WO2020019217A1 - 传输配置方法及装置 - Google Patents

传输配置方法及装置 Download PDF

Info

Publication number
WO2020019217A1
WO2020019217A1 PCT/CN2018/097102 CN2018097102W WO2020019217A1 WO 2020019217 A1 WO2020019217 A1 WO 2020019217A1 CN 2018097102 W CN2018097102 W CN 2018097102W WO 2020019217 A1 WO2020019217 A1 WO 2020019217A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
base station
tci
terminal
measurement report
Prior art date
Application number
PCT/CN2018/097102
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/262,429 priority Critical patent/US11711818B2/en
Priority to PCT/CN2018/097102 priority patent/WO2020019217A1/zh
Priority to CN201880001495.6A priority patent/CN109076378B/zh
Priority to EP18928078.7A priority patent/EP3829212B1/en
Priority to CN202210435862.1A priority patent/CN114916004A/zh
Publication of WO2020019217A1 publication Critical patent/WO2020019217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission configuration method and device.
  • a management process for a beam is started after a terminal completes random access with a base station and an RRC (Radio Resource Control) connection.
  • RRC Radio Resource Control
  • the base station must wait for a beam measurement configuration, beam measurement, and beam measurement report before configuring the TCI (Transmission Configuration Configuration Indication) status set for the terminal.
  • TCI Transmission Configuration Configuration Indication
  • the delay of the TCI configuration is increased, so that the terminal cannot use the most appropriate receiving beam in time, which further affects the throughput of the terminal.
  • the embodiments of the present disclosure provide a transmission configuration method and device.
  • a transmission configuration method is provided.
  • the method is used for a terminal.
  • the method includes:
  • the SSB measurement configuration information sent by the receiving base station includes:
  • the SSB measurement configuration information includes:
  • a measurement object where the measurement object includes one or more SSBs designated by the base station;
  • a measurement trigger condition where the measurement trigger condition includes a specified measurement trigger threshold
  • the configuration of the measurement report, and the configuration of the measurement report includes the specified content of the measurement report.
  • the sending an SSB measurement report to the base station through a first designated message includes:
  • the configuration of the measurement report further includes a designated transmission resource of the measurement report; and the sending the SSB measurement report to the base station through a first designated message includes:
  • the method further includes:
  • the method further includes:
  • the RRC signaling includes a first TCI state set configured by the base station for the terminal to receive a PDCCH and / or a second TCI state used to receive a PDSCH Set
  • the first TCI state set includes a first correspondence between a TCI state identifier and an SSB identifier for receiving a PDCCH
  • the second TCI state set includes a first TCI state identifier and an SSB identifier for a PDSCH.
  • the first TCI status set includes at least two TCI status identifiers; the method further includes:
  • the first MAC CE signaling is used to activate a first TCI status identifier, and the first TCI status identifier is the base station from the first TCI status set A selected TCI status identifier, which is used by the terminal to determine a receiving beam to be used when receiving a PDCCH from a base station;
  • the first receiving beam that is the same as the SSB designated or corresponding to the receiving the first SSB identifier is used.
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the method further includes:
  • the second MAC CE signaling being used to activate a second number of TCI status identifiers for PDSCH reception, the second number of TCI status identifiers being the base station And selecting from a first number of TCI status identifiers in the second TCI status set.
  • the second number is greater than 1; the method further includes:
  • DCI signaling of downlink control information sent by the base station where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier is the second TCI status identifier A TCI status identifier selected from the second number of TCI status identifiers;
  • a second receiving beam that is the same as the SSB designated or corresponding to the receiving the second SSB identifier is used.
  • a base station including:
  • the terminal If the SSB measurement report sent by the terminal through a first designated message is received, and the first designated message is a message used to characterize contention resolution during random access, configure the terminal with TCI according to the SSB measurement report State collection.
  • the sending the SSB measurement configuration information to a terminal includes:
  • the SSB measurement configuration information includes:
  • a measurement object where the measurement object includes one or more SSBs designated by the base station;
  • a measurement trigger condition where the measurement trigger condition includes a specified measurement trigger threshold
  • the configuration of the measurement report, and the configuration of the measurement report includes the specified content of the measurement report.
  • configuring the TCI state set for the terminal according to the SSB measurement report includes:
  • the terminal Configuring the terminal with a first TCI state set for receiving PDCCH and / or a second TCI state set for receiving PDSCH according to the SSB measurement report, the first TCI state set including TCI for receiving PDCCH A first correspondence between a state identifier and an SSB identifier, and the second TCI state set includes a second correspondence between a TCI state identifier and an SSB identifier for receiving a PDSCH.
  • the method further includes:
  • the first TCI status set includes at least two TCI status identifiers; the method further includes:
  • TCI status identifier from the first TCI status set, and the selected TCI status identifier is a first TCI status identifier
  • the first MAC CE signaling is used to activate the first TCI status identifier, and the first TCI status identifier is used by a terminal to determine a receiving beam to be used when receiving a PDCCH from a base station;
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the method further includes:
  • the second number is greater than 1; the method further includes:
  • the DCI signaling indicates a second TCI status identifier received by the PDSCH for the DCI signaling scheduling
  • the second TCI status identifier is the second TCI status identifier from the second number of TCI status identifiers of the base station.
  • a transmission configuration device is provided, the device is used for a terminal, and the device includes:
  • a first receiving module configured to receive SSB measurement configuration information sent by a base station
  • a measurement module configured to perform SSB measurement according to the SSB measurement configuration information to obtain an SSB measurement report
  • a sending module configured to send an SSB measurement report to the base station through a first designated message, where the first designated message is a message used to characterize contention resolution during a random access process, so that the base station may
  • the measurement report configures a TCI status set for the terminal.
  • the first receiving module includes:
  • the receiving submodule is configured to receive a system message block SIB1 sent by a base station, where the SIB1 includes the SSB measurement configuration information.
  • the SSB measurement configuration information includes:
  • a measurement object where the measurement object includes one or more SSBs designated by the base station;
  • a measurement trigger condition where the measurement trigger condition includes a specified measurement trigger threshold
  • the configuration of the measurement report, and the configuration of the measurement report includes the specified content of the measurement report.
  • the sending module includes:
  • a first determining submodule configured to determine a first specified resource configured by the base station for the terminal to transmit the first specified message
  • a first adding sub-module configured to add the SSB measurement report to the first designated message
  • a first sending submodule is configured to use the first designated resource to send the first designated message carrying the SSB measurement report to the base station.
  • the configuration of the measurement report further includes designated transmission resources of the measurement report; and the sending module includes:
  • a second determining submodule configured to determine a second specified resource configured by the base station for the terminal to transmit the first specified message
  • An acquisition submodule configured to acquire a temporary C-RNTI cell wireless network temporary identity that is the same as the first specified message when the second specified resource and the specified transmission resource are different;
  • a second sending sub-module is configured to send the SSB measurement report to the base station by using the C-RNTI and the designated transmission resource.
  • the sending module further includes:
  • a second adding sub-module configured to add the SSB measurement report to the first designated message when the second designated resource and the designated transmission resource are the same;
  • a third sending submodule is configured to use the second designated resource to send the first designated message carrying the SSB measurement report to the base station.
  • the apparatus further includes:
  • a second receiving module configured to receive a second designated message sent by the base station and used to indicate success of the contention resolution
  • a third receiving module is configured to receive radio resource control RRC signaling sent by the base station, where the RRC signaling includes a first TCI state set configured by the base station for the terminal to receive a PDCCH and / or A second TCI state set for receiving a PDSCH, the first TCI state set includes a first correspondence between a TCI state identifier and an SSB identifier for receiving a PDCCH, and the second TCI state set includes a The second correspondence between the TCI status identifier and the SSB identifier.
  • the first TCI status set includes at least two TCI status identifiers; the apparatus further includes:
  • a fourth receiving module is configured to receive a first MAC CE signaling sent by the base station, where the first MAC CE signaling is used to activate a first TCI status identifier, where the first TCI status identifier is A TCI status identifier selected from the first TCI status set and used to determine a receiving beam that the terminal needs to use when receiving a PDCCH from a base station;
  • a first determining module configured to determine a first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship
  • the first processing module is configured to use, when receiving a PDCCH, a first receiving beam that is the same as an SSB designated or corresponding to the receiving the first SSB identifier.
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the device further includes:
  • a fifth receiving module configured to receive second MAC CE signaling sent by the base station, where the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception, the second number The TCI status identifiers are selected by the base station from a first number of TCI status identifiers in the second TCI status set.
  • the device further includes:
  • a sixth receiving module is configured to receive downlink control information DCI signaling sent by the base station, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI
  • the status identifier is a TCI status identifier selected by the base station from the second number of TCI status identifiers;
  • a second determining module configured to determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship
  • the second processing module is configured to use a second receiving beam that is the same as receiving the SSB designated or corresponding to the SSB when receiving the PDSCH scheduled by the DCI signaling.
  • a transmission configuration apparatus is provided.
  • the apparatus is used for a base station, and the apparatus includes:
  • a setting module configured to set terminal configuration information for SSB measurement
  • An information sending module configured to send the SSB measurement configuration information to a terminal, so that the terminal performs SSB measurement according to the SSB measurement configuration information to obtain an SSB measurement report;
  • a configuration module configured to, if the SSB measurement report sent by the terminal through a first designated message is received, where the first designated message is a message used to characterize contention resolution during a random access process, according to the SSB measurement report Configure a TCI state set for the terminal.
  • the information sending module includes:
  • the information sending submodule is configured to add the SSB measurement configuration information to SIB1, and send the SIB1 to a terminal.
  • the SSB measurement configuration information includes:
  • a measurement object where the measurement object includes one or more SSBs designated by the base station;
  • a measurement trigger condition where the measurement trigger condition includes a specified measurement trigger threshold
  • the configuration of the measurement report, and the configuration of the measurement report includes the specified content of the measurement report.
  • the configuration module includes:
  • a configuration submodule configured to configure, according to the SSB measurement report, a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH, in the first TCI state set It includes a first correspondence between a TCI status identifier and an SSB identifier for receiving a PDCCH, and the second TCI status set includes a second correspondence between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the apparatus further includes:
  • a message sending module configured to send a second designated message to the terminal to indicate success of the contention resolution
  • the first signaling sending module is configured to add the first TCI status set and / or the second TCI status set to RRC signaling, and send the RRC signaling to the terminal.
  • the first TCI status set includes at least two TCI status identifiers; the apparatus further includes:
  • a first selection module configured to select a TCI status identifier from the first TCI status set, where the selected TCI status identifier is a first TCI status identifier
  • a first generation module is configured to generate a first MAC CE signaling, where the first MAC CE signaling is used to activate the first TCI status identifier, and the first TCI status identifier is used by a terminal to determine to receive A receiving beam to be used in PDCCH;
  • a second signaling sending module is configured to send the first MAC CE signaling to the terminal.
  • the second TCI status set includes a first number of TCI status identifiers, and the first number is greater than 1; the device further includes:
  • a second selection module configured to select a second number of TCI status identifiers for PDSCH reception from a first number of TCI status identifiers in the second TCI status set;
  • a second generation module configured to generate a second MAC CE signaling, where the second MAC CE signaling is used to activate the second number of TCI status identifiers for PDSCH reception;
  • a third signaling sending module is configured to send the second MAC CE signaling to the terminal.
  • the device further includes:
  • a third generation module is configured to generate DCI signaling, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier is the base station A TCI status identifier selected from the second number of TCI status identifiers;
  • a fourth signaling sending module is configured to send the DCI signaling to the terminal.
  • a non-transitory computer-readable storage medium stores a computer program, and the computer program is configured to execute the transmission configuration method according to the first aspect.
  • a non-transitory computer-readable storage medium stores a computer program, and the computer program is configured to execute the transmission configuration method according to the second aspect.
  • a transmission configuration device is provided, the device is used for a terminal, and the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a transmission configuration apparatus is provided.
  • the apparatus is used for a base station, and the apparatus includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the terminal If the SSB measurement report sent by the terminal through a first designated message is received, and the first designated message is a message used to characterize contention resolution during random access, configure the terminal with TCI according to the SSB measurement report State collection.
  • the terminal in the present disclosure may receive the SSB measurement configuration information sent by the base station, perform SSB measurement according to the SSB measurement configuration information, obtain an SSB measurement report, and send the SSB measurement report to the base station through a first designated message.
  • the first designated message is a random access The message used to characterize the contention resolution during the entry process, so that the base station can configure the TCI state set for the terminal according to the SSB measurement report in the first designated message, thereby improving the efficiency of transmission configuration and reducing delay.
  • the base station in the present disclosure can configure the TCI state set for the terminal according to the SSB measurement report, thereby improving the efficiency of transmission configuration and reducing delay.
  • Fig. 1 is a flow chart showing a transmission configuration method according to an exemplary embodiment
  • Fig. 2 is an application scenario diagram of a transmission configuration method according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing a transmission configuration according to an exemplary embodiment
  • Fig. 4 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 5 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 6 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 7 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 8 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 9 is a flow chart showing a transmission configuration method according to an exemplary embodiment
  • Fig. 10 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 11 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 12 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 13 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 14 is a flow chart showing another transmission configuration method according to an exemplary embodiment
  • Fig. 15 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment
  • Fig. 16 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 17 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 18 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 19 is a block diagram illustrating another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 20 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 21 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 22 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 23 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 24 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment
  • Fig. 25 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 26 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 27 is a block diagram illustrating another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 28 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 29 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 30 is a block diagram showing another transmission configuration apparatus according to an exemplary embodiment
  • Fig. 31 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment
  • Fig. 32 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the terms first, second, third, etc. may be used in this disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the indication information may also be referred to as the second information, and similarly, the second information may also be referred to as the indication information.
  • the word "if” as used herein can be interpreted as “at” or "when” or "in response to determination”.
  • Fig. 1 is a flowchart illustrating a transmission configuration method according to an exemplary embodiment
  • Fig. 2 is an application scenario diagram of a transmission configuration method according to an exemplary embodiment
