WO2019205061A1 - Harq反馈方法及装置 - Google Patents

Harq反馈方法及装置 Download PDF

Info

Publication number
WO2019205061A1
WO2019205061A1 PCT/CN2018/084680 CN2018084680W WO2019205061A1 WO 2019205061 A1 WO2019205061 A1 WO 2019205061A1 CN 2018084680 W CN2018084680 W CN 2018084680W WO 2019205061 A1 WO2019205061 A1 WO 2019205061A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq feedback
time point
uplink transmission
information
base station
Prior art date
Application number
PCT/CN2018/084680
Other languages
English (en)
French (fr)
Inventor
牟勤
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112020021829-4A priority Critical patent/BR112020021829A2/pt
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2020559410A priority patent/JP7045479B2/ja
Priority to ES18916208T priority patent/ES2929733T3/es
Priority to CN201880000651.7A priority patent/CN108513714B/zh
Priority to KR1020207033620A priority patent/KR102519978B1/ko
Priority to EP18916208.4A priority patent/EP3787324B1/en
Priority to RU2020138003A priority patent/RU2758794C1/ru
Priority to SG11202010360VA priority patent/SG11202010360VA/en
Priority to PL18916208.4T priority patent/PL3787324T3/pl
Priority to PCT/CN2018/084680 priority patent/WO2019205061A1/zh
Publication of WO2019205061A1 publication Critical patent/WO2019205061A1/zh
Priority to US17/072,578 priority patent/US11456824B2/en
Priority to US17/889,663 priority patent/US11909534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a HARQ feedback method and apparatus.
  • NB-IoT Near band Internet of things, narrowband Internet of Things
  • MTC Machine type communication
  • EDT Error Data Transmission during RACH
  • the RACH can be specified as a random access channel (Random Access CHannel).
  • the base station and the terminal reduce the transmission quality due to the inconsistent feedback content and time of the HARQ (Hybrid Automatic Repeat request).
  • the embodiments of the present disclosure provide a HARQ feedback method and apparatus.
  • a HARQ feedback method for a base station assigning, to the terminal, a plurality of alternate scheduling resources for providing a data advance transmission EDT service, the method comprising :
  • the EDT data is uplink data transmitted by the terminal in a random access procedure, and is located in the message 3 in the random process.
  • the standby scheduling resource includes a transport block size TBS and an uplink transmission repetition number
  • Performing blind detection on the EDT data transmitted by the terminal to the base station on each of the standby scheduling resources including:
  • the EDT data is blindly detected at each of the uplink transmission cutoff time points.
  • the setting rule is to perform HARQ feedback based on a maximum number of uplink transmission repetitions
  • a HARQ feedback time point corresponding to the blind detection including:
  • the HARQ feedback time point Determining, according to the uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions, the HARQ feedback time point, where the determined HARQ feedback time point is located at a designated position after the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the first information is sent to the terminal at the HARQ feedback time point;
  • the setting rule is that performing HARQ feedback for each uplink transmission deadline point corresponding to each of the standby scheduling resources
  • a HARQ feedback time point corresponding to the blind detection including:
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the first time is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the second information is sent to the terminal at a HARQ feedback time point corresponding to the uplink transmission cutoff time point.
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful
  • a HARQ feedback time point corresponding to the blind detection including:
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing successful demodulation
  • the first time is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal;
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point.
  • a HARQ feedback method the method being used for a terminal, the base station allocates, by the base station, a plurality of standby scheduling resources for providing a data advance transmission EDT service, where the method includes :
  • the EDT data is uplink data that the terminal needs to transmit during a random access procedure, and is located in the message 3 in the random process.
  • the standby scheduling resource includes a transport block size TBS and an uplink transmission repetition number
  • the EDT data is transmitted to the base station on the selected alternate scheduling resource.
  • the setting rule is to perform HARQ feedback based on a maximum number of uplink transmission repetitions
  • a HARQ feedback time point corresponding to the EDT data including:
  • the HARQ feedback time point Determining, according to the uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions, the HARQ feedback time point, where the determined HARQ feedback time point is located at a designated position after the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number.
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • determining the transmission result of the EDT data according to the HARQ feedback information includes:
  • the HARQ feedback information is the first information, determining that the transmission result of the EDT data is a transmission success
  • the HARQ feedback information is the second information, determining that the transmission result of the EDT data is a transmission failure.
  • the setting rule is that performing HARQ feedback for each uplink transmission deadline point corresponding to each of the standby scheduling resources
  • a HARQ feedback time point corresponding to the EDT data including:
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • determining the transmission result of the EDT data according to the HARQ feedback information includes:
  • the HARQ feedback information is the first information, determining that the transmission result of the EDT data is a transmission success
  • the HARQ feedback information is the second information, determining that the transmission result of the EDT data is a transmission failure.
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful
  • a HARQ feedback time point corresponding to the EDT data including:
  • the HARQ feedback information includes first information used to characterize successful demodulation
  • determining the transmission result of the EDT data according to the HARQ feedback information includes:
  • the HARQ feedback information sent by the base station is received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the HARQ feedback information is the first information, determining that the transmission result of the EDT data is a transmission success;
  • the HARQ feedback information sent by the base station is not received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, it is determined that the transmission result of the EDT data is a transmission failure.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal;
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point.
  • a HARQ feedback apparatus for a base station, the base station allocating a plurality of standby scheduling resources for providing a data advance transmission EDT service, the apparatus comprising :
  • a detecting module configured to perform blind detection on the EDT data transmitted by the terminal to the base station on each of the standby scheduling resources
  • a first determining module configured to determine, according to the setting rule, a HARQ feedback time point corresponding to the blind detection
  • a sending module configured to send the HARQ feedback information corresponding to the blind detection to the terminal at the time of the HARQ feedback.
  • the EDT data is uplink data transmitted by the terminal in a random access procedure, and is located in the message 3 in the random process.
  • the standby scheduling resource includes a transport block size TBS and an uplink transmission repetition number
  • the detection module includes:
  • a first determining sub-module configured to determine an uplink transmission deadline point corresponding to each of the standby scheduling resources according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources;
  • the detecting submodule is configured to perform blind detection on the EDT data at each of the uplink transmission cutoff time points.
  • the setting rule is to perform HARQ feedback based on a maximum number of uplink transmission repetitions
  • the first determining module includes:
  • a second determining sub-module configured to determine a maximum uplink transmission repetition number according to the uplink transmission repetition number included in each of the standby scheduling resources
  • a third determining sub-module configured to determine, according to each of the uplink transmission cut-off time points, an uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions
  • the fourth determining sub-module is configured to determine the HARQ feedback time point according to the uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions, where the determined HARQ feedback time point is located in the uplink corresponding to the maximum uplink transmission repetition number The specified position after the transmission cut-off point.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the sending module includes:
  • the first sending sub-module is configured to perform a blind detection result for each of the uplink transmission cut-off time points, and when each of the blind detection results includes demodulation succeeding, send the location to the terminal at the HARQ feedback time point. Describe the first information;
  • a second sending submodule configured to send the second information to the terminal at the HARQ feedback time point when each of the blind detection results does not include the demodulation succeeding.
  • the setting rule is that performing HARQ feedback for each uplink transmission deadline point corresponding to each of the standby scheduling resources
  • the first determining module includes:
  • the fifth determining sub-module is configured to determine, according to any of the uplink transmission cut-off time points, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, where the determined HARQ feedback time point is located after the uplink transmission cut-off time point Specify the location.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the sending module includes:
  • the third sending sub-module is configured to be a blind detection result for any of the uplink transmission cut-off time points.
  • the HARQ feedback time point corresponding to the uplink transmission cut-off time point Sending the first information to the terminal;
  • the fourth sending submodule is configured to send the second information to the terminal at a HARQ feedback time point corresponding to the uplink transmission cutoff time point when the blind detection result is a demodulation failure.
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful
  • the first determining module includes:
  • a sixth determining sub-module configured to determine, according to any of the uplink transmission cut-off time points, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, where the determined HARQ feedback time point is located after the uplink transmission cut-off time point Specify the location.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing successful demodulation
  • the sending module includes:
  • the fifth sending sub-module is configured to be a blind detection result for any of the uplink transmission cut-off time points, and when the blind detection result is demodulated successfully, the HARQ feedback time point corresponding to the uplink transmission cut-off time point Sending the first information to the terminal;
  • the sixth sending submodule is configured to not perform HARQ feedback at the HARQ feedback time point corresponding to the uplink transmission cutoff time point when the blind detection result is demodulation failure.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal;
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point.
  • a HARQ feedback apparatus the apparatus being used for a terminal, the base station assigning, to the terminal, a plurality of standby scheduling resources for providing a data advance transmission EDT service, where the apparatus includes :
  • the selecting module is configured to select one standby scheduling resource from each of the standby scheduling resources, and send the EDT data to the base station on the selected standby scheduling resource;
  • a second determining module configured to determine a HARQ feedback time point corresponding to the EDT data according to a setting rule
  • a third determining module configured to determine, according to the HARQ feedback information, a transmission result of the EDT data when receiving the HARQ feedback information sent by the base station at the time of the HARQ feedback.
  • the EDT data is uplink data that the terminal needs to transmit during a random access procedure, and is located in the message 3 in the random process.
  • the standby scheduling resource includes a transport block size TBS and an uplink transmission repetition number
  • the selection module includes:
  • selecting a sub-module configured to select one standby scheduling resource from each of the standby scheduling resources according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources;
  • a transmitting submodule configured to transmit EDT data to the base station on the selected alternate scheduling resource.
  • the setting rule is to perform HARQ feedback based on a maximum number of uplink transmission repetitions
  • the second determining module includes:
  • a first time point determining submodule configured to determine an uplink transmission deadline point corresponding to each of the standby scheduling resources according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources;
  • the repetition number determining sub-module is configured to determine a maximum uplink transmission repetition number according to the uplink transmission repetition number included in each of the standby scheduling resources;
  • a second time point determining submodule configured to determine, according to each of the uplink transmission cutoff time points, an uplink transmission cutoff time point corresponding to the maximum uplink transmission repetition number
  • the third time point determining sub-module is configured to determine the HARQ feedback time point according to the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number, where the determined HARQ feedback time point is located in the maximum uplink transmission repetition time The specified position after the upstream transmission cutoff time point.
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the third determining module includes:
  • the first receiving submodule is configured to receive the HARQ feedback information sent by the base station at the time point of the HARQ feedback;
  • the first processing submodule is configured to: if the HARQ feedback information is the first information, determine that the transmission result of the EDT data is a transmission success;
  • the second processing submodule is configured to determine that the transmission result of the EDT data is a transmission failure if the HARQ feedback information is the second information.
