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    根据各个所述第一消息向所述终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息,所述第二SSB是各个所述第一消息各自对应的所述第一SSB中的一个;
    接收所述终端发送的用于表征竞争解决的第三消息;
    当确定竞争解决成功时,向所述终端发送用于表征竞争解决成功的第四消息。
  15. 根据权利要求14所述的方法,其特征在于,所述向所述终端发送用于表征竞争解决成功的第四消息的同时或之后,还包括:
    将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中;
    将所述RRC信令发送至所述终端。
  16. 根据权利要求15所述的方法,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
    从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
    生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    将所述第一MAC CE信令发送至所述终端。
  17. 根据权利要求15所述的方法,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
    从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
    生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
    将所述第二MAC CE信令发送至所述终端。
  18. 根据权利要求17所述的方法,其特征在于,所述第二数量大于1;所述方法还包括:
    生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    将所述DCI信令发送至所述终端。
  19. 一种传输配置装置,其特征在于,所述装置用于终端,所述基站向所述终端发送一个或多个的SSB,所述装置包括:
    第一检测模块,被配置为检测到一个或多个能够触发随机接入的第一SSB;
    第一发送模块,被配置为向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置传输配置指示TCI状态集合。
  20. 根据权利要求19所述的装置,其特征在于,所述第一检测模块包括:
    第一检测子模块,被配置为当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
    第二检测子模块,被配置为当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则将所述另一SSB也确定为所述第一SSB。
  21. 根据权利要求19所述的装置,其特征在于,所述第一检测模块包括:
    第三检测子模块,被配置为当在指定检测窗口内检测到满足指定接收功率条件的首个SSB,则将所述首个SSB确定为所述第一SSB;
    第四检测子模块,被配置为当在所述指定检测窗口内检测到任一个满足所述指定接收功率条件的另一SSB时,则计算所述首个SSB的接收功率与指定偏移值之间的差值;
    第一确定子模块,被配置为当所述另一SSB的接收功率大于所述差值时,则将所述另一SSB也确定为所述第一SSB。
  22. 根据权利要求20或21所述的装置,其特征在于,所述指定接收功率条件为SSB接收功率大于指定功率阈值;所述装置还包括:
    第二检测模块,被配置为当检测到满足指定停止条件时,停止SSB检测,所述指定停止条件包括以下至少一项:
    针对所有需要检测的SSB,都检测完毕;或
    检测到指定数量个所述第一SSB;或
    需要开始监听所述首个SSB发起的随机接入所对应的随机接入反馈。
  23. 根据权利要求19所述的装置,其特征在于,所述第一发送模块包括:
    第二确定子模块,被配置为针对任一所述第一SSB,确定该第一SSB对应的随机接入时频资源和随机接入前导码;
    发送子模块,被配置为通过该第一SSB对应的随机接入时频资源向所述基站发送该第一SSB对应的第一消息,该第一SSB对应的第一消息中包括该第一SSB对应的随机接入前导码。
  24. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    第一接收模块,被配置为接收所述基站发送的针对第二SSB进行随机接入反馈的第二消息,所述第二SSB是各个所述第一SSB中的任一个;
    第二发送模块,被配置为根据所述第二消息向所述基站发送用于表征竞争解决的第三消息;
    第二接收模块,被配置为接收所述基站发送的用于表征竞争解决成功的第四消息。
  25. 根据权利要求24所述的装置,其特征在于,所述第一接收模块包括:
    接收子模块,被配置为在指定时间段内接收所述第二消息,所述指定时间段包括各个所述第一SSB各自对应的用于接收随机接入反馈的时间段。
  26. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    第三接收模块,被配置为所述接收所述基站发送的用于表征竞争解决成功的第四 消息的同时或之后,接收所述基站发送的无线资源控制RRC信令,所述RRC信令中包括所述基站为所述终端配置的用于接收PDCCH的第一传输配置指示TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  27. 根据权利要求26所述的装置,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
    第四接收模块,被配置为接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    第一确定模块,被配置为根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
    第一处理模块,被配置为在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
  28. 根据权利要求26所述的装置,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