  • the transmission configuration method may be used for a terminal
  • the terminal may be a UE (User Equipment); as shown in FIG. 1, the transmission configuration method may include the following steps 110-130:
  • step 110 the SSB measurement configuration information sent by the base station is received.
  • the SSB measurement configuration information may be configuration information configured by the base station for the terminal for SSB measurement, and is sent to the terminal through a designated message, for example, the designated message is a system message.
  • step 110 when step 110 is performed, it may be implemented in the following ways:
  • SIB System Information Block
  • the SSB measurement configuration information includes:
  • (1-1) a measurement object, where the measurement object includes one or more SSBs designated by the base station;
  • a measurement trigger condition where the measurement trigger condition includes a specified measurement trigger threshold; where the specified measurement trigger threshold may be a specified SSB receive power threshold, L1-RSRP (Layer 1-Reference Signal (Received Power, reference signal received power) power threshold; or the specified measurement trigger threshold can be the specified SSB receive quality threshold, L1-RSRQ (Reference Signal Received Quality, reference signal receive quality) power threshold.
  • L1-RSRP Layer 1-Reference Signal
  • L1-RSRQ Reference Signal Received Quality, reference signal receive quality
  • the configuration of the measurement report includes a specified content of the measurement report, or a specified content of the measurement report and a specified transmission resource of the measurement report.
  • the specified content of the measurement report may be: SSB identification plus L1-RSRP and / or L1-RSRQ; the specified transmission resource may be PUCCH (Physical Uplink Control Channel) or PUSCH resource (Physical Uplink Shared Channel, physical uplink shared channel).
  • the base station may configure the designated transmission resource for the measurement report, or may not configure the designated transmission resource. If it is not configured, the resource configured for the terminal to transmit the first designated message (that is, the message used to characterize the contention resolution during random access (Msg.3)) configured by the base station may be directly reused.
  • the Msg.3 resource for transmitting may be a PUCCH or a PUSCH resource.
  • step 120 SSB measurement is performed according to the SSB measurement configuration information to obtain an SSB measurement report.
  • the SSB measurement report is sent to the base station through a first designated message.
  • the first designated message is a message used to characterize contention resolution during the random access process, so that the base station configures the TCI state set for the terminal according to the SSB measurement report.
  • a corresponding implementation manner may be adopted according to whether the base station configures designated transmission resources for the measurement report:
  • Method 1 The configuration of the measurement report does not include the specified transmission resources of the measurement report.
  • the specific implementation process includes:
  • the first specified resource for transmitting the first specified message can be directly multiplexed.
  • the first designated message (Msg.3) of the SSB measurement report is sent to the base station.
  • Method 2 The configuration of the measurement report includes the specified transmission resource of the measurement report, but the specified transmission resource is different from the Msg.3 resource used for transmission.
  • the specific implementation process includes:
  • (3-1) determining a second designated resource configured by the base station for the terminal to transmit the first designated message (Msg.3);
  • the random access feedback received by the terminal will have a temporary C-RNTI.
  • the temporary C-RNTI is a dynamic identifier assigned to the terminal by the base station, and the base station will give The terminal configures resources for sending Msg.3, so that the terminal can send Msg.3 including the temporary C-RNTI on the resources for sending Msg.3.
  • Method 3 The configuration of the measurement report includes the specified transmission resources of the measurement report, but the specified transmission resources are the same as those used to transmit Msg.3 resources.
  • the third method when the configuration of the measurement report includes the specified transmission resource of the measurement report, but when the specified transmission resource is the same as the resource for transmitting Msg.3, it can also be directly multiplexed for transmitting the first specified message.
  • the second designated resource (Msg.3) sends the first designated message (Msg.3) carrying the SSB measurement report to the base station.
  • a base station and a terminal are included.
  • the base station will set the SSB measurement configuration information for the terminal and send the SSB measurement configuration information to the terminal.
  • the terminal After receiving the SSB measurement configuration information sent by the base station, the terminal will perform the SSB measurement according to the SSB measurement configuration information, obtain an SSB measurement report, and pass A first designated message sends an SSB measurement report to the base station, and the first designated message is a message used to characterize contention resolution during a random access process, so that the base station configures the terminal according to the SSB measurement report TCI state collection.
  • the first designated message is Msg.3 in FIG. 3.
  • the first designated message is a random access The message used to characterize the contention resolution during the entry process, so that the base station can configure the TCI state set for the terminal according to the SSB measurement report in the first designated message, thereby improving the efficiency of transmission configuration and reducing delay.
  • Fig. 4 is a flow chart showing another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in Fig. 1.
  • the transmission The configuration method may further include the following step 410:
  • step 410 a second designated message sent by the base station for indicating successful contention resolution is received (Msg. 4 shown in FIG. 3).
  • the base station in the second designated message, sends a PDSCH (Physical Downlink Shared Channel) to the terminal, and the terminal learns that the random access is successful.
  • PDSCH Physical Downlink Shared Channel
  • the transmission configuration method may further include the following step 510:
  • step 510 RRC signaling sent by the base station is received, and the RRC signaling includes a first TCI (Transmission Configuration Configuration Indication) configured by the base station for the terminal to receive a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel). Indication) state set and / or a second TCI state set for receiving PDSCH.
  • the first TCI state set includes a first correspondence between a TCI state identifier and an SSB identifier for receiving a PDCCH
  • the second TCI state set includes a second correspondence between a TCI state identifier and an SSB identifier for receiving a PDSCH.
  • the first correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDCCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDCCH is type D, which is used for spatial Rx parameters (beam indication).
  • the second correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDSCH is type D, which is used for spatial Rx parameters, that is, beam indication.
  • the base station may send the RRC signaling carrying the first TCI status set and / or the second TCI status set while sending the second designated message; it may also send the first TCI carrying the second designated message RRC signaling for the state set and / or the second TCI state set. Therefore, the terminal may receive the RRC signaling carrying the first TCI status set and / or the second TCI status set while receiving the second designated message; it may also receive the carrying after receiving the second designated message. There is RRC signaling for the first TCI state set and / or the second TCI state set.
  • the first TCI status set or the second TCI status set configured by the base station for the terminal may include only one TCI status identifier, or may include multiple TCI status identifiers. If only one TCI status identifier is included, when receiving a PDCCH or receiving a PDSCH, the terminal may directly use the same receiving beam as specified by the corresponding SSB identifier or the corresponding SSB when receiving the TCI status identifier; if multiple TCI status identifiers are included , When receiving the PDCCH or receiving the PDSCH, the terminal also needs to receive the TCI status identifier activated or indicated by the base station again (see the embodiments shown in FIG. 6 and FIG. 7).
  • the RRC signaling sent by the base station is received, and the RRC signaling includes a terminal configured by the base station to receive the PDCCH.
  • the first TCI state set and / or the second TCI state set for receiving PDSCH thereby improving the reliability of receiving the TCI state set and avoiding time delay.
  • Fig. 6 is a flow chart showing another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in Fig. 5 in the first TCI state set. Including at least two TCI status identifiers; as shown in FIG. 6, the transmission configuration method may further include the following steps 610-630:
  • a first MAC CE signaling sent by a base station is received, and the first MAC CE signaling is used to activate a first TCI status identifier.
  • the first TCI status identifier is selected by the base station from the first TCI status set.
  • a TCI status identifier is used by the terminal to determine a receiving beam to be used when receiving a PDCCH from a base station.
  • the first MAC CE signaling is used to activate a first TCI status identifier.
  • the first TCI status set includes 64 TCI status identifiers, and the base station may select one of the 64 TCI status identifiers as the first TCI status identifier.
  • a first SSB identifier corresponding to the first TCI status identifier is determined according to the first correspondence.
  • the first correspondence relationship is located in a first TCI state set.
  • step 630 when receiving the PDCCH, the same first receiving beam as the SSB designated or corresponding to the receiving first SSB identification is used.
  • the first MAC CE signaling is used to activate the first TCI status identifier, which is selected by the base station from the first TCI status set. And determine the first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship, and use the same first receiving beam as the SSB designated or corresponding to the first SSB identifier when receiving the PDCCH, thereby realizing the use of
  • the transmission configuration received for the PDCCH also improves the reliability of the transmission configuration.
  • Fig. 7 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in Fig. 5 in the second TCI state set. Including a first number of TCI status identifiers, the first number is greater than one; as shown in FIG. 7, the transmission configuration method may further include the following step 710:
  • step 710 a second MAC CE signaling sent by the base station is received, and the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception, where the second number of TCI status identifiers are Selected from the first number of TCI status identifiers in the second TCI status set.
  • the second number is smaller than the first number.
  • the first number is 64 and the second number is 8.
  • the base station can select 8 from 64 TCI status identifiers and use the second MAC CE signaling to inform the terminal.
  • the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception.
  • the second number of TCI status identifiers is The base station selects from the first number of TCI status identifiers, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • FIG. 8 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used for a terminal and is based on the method shown in FIG. 7, where the second number is greater than 1; As shown in FIG. 8, the transmission configuration method may further include the following steps 810-830:
  • step 810 DCI (Downlink Control Information) signaling sent by the base station is received, and the DCI signaling indicates a second TCI status identifier for the PDSCH reception used for the DCI signaling scheduling, and the second TCI status.
  • the identifier is a TCI status identifier selected by the base station from the second number of TCI status identifiers.
  • the second number is greater than one.
  • the second quantity is 8.
  • the base station may select one of the eight TCI status identifiers as the second TCI status identifier.
  • a second SSB identifier corresponding to the second TCI status identifier is determined according to the second correspondence.
  • the second correspondence relationship is located in a second TCI state set.
  • step 830 when receiving the PDSCH scheduled by the DCI signaling, a second receiving beam that is the same as the SSB designated or corresponding to the receiving second SSB identifier is used.
  • the DCI signaling indicates the second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is the second number from the base station.
  • a TCI status identifier selected from the TCI status identifiers, and determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship, and specify and use the second SSB identifier when receiving the PDSCH scheduled by the DCI signaling Or the same second receiving beam with the same SSB, thereby realizing the transmission configuration for PDSCH reception used for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • Fig. 9 is a flowchart illustrating a transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station. As shown in Fig. 9, the transmission configuration method may include the following steps 910-930:
  • step 910 the terminal is configured with SSB measurement configuration information.
  • the SSB measurement configuration information may be configuration information configured by the base station for the terminal for SSB measurement.
  • the SSB measurement configuration information includes:
  • (1-1) a measurement object, where the measurement object includes one or more SSBs designated by the base station;
  • the configuration of the measurement report includes a specified content of the measurement report, or a specified content of the measurement report and a specified transmission resource of the measurement report.
  • the designated transmission resource may be a PUCCH or a PUSCH resource.
  • the base station may configure the designated transmission resource for the measurement report, or may not configure the designated transmission resource. If it is not configured, the resource configured for the terminal to transmit the first designated message (that is, the message used to characterize the contention resolution during random access (Msg.3)) configured by the base station may be directly reused.
  • the Msg.3 resource for transmitting may be a PUCCH or a PUSCH resource.
  • step 920 the SSB measurement configuration information is sent to the terminal, so that the terminal performs SSB measurement according to the SSB measurement configuration information to obtain an SSB measurement report.
  • the base station may send the designated message to the terminal, for example, the designated message is a system message.
  • step 920 when step 920 is performed, it may be implemented in the following ways:
  • step 930 if an SSB measurement report sent by the terminal through a first designated message is received, and the first designated message is a message used to characterize contention resolution during the random access process, the terminal is configured with a TCI state set according to the SSB measurement report. .
  • the base station determines a TCI status according to the SSB measurement report, such as TCI # 0, corresponding to SSB # i, and the QCL (Quasi-co-location, quasi co-location) type corresponding to TCI # 0 is type D, and type D is Used for spatial Rx parameters (beam indication), as shown in the TCI state set in Table 1:
  • the TCI state set configured by the base station for the terminal may include a first TCI state set for receiving PDCCH and / or a second TCI state set for receiving PDSCH; in step 930, according to the SSB measurement report,
  • the terminal configures the TCI state set the following implementation methods can be adopted:
  • the terminal Configuring the terminal with a first TCI state set for receiving PDCCH and / or a second TCI state set for receiving PDSCH according to the SSB measurement report, the first TCI state set including TCI for receiving PDCCH A first correspondence between a state identifier and an SSB identifier, and the second TCI state set includes a second correspondence between a TCI state identifier and an SSB identifier for receiving a PDSCH.
  • the first correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDCCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDCCH is type D, which is used for spatial Rx parameters, that is, beam indications, as shown in Table 1.
  • the second correspondence relationship may refer to a correspondence relationship between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the type of QCL (quasi-co-location) corresponding to the TCI status identifier used to receive the PDSCH is type D, which is used for spatial Rx parameters, that is, beam indications, as shown in Table 1.
  • the terminal after receiving the SSB measurement report sent by the terminal through the first designated message, the terminal can be configured with a TCI state set according to the SSB measurement report, thereby improving the efficiency of transmission configuration and reducing delay.
  • Fig. 10 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method can be used in a base station and is based on the method shown in Fig. 9.
  • the transmission The configuration method may further include the following step 1010:
  • step 1010 a second designated message (Msg. 4 shown in FIG. 3) is sent to the terminal to indicate successful contention resolution.
  • the transmission configuration method may further include the following step 1110:
  • step 1110 the first TCI state set and / or the second TCI state set are added to the RRC signaling, and the RRC signaling is sent to the terminal.
  • the first TCI state set and / or the second TCI state set may be added to the RRC signaling, and The RRC signaling is sent to the terminal, thereby improving the reliability of transmitting the TCI state set and also avoiding delay.
  • Fig. 12 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in Fig. 11.
  • the first TCI state set Including at least two TCI status identifiers; as shown in FIG. 12, the transmission configuration method may further include the following steps 1210-1230:
  • a TCI status identifier is selected from the first TCI status set, and the selected TCI status identifier is the first TCI status identifier.
  • a first MAC CE signaling is generated, and the first MAC CE signaling is used to activate a first TCI status identifier, and the first TCI status identifier is used by a terminal to determine a receiving beam to be used when receiving a PDCCH from a base station. .
  • step 1230 the first MAC CE signaling is sent to the terminal.
  • the first TCI status identifier is selected from the first TCI status set, and the first TCI status identifier is activated by using the first MAC CE signaling, so that it is used by the terminal to receive the PDCCH from the base station, thereby achieving The transmission configuration for PDCCH reception is improved, and the reliability of the transmission configuration is also improved.
  • Fig. 13 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in Fig. 11 in the second TCI state set. Including a first number of TCI status identifiers, the first number is greater than one; as shown in FIG. 13, the transmission configuration method may further include the following steps 1310 to 1330:
  • a second number of TCI status identifiers for PDSCH reception are selected from the first number of TCI status identifiers in the second TCI status set.
  • a second MAC CE signaling is generated, and the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception.
  • step 1330 the second MAC CE signaling is sent to the terminal.
  • the second MAC CE signaling is used to activate The second number of TCI status identifiers received by the PDSCH and the second MAC CE signaling are sent to the terminal, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • FIG. 14 is a flowchart illustrating another transmission configuration method according to an exemplary embodiment.