  • the setting rule is that performing HARQ feedback for each uplink transmission deadline point corresponding to each of the standby scheduling resources
  • the second determining module includes:
  • a fourth time point determining submodule configured to determine, according to the TBS and the uplink transmission repetition number included in the selected backup scheduling resource, an uplink transmission deadline point corresponding to the selected standby scheduling resource ;
  • a fifth time point determining sub-module configured to determine, according to the uplink transmission cut-off time point corresponding to the selected standby scheduling resource, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, where the determined HARQ feedback time point is located The specified position after the upstream transmission cutoff time point.
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the third determining module includes:
  • the second receiving submodule is configured to receive the HARQ feedback information sent by the base station at a time point of HARQ feedback corresponding to the uplink transmission cutoff time point;
  • the third processing sub-module is configured to: if the HARQ feedback information is the first information, determine that the transmission result of the EDT data is a transmission success;
  • the fourth processing submodule is configured to determine that the transmission result of the EDT data is a transmission failure if the HARQ feedback information is the second information.
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful
  • the second determining module includes:
  • a sixth time point determining sub-module configured to determine an uplink transmission deadline point corresponding to the selected standby scheduling resource according to the TBS and the uplink transmission repetition number included in the selected backup scheduling resource ;
  • the seventh time point determining sub-module is configured to determine, according to the uplink transmission cut-off time point corresponding to the selected standby scheduling resource, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, where the determined HARQ feedback time point is located The specified position after the upstream transmission cutoff time point.
  • the HARQ feedback information includes first information used to characterize successful demodulation
  • the third determining module includes:
  • the fifth processing sub-module is configured to: if the HARQ feedback information sent by the base station is received at a HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the HARQ feedback information is the first information, determine The transmission result of the EDT data is that the transmission is successful;
  • the sixth processing sub-module is configured to determine that the transmission result of the EDT data is a transmission failure if the HARQ feedback information sent by the base station is not received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal;
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point.
  • a non-transitory computer readable storage medium having stored thereon a computer program for performing the HARQ feedback method provided by the first aspect described above.
  • a non-transitory computer readable storage medium having stored thereon a computer program for performing the HARQ feedback method provided by the second aspect described above.
  • a HARQ feedback apparatus for a base station, the base station allocating a plurality of standby scheduling resources for providing a data advance transmission EDT service, the apparatus comprising :
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a HARQ feedback apparatus the apparatus being used for a terminal, the base station assigning, to the terminal, a plurality of standby scheduling resources for providing a data advance transmission EDT service, where the apparatus includes :
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the base station in the disclosure can perform blind detection on the EDT data transmitted by the terminal to the base station on each of the standby scheduling resources, and determine the HARQ feedback time point corresponding to the blind detection according to the setting rule, and send the blind to the terminal at the HARQ feedback time point. Detecting the corresponding HARQ feedback information, so that the terminal can receive the HARQ feedback information sent by the base station at the time of the HARQ feedback determined according to the setting rule, and can determine the correct transmission result of the EDT data according to the HARQ feedback information, thereby improving the HARQ feedback. Reliability also improves the efficiency of EDT transmission.
  • the terminal in the present disclosure may select an alternate scheduling resource from each of the alternate scheduling resources, and send the EDT data to the base station on the selected standby scheduling resource, and determine a HARQ feedback time point corresponding to the EDT data according to the setting rule. And when the HARQ feedback information sent by the base station is received at the HARQ feedback time point, the transmission result of the EDT data is determined according to the HARQ feedback information, thereby improving the reliability of the HARQ feedback and improving the efficiency of the EDT transmission.
  • FIG. 1 is a flowchart of a HARQ feedback method according to an exemplary embodiment
  • FIG. 2 is an application scenario diagram of a HARQ feedback method according to an exemplary embodiment
  • FIG. 3A is a flowchart of another HARQ feedback method according to an exemplary embodiment
  • FIG. 3B is an information interaction diagram of a HARQ feedback method according to an exemplary embodiment
  • FIG. 4A is a flowchart of another HARQ feedback method according to an exemplary embodiment
  • FIG. 4B is an information interaction diagram of another HARQ feedback method according to an exemplary embodiment
  • FIG. 5A is a flowchart of a HARQ feedback method according to an exemplary embodiment
  • FIG. 5B is an information interaction diagram of a HARQ feedback method according to an exemplary embodiment
  • FIG. 5C is an information interaction diagram of another HARQ feedback method according to an exemplary embodiment
  • FIG. 6A is a flowchart of a HARQ feedback method according to an exemplary embodiment
  • FIG. 6B is an information interaction diagram of a HARQ feedback method according to an exemplary embodiment
  • FIG. 6C is an information interaction diagram of another HARQ feedback method according to an exemplary embodiment
  • FIG. 7 is a flowchart of a HARQ feedback method according to an exemplary embodiment
  • FIG. 8 is a flowchart of another HARQ feedback method according to an exemplary embodiment
  • FIG. 9 is a flowchart of another HARQ feedback method according to an exemplary embodiment.
  • FIG. 10 is a flowchart of another HARQ feedback method according to an exemplary embodiment
  • FIG. 11 is a flowchart of another HARQ feedback method according to an exemplary embodiment
  • FIG. 12 is a block diagram of a HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 13 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 14 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 15 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 16 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 17 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 18 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 19 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 20 is a block diagram of a HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 21 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 22 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 23 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 24 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 25 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 26 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 27 is a block diagram of another HARQ feedback apparatus according to an exemplary embodiment.
  • FIG. 28 is a schematic structural diagram of a HARQ feedback apparatus according to an exemplary embodiment
  • FIG. 29 is a schematic structural diagram of a HARQ feedback apparatus according to an exemplary embodiment.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information without departing from the scope of the present disclosure.
  • second information may also be referred to as first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • FIG. 1 is a flowchart of a HARQ feedback method according to an exemplary embodiment
  • FIG. 2 is an application scenario diagram of a HARQ feedback method according to an exemplary embodiment.
  • the HARQ feedback method may be used on a base station.
  • the base station allocates a plurality of standby scheduling resources for providing the EDT service to the terminal.
  • the HARQ feedback method may include the following steps 110-130:
  • step 110 the EDT data transmitted by the terminal to the base station is blindly detected on each of the alternate scheduling resources.
  • the base station may provide an EDT service, and may allocate multiple standby scheduling resources for providing the EDT service to the terminal applying for the EDT service.
  • the base station allocates the standby scheduling resource 1, the standby scheduling resource 2, the standby scheduling resource 3, and the standby scheduling resource 4, and the N_RU of the standby scheduling resource 1, the standby scheduling resource 2, the standby scheduling resource 3, and the standby scheduling resource 4
  • the number of resource units is 3, but the TBS (Transmission Block Size) and the number of uplink transmission repetitions of the standby scheduling resource 1 are 328 bits and 32 times, respectively.
  • the number of TBS and uplink transmission repetitions of the standby scheduling resource 2 are 536 bits and 48 times respectively, and the TBS and uplink transmission repetition times of the standby scheduling resource 3 are: 776 bits and 64 times respectively, and the TBS and uplink transmission repetition of the standby scheduling resource 4 are respectively The number of times is: 1000 and 96 times.
  • the base station allocates multiple backup scheduling resources to the terminal, so that the terminal can select one backup scheduling resource from the backup scheduling resources according to its actual situation, and send the EDT data to the base station on the selected standby scheduling resource.
  • the selected standby scheduling resource is the standby scheduling resource actually used by the terminal; but the base station does not know which standby scheduling resource the terminal will transmit on, so the base station performs blind detection on each standby scheduling resource. That is to say, the base station performs blind detection on the standby scheduling resources actually used by the terminal, and performs blind detection on other standby scheduling resources.
  • the EDT data may refer to: uplink data transmitted by the terminal during the random access process, and is located in Message 3 (Scheduled Transmission, msg3) in the random process. That is, the terminal can add the EDT data to the message 3 and send the message 3 to the base station, so that the base station can obtain the EDT data transmitted by the terminal from the message 3.
  • Message 3 Serviced Transmission, msg3
  • the standby scheduling resource includes a TBS and an uplink transmission repetition number; when performing step 110, the following implementation manner may be adopted:
  • (1-1) determining, according to the TBS and the number of uplink transmission repetitions included in each of the standby scheduling resources, an uplink transmission deadline point corresponding to each of the standby scheduling resources;
  • step 120 the HARQ feedback time point corresponding to the blind detection is determined according to the setting rule.
  • the base station since the base station performs blind detection on the standby scheduling resource actually used by the terminal, and performs blind detection on other standby scheduling resources, it is necessary to determine at which time point the HARQ feedback is performed.
  • the determination may be performed according to the setting rule.
  • the setting rule can be written in the EDT transmission protocol, so that both the base station and the terminal can obtain the setting rules according to the EDT transmission protocol.
  • the predefined definition rules may include but are not limited to the following three types, but as to which setting rule is used by the base station and the terminal, this may be that the base station and the terminal negotiate in advance. of:
  • the setting rule is to perform HARQ feedback based on the maximum number of uplink transmission repetitions; the specific implementation process can be seen in the embodiment shown in Fig. 4A.
  • the setting rule is to perform HARQ feedback for the uplink transmission deadline points corresponding to the respective standby scheduling resources; the specific implementation process can be seen in the embodiment shown in FIG. 5A.
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful; the specific implementation process can be seen in the embodiment shown in FIG. 6A.
  • step 130 the HARQ feedback information corresponding to the blind detection is sent to the terminal at the HARQ feedback time point.
  • the terminal may receive the HARQ feedback information sent by the base station after receiving the HARQ feedback time determined according to the setting rule, and may perform the HARQ feedback information according to the HARQ feedback information. Determine the transmission result of the EDT data.
  • the terminal and the base station are included.
  • the base station allocates multiple backup scheduling resources for the terminal, for example, the standby scheduling resource 1, the standby scheduling resource 2, the standby scheduling resource 3, and the standby scheduling resource 4; the terminal may select one of the standby scheduling resources from the standby scheduling resources, for example, selecting If the standby scheduling resource is the standby scheduling resource 2, the terminal may send the EDT data to the base station on the standby scheduling resource 2; while the base station allocates multiple standby scheduling resources for the terminal, it does not know that the terminal is in the standby scheduling.
  • the resource 2 is transmitted, so the base station needs to blindly detect the EDT data on each of the standby scheduling resources, and determine the HARQ feedback time point corresponding to the blind detection according to the setting rule, and send the HARQ corresponding to the blind detection to the terminal at the HARQ feedback time point.
  • the feedback information is such that after receiving the HARQ feedback information sent by the base station at the HARQ feedback time point determined according to the setting rule, the terminal may determine the transmission result of the EDT data according to the HARQ feedback information, thereby improving the reliability of the EDT transmission.