    第五接收模块,被配置为接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
  29. 根据权利要求28所述的装置,其特征在于,所述第二数量大于1;所述装置还包括:
    第六接收模块,被配置为接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    第二确定模块,被配置为根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
    第二处理模块,被配置为在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波束。
  30. 一种传输配置装置,其特征在于,所述装置用于基站,所述基站向终端发送 一个或多个SSB,所述装置包括:
    第一消息接收模块,被配置为接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
    配置模块,被配置为根据各个所述第一消息为所述终端配置TCI状态集合。
  31. 根据权利要求30所述的装置,其特征在于,所述配置模块包括:
    配置子模块,被配置为根据各个所述第一消息为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  32. 根据权利要求31所述的装置,其特征在于,所述装置还包括:
    第二消息发送模块,被配置为根据各个所述第一消息向所述终端发送针对第二SSB的第一消息相对应的随机接入反馈的第二消息,所述第二SSB是各个所述第一消息各自对应的所述第一SSB中的一个;
    第三消息接收模块,被配置为接收所述终端发送的用于表征竞争解决的第三消息;
    第四消息发送模块,被配置为当确定竞争解决成功时,向所述终端发送用于表征竞争解决成功的第四消息。
  33. 根据权利要求32所述的装置,其特征在于,所述装置还包括:
    添加模块,被配置为向所述终端发送用于表征竞争解决成功的第四消息的同时或之后,将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中;
    第一信令发送模块,被配置为将所述RRC信令发送至所述终端。
  34. 根据权利要求33所述的装置,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
    第一选取模块,被配置为从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
    第一生成模块,被配置为生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    第二信令发送模块,被配置为将所述第一MAC CE信令发送至所述终端。
  35. 根据权利要求33所述的装置,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
    第二选取模块,被配置为从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
    第二生成模块,被配置为生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
    第三信令发送模块,被配置为将所述第二MAC CE信令发送至所述终端。
  36. 根据权利要求35所述的装置,其特征在于,所述第二数量大于1;所述装置还包括:
    第三生成模块,被配置为生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    第四信令发送模块,被配置为将所述DCI信令发送至所述终端。
  37. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,其特征在于,所述计算机程序用于执行上述权利要求1-11所述的传输配置方法。
  38. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,其特征在于,所述计算机程序用于执行上述权利要求12-18所述的传输配置方法。
  39. 一种传输配置装置,其特征在于,所述装置用于终端,所述基站向所述终端发送一个或多个的SSB,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    检测到一个或多个能够触发随机接入的第一SSB;
    向所述基站发送各个所述第一SSB各自对应的用于发起随机接入的第一消息,以使所述基站根据各个所述第一消息为所述终端配置TCI状态集合。
  40. 一种传输配置装置,其特征在于,所述装置用于基站,所述基站向终端发送一个或多个的SSB,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收所述终端发送的一个或多个用于发起随机接入的第一消息,所述第一消息是与所述终端检测到的能够触发随机接入的第一SSB相对应的;
    根据各个所述第一消息为所述终端配置TCI状态集合。
PCT/CN2018/097103 2018-07-25 2018-07-25 传输配置方法及装置 WO2020019218A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/262,694 US11546867B2 (en) 2018-07-25 2018-07-25 Transmission configuration method and apparatus
CN201880001657.6A CN109076593B (zh) 2018-07-25 2018-07-25 传输配置方法及装置
PCT/CN2018/097103 WO2020019218A1 (zh) 2018-07-25 2018-07-25 传输配置方法及装置
EP18927785.8A EP3829251B1 (en) 2018-07-25 2018-07-25 Transmission configuration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097103 WO2020019218A1 (zh) 2018-07-25 2018-07-25 传输配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020019218A1 true WO2020019218A1 (zh) 2020-01-30