  • the transmission configuration method may be used in a base station and is based on the method shown in FIG. 13, where the second number is greater than 1; As shown in FIG. 14, the transmission configuration method may further include the following steps 1410-1420:
  • step 1410 DCI signaling is generated, and the DCI signaling indicates a second TCI status identifier received by the PDSCH for scheduling the DCI signaling.
  • the second TCI status identifier is the second TCI status identifier from the base station. The selected TCI status identifier.
  • step 1420 DCI signaling is sent to the terminal.
  • the DCI signaling indicates a second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is a second number of TCI statuses from the base station.
  • a TCI status identifier selected from the identifiers and the DCI signaling is sent to the terminal, thereby realizing the transmission configuration for PDSCH reception for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • the present disclosure also provides an embodiment of a transmission configuration device.
  • Fig. 15 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the apparatus is used for a terminal, and the terminal may be a UE; and used to execute the transmission configuration method shown in Fig. 1, as shown in Fig. 15, the
  • the transmission configuration device may include:
  • a first receiving module 151 configured to receive SSB measurement configuration information sent by a base station
  • a measurement module 152 configured to perform SSB measurement according to the SSB measurement configuration information to obtain an SSB measurement report
  • the sending module 153 is configured to send the SSB measurement report to the base station by using a first designated message, where the first designated message is a message used to characterize contention resolution during a random access process, so that the base station may
  • the SSB measurement report configures a TCI status set for the terminal.
  • the first designated message is a random access The message used to characterize the contention resolution during the entry process, so that the base station can configure the TCI state set for the terminal according to the SSB measurement report in the first designated message, thereby improving the efficiency of transmission configuration and reducing delay.
  • the first receiving module 151 may include:
  • the receiving submodule 161 is configured to receive a system message block SIB1 sent by a base station, where the SIB1 includes the SSB measurement configuration information.
  • the SSB measurement configuration information includes: a measurement object, the measurement object includes one or more SSBs specified by the base station; a measurement trigger condition, the The measurement trigger condition includes a specified measurement trigger threshold; a configuration of a measurement report, and the configuration of the measurement report includes a specified content of the measurement report.
  • the sending module 153 may include:
  • a first determining sub-module 171 configured to determine a first specified resource configured by the base station for the terminal to transmit the first specified message
  • a first adding sub-module 172 configured to add the SSB measurement report to the first designated message
  • the first sending submodule 173 is configured to send the first designated message carrying the SSB measurement report to the base station by using the first designated resource.
  • the configuration of the measurement report further includes designated transmission resources of the measurement report.
  • the sending module 153 may include:
  • a second determining sub-module 181 configured to determine a second specified resource configured by the base station for the terminal to transmit the first specified message
  • An acquisition submodule 182 configured to acquire a temporary C-RNTI cell wireless network temporary identity that is the same as the first specified message when the second specified resource and the specified transmission resource are different;
  • a second sending sub-module 183 is configured to send the SSB measurement report to the base station by using the C-RNTI and the designated transmission resource.
  • the sending module 153 may further include:
  • a second adding sub-module 191 configured to add the SSB measurement report to the first designated message when the second designated resource and the designated transmission resource are the same;
  • the third sending sub-module 192 is configured to use the second designated resource to send the first designated message carrying the SSB measurement report to the base station.
  • the device may further include:
  • a second receiving module 201 configured to receive a second designated message sent by the base station and used to indicate that the contention resolution is successful
  • the third receiving module 202 is configured to receive radio resource control RRC signaling sent by the base station, where the RRC signaling includes a first TCI state set configured by the base station for the terminal to receive a PDCCH and / or A second TCI state set for receiving PDSCH, the first TCI state set includes a first correspondence between a TCI state identifier for receiving PDCCH and an SSB identifier, and the second TCI state set includes for receiving PDSCH The second correspondence between the TCI status identifier and the SSB identifier.
  • the RRC signaling sent by the base station is received, and the RRC signaling includes a terminal configured by the base station to receive the PDCCH.
  • the first TCI state set and / or the second TCI state set for receiving PDSCH thereby improving the reliability of receiving the TCI state set and avoiding time delay.
  • the first TCI state set includes at least two TCI state identifiers.
  • the apparatus may further include:
  • the fourth receiving module 211 is configured to receive the first MAC CE signaling sent by the base station, where the first MAC CE signaling is used to activate a first TCI status identifier, and the first TCI status identifier is the base station.
  • a first determining module 212 configured to determine a first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship
  • the first processing module 213 is configured to use a first receiving beam that is the same as the SSB specified or corresponding to the first SSB identifier when receiving the PDCCH.
  • the first MAC CE signaling is used to activate the first TCI status identifier, which is selected by the base station from the first TCI status set. And determine the first SSB identifier corresponding to the first TCI status identifier according to the first correspondence relationship, and use the same first receiving beam as the SSB designated or corresponding to the first SSB identifier when receiving the PDCCH, thereby realizing the use of
  • the transmission configuration received for the PDCCH also improves the reliability of the transmission configuration.
  • the second TCI state set includes a first number of TCI state identifiers, and the first number is greater than 1; as shown in FIG. 22, the The device may also include:
  • a fifth receiving module 221 is configured to receive second MAC CE signaling sent by the base station, where the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception, and the second The number of TCI status identifiers is selected by the base station from a first number of TCI status identifiers in the second TCI status set.
  • the second MAC CE signaling is used to activate a second number of TCI status identifiers for PDSCH reception.
  • the second number of TCI status identifiers is The base station selects from the first number of TCI status identifiers, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • the apparatus may further include:
  • a sixth receiving module 231 is configured to receive DCI signaling sent by the base station, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier A TCI status identifier selected by the base station from the second number of TCI status identifiers;
  • a second determining module 232 configured to determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship
  • the second processing module 233 is configured to use, when receiving the PDSCH scheduled by the DCI signaling, a second receive wave beam that is the same as the SSB designated or corresponding to the received SSB.
  • the DCI signaling indicates the second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is the second number from the base station.
  • a TCI status identifier selected from the TCI status identifiers, and determine a second SSB identifier corresponding to the second TCI status identifier according to the second correspondence relationship, and specify and use the second SSB identifier when receiving the PDSCH scheduled by the DCI signaling Or the same second receiving beam with the same SSB, thereby realizing the transmission configuration for PDSCH reception used for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • Fig. 24 is a block diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the apparatus is used in a base station.
  • the transmission configuration apparatus may include:
  • a setting module 241 configured to set terminal configuration information for SSB measurement
  • An information sending module 242 is configured to send the SSB measurement configuration information to a terminal, so that the terminal performs SSB measurement according to the SSB measurement configuration information to obtain an SSB measurement report;
  • the configuration module 243 is configured to, if the SSB measurement report sent by the terminal through a first designated message is received, where the first designated message is a message used to characterize contention resolution in a random access process, according to the SSB measurement The report configures the TCI status set for the terminal.
  • the terminal after receiving the SSB measurement report sent by the terminal through the first designated message, the terminal can be configured with a TCI state set according to the SSB measurement report, thereby improving the efficiency of transmission configuration and reducing delay.
  • the information sending module 242 may include:
  • the information sending sub-module 251 is configured to add the SSB measurement configuration information to SIB1, and send the SIB1 to a terminal.
  • the SSB measurement configuration information includes: a measurement object, the measurement object includes one or more designated SSBs; a measurement trigger condition, and the measurement trigger condition Including the specified measurement trigger threshold; the configuration of the measurement report, the configuration of the measurement report includes the specified content of the measurement report, or the specified content of the measurement report and the specified transmission resource of the measurement report.
  • the configuration module 243 may include:
  • a configuration submodule 261 configured to configure, according to the SSB measurement report, the terminal with a first TCI state set for receiving a PDCCH and / or a second TCI state set for receiving a PDSCH, the first TCI state set It includes a first correspondence between a TCI status identifier and an SSB identifier for receiving a PDCCH, and the second TCI state set includes a second correspondence between a TCI status identifier and an SSB identifier for receiving a PDSCH.
  • the device may further include:
  • a message sending module 271, configured to send a second designated message to the terminal to indicate that the contention resolution is successful
  • the first signaling sending module 272 is configured to add the first TCI status set and / or the second TCI status set to RRC signaling, and send the RRC signaling to the terminal.
  • the first TCI state set and / or the second TCI state set may be added to the RRC signaling, and The RRC signaling is sent to the terminal, thereby improving the reliability of transmitting the TCI state set and also avoiding delay.
  • the first TCI status set includes at least two TCI status identifiers.
  • the device may further include:
  • a first selection module 281 configured to select a TCI status identifier from the first TCI status set, and the selected TCI status identifier is a first TCI status identifier
  • a first generation module 282 is configured to generate a first MAC CE signaling, where the first MAC CE signaling is used to activate the first TCI status identifier, and the first TCI status identifier is used by a terminal to determine that a reception is from a base station. Receiving beam needed for the PDCCH;
  • the second signaling sending module 283 is configured to send the first MAC CE signaling to the terminal.
  • the first TCI status identifier is selected from the first TCI status set, and the first TCI status identifier is activated by using the first MAC CE signaling, so that it is used by the terminal to receive the PDCCH from the base station, thereby achieving The transmission configuration for PDCCH reception is improved, and the reliability of the transmission configuration is also improved.
  • the second TCI state set includes a first number of TCI status identifiers, and the first number is greater than 1.
  • the device It can also include:
  • a second selection module 291 configured to select a second number of TCI status identifiers for PDSCH reception from the first number of TCI status identifiers
  • a second generation module 292 configured to generate a second MAC CE signaling, where the second MAC CE signaling is used to activate the second number of TCI status identifiers for PDSCH reception;
  • a third signaling sending module 293 is configured to send the second MAC CE signaling to the terminal.
  • the second MAC CE signaling is used to activate The second number of TCI status identifiers received by the PDSCH and the second MAC CE signaling are sent to the terminal, thereby realizing the transmission configuration for PDSCH reception, and also improving the reliability of the transmission configuration.
  • the device may further include:
  • the third generating module 301 is configured to generate DCI signaling, where the DCI signaling indicates a second TCI status identifier for PDSCH reception used for the DCI signaling scheduling, and the second TCI status identifier is the base station from One TCI status identifier selected from the second number of TCI status identifiers;
  • the fourth signaling sending module 302 is configured to send the DCI signaling to the terminal.
  • the DCI signaling indicates a second TCI status identifier received by the PDSCH used for the DCI signaling scheduling, and the second TCI status identifier is a second number of TCI statuses from the base station.
  • a TCI status identifier selected from the identifiers and the DCI signaling is sent to the terminal, thereby realizing the transmission configuration for PDSCH reception for DCI signaling scheduling, and also improving the reliability of the transmission configuration.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, in which the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one Place, or can be distributed across multiple network elements. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solution of the present disclosure. Those of ordinary skill in the art can understand and implement without creative efforts.
  • the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and the computer program is configured to execute the transmission configuration method described in any one of FIG. 1 to FIG. 8 described above.
  • the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and the computer program is configured to execute the transmission configuration method described in any one of FIG. 9 to FIG. 14 described above.
  • the present disclosure also provides a transmission configuration device.
  • the device is used for a terminal.
  • the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • Fig. 31 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • a transmission configuration device 3100 is shown according to an exemplary embodiment.
  • the device 3100 may be a computer, a mobile phone, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, or a fitness equipment. Devices, personal digital assistants and other terminals.
  • the device 3100 may include one or more of the following components: a processing component 3101, a memory 3102, a power component 3103, a multimedia component 3104, an audio component 3105, an input / output (I / O) interface 3106, a sensor component 3107, And communication component 3108.
  • the processing component 3101 generally controls the overall operations of the device 3100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3101 may include one or more processors 3109 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 3101 may include one or more modules to facilitate interaction between the processing component 3101 and other components.
  • the processing component 3101 may include a multimedia module to facilitate the interaction between the multimedia component 3104 and the processing component 3101.
  • the memory 3102 is configured to store various types of data to support operation at the device 3100. Examples of these data include instructions for any application or method for operating on the device 3100, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 3102 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 3103 provides power to various components of the device 3100.
  • the power component 3103 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 3100.
  • the multimedia component 3104 includes a screen that provides an output interface between the device 3100 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 3104 includes a front camera and / or a rear camera. When the device 3100 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3105 is configured to output and / or input audio signals.
  • the audio component 3105 includes a microphone (MIC) that is configured to receive an external audio signal when the device 3100 is in an operation mode such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 3102 or transmitted via the communication component 3108.
  • the audio component 3105 further includes a speaker for outputting audio signals.
  • the I / O interface 3106 provides an interface between the processing component 3101 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 3107 includes one or more sensors for providing a status assessment of the device 3100 in various aspects.
  • the sensor component 3107 can detect the on / off state of the device 3100 and the relative positioning of the components.
  • the component is the display and keypad of the device 3100.
  • the sensor component 3107 can also detect the change of the position of the device 3100 or a component of the device 3100. , The presence or absence of the user's contact with the device 3100, the orientation or acceleration / deceleration of the device 3100, and the temperature change of the device 3100.
  • the sensor assembly 3107 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 3107 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3107 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 3108 is configured to facilitate wired or wireless communication between the device 3100 and other devices.
  • the device 3100 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 3108 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 3108 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 3100 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 3102 including instructions, may be provided, which may be executed by the processor 3109 of the device 3100 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • the device 3100 when the instructions in the storage medium are executed by the processor, the device 3100 is enabled to execute any one of the above-mentioned transmission configuration methods.
  • the present disclosure also provides a transmission configuration device, which is used in a base station, and the device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the terminal If the SSB measurement report sent by the terminal through a first designated message is received, and the first designated message is a message used to characterize contention resolution during random access, configure the terminal with TCI according to the SSB measurement report State collection.
  • FIG. 32 is a schematic structural diagram of a transmission configuration apparatus according to an exemplary embodiment.
  • the device 3200 may be provided as a base station.
  • the device 3200 includes a processing component 3222, a wireless transmitting / receiving component 3224, an antenna component 3226, and a signal processing portion unique to a wireless interface.
  • the processing component 3222 may further include one or more processors.
  • One of the processors in the processing component 3222 may be configured to perform any one of the transmission configuration methods described above.