  • the EDT data transmitted by the terminal to the base station is blindly detected on each of the standby scheduling resources, and the HARQ feedback time point corresponding to the blind detection is determined according to the setting rule, and the terminal is sent to the terminal at the HARQ feedback time point. Detecting the corresponding HARQ feedback information, so that the terminal can receive the HARQ feedback information sent by the base station at the time of the HARQ feedback determined according to the setting rule, and can determine the correct transmission result of the EDT data according to the HARQ feedback information, thereby improving the HARQ feedback. Reliability also improves the efficiency of EDT transmission.
  • FIG. 3A is a flowchart of another HARQ feedback method, which may be used on a base station, where the base station allocates multiple standby scheduling resources for providing EDT services, and according to an exemplary embodiment.
  • the standby scheduling resource includes a TBS and an uplink transmission repetition number.
  • step 310 an uplink transmission deadline point corresponding to each backup scheduling resource is determined according to the TBS and the number of uplink transmission repetitions included in each of the standby scheduling resources.
  • the number of uplink transmission cut-off time points may be determined according to the number of different TBSs.
  • the number of TBS is 4, and the number of uplink transmission cut-off points is also 4. Since the terminal has 4 possible TBS selections, corresponding to 4 different uplink transmission repetition times, therefore, EDT transmission is performed.
  • the four possible uplink transmission cutoff time points may be an uplink transmission possible cutoff time point #1, an uplink transmission possible cutoff time point #2, an uplink transmission possible cutoff time point #3, and an uplink transmission may be cut off. Time point #4.
  • step 320 the EDT data is blindly detected at each upstream transmission cutoff time point.
  • the uplink transmission cut-off time point corresponding to each standby scheduling resource is determined according to the TBS and the uplink transmission repetition times included in each standby scheduling resource, and the EDT data is blindly detected at each uplink transmission deadline point. Thereby improving the accuracy of blind detection.
  • FIG. 4A is a flowchart of another HARQ feedback method, which may be used on a base station, where the base station allocates multiple standby scheduling resources for providing EDT services, and according to an exemplary embodiment.
  • the setting rule is to perform HARQ feedback based on the maximum number of uplink transmission repetitions; when performing step 120, as shown in FIG. 4A, the following steps 410-430 may be included:
  • step 410 the maximum number of uplink transmission repetitions is determined according to the number of uplink transmission repetitions included in each of the standby scheduling resources.
  • the number of uplink transmission repetitions included in each of the backup scheduling resources may be different, and the maximum number of uplink transmission repetitions may be determined from the number of different uplink transmission repetitions.
  • the base station allocates the standby scheduling resource 1, the standby scheduling resource 2, the standby scheduling resource 3, and the standby scheduling resource 4, and the uplink transmission of the standby scheduling resource 1, the standby scheduling resource 2, the standby scheduling resource 3, and the standby scheduling resource 4
  • the number of repetitions is 32, 48, 64, and 96, respectively, and the maximum number of uplink transmission repetitions is 96.
  • step 420 an uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions is determined according to each uplink transmission cut-off time point.
  • the maximum number of uplink transmission repetitions corresponds to the maximum possible transmission time, that is, the maximum possible transmission time is determined by the maximum number of uplink transmission repetitions.
  • the uplink transmission cutoff time point corresponding to the maximum uplink transmission repetition time may be the last uplink transmission cutoff time point of each uplink transmission cutoff time point. As shown in FIG. 3B, the last uplink transmission cutoff time point may be an uplink transmission possible cutoff time point #4.
  • the HARQ feedback time point is determined according to the uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions, and the determined HARQ feedback time point is located after the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number. position.
  • the specified location may be a preset fixed value, or may be a value determined by the base station according to actual conditions, for example, the specified location is a specified number of subframes, and the specified number of values generally ranges from Greater than or equal to 4, if 1 subframe is 1 ms, 4 subframes are 4 ms.
  • the specified position is the position after a specified number of subframes. That is to say: the HARQ feedback time is equal to the maximum possible transmission time (the maximum possible transmission time is determined by the maximum number of uplink transmission repetitions) plus a specified number of subframes, as shown in FIG. 3B, the maximum uplink transmission repetition number corresponds to
  • the uplink transmission cutoff time point is the uplink transmission possible cutoff time point #4, and the uplink transmission possible cutoff time point #4 is set as the HARQ feedback reference point, and is determined according to the position after the specified number of subframes of the HARQ feedback reference point. Feedback time points for HARQ.
  • the designated location is the transmission position of the first downlink control channel after the specified number of subframes, and the downlink control channel possible transmission location as shown in FIG. 4B may be determined as the HARQ feedback time point.
  • the designated location is configured by the base station, and is located in an uplink grant pre- (RAR) uplink grant grant (UL grant). That is, the base station can add the specified location to the uplink scheduling grant of the random access response, and send the random access response to the terminal, so that the terminal can determine the designated location of the base station configuration according to the random access response.
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point. That is to say, the specific content of the specified location is fixedly written in the setting rule, so that both the base station and the terminal can determine the designated location according to the third information in the setting rule.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure; when performing step 130, as shown in FIG. 4A , can include the following steps 440-450:
  • step 440 for the blind detection result of each uplink transmission cut-off time point, when each blind detection result includes demodulation success, the first information for characterizing the demodulation success is sent to the terminal at the HARQ feedback time point.
  • the blind detection result of each uplink transmission cut-off time point may be successful demodulation or demodulation failure.
  • the blind detection result of the uplink transmission possible cut-off time point #1 is demodulation failure
  • the blind detection result of the uplink transmission possible cut-off time point #2 is demodulation success
  • the uplink transmission possible deadline time point #3 If the blind detection result is that the demodulation fails, and the blind detection result of the uplink transmission possible deadline point #4 is demodulation failure, the first information for characterizing the demodulation success may be sent to the terminal at the determined HARQ feedback time point.
  • step 450 when the respective blind detection results do not include demodulation success, the second information for characterizing the demodulation failure is sent to the terminal at the HARQ feedback time point.
  • the result of the blind detection may be that the demodulation is successful, and the demodulation may fail.
  • the blind detection result of the uplink transmission possible cut-off time point #1 is demodulation failure
  • the blind detection result of the uplink transmission possible cut-off time point #2 is demodulation failure
  • the uplink transmission may be closed time point #3.
  • the second information for characterizing the demodulation failure may be sent to the terminal at the determined HARQ feedback time point.
  • the maximum number of uplink transmission repetitions may be determined according to the number of uplink transmission repetitions included in each of the standby scheduling resources, and the maximum number of uplink transmission repetitions is determined.
  • Corresponding uplink transmission cut-off time point, and an uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number determining a HARQ feedback time point, where the determined HARQ feedback time point is located in an uplink transmission cut-off time corresponding to the maximum uplink transmission repetition number The specified position after the point, thereby implementing the function of performing HARQ feedback based on the maximum number of uplink transmission repetitions, and ensuring that the terminal can receive the correct HARQ feedback information, and also improves the quality of service of the HARQ feedback.
  • FIG. 5A is a flowchart of another HARQ feedback method, which may be used on a base station, where the base station allocates multiple standby scheduling resources for providing EDT services, and according to an exemplary embodiment.
  • the setting rule is to perform HARQ feedback for the uplink transmission deadlines corresponding to the respective standby scheduling resources.
  • the following steps may be included. 510:
  • step 510 for any uplink transmission cut-off time point, a HARQ feedback time point corresponding to the uplink transmission cut-off time point is determined, and the determined HARQ feedback time point is located at a designated position after the uplink transmission cut-off time point.
  • the base station for each uplink transmission cut-off time point, the base station needs to determine the HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the four possible uplink transmission cutoff time points may be an uplink transmission possible cutoff time point #1, an uplink transmission possible cutoff time point #2, an uplink transmission possible cutoff time point #3, and an uplink transmission. It is possible to cut off time point #4, and the base station needs to determine the respective HARQ feedback time points of the four possible uplink transmission cut-off time points.
  • the specified position after each uplink transmission cut-off time point may be a preset fixed value, or may be a value determined by the base station according to actual conditions, for example, the specified position is a specified number of subframes.
  • the specified location is the location after the specified number of subframes
  • the determined HARQ feedback time point is located after the specified number of subframes after each uplink transmission deadline point, and the HARQ feedback time point of #1 shown in FIG. 5B.
  • HARQ feedback time point of #2 is used to represent the first information of the demodulation success
  • the NACK is used to represent the second information of the demodulation failure.
  • the designated location is the transmission position of the first downlink control channel after the specified number of subframes
  • the determined HARQ feedback time point is located at the first downlink control after a specified number of subframes after each uplink transmission cutoff time point.
  • the transmission position of the channel as shown in FIG. 5C, the downlink control channel possible transmission position of #1, the downlink control channel possible transmission position of #2, the downlink control channel possible transmission position of #3, and the possible transmission position of the downlink control channel of #4 , are all HARQ feedback time points.
  • the ACK is used to represent the first information of the demodulation success
  • the NACK is used to represent the second information of the demodulation failure.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal. That is, the base station can add the specified location to the uplink scheduling grant of the random access response, and send the random access response to the terminal, so that the terminal can determine the designated location of the base station configuration according to the random access response.
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point. That is to say, the specific content of the specified location is fixedly written in the setting rule, so that both the base station and the terminal can determine the designated location according to the third information in the setting rule.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure; when performing step 130, as shown in FIG. 5A , can include the following steps 520-530:
  • step 520 for the blind detection result of any uplink transmission cut-off time point, when the blind detection result is demodulated successfully, the HARQ feedback time point corresponding to the uplink transmission cut-off time point is sent to the terminal for characterizing demodulation. The first message of success.
  • step 530 when the blind detection result is demodulation failure, the second information for characterizing the demodulation failure is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cutoff time point.
  • the HARQ feedback time point corresponding to each uplink transmission cut-off time point may be determined first, for any uplink transmission.
  • the blind detection result at the cut-off time point when the blind detection result is demodulated successfully, the first information for characterizing the demodulation success is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the blind detection result is
  • the second information for characterizing the demodulation failure is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cutoff time point, so that the uplink transmission cutoff time points corresponding to the respective standby scheduling resources are all performed.
  • the HARQ feedback function also ensures that the terminal can receive the correct HARQ feedback information, thereby enriching the service style of the HARQ feedback.
  • FIG. 6A is a flowchart of another HARQ feedback method, which may be used on a base station, where the base station allocates multiple standby scheduling resources for providing EDT services, and according to an exemplary embodiment.
  • the setting rule is that the blind detection result is that the demodulation is successful, and the HARQ feedback is performed.
  • the step 120 is performed, as shown in FIG. 6A, the following step 610 may be included:
  • step 610 for any uplink transmission cut-off time point, the HARQ feedback time point corresponding to the uplink transmission cut-off time point is determined, and the determined HARQ feedback time point is located at a specified position after the uplink transmission cut-off time point.