Family

ID=64789403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097103 WO2020019218A1 (zh) 2018-07-25 2018-07-25 传输配置方法及装置

Country Status (4)

Country Link
US (1) US11546867B2 (zh)
EP (1) EP3829251B1 (zh)
CN (1) CN109076593B (zh)
WO (1) WO2020019218A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719635B (zh) * 2018-07-13 2021-09-17 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
WO2020019216A1 (zh) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 传输配置方法及装置
CN109076560B (zh) * 2018-07-27 2021-06-29 北京小米移动软件有限公司 传输配置指示的配置方法及装置
CN111436129B (zh) * 2019-01-11 2023-10-24 华为技术有限公司 数据传输方法和通信装置
CN110535542B (zh) * 2019-01-11 2022-11-29 中兴通讯股份有限公司 控制信道的监测方法及装置、发送方法及装置、存储介质
US11974270B2 (en) * 2019-02-14 2024-04-30 Ntt Docomo, Inc. Terminal, radio communication method, base station, and system for supressing deterioration of communication quality
CN111586846B (zh) * 2019-02-15 2024-02-20 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
CN114629601A (zh) * 2019-02-15 2022-06-14 中兴通讯股份有限公司 信息确定方法、信息确定装置及存储介质
WO2020248281A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN112312547A (zh) * 2019-07-26 2021-02-02 大唐移动通信设备有限公司 资源分配、确定方法及装置
CN110572865B (zh) * 2019-09-09 2021-10-22 展讯通信(上海)有限公司 Ssb的接收方法及装置,存储介质、终端
BR112022004903A2 (pt) * 2019-09-20 2022-06-07 Beijing Xiaomi Mobile Software Co Ltd Método e dispositivo para ativar um estado de indicador de configuração de transmissão, e, meio de armazenamento de memória
CN114846876A (zh) * 2020-02-12 2022-08-02 苹果公司 稳健上行链路和下行链路波束指示
CN113518434A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 一种通信方法及装置
CN114006682B (zh) * 2020-07-27 2023-04-07 大唐移动通信设备有限公司 波束指示方法、装置、终端及网络侧设备
CN112738841B (zh) * 2020-12-28 2022-05-13 四川天邑康和通信股份有限公司 一种5g基站中ssb波束动态配置方法及5g基站
CN115699940A (zh) * 2021-04-12 2023-02-03 北京小米移动软件有限公司 一种波束管理方法、波束管理装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092754A (zh) * 2017-11-17 2018-05-29 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260251B (zh) * 2012-02-17 2016-06-15 华为技术有限公司 数据传输方法、基站及用户设备
CN107872888A (zh) 2016-09-28 2018-04-03 北京信威通信技术股份有限公司 一种下行控制信道传输的方法及装置
CN106533557B (zh) 2016-10-28 2018-08-31 陕西尚品信息科技有限公司 一种基于波束形成技术降低毫米波通信能量损耗的方法
CN108235444B (zh) 2016-12-12 2021-09-10 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108282806B (zh) 2017-01-05 2023-10-24 华为技术有限公司 一种信号测量方法、网络侧设备及用户设备
CN108282212B (zh) * 2017-01-06 2022-06-14 华为技术有限公司 一种信道状态信息处理的方法、装置和系统
EP3566336A1 (en) 2017-01-06 2019-11-13 IDAC Holdings, Inc. Beam failure recovery
WO2018128520A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 무선 통신 시스템에서 빔 관리를 위한 csi-rs 설정 방법 및 장치
CN106992953B (zh) 2017-03-21 2020-12-18 北京小米移动软件有限公司 系统信息获取方法及装置
CN106900054B (zh) 2017-04-01 2020-08-14 宇龙计算机通信科技(深圳)有限公司 一种多载波传输方法、用户设备以及基站
CN108111270B (zh) 2017-06-16 2022-12-30 中兴通讯股份有限公司 导频信号发送、接收方法及装置
CN113541909A (zh) * 2017-08-11 2021-10-22 中兴通讯股份有限公司 参考信号的配置方法及装置
CN114710247A (zh) 2017-11-17 2022-07-05 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器
CN108206714A (zh) * 2017-12-29 2018-06-26 中兴通讯股份有限公司 信道状态信息获取方法及装置
CN108260214A (zh) * 2018-01-17 2018-07-06 中兴通讯股份有限公司 一种波束监测对象的确定方法及装置
CN111919494B (zh) * 2018-04-05 2023-12-01 株式会社Ntt都科摩 用户装置
US11336357B2 (en) * 2018-04-05 2022-05-17 Nokia Technologies Oy Beam failure recovery for serving cell
US11510252B2 (en) * 2018-07-04 2022-11-22 Ntt Docomo, Inc. Terminal, radio communication method, base station, and system
US20200029316A1 (en) * 2018-07-19 2020-01-23 Comcast Cable Communications, Llc Resource Management for Wireless Communications Using a Power Saving State

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092754A (zh) * 2017-11-17 2018-05-29 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "MAC CE Adaptation for NR for TS 38.321", 3GPP TSG-WG2 MEETING #102 R2-1809243, 7 June 2018 (2018-06-07), XP051452851 *
SAMSUNG: "Miscellaneous Corrections", 3GPP TSG-RAN WG2 MEETING #102 R2-1809200, 7 June 2018 (2018-06-07), XP051452844 *

Also Published As

Publication number Publication date
EP3829251A4 (en) 2021-08-04
CN109076593B (zh) 2022-05-13
US20210168742A1 (en) 2021-06-03
US11546867B2 (en) 2023-01-03
CN109076593A (zh) 2018-12-21
EP3829251A1 (en) 2021-06-02
EP3829251B1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2020019218A1 (zh) 传输配置方法及装置
WO2020019216A1 (zh) 传输配置方法及装置
WO2020019217A1 (zh) 传输配置方法及装置
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
US11856422B2 (en) Beam failure recovery request sending and response methods and devices, and storage medium
WO2020056745A1 (zh) 带宽部分的切换触发方法及装置、信息配置方法及装置
JP7045479B2 (ja) Harqフィードバック方法および装置
WO2020087379A1 (zh) 传输随机接入指示信息的方法及装置
WO2018191839A1 (zh) 用于请求系统消息的方法、装置、用户设备及基站
WO2019200546A1 (zh) 随机接入方法及装置
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
WO2021012279A1 (zh) 随机接入方法、装置及存储介质
WO2019192021A1 (zh) 上行资源请求方法及装置
WO2020087380A1 (zh) 传输随机接入指示信息的方法及装置
WO2020097757A1 (zh) 带宽部分的配置方法及装置
WO2020258080A1 (zh) 随机接入方法、装置及存储介质
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
WO2018141163A1 (zh) 数据传输方法及装置
WO2018086010A1 (zh) 控制协议数据单元pdu发送方法及装置
WO2018120779A1 (zh) 下行链路数据的传输方法及装置
WO2018195872A1 (zh) 上行资源获取方法、装置及计算机可读存储介质
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2020124497A1 (zh) 上行传输方法及装置
CN108683471B (zh) 同步信息处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927785

Country of ref document: EP

Effective date: 20210225