Abstract

本公开提供一种传输配置方法及装置,所述方法用于终端,所述方法包括:接收基站发送的SSB测量配置信息;根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。因此,本公开可以提高传输配置的效率,减少了时延。

Description

传输配置方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种传输配置方法及装置。
背景技术
在新一代通信系统中,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于beam(波束)的发送和接收。相关技术中,针对波束的管理过程都是在终端完成与基站的随机接入和RRC(Radio Resource Control,无线资源控制)连接之后才开始的。但是,在随机接入过程完成后,基站在为该终端配置TCI(Transmission Configuration Indication,传输配置指示)状态集合之前,还得等待一个beam测量配置,beam测量以及beam测量报告的一个过程,从而加大了TCI配置的时延,使得终端无法及时使用最合适的接收波束,进一步影响了终端的吞吐量。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种传输配置方法及装置。
根据本公开实施例的第一方面,提供一种传输配置方法,所述方法用于终端,所述方法包括:
接收基站发送的SSB测量配置信息;
根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
可选地,所述接收基站发送的SSB测量配置信息,包括:
接收基站发送的系统消息块SIB1,所述SIB1中包括所述SSB测量配置信息。
可选地,所述SSB测量配置信息包括:
测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
测量触发条件,所述测量触发条件包括指定的测量触发门限值;
测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
可选地,所述通过第一指定消息将SSB测量报告发送至所述基站,包括:
确定所述基站为所述终端配置的用于传输所述第一指定消息的第一指定资源;
将所述SSB测量报告添加到所述第一指定消息中;
利用所述第一指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
可选地,所述测量报告的配置中还包括测量报告的指定传输资源;所述通过第一指定消息将SSB测量报告发送至所述基站,包括:
确定所述基站为所述终端配置的用于传输所述第一指定消息的第二指定资源;
当所述第二指定资源和所述指定传输资源不同时,获取与所述第一指定消息相同的临时的C-RNTI小区无线网络临时标识;
利用所述C-RNTI和所述指定传输资源将所述SSB测量报告发送至所述基站。
可选地,所述方法还包括:
当所述第二指定资源和所述指定传输资源相同时,将所述SSB测量报告添加到所述第一指定消息中;
利用所述第二指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
可选地,所述方法还包括:
接收所述基站发送的用于表征竞争解决成功的第二指定消息;
接收所述基站发送的无线资源控制RRC信令,所述RRC信令包括所述基站为所述终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第 一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
可选地,所述第二数量大于1;所述方法还包括:
接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波束。
根据本公开实施例的第二方面,提供一种所述方法用于基站,所述方法包括:
为终端设置用于SSB测量配置信息;
将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
可选地,所述将所述SSB测量配置信息发送至终端,包括:
将所述SSB测量配置信息添加到SIB1中,并将所述SIB1发送至终端。
可选地,所述SSB测量配置信息包括:
测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
测量触发条件,所述测量触发条件包括指定的测量触发门限值;
测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
可选地,所述根据所述SSB测量报告为所述终端配置TCI状态集合,包括:
根据所述SSB测量报告为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述方法还包括:
向所述终端发送用于表征竞争解决成功的第二指定消息;
将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将所述RRC信令发送至所述终端。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
将所述第一MAC CE信令发送至所述终端。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
将所述第二MAC CE信令发送至所述终端。
可选地,所述第二数量大于1;所述方法还包括:
生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
将所述DCI信令发送至所述终端。
根据本公开实施例的第三方面,提供一种传输配置装置,所述装置用于终端,所述装置包括:
第一接收模块,被配置为接收基站发送的SSB测量配置信息;
测量模块,被配置为根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
发送模块,被配置为通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
可选地,所述第一接收模块包括:
接收子模块,被配置为接收基站发送的系统消息块SIB1,所述SIB1中包括所述SSB测量配置信息。
可选地,所述SSB测量配置信息包括:
测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
测量触发条件,所述测量触发条件包括指定的测量触发门限值;
测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
可选地,所述发送模块包括:
第一确定子模块,被配置为确定所述基站为所述终端配置的用于传输所述第一指定消息的第一指定资源;
第一添加子模块,被配置为将所述SSB测量报告添加到所述第一指定消息中;
第一发送子模块,被配置为利用所述第一指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
可选地,所述测量报告的配置中还包括测量报告的指定传输资源;所述发送模块包括:
第二确定子模块,被配置为确定所述基站为所述终端配置的用于传输所述第一指定消息的第二指定资源;
获取子模块,被配置为当所述第二指定资源和所述指定传输资源不同时,获取与所述第一指定消息相同的临时的C-RNTI小区无线网络临时标识;
第二发送子模块,被配置为利用所述C-RNTI和所述指定传输资源将所述SSB测量报告发送至所述基站。
可选地,所述发送模块还包括:
第二添加子模块,被配置为当所述第二指定资源和所述指定传输资源相同时,将所述SSB测量报告添加到所述第一指定消息中;
第三发送子模块,被配置为利用所述第二指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
可选地,所述装置还包括:
第二接收模块,被配置为接收所述基站发送的用于表征竞争解决成功的第二指定消息;
第三接收模块,被配置为接收所述基站发送的无线资源控制RRC信令,所述RRC信令包括所述基站为所述终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
第四接收模块,被配置为接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第一确定模块,被配置为根据所述第一对应关系确定所述第一TCI状态标识对 应的第一SSB标识;
第一处理模块,被配置为在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
第五接收模块,被配置为接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
可选地,所述第二数量大于1;所述装置还包括:
第六接收模块,被配置为接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第二确定模块,被配置为根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
第二处理模块,被配置为在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波束。
根据本公开实施例的第四方面,提供一种传输配置装置,所述装置用于基站,所述装置包括:
设置模块,被配置为为终端设置用于SSB测量配置信息;
信息发送模块,被配置为将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
配置模块,被配置为若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
可选地,所述信息发送模块包括:
信息发送子模块,被配置为将所述SSB测量配置信息添加到SIB1中,并将所述SIB1发送至终端。
可选地,所述SSB测量配置信息包括:
测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
测量触发条件,所述测量触发条件包括指定的测量触发门限值;
测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
可选地,所述配置模块包括:
配置子模块,被配置为根据所述SSB测量报告为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
可选地,所述装置还包括:
消息发送模块,被配置为向所述终端发送用于表征竞争解决成功的第二指定消息;
第一信令发送模块,被配置为将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将所述RRC信令发送至所述终端。
可选地,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
第一选取模块,被配置为从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
第一生成模块,被配置为生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第二信令发送模块,被配置为将所述第一MAC CE信令发送至所述终端。
可选地,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
第二选取模块,被配置为从所述第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
第二生成模块,被配置为生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
第三信令发送模块,被配置为将所述第二MAC CE信令发送至所述终端。
可选地,所述第二数量大于1;所述装置还包括:
第三生成模块,被配置为生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第四信令发送模块,被配置为将所述DCI信令发送至所述终端。
根据本公开实施例的第五方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述第一方面所述的传输配置方法。
根据本公开实施例的第六方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述第二方面所述的传输配置方法。
根据本公开实施例的第七方面,提供一种传输配置装置,所述装置用于终端,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站发送的SSB测量配置信息;
根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
根据本公开实施例的第八方面,提供一种传输配置装置,所述装置用于基站,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
为终端设置用于SSB测量配置信息;
将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中的终端可以通过接收基站发送的SSB测量配置信息,根据SSB测量配置信息进行SSB测量,得到SSB测量报告,通过第一指定消息将SSB测量报告发送至基站,第一指定消息为随机接入过程中用于表征竞争解决的消息,这样基站就可以根据第一指定消息中的SSB测量报告为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
本公开中的基站在接收到终端通过第一指定消息发送的SSB测量报告后,可以根据SSB测量报告为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种传输配置方法的流程图;
图2是根据一示例性实施例示出的一种传输配置方法的应用场景图;
图3是根据一示例性实施例示出的一种传输配置的示意图;
图4是根据一示例性实施例示出的另一种传输配置方法的流程图;
图5是根据一示例性实施例示出的另一种传输配置方法的流程图;
图6是根据一示例性实施例示出的另一种传输配置方法的流程图;
图7是根据一示例性实施例示出的另一种传输配置方法的流程图;
图8是根据一示例性实施例示出的另一种传输配置方法的流程图;
图9是根据一示例性实施例示出的一种传输配置方法的流程图;
图10是根据一示例性实施例示出的另一种传输配置方法的流程图;
图11是根据一示例性实施例示出的另一种传输配置方法的流程图;
图12是根据一示例性实施例示出的另一种传输配置方法的流程图;
图13是根据一示例性实施例示出的另一种传输配置方法的流程图;
图14是根据一示例性实施例示出的另一种传输配置方法的流程图;
图15是根据一示例性实施例示出的一种传输配置装置的框图;
图16是根据一示例性实施例示出的另一种传输配置装置的框图;
图17是根据一示例性实施例示出的另一种传输配置装置的框图;
图18是根据一示例性实施例示出的另一种传输配置装置的框图;
图19是根据一示例性实施例示出的另一种传输配置装置的框图;
图20是根据一示例性实施例示出的另一种传输配置装置的框图;
图21是根据一示例性实施例示出的另一种传输配置装置的框图;
图22是根据一示例性实施例示出的另一种传输配置装置的框图;
图23是根据一示例性实施例示出的另一种传输配置装置的框图;
图24是根据一示例性实施例示出的一种传输配置装置的框图;
图25是根据一示例性实施例示出的另一种传输配置装置的框图;
图26是根据一示例性实施例示出的另一种传输配置装置的框图;
图27是根据一示例性实施例示出的另一种传输配置装置的框图;
图28是根据一示例性实施例示出的另一种传输配置装置的框图;
图29是根据一示例性实施例示出的另一种传输配置装置的框图;
图30是根据一示例性实施例示出的另一种传输配置装置的框图;
图31是根据一示例性实施例示出的一种传输配置装置的结构示意图;
图32是根据一示例性实施例示出的一种传输配置装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,指示信息也可以被称为第二信息,类似地,第二信息也可以被称为指示信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种传输配置方法的流程图,图2是根据一示例性实施例示出的一种传输配置方法的应用场景图;该传输配置方法可以用于终端,该终端可以为UE(User Equipment,用户设备);如图1所示,该传输配置方法可以包括以下步骤110-130:
在步骤110中,接收基站发送的SSB测量配置信息。
本公开实施例中,SSB测量配置信息可以是基站为终端配置的用于SSB测量的配置信息,并通过指定消息发送至终端的,比如,指定消息为系统消息。
在一实施例中,在执行步骤110时,可以通过以下方式实现:
接收基站发送的SIB(System Information Block,系统消息块)1,该SIB1中包括SSB测量配置信息。
在一实施例中,所述SSB测量配置信息包括:
(1-1)测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
(1-2)测量触发条件,所述测量触发条件包括指定的测量触发门限值;其中,该指定的测量触发门限值可以为指定的SSB接收功率阈值,L1-RSRP(Layer 1-Reference Signal Received Power,参考信号接收功率)的功率阈值;或者指定的测量触发门限值可以为指定的SSB接收质量阈值,L1-RSRQ(Reference Signal Received Quality,参考信号接收质量)的功率阈值。
(1-3)测量报告的配置,所述测量报告的配置中包括测量报告的指定内容、或测量报告的指定内容和测量报告的指定传输资源。其中,该测量报告的指定内容可以为:SSB标识加上L1-RSRP和/或L1-RSRQ;该指定传输资源可以为PUCCH(Physical Uplink Control Channel,物理上行控制信道)或PUSCH资源(Physical Uplink Shared Channel,物理上行共享信道)。