  • the base station for each uplink transmission cut-off time point, the base station needs to determine the HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the four possible uplink transmission cutoff time points may be an uplink transmission possible cutoff time point #1, an uplink transmission possible cutoff time point #2, an uplink transmission possible cutoff time point #3, and an uplink transmission. It is possible to cut off time point #4, and the base station needs to determine the respective HARQ feedback time points of the four possible uplink transmission cut-off time points.
  • the specified position after each uplink transmission cut-off time point may be a preset fixed value, or may be a value determined by the base station according to actual conditions, for example, the specified position is a specified number of subframes.
  • the specified location is a position after a specified number of subframes
  • the determined HARQ feedback time point is located at a position after a specified number of subframes after each uplink transmission cutoff time point, and the uplink transmission possible deadline time point shown in FIG. 6B# 2, is the actual transmission cut-off time point.
  • the ACK is used to represent the first information of the demodulation success, that is, if the blind detection result of the uplink transmission possible cutoff time point #2 is demodulated successfully, the terminal is sent to the terminal after the specified number of subframes.
  • the first information that characterizes the demodulation success is ACK.
  • the designated location is the transmission position of the first downlink control channel after the specified number of subframes
  • the determined HARQ feedback time point is located at the first downlink control after a specified number of subframes after each uplink transmission cutoff time point.
  • the transmission position of the channel may be the off time point #2, which is the actual transmission cutoff time point.
  • the ACK is used to indicate the first information of the demodulation success, that is, if the blind detection result of the uplink transmission possible cutoff time point #2 is demodulation success, the downlink control channel may be transmitted to the terminal for the transmission location for the terminal.
  • the first information characterizing the successful demodulation is ACK.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal. That is, the base station can add the specified location to the uplink scheduling grant of the random access response, and send the random access response to the terminal, so that the terminal can determine the designated location of the base station configuration according to the random access response.
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point. That is to say, the specific content of the specified location is fixedly written in the setting rule, so that both the base station and the terminal can determine the designated location according to the third information in the setting rule.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing the demodulation success.
  • the following steps 620-630 may be included:
  • step 620 for the blind detection result of any uplink transmission cut-off time point, when the blind detection result is demodulated successfully, the HARQ feedback time point corresponding to the uplink transmission cut-off time point is sent to the terminal to indicate that the demodulation is successful.
  • step 630 when the blind detection result is demodulation failure, the HARQ feedback is not performed at the HARQ feedback time point corresponding to the uplink transmission cutoff time point.
  • the HARQ feedback time point corresponding to each uplink transmission cut-off time point may be determined first, for any uplink transmission cut-off time point. If the result of the blind detection is that the demodulation is successful, the first information indicating that the demodulation is successful is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cutoff time point.
  • the HARQ feedback is not performed at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, thereby implementing the function of performing the HARQ feedback when the blind detection result is successful demodulation, and ensuring that the terminal can receive the correct HARQ feedback information.
  • the HARQ feedback content and feedback times are reduced, and the efficiency of HARQ feedback is improved.
  • FIG. 7 is a flowchart of a HARQ feedback method, which may be used in a terminal, where a base station allocates multiple standby scheduling resources for providing EDT services according to an exemplary embodiment.
  • the HARQ feedback method can include the following steps 710-730:
  • step 710 one spare scheduling resource is selected from each of the alternate scheduling resources, and the EDT data is sent to the base station on the selected standby scheduling resource.
  • the EDT data is uplink data that the terminal needs to transmit during the random access process, and is located in the message 3 in the random process. That is, the terminal can add the EDT data to the message 3 and send the message 3 to the base station, so that the base station can obtain the EDT data transmitted by the terminal from the message 3.
  • step 720 the HARQ feedback time point corresponding to the EDT data is determined according to the setting rule.
  • the predefined setting rules may include but are not limited to the following three types, but as to which setting rule is used by the base station and the terminal, the base station and the base station may be used.
  • the terminal negotiates well in advance:
  • the setting rule is to perform HARQ feedback based on the maximum number of uplink transmission repetitions; the specific implementation process can be seen in the embodiment shown in FIG.
  • the setting rule is to perform HARQ feedback for the uplink transmission deadline points corresponding to the respective standby scheduling resources; the specific implementation process can be seen in the embodiment shown in FIG.
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful; the specific implementation process can be seen in the embodiment shown in FIG.
  • step 730 when the HARQ feedback information transmitted by the base station is received at the HARQ feedback time point, the transmission result of the EDT data is determined according to the HARQ feedback information.
  • the EDT data is sent to the base station on the selected alternate scheduling resource by using one of the alternate scheduling resources, and the HARQ feedback time point corresponding to the EDT data is determined according to the setting rule. And when the HARQ feedback information sent by the base station is received at the HARQ feedback time point, the transmission result of the EDT data is determined according to the HARQ feedback information, thereby improving the reliability of the HARQ feedback and improving the efficiency of the EDT transmission.
  • FIG. 8 is a flowchart of another HARQ feedback method, which may be used in a terminal, where a base station allocates multiple standby scheduling resources for providing EDT services, and establishes according to an exemplary embodiment.
  • the standby scheduling resource includes a TBS and an uplink transmission repetition number; when performing step 710, as shown in FIG. 8, the following steps 810-820 may be included:
  • an alternate scheduling resource is selected from each of the alternate scheduling resources according to the TBS and the number of uplink transmission repetitions included in each of the standby scheduling resources.
  • step 820 EDT data is transmitted to the base station on the selected alternate scheduling resource.
  • a candidate scheduling resource is selected from each of the standby scheduling resources according to the TBS and the number of uplink transmission repetitions included in each of the standby scheduling resources, and the EDT data is sent to the base station on the selected standby scheduling resource. Thereby selecting the accuracy of the alternate scheduling resource.
  • FIG. 9 is a flowchart of another HARQ feedback method, which may be used in a terminal, where a base station allocates multiple standby scheduling resources for providing EDT services, and establishes according to an exemplary embodiment.
  • the setting rule is to perform HARQ feedback based on the maximum number of uplink transmission repetitions; when performing step 720, as shown in FIG. 9, the following steps 910-950 may be included:
  • step 910 the uplink transmission deadline point corresponding to each backup scheduling resource is determined according to the TBS and the number of uplink transmission repetitions included in each of the standby scheduling resources.
  • step 920 the maximum number of uplink transmission repetitions is determined according to the number of uplink transmission repetitions included in each of the standby scheduling resources.
  • step 930 an uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions is determined according to each uplink transmission cut-off time point.
  • the HARQ feedback time point is determined according to the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number, and the determined HARQ feedback time point is located at a designated position after the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal. That is, the base station can add the specified location to the uplink scheduling grant of the random access response, and send the random access response to the terminal, so that the terminal can determine the designated location of the base station configuration according to the random access response.
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between the HARQ feedback time point and the determined uplink transmission cut-off time point. That is to say, the specific content of the specified location is fixedly written in the setting rule, so that both the base station and the terminal can determine the designated location according to the third information in the setting rule.
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure.
  • first information for characterizing demodulation success or second information for characterizing demodulation failure.
  • step 950 the HARQ feedback information sent by the base station is received at the HARQ feedback time point.
  • step 960 if the HARQ feedback information is the first information used to characterize the successful demodulation, it is determined that the transmission result of the EDT data is the transmission success;
  • step 970 if the HARQ feedback information is the second information used to characterize the demodulation failure, it is determined that the transmission result of the EDT data is a transmission failure.
  • the uplink transmission deadline point corresponding to each standby scheduling resource may be determined according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources.
  • FIG. 10 is a flowchart of another HARQ feedback method, which may be used in a terminal, where a base station allocates multiple standby scheduling resources for providing EDT services, and establishes according to an exemplary embodiment.
  • the setting rule is to perform HARQ feedback for each uplink transmission deadline point corresponding to each of the standby scheduling resources; when performing step 720, as shown in FIG. 10, the following may be included. Steps 1010-1020:
  • step 1010 the uplink transmission deadline point corresponding to the selected standby scheduling resource is determined according to the TBS and the uplink transmission repetition number included in the selected backup scheduling resource.
  • step 1020 the HARQ feedback time point corresponding to the uplink transmission cut-off time point is determined for the uplink transmission cut-off time point corresponding to the selected backup scheduling resource, and the determined HARQ feedback time point is located after the uplink transmission cut-off time point. Specify the location.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal. That is, the base station can add the specified location to the uplink scheduling grant of the random access response, and send the random access response to the terminal, so that the terminal can determine the designated location of the base station configuration according to the random access response.
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point. That is to say, the specific content of the specified location is fixedly written in the setting rule, so that both the base station and the terminal can determine the designated location according to the third information in the setting rule.
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure; when performing step 730, as shown in FIG. 10, the following may be included Steps 1030-1050:
  • step 1030 the HARQ feedback information sent by the base station is received at the HARQ feedback time point corresponding to the uplink transmission cutoff time point.
  • step 1040 if the HARQ feedback information is the first information used to characterize the successful demodulation, it is determined that the transmission result of the EDT data is the transmission success.
  • step 1050 if the HARQ feedback information is the second information used to characterize the demodulation failure, it is determined that the transmission result of the EDT data is a transmission failure.
  • the setting rule is that the HARQ feedback is performed on the uplink transmission cut-off time points corresponding to the respective standby scheduling resources
  • only the uplink transmission deadline point corresponding to the selected standby scheduling resource may be determined, and the The HARQ feedback time point corresponding to the uplink transmission cutoff time point, and receiving the HARQ feedback information sent by the base station at the HARQ feedback time point corresponding to the uplink transmission cutoff time point, and if the HARQ feedback information is the first information used to characterize the demodulation success
  • the transmission result of the EDT data is determined to be successful
  • the HARQ feedback information is the second information used to characterize the demodulation failure, it is determined that the transmission result of the EDT data is a transmission failure, thereby improving the accuracy of the transmission result.
  • FIG. 11 is a flowchart of another HARQ feedback method according to an exemplary embodiment, where the HARQ feedback method may be used by a base station, where a base station allocates multiple standby scheduling resources for providing EDT services; and establishes
  • the setting rule is that the blind detection result is that the HARQ feedback is performed when the demodulation is successful; when performing step 720, as shown in FIG. 11, the following steps 1110-1120 may be included:
  • step 1110 the uplink transmission cut-off time point corresponding to the selected standby scheduling resource is determined according to the TBS and the uplink transmission repetition number included in the selected standby scheduling resource.
  • step 1120 the HARQ feedback time point corresponding to the uplink transmission cut-off time point is determined for the uplink transmission cut-off time point corresponding to the selected standby scheduling resource, and the determined HARQ feedback time point is located after the uplink transmission cut-off time point. Specify the location.
  • the designated location is configured by the base station and is located in an uplink scheduling grant of a random access response sent by the base station to the terminal. That is, the base station can add the specified location to the uplink scheduling grant of the random access response, and send the random access response to the terminal, so that the terminal can determine the designated location of the base station configuration according to the random access response.
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point. That is to say, the specific content of the specified location is fixedly written in the setting rule, so that both the base station and the terminal can determine the designated location according to the third information in the setting rule.
  • the HARQ feedback information includes first information for characterizing demodulation success.
  • the following steps 1130-1140 may be included:
  • step 1130 if the HARQ feedback information sent by the base station is received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the HARQ feedback information is the first information used to characterize the demodulation success, then the EDT data is determined. The result of the transmission is a successful transmission.
  • step 1140 if the HARQ feedback information sent by the base station is not received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, it is determined that the transmission result of the EDT data is a transmission failure.
  • the HARQ feedback is performed, and only the uplink transmission deadline time corresponding to the selected standby scheduling resource is determined, and the uplink transmission deadline time point is corresponding.
  • the HARQ feedback time point if the HARQ feedback information sent by the base station is received at the HARQ feedback time point corresponding to the uplink transmission cutoff time point, and the HARQ feedback information is the first information used to characterize the demodulation success, the EDT data is determined.
  • the transmission result is that the transmission is successful; if the HARQ feedback information sent by the base station is not received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, it is determined that the transmission result of the EDT data is a transmission failure, thereby ensuring the accuracy of the transmission result.
  • the HARQ feedback content and feedback times are also reduced, and the efficiency of HARQ feedback is improved.
  • the present disclosure also provides an embodiment of the HARQ feedback device.
  • FIG. 12 is a block diagram of a HARQ feedback apparatus, which may be used on a base station, where the base station allocates multiple standby scheduling resources for providing EDT services, and is used to execute FIG. 1 according to an exemplary embodiment.
  • the illustrated HARQ feedback method, as shown in FIG. 12, the HARQ feedback device may include:
  • the detecting module 121 is configured to perform blind detection on the EDT data transmitted by the terminal to the base station on each of the standby scheduling resources;
  • the first determining module 122 is configured to determine, according to the setting rule, a HARQ feedback time point corresponding to the blind detection;
  • the sending module 123 is configured to send the HARQ feedback information corresponding to the blind detection to the terminal at the time of the HARQ feedback.
  • the EDT data transmitted by the terminal to the base station is blindly detected on each of the standby scheduling resources, and the HARQ feedback time point corresponding to the blind detection is determined according to the setting rule, and the terminal is sent to the terminal at the HARQ feedback time point. Detecting the corresponding HARQ feedback information, so that the terminal can receive the HARQ feedback information sent by the base station at the time of the HARQ feedback determined according to the setting rule, and can determine the correct transmission result of the EDT data according to the HARQ feedback information, thereby improving the HARQ feedback. Reliability also improves the efficiency of EDT transmission.
  • the EDT data is uplink data transmitted by the terminal in a random access procedure, and is located in the message 3 in the random process.
  • the standby scheduling resource includes a transport block size TBS and an uplink transmission repetition number.
  • the detecting module 121 may include:
  • the first determining sub-module 131 is configured to determine an uplink transmission deadline point corresponding to each of the standby scheduling resources according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources;
  • the detecting sub-module 132 is configured to perform blind detection on the EDT data at each of the uplink transmission cut-off time points.
  • the uplink transmission cut-off time point corresponding to each standby scheduling resource is determined according to the TBS and the uplink transmission repetition times included in each standby scheduling resource, and the EDT data is blindly detected at each uplink transmission deadline point. Thereby improving the accuracy of blind detection.
  • the setting rule is to perform HARQ feedback based on the maximum number of uplink transmission repetitions.
  • the first determining module 122 may include:
  • the second determining sub-module 141 is configured to determine a maximum uplink transmission repetition number according to the uplink transmission repetition number included in each of the standby scheduling resources;
  • the third determining sub-module 142 is configured to determine, according to each of the uplink transmission cut-off time points, an uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions;
  • the fourth determining sub-module 142 is configured to determine the HARQ feedback time point according to the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number, where the determined HARQ feedback time point is located corresponding to the maximum uplink transmission repetition time The specified position after the upstream transmission cut-off time point.
  • the HARQ feedback information corresponding to the blind detection includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the sending module 123 may include:
  • the first sending sub-module 151 is configured to send, to the terminal, the blind detection result of each of the uplink transmission cut-off time points, when each of the blind detection results includes demodulation succeeding, sending the terminal to the terminal at the HARQ feedback time point.
  • the first information ;
  • the second sending sub-module 152 is configured to send the second information to the terminal at the HARQ feedback time point when each of the blind detection results does not include the demodulation success.
  • the maximum number of uplink transmission repetitions may be determined according to the number of uplink transmission repetitions included in each of the standby scheduling resources, and the maximum number of uplink transmission repetitions is determined.
  • Corresponding uplink transmission cut-off time point, and an uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number determining a HARQ feedback time point, where the determined HARQ feedback time point is located in an uplink transmission cut-off time corresponding to the maximum uplink transmission repetition number The specified position after the point, thereby implementing the function of performing HARQ feedback based on the maximum number of uplink transmission repetitions, and ensuring that the terminal can receive the correct HARQ feedback information, and also improves the quality of service of the HARQ feedback.
  • the setting rule is that HARQ feedback is performed for each uplink transmission deadline point corresponding to each of the standby scheduling resources; as shown in FIG.
  • a determining module 122 can include:
  • the fifth determining sub-module 161 is configured to determine, according to any one of the uplink transmission cut-off time points, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, where the determined HARQ feedback time point is located after the uplink transmission cut-off time point The specified location.
  • the sending module 123 may include:
  • the third sending sub-module 171 is configured to be a blind detection result for any of the uplink transmission cut-off time points, and when the blind detection result is demodulated successfully, the HARQ feedback time corresponding to the uplink transmission cut-off time point Sending the first information to the terminal;
  • the fourth sending sub-module 172 is configured to: when the blind detection result is demodulation failure, send the second information to the terminal at a HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the HARQ feedback time point corresponding to each uplink transmission cut-off time point may be determined first, for any uplink transmission.
  • the blind detection result at the cut-off time point when the blind detection result is demodulated successfully, the first information for characterizing the demodulation success is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the blind detection result is
  • the second information for characterizing the demodulation failure is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cutoff time point, so that the uplink transmission cutoff time points corresponding to the respective standby scheduling resources are all performed.
  • the HARQ feedback function also ensures that the terminal can receive the correct HARQ feedback information, thereby enriching the service style of the HARQ feedback.
  • the setting rule is that the blind detection result is that the demodulation is successful, and the HARQ feedback is performed; as shown in FIG. 18, the first determining module 122 may include :
  • the sixth determining sub-module 181 is configured to determine, according to any of the uplink transmission cut-off time points, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, where the determined HARQ feedback time point is located after the uplink transmission cut-off time point The specified location.
  • the sending module 123 may include:
  • the fifth sending sub-module 191 is configured to be a blind detection result for any of the uplink transmission cut-off time points.
  • the HARQ feedback time corresponding to the uplink transmission cut-off time point is Sending the first information to the terminal;
  • the sixth sending sub-module 192 is configured to not perform HARQ feedback at the HARQ feedback time point corresponding to the uplink transmission cut-off time point when the blind detection result is demodulation failure.
  • the HARQ feedback time point corresponding to each uplink transmission cut-off time point may be determined first, for any uplink transmission cut-off time point. If the result of the blind detection is that the demodulation is successful, the first information indicating that the demodulation is successful is sent to the terminal at the HARQ feedback time point corresponding to the uplink transmission cutoff time point.
  • the HARQ feedback is not performed at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, thereby implementing the function of performing the HARQ feedback when the blind detection result is successful demodulation, and ensuring that the terminal can receive the correct HARQ feedback information.
  • the HARQ feedback content and feedback times are reduced, and the efficiency of HARQ feedback is improved.
  • the designated location is an uplink scheduling grant configured by the base station and located in a random access response sent by the base station to the terminal.
  • Medium or
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point.
  • FIG. 20 is a block diagram of a HARQ feedback apparatus, which may be used in a terminal, where a base station allocates multiple standby scheduling resources for providing EDT services, and is used to execute FIG. 7 according to an exemplary embodiment.
  • the illustrated HARQ feedback method, as shown in FIG. 20, the HARQ feedback device may include:
  • the selecting module 201 is configured to select one standby scheduling resource from each of the standby scheduling resources, and send the EDT data to the base station on the selected standby scheduling resource;
  • the second determining module 202 is configured to determine a HARQ feedback time point corresponding to the EDT data according to the setting rule;
  • the third determining module 203 is configured to determine, according to the HARQ feedback information, a transmission result of the EDT data when receiving the HARQ feedback information sent by the base station at the time of the HARQ feedback.
  • the EDT data is sent to the base station on the selected alternate scheduling resource by using one of the alternate scheduling resources, and the HARQ feedback time point corresponding to the EDT data is determined according to the setting rule. And when the HARQ feedback information sent by the base station is received at the HARQ feedback time point, the transmission result of the EDT data is determined according to the HARQ feedback information, thereby improving the reliability of the HARQ feedback and improving the efficiency of the EDT transmission.
  • the EDT data is uplink data that the terminal needs to transmit during the random access process, and is located in the message 3 in the random process.
  • the standby scheduling resource includes a transport block size TBS and an uplink transmission repetition number.
  • the selecting module 201 may include:
  • the selecting sub-module 211 is configured to select one standby scheduling resource from each of the standby scheduling resources according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources.
  • the transmitting sub-module 212 is configured to transmit EDT data to the base station on the selected alternate scheduling resource.
  • a candidate scheduling resource is selected from each of the standby scheduling resources according to the TBS and the number of uplink transmission repetitions included in each of the standby scheduling resources, and the EDT data is sent to the base station on the selected standby scheduling resource. Thereby selecting the accuracy of the alternate scheduling resource.
  • the setting rule is to perform HARQ feedback based on the maximum number of uplink transmission repetitions.
  • the second determining module 202 may include:
  • the first time point determining sub-module 221 is configured to determine an uplink transmission deadline point corresponding to each of the standby scheduling resources according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources;
  • the repetition number determining sub-module 222 is configured to determine a maximum number of uplink transmission repetitions according to the number of uplink transmission repetitions included in each of the standby scheduling resources;
  • the second time point determining sub-module 223 is configured to determine, according to each of the uplink transmission cut-off time points, an uplink transmission cut-off time point corresponding to the maximum number of uplink transmission repetitions;
  • the third time point determining sub-module 224 is configured to determine the HARQ feedback time point according to the uplink transmission cut-off time point corresponding to the maximum uplink transmission repetition number, where the determined HARQ feedback time point is located in the maximum uplink transmission repetition time The corresponding position after the corresponding uplink transmission cut-off time point.