上述(1-3)中基站可以为测量报告配置指定传输资源,也可以不配置指定传输资源。若不配置,可以直接复用基站为终端配置的用于传输第一指定消息(即随机接入过程中用于表征竞争解决的消息(Msg.3))的资源。其中,该用于传输Msg.3资源可以是PUCCH或PUSCH资源。
在步骤120中,根据SSB测量配置信息进行SSB测量,得到SSB测量报告。
在步骤130中,通过第一指定消息将SSB测量报告发送至基站,第一指定消息为随机接入过程中用于表征竞争解决的消息,以使基站根据SSB测量报告为终端配置TCI状态集合。
本公开实施例中,在通过第一指定消息将SSB测量报告发送至基站时,可以根据基站是否为测量报告配置指定传输资源,来采用相应的实现方式:
方式一:测量报告的配置不包括测量报告的指定传输资源。
此种方式下,具体实现过程包括:
(2-1)确定所述基站为所述终端配置的用于传输所述第一指定消息(Msg.3)的第一指定资源;
(2-2)将所述SSB测量报告添加到所述第一指定消息(Msg.3)中;
(2-3)利用所述第一指定资源将携带有所述SSB测量报告的所述第一指定消息(Msg.3)发送至所述基站。
从上述方式一可以看出:在测量报告的配置不包括测量报告的指定传输资源时,可以直接复用用于传输所述第一指定消息(Msg.3)的第一指定资源将携带有所述SSB测量报告的所述第一指定消息(Msg.3)发送至所述基站。
方式二:测量报告的配置包括测量报告的指定传输资源,但指定传输资源与用于传输Msg.3资源不同。
此种方式下,具体实现过程包括:
(3-1)确定所述基站为所述终端配置的用于传输所述第一指定消息(Msg.3)的第二指定资源;
(3-2)当所述第二指定资源和所述指定传输资源不同时,获取与所述第一指定消息(Msg.3)相同的临时的C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识);
本公开实施例中,随机接入过程中,终端接收的随机接入反馈中会有一个临时的C-RNTI,该临时的C-RNTI是由基站分配给终端的一个动态标识,而且基站会给终端配置用于发送Msg.3的资源,这样终端就可以在用于发送Msg.3的资源上发送包括临时的C-RNTI的Msg.3。
(3-3)利用所述C-RNTI和指定传输资源将所述SSB测量报告发送至所述基站。
从上述方式二可以看出:虽然SSB测量报告不在第一指定消息(Msg.3)里,但是使用了与第一指定消息(Msg.3)相同的临时的C-RNTI。
方式三:测量报告的配置包括测量报告的指定传输资源,但指定传输资源与用于传输Msg.3资源相同。
(4-1)确定所述基站为所述终端配置的用于传输所述第一指定消息(Msg.3)的第二指定资源;
(4-2)当所述第二指定资源和所述指定传输资源相同时,将所述SSB测量报告添加到所述第一指定消息中;
(4-3)利用所述第二指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
从上述方式三可以看出:在测量报告的配置包括测量报告的指定传输资源,但 指定传输资源与用于传输Msg.3资源相同时,也可以直接复用用于传输所述第一指定消息(Msg.3)的第二指定资源将携带有所述SSB测量报告的所述第一指定消息(Msg.3)发送至所述基站。
在一实例性场景中,如图2所示,包括基站和终端。基站会为终端设置用于SSB测量配置信息,将SSB测量配置信息发送至终端;终端接收到基站发送的SSB测量配置信息后,会根据SSB测量配置信息进行SSB测量,得到SSB测量报告,并通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。其中,第一指定消息如图3中的Msg.3。
由上述实施例可见,通过接收基站发送的SSB测量配置信息,根据SSB测量配置信息进行SSB测量,得到SSB测量报告,通过第一指定消息将SSB测量报告发送至基站,第一指定消息为随机接入过程中用于表征竞争解决的消息,这样基站就可以根据第一指定消息中的SSB测量报告为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
图4是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图1所示方法的基础上,如图4所示,该传输配置方法还可以包括以下步骤410:
在步骤410中,接收基站发送的用于表征竞争解决成功的第二指定消息(如图3所示的Msg.4)。
本公开实施例中,第二指定消息中基站发送PDSCH(Physical Downlink Shared Channel,物理下行共享信道)携带竞争解除标识给终端,终端获知随机接入成功。
在一实施例中,在执行步骤410的同时或之后,如图5所示,该传输配置方法还可以包括以下步骤510:
在步骤510中,接收基站发送的RRC信令,该RRC信令中包括基站为终端配置的用于接收PDCCH(Physical Downlink Control Channel,物理下行控制信道)的第一TCI(Transmission Configuration Indication,传输配置指示)状态集合和/或用于接收PDSCH的第二TCI状态集合。其中,第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
本公开实施例中,第一对应关系可以指的是用于接收PDCCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDCCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示(beam indication)。
第二对应关系可以指的是用于接收PDSCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDSCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示。
由于基站可能在发送第二指定消息的同时,发送携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令;也可能在发送第二指定消息之后,再发送携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令。因此,终端可能在接收到第二指定消息的同时,接收到携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令;也可能在接收到第二指定消息之后,接收到携带有第一TCI状态集合和/或第二TCI状态集合的RRC信令。
另外,基站为终端配置的第一TCI状态集合或第二TCI状态集合中可能只包括一个TCI状态标识,也可能包括多个TCI状态标识。若只包括一个TCI状态标识,则终端在接收PDCCH时或在接收PDSCH,可以直接使用与接收该TCI状态标识对应的SSB标识指定的或对应的SSB相同的接收波束;若包括多个TCI状态标识,则终端在接收PDCCH时或在接收PDSCH,还需要接收基站再次激活或指示的TCI状态标识(参见图6和图7所示实施例)。
由上述实施例可见,在接收基站发送的用于表征竞争解决成功的第二指定消息的同时或之后,接收基站发送的RRC信令,该RRC信令中包括基站为终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,从而提高了接收TCI状态集合的可靠性,还避免了时延。
图6是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图5所示方法的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图6所示,该传输配置方法还可以包括以下步骤610-630:
在步骤610中,接收基站发送的第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,第一TCI状态标识是基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波 束。
本公开实施例中,第一MAC CE信令用于激活第一TCI状态标识。比如:第一TCI状态集合中包括64个TCI状态标识,基站可以从这64个TCI状态标识中选取一个作为第一TCI状态标识。
在步骤620中,根据第一对应关系确定第一TCI状态标识对应的第一SSB标识。其中,第一对应关系位于第一TCI状态集合中。
在步骤630中,在接收PDCCH时使用与接收第一SSB标识指定的或对应的SSB相同的第一接收波束。
由上述实施例可见,通过接收基站发送的第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,该第一TCI状态标识是基站从第一TCI状态集合中选取的,并根据第一对应关系确定第一TCI状态标识对应的第一SSB标识,以及在接收PDCCH时使用与接收第一SSB标识指定的或对应的SSB相同的第一接收波束,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
图7是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图5所示方法的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图7所示,该传输配置方法还可以包括以下步骤710:
在步骤710中,接收基站发送的第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,该第二数量个TCI状态标识是基站从第二TCI状态集合中的第一数量个TCI状态标识中选取的。
本公开实施例中,第二数量小于第一数量。比如:第一数量为64,第二数量为8,对于PDSCH,基站可以从64个TCI状态标识选取8个,并使用第二MAC CE信令告知终端。
由上述实施例可见,通过接收基站发送的第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,该第二数量个TCI状态标识是基站从第一数量个TCI状态标识中选取的,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图8是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于终端,并建立在图7所示方法的基础上,所述第二数量大于1;如图8 所示,该传输配置方法还可以包括以下步骤810-830:
在步骤810中,接收基站发送的DCI(Downlink Control Information,下行控制信息)信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识。
本公开实施例中,第二数量大于1。比如:第二数量为8。基站可以从这8个TCI状态标识中选取一个作为第二TCI状态标识。
在步骤820中,根据第二对应关系确定第二TCI状态标识对应的第二SSB标识。其中,第二对应关系位于第二TCI状态集合中。
在步骤830中,在接收该DCI信令调度的PDSCH时使用与接收第二SSB标识指定的或对应的SSB相同的第二接收波束。
由上述实施例可见,通过接收基站发送的DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,并根据第二对应关系确定第二TCI状态标识对应的第二SSB标识,以及在接收该DCI信令调度的PDSCH时使用与接收第二SSB标识指定的或对应的SSB相同的第二接收波束,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图9是根据一示例性实施例示出的一种传输配置方法的流程图,该传输配置方法可以用于基站,如图9所示,该传输配置方法可以包括以下步骤910-930:
在步骤910中,为终端设置用于SSB测量配置信息。
本公开实施例中,SSB测量配置信息可以是基站为终端配置的用于SSB测量的配置信息。
在一实施例中,所述SSB测量配置信息包括:
(1-1)测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
(1-2)测量触发条件,所述测量触发条件包括指定的测量触发门限值;
(1-3)测量报告的配置,所述测量报告的配置中包括测量报告的指定内容、或测量报告的指定内容和测量报告的指定传输资源。其中,该指定传输资源可以为PUCCH或PUSCH资源。
上述(1-3)中基站可以为测量报告配置指定传输资源,也可以不配置指定传输资源。若不配置,可以直接复用基站为终端配置的用于传输第一指定消息(即随机接入过程中用于表征竞争解决的消息(Msg.3))的资源。其中,该用于传输Msg.3资源可以是PUCCH或PUSCH资源。
在步骤920中,将SSB测量配置信息发送至终端,以使终端根据SSB测量配置信息进行SSB测量,得到SSB测量报告。
本公开实施例中,基站可以通过指定消息发送至终端的,比如,指定消息为系统消息。
在一实施例中,在执行步骤920时,可以通过以下方式实现:
将所述SSB测量配置信息添加到SIB1中,并将所述SIB1发送至终端。
在步骤930中,若接收到终端通过第一指定消息发送的SSB测量报告,该第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据SSB测量报告为终端配置TCI状态集合。
比如:基站根据SSB测量报告确定一个TCI状态,比如TCI#0,对应的是SSB#i,而且TCI#0对应的QCL(Quasi-co-location,准共址)类型为类型D,类型D是用于spatial Rx parameter(空间接收参数),即波束指示(beam indication),如表1所示的TCI状态集合:
表1
Figure PCTCN2018097102-appb-000001
在一实施例中,基站为终端配置的TCI状态集合可以包括用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合;在执行步骤930中根 据SSB测量报告为终端配置TCI状态集合时,可以采用以下实现方式:
根据所述SSB测量报告为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
其中,第一对应关系可以指的是用于接收PDCCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDCCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示,可参见表1所示内容。
第二对应关系可以指的是用于接收PDSCH的TCI状态标识和SSB标识之间的对应关系。另外,用于接收PDSCH的TCI状态标识对应的QCL(准共址)类型为类型D,该类型D是用于spatial Rx parameter(空间接收参数),即波束指示,可参见表1所示内容。
由上述实施例可见,在接收到终端通过第一指定消息发送的SSB测量报告后,可以根据SSB测量报告为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
图10是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图9所示方法的基础上,如图10所示,该传输配置方法还可以包括以下步骤1010:
在步骤1010中,向终端发送用于表征竞争解决成功的第二指定消息(如图3所示的Msg.4)。
在一实施例中,在执行步骤1010的同时或之后,如图11所示,该传输配置方法还可以包括以下步骤1110:
在步骤1110中,将第一TCI状态集合和/或第二TCI状态集合添加到RRC信令中,并将RRC信令发送至终端。
由上述实施例可见,在向终端发送用于表征竞争解决成功的第二指定消息的同时或之后,可以第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将RRC信令发送至终端,从而提高了传输TCI状态集合的可靠性,还避免了时延。
图12是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图11所示方法的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图12所示,该传输配置方法还可以包括以下步骤1210-1230:
在步骤1210中,从第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识。
在步骤1220中,生成第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,该第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束。
在步骤1230中,将第一MAC CE信令发送至终端。
由上述实施例可见,通过从第一TCI状态集合中选取第一TCI状态标识,并利用第一MAC CE信令激活该第一TCI状态标识,使其用于终端接收来自基站的PDCCH,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
图13是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图11所示方法的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图13所示,该传输配置方法还可以包括以下步骤1310-1330:
在步骤1310中,从第二TCI状态集合中的第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识。
在步骤1320中,生成第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识。
在步骤1330中,将第二MAC CE信令发送至终端。
由上述实施例可见,通过从第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识,并生成第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,以及将第二MAC CE信令发送至终端,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图14是根据一示例性实施例示出的另一种传输配置方法的流程图,该传输配置方法可以用于基站,并建立在图13所示方法的基础上,所述第二数量大于1;如图 14所示,该传输配置方法还可以包括以下步骤1410-1420:
在步骤1410中,生成DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识。
在步骤1420中,将DCI信令发送至终端。
由上述实施例可见,通过生成DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,以及将DCI信令发送至终端,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
与前述传输配置方法的实施例相对应,本公开还提供了传输配置装置的实施例。
图15是根据一示例性实施例示出的一种传输配置装置的框图,该装置用于终端,该终端可以为UE;并用于执行图1所示的传输配置方法,如图15所示,该传输配置装置可以包括:
第一接收模块151,被配置为接收基站发送的SSB测量配置信息;
测量模块152,被配置为根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
发送模块153,被配置为通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
由上述实施例可见,通过接收基站发送的SSB测量配置信息,根据SSB测量配置信息进行SSB测量,得到SSB测量报告,通过第一指定消息将SSB测量报告发送至基站,第一指定消息为随机接入过程中用于表征竞争解决的消息,这样基站就可以根据第一指定消息中的SSB测量报告为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
在一实施例中,建立在图15所示装置的基础上,如图16所示,所述第一接收模块151可以包括:
接收子模块161,被配置为接收基站发送的系统消息块SIB1,所述SIB1中包 括所述SSB测量配置信息。
在一实施例中,建立在图15所示装置的基础上,所述SSB测量配置信息包括:测量对象,所述测量对象包括所述基站指定的一个或多个SSB;测量触发条件,所述测量触发条件包括指定的测量触发门限值;测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
在一实施例中,建立在图15所示装置的基础上,如图17所示,所述发送模块153可以包括:
第一确定子模块171,被配置为确定所述基站为所述终端配置的用于传输所述第一指定消息的第一指定资源;
第一添加子模块172,被配置为将所述SSB测量报告添加到所述第一指定消息中;
第一发送子模块173,被配置为利用所述第一指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
在一实施例中,建立在图15所示装置的基础上,所述测量报告的配置中还包括测量报告的指定传输资源;如图18所示,所述发送模块153可以包括:
第二确定子模块181,被配置为确定所述基站为所述终端配置的用于传输所述第一指定消息的第二指定资源;
获取子模块182,被配置为当所述第二指定资源和所述指定传输资源不同时,获取与所述第一指定消息相同的临时的C-RNTI小区无线网络临时标识;
第二发送子模块183,被配置为利用所述C-RNTI和所述指定传输资源将所述SSB测量报告发送至所述基站。
在一实施例中,建立在图18所示装置的基础上,如图19所示,所述发送模块153还可以包括:
第二添加子模块191,被配置为当所述第二指定资源和所述指定传输资源相同时,将所述SSB测量报告添加到所述第一指定消息中;
第三发送子模块192,被配置为利用所述第二指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
在一实施例中,建立在图15所示装置的基础上,如图20所示,所述装置还可 以包括:
第二接收模块201,被配置为接收所述基站发送的用于表征竞争解决成功的第二指定消息;
第三接收模块202,被配置为接收所述基站发送的无线资源控制RRC信令,所述RRC信令包括所述基站为所述终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
由上述实施例可见,在接收基站发送的用于表征竞争解决成功的第二指定消息的同时或之后,接收基站发送的RRC信令,该RRC信令中包括基站为终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,从而提高了接收TCI状态集合的可靠性,还避免了时延。
在一实施例中,建立在图20所示装置的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图21所示,所述装置还可以包括:
第四接收模块211,被配置为接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第一确定模块212,被配置为根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
第一处理模块213,被配置为在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
由上述实施例可见,通过接收基站发送的第一MAC CE信令,该第一MAC CE信令用于激活第一TCI状态标识,该第一TCI状态标识是基站从第一TCI状态集合中选取的,并根据第一对应关系确定第一TCI状态标识对应的第一SSB标识,以及在接收PDCCH时使用与接收第一SSB标识指定的或对应的SSB相同的第一接收波束,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图20所示装置的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图22所示,所述装置还可以包 括:
第五接收模块221,被配置为接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
由上述实施例可见,通过接收基站发送的第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,该第二数量个TCI状态标识是基站从第一数量个TCI状态标识中选取的,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图22所示装置的基础上,所述第二数量大于1;如图23所示,所述装置还可以包括:
第六接收模块231,被配置为接收所述基站发送的DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第二确定模块232,被配置为根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
第二处理模块233,被配置为在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波波束。
由上述实施例可见,通过接收基站发送的DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,并根据第二对应关系确定第二TCI状态标识对应的第二SSB标识,以及在接收该DCI信令调度的PDSCH时使用与接收第二SSB标识指定的或对应的SSB相同的第二接收波束,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
图24是根据一示例性实施例示出的一种传输配置装置的框图,该装置用于基站,如图24所示,该传输配置装置可以包括:
设置模块241,被配置为为终端设置用于SSB测量配置信息;
信息发送模块242,被配置为将所述SSB测量配置信息发送至终端,以使所述 终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
配置模块243,被配置为若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
由上述实施例可见,在接收到终端通过第一指定消息发送的SSB测量报告后,可以根据SSB测量报告为终端配置TCI状态集合,从而提高了传输配置的效率,减少了时延。
在一实施例中,建立在图24所示装置的基础上,如图25所示,所述信息发送模块242可以包括:
信息发送子模块251,被配置为将所述SSB测量配置信息添加到SIB1中,并将所述SIB1发送至终端。
在一实施例中,建立在图24所示装置的基础上,所述SSB测量配置信息包括:测量对象,所述测量对象包括指定的一个或多个SSB;测量触发条件,所述测量触发条件包括指定的测量触发门限值;测量报告的配置,所述测量报告的配置中包括测量报告的指定内容、或测量报告的指定内容和测量报告的指定传输资源。
在一实施例中,建立在图24所示装置的基础上,如图26所示,所述配置模块243可以包括:
配置子模块261,被配置为根据所述SSB测量报告为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
在一实施例中,建立在图26示装置的基础上,如图27所示,所述装置还可以包括:
消息发送模块271,被配置为向所述终端发送用于表征竞争解决成功的第二指定消息;
第一信令发送模块272,被配置为将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将所述RRC信令发送至所述终端。
由上述实施例可见,在向终端发送用于表征竞争解决成功的第二指定消息的同时或之后,可以第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将RRC信令发送至终端,从而提高了传输TCI状态集合的可靠性,还避免了时延。
在一实施例中,建立在图27示装置的基础上,所述第一TCI状态集合中包括至少两个TCI状态标识;如图28所示,所述装置还可以包括:
第一选取模块281,被配置为从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
第一生成模块282,被配置为生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
第二信令发送模块283,被配置为将所述第一MAC CE信令发送至所述终端。
由上述实施例可见,通过从第一TCI状态集合中选取第一TCI状态标识,并利用第一MAC CE信令激活该第一TCI状态标识,使其用于终端接收来自基站的PDCCH,从而实现了用于PDCCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图27示装置的基础上,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;如图29所示,所述装置还可以包括:
第二选取模块291,被配置为从所述第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
第二生成模块292,被配置为生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
第三信令发送模块293,被配置为将所述第二MAC CE信令发送至所述终端。
由上述实施例可见,通过从第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识,并生成第二MAC CE信令,该第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,以及将第二MAC CE信令发送至终端,从而实现了用于PDSCH接收的传输配置,还提高了该传输配置的可靠性。
在一实施例中,建立在图29示装置的基础上,所述第二数量大于1;如图30所示,所述装置还可以包括:
第三生成模块301,被配置为生成DCI信令,所述DCI信令中指示用于该DCI 信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
第四信令发送模块302,被配置为将所述DCI信令发送至所述终端。
由上述实施例可见,通过生成DCI信令,该DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,该第二TCI状态标识是基站从第二数量个TCI状态标识中选取的一个TCI状态标识,以及将DCI信令发送至终端,从而实现了用于DCI信令调度的PDSCH接收的传输配置,还提高了该传输配置的可靠性。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图1至图8任一所述的传输配置方法。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图9至图14任一所述的传输配置方法。
本公开还提供了一种传输配置装置,所述装置用于终端,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站发送的SSB测量配置信息;
根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
图31是根据一示例性实施例示出的一种传输配置装置的结构示意图。如图31所示,根据一示例性实施例示出的一种传输配置装置3100,该装置3100可以是计算 机,移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图31,装置3100可以包括以下一个或多个组件:处理组件3101,存储器3102,电源组件3103,多媒体组件3104,音频组件3105,输入/输出(I/O)的接口3106,传感器组件3107,以及通信组件3108。
处理组件3101通常控制装置3100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3101可以包括一个或多个处理器3109来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3101可以包括一个或多个模块,便于处理组件3101和其它组件之间的交互。例如,处理组件3101可以包括多媒体模块,以方便多媒体组件3104和处理组件3101之间的交互。
存储器3102被配置为存储各种类型的数据以支持在装置3100的操作。这些数据的示例包括用于在装置3100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3102可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3103为装置3100的各种组件提供电力。电源组件3103可以包括电源管理系统,一个或多个电源,及其它与为装置3100生成、管理和分配电力相关联的组件。
多媒体组件3104包括在所述装置3100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3104包括一个前置摄像头和/或后置摄像头。当装置3100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3105被配置为输出和/或输入音频信号。例如,音频组件3105包括 一个麦克风(MIC),当装置3100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3102或经由通信组件3108发送。在一些实施例中,音频组件3105还包括一个扬声器,用于输出音频信号。
I/O接口3106为处理组件3101和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3107包括一个或多个传感器,用于为装置3100提供各个方面的状态评估。例如,传感器组件3107可以检测到装置3100的打开/关闭状态,组件的相对定位,例如所述组件为装置3100的显示器和小键盘,传感器组件3107还可以检测装置3100或装置3100一个组件的位置改变,用户与装置3100接触的存在或不存在,装置3100方位或加速/减速和装置3100的温度变化。传感器组件3107可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3107还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3107还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3108被配置为便于装置3100和其它设备之间有线或无线方式的通信。装置3100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3108经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件3108还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置3100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3102,上述指令可由装置3100的处理器3109执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、 CD-ROM、磁带、软盘和光数据存储设备等。
其中,当所述存储介质中的指令由所述处理器执行时,使得装置3100能够执行上述任一所述的传输配置方法。
本公开还提供了一种传输配置装置,所述装置用于基站,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
为终端设置用于SSB测量配置信息;
将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
如图32所示,图32是根据一示例性实施例示出的一种传输配置装置的结构示意图。装置3200可以被提供为一基站。参照图32,装置3200包括处理组件3222、无线发射/接收组件3224、天线组件3226、以及无线接口特有的信号处理部分,处理组件3222可进一步包括一个或多个处理器。