  • the third determining module 203 may include:
  • the first receiving submodule 231 is configured to receive the HARQ feedback information sent by the base station at the time of the HARQ feedback;
  • the first processing sub-module 232 is configured to: if the HARQ feedback information is the first information, determine that the transmission result of the EDT data is a successful transmission;
  • the second processing sub-module 232 is configured to: if the HARQ feedback information is the second information, determine that the transmission result of the EDT data is a transmission failure
  • the uplink transmission deadline point corresponding to each standby scheduling resource may be determined according to the TBS and the uplink transmission repetition number included in each of the standby scheduling resources.
  • the setting rule is that HARQ feedback is performed for each uplink transmission deadline point corresponding to each of the standby scheduling resources; as shown in FIG.
  • the second determining module 202 can include:
  • the fourth time point determining sub-module 241 is configured to determine an uplink transmission deadline corresponding to the selected standby scheduling resource according to the TBS and the uplink transmission repetition number included in the selected backup scheduling resource. point;
  • the fifth time point determining sub-module 242 is configured to determine, according to the uplink transmission cut-off time point corresponding to the selected standby scheduling resource, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the determined HARQ feedback time point Located at a specified location after the upstream transmission deadline.
  • the HARQ feedback information includes first information for characterizing demodulation success or second information for characterizing demodulation failure;
  • the third determining module 203 may include:
  • the second receiving sub-module 251 is configured to receive the HARQ feedback information sent by the base station at a time point of HARQ feedback corresponding to the uplink transmission cut-off time point;
  • the third processing sub-module 252 is configured to: if the HARQ feedback information is the first information, determine that the transmission result of the EDT data is a successful transmission;
  • the fourth processing sub-module 253 is configured to determine that the transmission result of the EDT data is a transmission failure if the HARQ feedback information is the second information.
  • the setting rule is that the HARQ feedback is performed on the uplink transmission cut-off time points corresponding to the respective standby scheduling resources
  • only the uplink transmission deadline point corresponding to the selected standby scheduling resource may be determined, and the The HARQ feedback time point corresponding to the uplink transmission cutoff time point, and receiving the HARQ feedback information sent by the base station at the HARQ feedback time point corresponding to the uplink transmission cutoff time point, and if the HARQ feedback information is the first information used to characterize the demodulation success
  • the transmission result of the EDT data is determined to be successful
  • the HARQ feedback information is the second information used to characterize the demodulation failure, it is determined that the transmission result of the EDT data is a transmission failure, thereby improving the accuracy of the transmission result.
  • the setting rule is that the blind detection result is that the demodulation is successful, and the HARQ feedback is performed; as shown in FIG. 26, the second determining module 202 may include :
  • the sixth time point determining sub-module 261 is configured to determine an uplink transmission deadline corresponding to the selected standby scheduling resource according to the TBS and the uplink transmission repetition number included in the selected backup scheduling resource. point;
  • the seventh time point determining sub-module 262 is configured to determine, according to the uplink transmission cut-off time point corresponding to the selected standby scheduling resource, a HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the determined HARQ feedback time point Located at a specified location after the upstream transmission deadline.
  • the third determining module 203 may include:
  • the fifth processing sub-module 271 is configured to: if the HARQ feedback information sent by the base station is received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, and the HARQ feedback information is the first information, Determining that the transmission result of the EDT data is a successful transmission;
  • the sixth processing sub-module 272 is configured to determine that the transmission result of the EDT data is a transmission failure if the HARQ feedback information sent by the base station is not received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point.
  • the HARQ feedback is performed, and only the uplink transmission deadline time corresponding to the selected standby scheduling resource is determined, and the uplink transmission deadline time point is corresponding.
  • the HARQ feedback time point if the HARQ feedback information sent by the base station is received at the HARQ feedback time point corresponding to the uplink transmission cutoff time point, and the HARQ feedback information is the first information used to characterize the demodulation success, the EDT data is determined.
  • the transmission result is that the transmission is successful; if the HARQ feedback information sent by the base station is not received at the HARQ feedback time point corresponding to the uplink transmission cut-off time point, it is determined that the transmission result of the EDT data is a transmission failure, thereby ensuring the accuracy of the transmission result.
  • the HARQ feedback content and feedback times are also reduced, and the efficiency of HARQ feedback is improved.
  • the designated location is configured by the base station, and is located at a random access response sent by the base station to the terminal.
  • the upstream scheduling license or
  • the setting rule includes third information for characterizing the specified location, where the third information is used to indicate a relative relationship between a HARQ feedback time point and a determined uplink transmission cut-off time point.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present disclosure also provides a non-transitory computer readable storage medium having stored thereon a computer program for performing the HARQ feedback method of any of the above-described FIGS. 1 to 6C.
  • the present disclosure also provides a non-transitory computer readable storage medium having stored thereon a computer program for performing the HARQ feedback method of any of the above-described FIGS. 7-11.
  • the present disclosure also provides a HARQ feedback apparatus, the apparatus is used for a base station, and the base station allocates a plurality of standby scheduling resources for providing an EDT service to the terminal, where the apparatus includes:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • FIG. 28 is a schematic structural diagram of a HARQ feedback apparatus according to an exemplary embodiment.
  • Device 2800 can be provided as a base station.
  • apparatus 2800 includes a processing component 2828, a wireless transmit/receive component 2824, an antenna component 2826, and a signal processing portion specific to the wireless interface, and the processing component 2828 can further include one or more processors.
  • One of the processing components 2828 can be configured to perform the HARQ feedback method of any of the above.
  • the present disclosure further provides a HARQ feedback apparatus, the apparatus is used by the apparatus for a terminal, and the base station allocates, by the base station, a plurality of standby scheduling resources for providing a data advance transmission EDT service, where the apparatus includes:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • FIG. 29 is a schematic structural diagram of a HARQ feedback apparatus according to an exemplary embodiment.
  • a HARQ feedback device 2900 is shown according to an exemplary embodiment, which may be a computer, a mobile phone, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, and a fitness device.
  • the apparatus 2900 may include one or more of the following components: a processing component 2901, a memory 2902, a power component 2903, a multimedia component 2904, an audio component 2905, an input/output (I/O) interface 2906, and a sensor component 2907, And a communication component 2908.
  • Processing component 2901 typically controls the overall operation of device 2900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 2901 may include one or more processors 2909 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 2901 can include one or more modules to facilitate interaction between component 2901 and other components.
  • the processing component 2901 can include a multimedia module to facilitate interaction between the multimedia component 2904 and the processing component 2901.
  • Memory 2902 is configured to store various types of data to support operation at device 2900. Examples of such data include instructions for any application or method operating on device 2900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 2902 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 2903 provides power to various components of device 2900.
  • Power component 2903 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 2900.
  • the multimedia component 2904 includes a screen between the device 2900 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 2904 includes a front camera and/or a rear camera. When the device 2900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2905 is configured to output and/or input an audio signal.
  • audio component 2905 includes a microphone (MIC) that is configured to receive an external audio signal when device 2900 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 2902 or transmitted via communication component 2908.
  • the audio component 2905 also includes a speaker for outputting an audio signal.
  • the I/O interface 2906 provides an interface between the processing component 2901 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 2907 includes one or more sensors for providing device 2900 with various status assessments.
  • sensor assembly 2907 can detect an open/closed state of device 2900, a relative positioning of components, such as the display and keypad of device 2900, and sensor component 2907 can also detect a change in position of one component of device 2900 or device 2900. The presence or absence of user contact with device 2900, device 2900 orientation or acceleration/deceleration and temperature change of device 2900.
  • Sensor assembly 2907 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2907 can also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 2907 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2908 is configured to facilitate wired or wireless communication between device 2900 and other devices.
  • the device 2900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 2908 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 2908 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 2900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 2902 comprising instructions executable by processor 2909 of apparatus 2900 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the device 2900 when the instructions in the storage medium are executed by the processor, the device 2900 is enabled to perform the HARQ feedback method described in any of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开提供一种HARQ反馈方法及装置,所述方法用于基站,所述基站为终端分配了多个用于提供EDT服务的备用调度资源,所述方法包括:在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;根据设定规则确定所述盲检测对应的HARQ反馈时间点;在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。因此,本公开中的终端可以在按照设定规则确定的HARQ反馈时间点接收到基站发送的HARQ反馈信息,并可以根据该HARQ反馈信息确定EDT数据的正确传输结果,从而提高了HARQ反馈的可靠性,还提高了EDT传输的效率。

Description

HARQ反馈方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种HARQ反馈方法及装置。
背景技术
NB-IoT(Narrow band Internet of things,窄带物联网)和MTC(Machine type communication,机器类通信)是一种非常有前景的蜂窝物联网技术,并得到了不断的广泛应用。并且,在NB-IoT和MTC中,为了进一步减少传输时延和节省功率,引入了在随机接入过程中传输上行数据的机制,简称EDT(Early Data Transmission during RACH,数据提取传输)。这里的RACH可以指定是随机接入信道(Random Access CHannel)。但是,现有的EDT过程中,由于基站和终端对于HARQ(Hybrid Automatic Repeat request,混合自动重传请求)反馈内容和时间不一致,降低了传输质量。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种HARQ反馈方法及装置。
根据本公开实施例的第一方面,提供一种HARQ反馈方法,所述方法用于基站,所述基站为终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述方法包括:
在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
根据设定规则确定所述盲检测对应的HARQ反馈时间点;
在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。
在一实施例中,所述EDT数据是所述终端在随机接入过程中传输的上行数据,且位于所述随机过程中的消息3中。
在一实施例中,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
所述在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测,包括:
根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
在各个所述上行传输截止时间点对所述EDT数据进行盲检测。
在一实施例中,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
所述根据设定规则确定所述盲检测对应的HARQ反馈时间点,包括:
根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
所述在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息,包括:
针对各个所述上行传输截止时间点的盲检测结果,当各个所述盲检测结果包括解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第一信息;
当各个所述盲检测结果不包括所述解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第二信息。
在一实施例中,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
所述根据设定规则确定所述盲检测对应的HARQ反馈时间点,包括:
针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
所述在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息,包括:
针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第二信息。
在一实施例中,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
所述根据设定规则确定所述盲检测对应的HARQ反馈时间点,包括:
针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息;
所述在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息,包括:
针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
根据本公开实施例的第二方面,提供一种HARQ反馈方法,所述方法用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述方法包括:
从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
在一实施例中,所述EDT数据是所述终端在随机接入过程中需要传输的上行数据,且位于所述随机过程中的消息3中。
在一实施例中,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
所述从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,包括:
根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,从各个所述备用调度资源中选取一个备用调度资源;
在选出的备用调度资源上将EDT数据发送至基站。
在一实施例中,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
所述根据设定规则确定所述EDT数据对应的HARQ反馈时间点,包括:
根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果,包括:
在所述HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
若所述HARQ反馈信息为所述第一信息,则确定所述EDT数据的传输结果为传输成功;
若所述HARQ反馈信息为所述第二信息,则确定所述EDT数据的传输结果为传输失败。
在一实施例中,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
所述根据设定规则确定所述EDT数据对应的HARQ反馈时间点,包括:
根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果,包括:
在该上行传输截止时间点对应的HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
若所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
若所述HARQ反馈信息为所述第二信息时,则确定所述EDT数据的传输结果为传输失败。
在一实施例中,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
所述根据设定规则确定所述EDT数据对应的HARQ反馈时间点,包括:
根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息;
当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果,包括:
若在该上行传输截止时间点对应的HARQ反馈时间点接收到所述基站发送的HARQ反馈信息,且所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到所述基站发送的HARQ反馈信息时,则确定所述EDT数据的传输结果为传输失败。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
根据本公开实施例的第三方面,提供一种HARQ反馈装置,所述装置用于基站,所述基站为终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
检测模块,被配置为在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
第一确定模块,被配置为根据设定规则确定所述盲检测对应的HARQ反馈时间点;
发送模块,被配置为在所述HARQ反馈时间点向所述终端发送所述盲检测对 应的HARQ反馈信息。
在一实施例中,所述EDT数据是所述终端在随机接入过程中传输的上行数据,且位于所述随机过程中的消息3中。
在一实施例中,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
所述检测模块包括:
第一确定子模块,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
检测子模块,被配置为在各个所述上行传输截止时间点对所述EDT数据进行盲检测。
在一实施例中,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
所述第一确定模块包括:
第二确定子模块,被配置为根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
第三确定子模块,被配置为根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
第四确定子模块,被配置为根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
所述发送模块包括:
第一发送子模块,被配置为针对各个所述上行传输截止时间点的盲检测结果,当各个所述盲检测结果包括解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第一信息;
第二发送子模块,被配置为当各个所述盲检测结果不包括所述解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第二信息。
在一实施例中,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
所述第一确定模块包括:
第五确定子模块,被配置为针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
所述发送模块包括:
第三发送子模块,被配置为针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
第四发送子模块,被配置为当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第二信息。
在一实施例中,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
所述第一确定模块包括:
第六确定子模块,被配置为针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息;
所述发送模块包括:
第五发送子模块,被配置为针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
第六发送子模块,被配置为当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
根据本公开实施例的第四方面,提供一种HARQ反馈装置,所述装置用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
选取模块,被配置为从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
第二确定模块,被配置为根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
第三确定模块,被配置为当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
在一实施例中,所述EDT数据是所述终端在随机接入过程中需要传输的上行数据,且位于所述随机过程中的消息3中。
在一实施例中,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
所述选取模块包括:
选取子模块,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,从各个所述备用调度资源中选取一个备用调度资源;
发送子模块,被配置为在选出的备用调度资源上将EDT数据发送至基站。
在一实施例中,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
所述第二确定模块包括:
第一时间点确定子模块,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
重复次数确定子模块,被配置为根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
第二时间点确定子模块,被配置为根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
第三时间点确定子模块,被配置为根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
所述第三确定模块包括:
第一接收子模块,被配置为在所述HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
第一处理子模块,被配置为若所述HARQ反馈信息为所述第一信息,则确定所述EDT数据的传输结果为传输成功;
第二处理子模块,被配置为若所述HARQ反馈信息为所述第二信息,则确定所述EDT数据的传输结果为传输失败。
在一实施例中,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
所述第二确定模块包括:
第四时间点确定子模块,被配置为根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
第五时间点确定子模块,被配置为针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
所述第三确定模块包括:
第二接收子模块,被配置为在该上行传输截止时间点对应的HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
第三处理子模块,被配置为若所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
第四处理子模块,被配置为若所述HARQ反馈信息为所述第二信息时,则确定所述EDT数据的传输结果为传输失败。
在一实施例中,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
所述第二确定模块包括:
第六时间点确定子模块,被配置为根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
第七时间点确定子模块,被配置为针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息;
所述第三确定模块包括:
第五处理子模块,被配置为若在该上行传输截止时间点对应的HARQ反馈时间点接收到所述基站发送的HARQ反馈信息,且所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
第六处理子模块,被配置为若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到所述基站发送的HARQ反馈信息时,则确定所述EDT数据的传输结果为传输失败。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