处理组件3222中的其中一个处理器可以被配置为用于执行上述任一所述的传输配置方法。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种传输配置方法,其特征在于,所述方法用于终端,所述方法包括:
    接收基站发送的SSB测量配置信息;
    根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
    通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置传输配置指示TCI状态集合。
  2. 根据权利要求1所述的方法,其特征在于,所述接收基站发送的SSB测量配置信息,包括:
    接收基站发送的系统消息块SIB1,所述SIB1中包括所述SSB测量配置信息。
  3. 根据权利要求1所述的方法,其特征在于,所述SSB测量配置信息包括:
    测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
    测量触发条件,所述测量触发条件包括指定的测量触发门限值;
    测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
  4. 根据权利要求3所述的方法,其特征在于,所述通过第一指定消息将SSB测量报告发送至所述基站,包括:
    确定所述基站为所述终端配置的用于传输所述第一指定消息的第一指定资源;
    将所述SSB测量报告添加到所述第一指定消息中;
    利用所述第一指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
  5. 根据权利要求3所述的方法,其特征在于,所述测量报告的配置中还包括测量报告的指定传输资源;所述通过第一指定消息将SSB测量报告发送至所述基站,包括:
    确定所述基站为所述终端配置的用于传输所述第一指定消息的第二指定资源;
    当所述第二指定资源和所述指定传输资源不同时,获取与所述第一指定消息相同的临时的C-RNTI小区无线网络临时标识;
    利用所述C-RNTI和所述指定传输资源将所述SSB测量报告发送至所述基站。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当所述第二指定资源和所述指定传输资源相同时,将所述SSB测量报告添加到所述第一指定消息中;
    利用所述第二指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的用于表征竞争解决成功的第二指定消息;
    接收所述基站发送的无线资源控制RRC信令,所述RRC信令包括所述基站为所述终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  8. 根据权利要求7所述的方法,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
    接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
    在接收PDCCH时使用与接收所述第一SSB标识指定的或对应的SSB相同的第一接收波束。
  9. 根据权利要求7所述的方法,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
    接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
  10. 根据权利要求9所述的方法,其特征在于,所述第二数量大于1;所述方法还包括:
    接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
    在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波波束。
  11. 一种传输配置方法,其特征在于,所述方法用于基站,所述方法包括:
    为终端设置用于SSB测量配置信息;
    将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息 进行SSB测量,得到SSB测量报告;
    若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
  12. 根据权利要求11所述的方法,其特征在于,所述将所述SSB测量配置信息发送至终端,包括:
    将所述SSB测量配置信息添加到SIB1中,并将所述SIB1发送至终端。
  13. 根据权利要求11所述的方法,其特征在于,所述SSB测量配置信息包括:
    测量对象,所述测量对象包括指定的一个或多个SSB;
    测量触发条件,所述测量触发条件包括指定的测量触发门限值;
    测量报告的配置,所述测量报告的配置中包括测量报告的指定内容、或测量报告的指定内容和测量报告的指定传输资源。
  14. 根据权利要求11所述的方法,其特征在于,所述根据所述SSB测量报告为所述终端配置TCI状态集合,包括:
    根据所述SSB测量报告为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    向所述终端发送用于表征竞争解决成功的第二指定消息;
    将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将所述RRC信令发送至所述终端。
  16. 根据权利要求15所述的方法,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述方法还包括:
    从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
    生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    将所述第一MAC CE信令发送至所述终端。
  17. 根据权利要求15所述的方法,其特征在于,所述第二TCI状态集合中包括第 一数量个TCI状态标识,所述第一数量大于1;所述方法还包括:
    从所述第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
    生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
    将所述第二MAC CE信令发送至所述终端。
  18. 根据权利要求17所述的方法,其特征在于,所述第二数量大于1;所述方法还包括:
    生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    将所述DCI信令发送至所述终端。
  19. 一种传输配置装置,其特征在于,所述装置用于终端,所述装置包括:
    第一接收模块,被配置为接收基站发送的SSB测量配置信息;
    测量模块,被配置为根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
    发送模块,被配置为通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
  20. 根据权利要求19所述的装置,其特征在于,所述第一接收模块包括:
    接收子模块,被配置为接收基站发送的系统消息块SIB1,所述SIB1中包括所述SSB测量配置信息。
  21. 根据权利要求19所述的装置,其特征在于,所述SSB测量配置信息包括:
    测量对象,所述测量对象包括所述基站指定的一个或多个SSB;
    测量触发条件,所述测量触发条件包括指定的测量触发门限值;
    测量报告的配置,所述测量报告的配置中包括测量报告的指定内容。
  22. 根据权利要求21所述的装置,其特征在于,所述发送模块包括:
    第一确定子模块,被配置为确定所述基站为所述终端配置的用于传输所述第一指定消息的第一指定资源;
    第一添加子模块,被配置为将所述SSB测量报告添加到所述第一指定消息中;
    第一发送子模块,被配置为利用所述第一指定资源将携带有所述SSB测量报告的 所述第一指定消息发送至所述基站。
  23. 根据权利要求21所述的装置,其特征在于,所述测量报告的配置中还包括测量报告的指定传输资源;所述发送模块包括:
    第二确定子模块,被配置为确定所述基站为所述终端配置的用于传输所述第一指定消息的第二指定资源;
    获取子模块,被配置为当所述第二指定资源和所述指定传输资源不同时,获取与所述第一指定消息相同的临时的C-RNTI小区无线网络临时标识;
    第二发送子模块,被配置为利用所述C-RNTI和所述指定传输资源将所述SSB测量报告发送至所述基站。
  24. 根据权利要求23所述的装置,其特征在于,所述发送模块还包括:
    第二添加子模块,被配置为当所述第二指定资源和所述指定传输资源相同时,将所述SSB测量报告添加到所述第一指定消息中;
    第三发送子模块,被配置为利用所述第二指定资源将携带有所述SSB测量报告的所述第一指定消息发送至所述基站。
  25. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    第二接收模块,被配置为接收所述基站发送的用于表征竞争解决成功的第二指定消息;
    第三接收模块,被配置为接收所述基站发送的无线资源控制RRC信令,所述RRC信令包括所述基站为所述终端配置的用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  26. 根据权利要求25所述的装置,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
    第四接收模块,被配置为接收所述基站发送的第一MAC CE信令,所述第一MAC CE信令用于激活第一TCI状态标识,所述第一TCI状态标识是所述基站从所述第一TCI状态集合中选取的一个TCI状态标识,且用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    第一确定模块,被配置为根据所述第一对应关系确定所述第一TCI状态标识对应的第一SSB标识;
    第一处理模块,被配置为在接收PDCCH时使用与接收所述第一SSB标识指定的 或对应的SSB相同的第一接收波束。
  27. 根据权利要求25所述的装置,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
    第五接收模块,被配置为接收所述基站发送的第二MAC CE信令,所述第二MAC CE信令用于激活用于PDSCH接收的第二数量个TCI状态标识,所述第二数量个TCI状态标识是所述基站从所述第二TCI状态集合中的第一数量个TCI状态标识中选取的。
  28. 根据权利要求27所述的装置,其特征在于,所述第二数量大于1;所述装置还包括:
    第六接收模块,被配置为接收所述基站发送的下行控制信息DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    第二确定模块,被配置为根据所述第二对应关系确定所述第二TCI状态标识对应的第二SSB标识;
    第二处理模块,被配置为在接收该DCI信令调度的PDSCH时使用与接收所述第二SSB标识指定的或对应的SSB相同的第二接收波波束。
  29. 一种传输配置装置,其特征在于,所述装置用于基站,所述装置包括:
    设置模块,被配置为为终端设置用于SSB测量配置信息;
    信息发送模块,被配置为将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
    配置模块,被配置为若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
  30. 根据权利要求29所述的装置,其特征在于,所述信息发送模块包括:
    信息发送子模块,被配置为将所述SSB测量配置信息添加到SIB1中,并将所述SIB1发送至终端。
  31. 根据权利要求29所述的装置,其特征在于,所述SSB测量配置信息包括:
    测量对象,所述测量对象包括指定的一个或多个SSB;
    测量触发条件,所述测量触发条件包括指定的测量触发门限值;
    测量报告的配置,所述测量报告的配置中包括测量报告的指定内容、或测量报告的指定内容和测量报告的指定传输资源。
  32. 根据权利要求29所述的装置,其特征在于,所述配置模块包括:
    配置子模块,被配置为根据所述SSB测量报告为所述终端配置用于接收PDCCH的第一TCI状态集合和/或用于接收PDSCH的第二TCI状态集合,所述第一TCI状态集合中包括用于接收PDCCH的TCI状态标识和SSB标识的第一对应关系,所述第二TCI状态集合中包括用于接收PDSCH的TCI状态标识和SSB标识的第二对应关系。
  33. 根据权利要求32所述的装置,其特征在于,所述装置还包括:
    消息发送模块,被配置为向所述终端发送用于表征竞争解决成功的第二指定消息;
    第一信令发送模块,被配置为将所述第一TCI状态集合和/或所述第二TCI状态集合添加到RRC信令中,并将所述RRC信令发送至所述终端。
  34. 根据权利要求33所述的装置,其特征在于,所述第一TCI状态集合中包括至少两个TCI状态标识;所述装置还包括:
    第一选取模块,被配置为从所述第一TCI状态集合中选取一个TCI状态标识,该选取的TCI状态标识为第一TCI状态标识;
    第一生成模块,被配置为生成第一MAC CE信令,所述第一MAC CE信令用于激活所述第一TCI状态标识,所述第一TCI状态标识用于终端确定接收来自基站的PDCCH时需要使用的接收波束;
    第二信令发送模块,被配置为将所述第一MAC CE信令发送至所述终端。
  35. 根据权利要求33所述的装置,其特征在于,所述第二TCI状态集合中包括第一数量个TCI状态标识,所述第一数量大于1;所述装置还包括:
    第二选取模块,被配置为从所述第一数量个TCI状态标识选取用于PDSCH接收的第二数量个TCI状态标识;
    第二生成模块,被配置为生成第二MAC CE信令,所述第二MAC CE信令用于激活所述用于PDSCH接收的第二数量个TCI状态标识;
    第三信令发送模块,被配置为将所述第二MAC CE信令发送至所述终端。
  36. 根据权利要求35所述的装置,其特征在于,所述第二数量大于1;所述装置还包括:
    第三生成模块,被配置为生成DCI信令,所述DCI信令中指示用于该DCI信令调度的PDSCH接收的第二TCI状态标识,所述第二TCI状态标识是所述基站从所述第二数量个TCI状态标识中选取的一个TCI状态标识;
    第四信令发送模块,被配置为将所述DCI信令发送至所述终端。
  37. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,其特 征在于,所述计算机程序用于执行上述权利要求1-10所述的传输配置方法。
  38. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,其特征在于,所述计算机程序用于执行上述权利要求11-18所述的传输配置方法。
  39. 一种传输配置装置,其特征在于,所述装置用于终端,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的SSB测量配置信息;
    根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
    通过第一指定消息将SSB测量报告发送至所述基站,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,以使所述基站根据所述SSB测量报告为所述终端配置TCI状态集合。
  40. 一种传输配置装置,其特征在于,所述装置用于基站,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    为终端设置用于SSB测量配置信息;
    将所述SSB测量配置信息发送至终端,以使所述终端根据所述SSB测量配置信息进行SSB测量,得到SSB测量报告;
    若接收到终端通过第一指定消息发送的所述SSB测量报告,所述第一指定消息为随机接入过程中用于表征竞争解决的消息,则根据所述SSB测量报告为所述终端配置TCI状态集合。
PCT/CN2018/097102 2018-07-25 2018-07-25 传输配置方法及装置 WO2020019217A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/262,429 US11711818B2 (en) 2018-07-25 2018-07-25 Method and device for configuring transmission
PCT/CN2018/097102 WO2020019217A1 (zh) 2018-07-25 2018-07-25 传输配置方法及装置
CN201880001495.6A CN109076378B (zh) 2018-07-25 2018-07-25 传输配置方法及装置
EP18928078.7A EP3829212B1 (en) 2018-07-25 2018-07-25 Transmission configuration method and device
CN202210435862.1A CN114916004A (zh) 2018-07-25 2018-07-25 传输配置方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097102 WO2020019217A1 (zh) 2018-07-25 2018-07-25 传输配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020019217A1 true WO2020019217A1 (zh) 2020-01-30

Family

ID=64789293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097102 WO2020019217A1 (zh) 2018-07-25 2018-07-25 传输配置方法及装置

Country Status (4)

Country Link
US (1) US11711818B2 (zh)
EP (1) EP3829212B1 (zh)
CN (2) CN114916004A (zh)
WO (1) WO2020019217A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826417B1 (en) * 2018-07-25 2024-04-17 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and device
US20210360550A1 (en) * 2018-10-31 2021-11-18 Apple Inc. Off-raster ssb design in iab networks
CN111277378B (zh) 2018-12-29 2021-08-17 维沃移动通信有限公司 信息的接收方法、发送方法、终端及网络侧设备
BR112021013120A2 (pt) * 2019-01-08 2021-09-14 Beijing Xiaomi Mobile Software Co., Ltd. Método e dispositivo de recebimento de dados de downlink, método e dispositivo de envio de dados de downlink e meio de armazenamento
US11963040B2 (en) * 2019-01-11 2024-04-16 Apple Inc. Control resource set configuration enhancement for off-raster synchronization signal blocks in an integrated access and backhaul
MX2021009006A (es) * 2019-02-01 2021-08-24 Ericsson Telefon Ab L M Se?alizacion de elementos de control de control de acceso a medio (mac) para transmision de canal compartido de enlace descendente fisico de puntos de transmision multiples/paneles multiples.
CN111586846B (zh) * 2019-02-15 2024-02-20 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
WO2020168575A1 (zh) * 2019-02-22 2020-08-27 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2020221099A1 (en) * 2019-04-30 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access
WO2020248281A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN112134598B (zh) * 2019-06-25 2022-06-07 中国移动通信有限公司研究院 一种指示方法、终端及网络侧设备
US11546912B2 (en) * 2019-07-22 2023-01-03 Qualcomm Incorporated Resource conflict resolution
CN114828274B (zh) * 2019-09-26 2023-12-05 Oppo广东移动通信有限公司 检测、发送pdcch的方法以及设备
WO2021093176A1 (en) * 2020-01-21 2021-05-20 Zte Corporation Systems and methods for reference signaling design and configuration in wireless communication networks
WO2021159355A1 (en) * 2020-02-12 2021-08-19 Apple Inc. Robust uplink and downlink beam indication
CN114390539A (zh) * 2020-10-16 2022-04-22 维沃移动通信有限公司 传输方法、装置、终端及网络侧设备
CN112738841B (zh) * 2020-12-28 2022-05-13 四川天邑康和通信股份有限公司 一种5g基站中ssb波束动态配置方法及5g基站
US20220416977A1 (en) * 2021-06-28 2022-12-29 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement reporting
WO2023146455A1 (en) * 2022-01-31 2023-08-03 Beammwave Ab A method of configuring sets of transceivers/antennas to be active or candidates, computer program product, processing unit and wireless devices therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092754A (zh) * 2017-11-17 2018-05-29 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036298B1 (ko) * 2013-01-21 2019-10-24 삼성전자 주식회사 Tdd을 지원하는 이동통신 시스템에서 tdd 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치
CN108476513B (zh) * 2016-01-19 2022-01-07 苹果公司 用于提供5g上行链路请求的设备和方法
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2018128862A1 (en) * 2017-01-06 2018-07-12 Intel IP Corporation Generation node-b (gnb), user equipment (ue) and methods for handover in new radio (nr) systems
US11223967B2 (en) * 2017-04-18 2022-01-11 Qualcomm Incorporated Techniques to provide energy efficient radio resource management
MX2020002662A (es) * 2017-09-11 2020-07-22 Ericsson Telefon Ab L M Indicacion unificada de haces de ul y dl.
US10764896B2 (en) * 2017-11-08 2020-09-01 Samsung Electronics Co., Ltd. Method and apparatus for beam management in the unlicensed spectrum
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
US10944455B2 (en) * 2018-02-26 2021-03-09 Qualcomm Incorporated Beam tracking for periodic user equipment movement
CN110351020B (zh) * 2018-04-03 2021-06-15 华为技术有限公司 一种传输数据的方法、装置和系统
US11271635B2 (en) * 2018-04-06 2022-03-08 Nokia Technologies Oy Beam indication for multi-panel UE
CN110636521B (zh) * 2018-06-21 2020-11-13 维沃移动通信有限公司 一种测量方法及终端
KR102520456B1 (ko) * 2019-07-12 2023-04-12 엘지전자 주식회사 무선 통신 시스템에서 harq-ack 정보를 송수신 하는 방법 및 이에 대한 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092754A (zh) * 2017-11-17 2018-05-29 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP TS 38.214 V15.2.1, 29 June 2018 (2018-06-29), XP051454110 *
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 15)", 3GPP TS 38.331 V15.2.1, 21 June 2018 (2018-06-21), XP051453204 *
ERICSSON: "On Beam Management, Measurement, and Reporting", 3GPP TSG-RAN WG1 NR AD HOC #3 R1-1716350, 12 September 2017 (2017-09-12), XP051329939 *
GIORDANI, M. ET AL.: "A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies", ARXIV.ORG, 5 April 2018 (2018-04-05), XP080867955 *
See also references of EP3829212A4 *

Also Published As

Publication number Publication date
EP3829212A4 (en) 2021-08-11
US20210243794A1 (en) 2021-08-05
CN109076378B (zh) 2022-05-10
CN109076378A (zh) 2018-12-21
CN114916004A (zh) 2022-08-16
EP3829212A1 (en) 2021-06-02
US11711818B2 (en) 2023-07-25
EP3829212B1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2020019217A1 (zh) 传输配置方法及装置
WO2020019218A1 (zh) 传输配置方法及装置
WO2020019216A1 (zh) 传输配置方法及装置
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
WO2020014960A1 (zh) 波束故障恢复请求发送方法、响应方法、装置及存储介质
WO2020082307A1 (zh) 混合自动重传请求harq反馈方法及装置
WO2020056745A1 (zh) 带宽部分的切换触发方法及装置、信息配置方法及装置
WO2020034074A1 (zh) 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
WO2018191839A1 (zh) 用于请求系统消息的方法、装置、用户设备及基站
WO2019200546A1 (zh) 随机接入方法及装置
US11792659B2 (en) Method and device for using network slice
WO2019205061A1 (zh) Harq反馈方法及装置
WO2020087379A1 (zh) 传输随机接入指示信息的方法及装置
US11943057B2 (en) Method and apparatus for indicating sidelink hybrid automatic repeat request (HARQ) feedback
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
WO2017071074A1 (zh) 建立连接的方法及装置
WO2020097783A1 (zh) 资源配置方法及装置
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
WO2020034072A1 (zh) 上行调度请求的发送方法、装置、设备及存储介质
WO2020087380A1 (zh) 传输随机接入指示信息的方法及装置
WO2020056640A1 (zh) 提前终止传输方法及装置
WO2020087348A1 (zh) 信息反馈方法及装置
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
CN108476385B (zh) 用于接收和发送系统消息的方法、装置、用户设备及基站
WO2018120779A1 (zh) 下行链路数据的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928078

Country of ref document: EP

Effective date: 20210224