根据本公开实施例的第五方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述第一方面提供的HARQ反馈方法。
根据本公开实施例的第六方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述第二方面提供的HARQ反馈方法。
根据本公开实施例的第七方面,提供一种HARQ反馈装置,所述装置用于基站,所述基站为终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
根据设定规则确定所述盲检测对应的HARQ反馈时间点;
在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。
根据本公开实施例的第八方面,提供一种HARQ反馈装置,所述装置用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中的基站可以通过在各个备用调度资源上对终端传输至基站的EDT数据进行盲检测,并根据设定规则确定盲检测对应的HARQ反馈时间点,以及在HARQ反馈时间点向终端发送盲检测对应的HARQ反馈信息,这样终端可以在按照设定规则确定的HARQ反馈时间点接收到基站发送的HARQ反馈信息,并可以根据该HARQ反馈信息确定EDT数据的正确传输结果,从而提高了HARQ反馈的可靠性,还提高了EDT传输的效率。
本公开中的终端可以通过从各个备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,并根据设定规则确定EDT数据对应的HARQ反馈时间点,以及当在HARQ反馈时间点接收到基站发送的HARQ反馈信息时,根据HARQ反馈信息确定EDT数据的传输结果,从而提高了HARQ反馈的可靠性,还提高了EDT传输的效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种HARQ反馈方法的流程图;
图2是根据一示例性实施例示出的一种HARQ反馈方法的应用场景图;
图3A是根据一示例性实施例示出的另一种HARQ反馈方法的流程图;
图3B是根据一示例性实施例示出的一种HARQ反馈方法的信息交互图;
图4A是根据一示例性实施例示出的另一种HARQ反馈方法的流程图;
图4B是根据一示例性实施例示出的另一种HARQ反馈方法的信息交互图;
图5A是根据一示例性实施例示出的一种HARQ反馈方法的流程图;
图5B是根据一示例性实施例示出的一种HARQ反馈方法的信息交互图;
图5C是根据一示例性实施例示出的另一种HARQ反馈方法的信息交互图;
图6A是根据一示例性实施例示出的一种HARQ反馈方法的流程图;
图6B是根据一示例性实施例示出的一种HARQ反馈方法的信息交互图;
图6C是根据一示例性实施例示出的另一种HARQ反馈方法的信息交互图;
图7是根据一示例性实施例示出的一种HARQ反馈方法的流程图;
图8是根据一示例性实施例示出的另一种HARQ反馈方法的流程图;
图9是根据一示例性实施例示出的另一种HARQ反馈方法的流程图;
图10是根据一示例性实施例示出的另一种HARQ反馈方法的流程图;
图11是根据一示例性实施例示出的另一种HARQ反馈方法的流程图;
图12是根据一示例性实施例示出的一种HARQ反馈装置的框图;
图13是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图14是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图15是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图16是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图17是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图18是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图19是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图20是根据一示例性实施例示出的一种HARQ反馈装置的框图;
图21是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图22是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图23是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图24是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图25是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图26是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图27是根据一示例性实施例示出的另一种HARQ反馈装置的框图;
图28是根据一示例性实施例示出的一种HARQ反馈装置的结构示意图;
图29是根据一示例性实施例示出的一种HARQ反馈装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种HARQ反馈方法的流程图,图2是根据一示例性实施例示出的一种HARQ反馈方法的应用场景图;该HARQ反馈方法可以用于基站上,该基站为终端分配了多个用于提供EDT服务的备用调度资源;如图1所示,该HARQ反馈方法可以包括以下步骤110-130:
在步骤110中,在各个备用调度资源上对终端传输至基站的EDT数据进行盲检测。
本公开实施例中,基站可以提供EDT服务,并可以为申请EDT服务的终端分配多个用于提供EDT服务的备用调度资源。
比如:基站为终端分配了备用调度资源1、备用调度资源2、备用调度资源3和备用调度资源4,该备用调度资源1、备用调度资源2、备用调度资源3和备用调度资源4的N_RU(Number of Resource Unit,资源单位的数量)均为3,但备用调度资源1的TBS(Transmission Block Size,传输块大小)和上行传输重复(repetition)次 数分别为:328位(bits)和32次,备用调度资源2的TBS和上行传输重复次数分别为:536位和48次,备用调度资源3的TBS和上行传输重复次数分别为:776位和64次,备用调度资源4的TBS和上行传输重复次数分别为:1000位和96次。
另外,基站为终端分配多个备用调度资源的目的是:让终端可以根据自己的实际情况从这些备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,该选出的备用调度资源为终端实际使用的备用调度资源;但基站不知道终端会在哪个备用调度资源上传输,所以基站会在各个备用调度资源上进行盲检测。也就是说,基站会在终端实际使用的备用调度资源进行盲检测,也会在其他的备用调度资源进行盲检测。
在一实施例中,EDT数据可以指的是:终端在随机接入过程中传输的上行数据,且位于随机过程中的消息3(Scheduled Transmission,msg3)中。也就是说,终端可以将EDT数据添加到消息3,并将该消息3发送至基站,这样基站就可以从消息3中获取该终端所传输的EDT数据。
在一实施例中,所述备用调度资源包括TBS和上行传输重复次数;在执行步骤110时,可以采用但不限于以下实现方式:
(1-1)根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点;
(1-2)在各个上行传输截止时间点对EDT数据进行盲检测。
在步骤120中,根据设定规则确定盲检测对应的HARQ反馈时间点。
本公开实施例中,由于基站会在终端实际使用的备用调度资源进行盲检测,也会在其他的备用调度资源进行盲检测,所以需要确定在哪个时间点进行HARQ反馈。
并且,在确定盲检测对应的HARQ反馈时间点时,可以根据设定规则进行确定。该设定规则可以写在EDT传输协议中,这样基站和终端都可以根据EDT传输协议中获取设定规则。
另外,为了满足了基站和终端的不同需求,事先定义的设定规则可以包括但不限于以下三种,但是至于基站和终端到底是使用哪种设定规则,这可以是基站和终端提前协商好的:
(2-1)设定规则是基于最大上行传输重复次数进行HARQ反馈;其具体实现 过程可详见图4A所示实施例。
(2-2)设定规则是针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈;其具体实现过程可详见图5A所示实施例。
(2-3)设定规则是盲检测结果为解调成功时才进行HARQ反馈;其具体实现过程可详见图6A所示实施例。
在步骤130中,在HARQ反馈时间点向终端发送盲检测对应的HARQ反馈信息。
本公开实施例中,基站在HARQ反馈时间点向终端发送HARQ反馈信息后,这样终端可以在按照设定规则确定的HARQ反馈时间点接收到基站发送的HARQ反馈信息后,可以根据该HARQ反馈信息确定EDT数据的传输结果。
如图2所示的应用场景中,包括终端和基站。基站为终端分配了多个备用调度资源,比如:备用调度资源1、备用调度资源2、备用调度资源3和备用调度资源4;终端可以从这些备用调度资源中选取一个备用调度资源,比如:选出的备用调度资源为备用调度资源2,则该终端可以在备用调度资源2上将EDT数据发送至基站;而基站虽然为终端分配了多个备用调度资源,但其并不知道终端在备用调度资源2上传输,所以基站需要在各个备用调度资源上对EDT数据进行盲检测,并根据设定规则确定盲检测对应的HARQ反馈时间点,以及在HARQ反馈时间点向终端发送盲检测对应的HARQ反馈信息,这样终端在按照设定规则确定的HARQ反馈时间点接收到基站发送的HARQ反馈信息后,可以根据该HARQ反馈信息确定EDT数据的传输结果,从而提高了EDT传输的可靠性。
由上述实施例可见,通过在各个备用调度资源上对终端传输至基站的EDT数据进行盲检测,并根据设定规则确定盲检测对应的HARQ反馈时间点,以及在HARQ反馈时间点向终端发送盲检测对应的HARQ反馈信息,这样终端可以在按照设定规则确定的HARQ反馈时间点接收到基站发送的HARQ反馈信息,并可以根据该HARQ反馈信息确定EDT数据的正确传输结果,从而提高了HARQ反馈的可靠性,还提高了EDT传输的效率。
图3A是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于基站上,该基站为终端分配了多个用于提供EDT服务的备用 调度资源,并建立在图1所示方法的基础上,所述备用调度资源包括TBS和上行传输重复次数,在执行步骤110时,如图3A所示,可以包括以下步骤310-320:
在步骤310中,根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点。
本公开实施例中,可以根据不同的TBS的个数,来确定上行传输截止时间点的个数。比如:TBS的个数为4个,上行传输截止时间点的个数也为4个,由于终端有4种可能的TBS选择,对应着4种不同的上行传输重复次数,因此,EDT传输中就会有4种可能的上行传输截止时间点。如图3B所示,这4种可能的上行传输截止时间点可以分别是上行传输可能截止时间点#1、上行传输可能截止时间点#2、上行传输可能截止时间点#3、上行传输可能截止时间点#4。
在步骤320中,在各个上行传输截止时间点对EDT数据进行盲检测。
由上述实施例可见,可以根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点,并在各个上行传输截止时间点对EDT数据进行盲检测,从而提高了盲检测的准确性。
图4A是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于基站上,该基站为终端分配了多个用于提供EDT服务的备用调度资源,并建立在图3A所示方法的基础上,设定规则是基于最大上行传输重复次数进行HARQ反馈;在执行步骤120时,如图4A所示,可以包括以下步骤410-430:
在步骤410中,根据各个备用调度资源中包括的上行传输重复次数,确定最大上行传输重复次数。
本公开实施例中,各个备用调度资源中包括的上行传输重复次数可以不同,可以从这些不同的上行传输重复次数确定最大上行传输重复次数。
比如:基站为终端分配了备用调度资源1、备用调度资源2、备用调度资源3和备用调度资源4,该备用调度资源1、备用调度资源2、备用调度资源3和备用调度资源4的上行传输重复次数分别为:32次、48次、64次、96次,则该最大上行传输重复次数为96。
在步骤420中,根据各个上行传输截止时间点,确定最大上行传输重复次数对应的上行传输截止时间点。
本公开实施例中,最大上行传输重复次数对应最大可能的传输时间,也就是说,最大可能的传输时间是由最大上行传输重复次数来决定的。并且,最大上行传输重复次数对应的上行传输截止时间点可以是各个上行传输截止时间点中最后一个上行传输截止时间点。如图3B所示,该最后一个上行传输截止时间点可以是上行传输可能截止时间点#4。
在步骤430中,根据最大上行传输重复次数对应的上行传输截止时间点,确定HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
本公开实施例中,指定位置可以是预设的一个固定值,也可以是基站根据实际情况确定的一个数值,比如:指定位置为指定数量个子帧,并且,该指定数量的取值范围一般为大于或等于4,若1个子帧为1ms,则4个子帧为4ms。
比如:指定位置为指定数量个子帧后的位置。也就是说:HARQ反馈时间等于最大可能的传输时间(该最大可能的传输时间是由最大上行传输重复次数来决定的)加上指定数量个子帧,如图3B所示,最大上行传输重复次数对应的上行传输截止时间点为上行传输可能截止时间点#4,并将该上行传输可能截止时间点#4设置为HARQ反馈参考点,以及根据将HARQ反馈参考点的指定数量个子帧后的位置确定为HARQ反馈时间点。
又比如:指定位置为指定数量个子帧后的第一个下行控制信道的传输位置,如图4B所示的下行控制信道可能传输位置可确定为HARQ反馈时间点。
在一实施例中,所述指定位置是所述基站配置的,并位于随机接入响应(Random Access Preamble,RAR)的上行调度许可(uplink grant,UL grant)中。也就是说,基站可以将指定位置添加到随机接入响应的上行调度许可中,并将该随机接入响应发送至终端,这样终端就可以根据随机接入响应来确定基站配置的指定位置。或者,所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。也就是说,指定位置的具体内容是固定写在设定规则中,这样基站和终端均可以根据设定规则中的第三信息来确定该指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;在执行步骤130时,如图4A所示,可 以包括以下步骤440-450:
在步骤440中,针对各个上行传输截止时间点的盲检测结果,当各个盲检测结果包括解调成功时,则在HARQ反馈时间点向终端发送用于表征解调成功的第一信息。
本公开实施例中,各个上行传输截止时间点的盲检测结果可能是解调成功,也可能解调失败。如图3B所示,若上行传输可能截止时间点#1的盲检测结果为解调失败、上行传输可能截止时间点#2的盲检测结果为解调成功、上行传输可能截止时间点#3的盲检测结果为解调失败、上行传输可能截止时间点#4的盲检测结果为解调失败,则可以在确定的HARQ反馈时间点向终端发送用于表征解调成功的第一信息。
在步骤450中,当各个盲检测结果不包括解调成功时,则在HARQ反馈时间点向终端发送用于表征解调失败的第二信息。
本公开实施例中,盲检测结果可能是解调成功,也可能解调失败。如图3B所示,若上行传输可能截止时间点#1的盲检测结果为解调失败、上行传输可能截止时间点#2的盲检测结果为解调失败、上行传输可能截止时间点#3的盲检测结果为解调失败、上行传输可能截止时间点#4的盲检测结果为解调失败,则可以在确定的HARQ反馈时间点向终端发送用于表征解调失败的第二信息。
由上述实施例可见,当设定规则是基于最大上行传输重复次数进行HARQ反馈时,可以根据各个备用调度资源中包括的上行传输重复次数,确定最大上行传输重复次数,并确定最大上行传输重复次数对应的上行传输截止时间点、以及根据最大上行传输重复次数对应的上行传输截止时间点,确定HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置,从而实现了基于最大上行传输重复次数进行HARQ反馈这一功能,还保证了终端能够收到正确的HARQ反馈信息,也提高了HARQ反馈的服务质量。
图5A是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于基站上,该基站为终端分配了多个用于提供EDT服务的备用调度资源,并建立在图3A所示方法的基础上,所述设定规则是针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈;在执行步骤120时,如图5A所示,可以包括以下步骤510:
在步骤510中,针对任一上行传输截止时间点,确定该上行传输截止时间点对 应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
本公开实施例中,针对每个上行传输截止时间点,基站均需要确定该上行传输截止时间点对应的HARQ反馈时间点。比如:如图3B所示,这4种可能的上行传输截止时间点可以分别是上行传输可能截止时间点#1、上行传输可能截止时间点#2、上行传输可能截止时间点#3、上行传输可能截止时间点#4,基站需要确定4种可能的上行传输截止时间点各自的HARQ反馈时间点。
另外,每个上行传输截止时间点之后的指定位置可以是预设的一个固定值,也可以是基站根据实际情况确定的一个数值,比如:指定位置为指定数量个子帧。
比如:指定位置为指定数量个子帧后的位置,这样确定的HARQ反馈时间点位于每个上行传输截止时间点之后的指定数量个子帧后的位置,图5B所示的#1的HARQ反馈时间点、#2的HARQ反馈时间点、#3的HARQ反馈时间点、#4的HARQ反馈时间点。其中,ACK用于表征解调成功的第一信息,NACK用于表征解调失败的第二信息。
又比如:指定位置为指定数量个子帧后的第一个下行控制信道的传输位置,这样确定的HARQ反馈时间点位于每个上行传输截止时间点之后的指定数量个子帧后的第一个下行控制信道的传输位置,如图5C所示的#1的下行控制信道可能传输位置、#2的下行控制信道可能传输位置、#3的下行控制信道可能传输位置、#4的下行控制信道可能传输位置,均为HARQ反馈时间点。其中,ACK用于表征解调成功的第一信息,NACK用于表征解调失败的第二信息。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中。也就是说,基站可以将指定位置添加到随机接入响应的上行调度许可中,并将该随机接入响应发送至终端,这样终端就可以根据随机接入响应来确定基站配置的指定位置。或者,所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。也就是说,指定位置的具体内容是固定写在设定规则中,这样基站和终端均可以根据设定规则中的第三信息来确定该指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;在执行步骤130时,如图5A所示,可 以包括以下步骤520-530:
在步骤520中,针对任一上行传输截止时间点的盲检测结果,当盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送用于表征解调成功的第一信息。
在步骤530中,当盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送用于表征解调失败的第二信息。
由上述实施例可见,当设定规则是针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈时,可以先确定各个上行传输截止时间点对应的HARQ反馈时间点,针对任一上行传输截止时间点的盲检测结果,当盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送用于表征解调成功的第一信息,盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送用于表征解调失败的第二信息,从而实现了针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈这一功能,同样保证了终端能够收到正确的HARQ反馈信息,进而丰富了HARQ反馈的服务风格。
图6A是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于基站上,该基站为终端分配了多个用于提供EDT服务的备用调度资源,并建立在图3A所示方法的基础上,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;在执行步骤120时,如图6A所示,可以包括以下步骤610:
在步骤610中,针对任一上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
本公开实施例中,针对每个上行传输截止时间点,基站均需要确定该上行传输截止时间点对应的HARQ反馈时间点。比如:如图3B所示,这4种可能的上行传输截止时间点可以分别是上行传输可能截止时间点#1、上行传输可能截止时间点#2、上行传输可能截止时间点#3、上行传输可能截止时间点#4,基站需要确定4种可能的上行传输截止时间点各自的HARQ反馈时间点。
另外,每个上行传输截止时间点之后的指定位置可以是预设的一个固定值,也可以是基站根据实际情况确定的一个数值,比如:指定位置为指定数量个子帧。
比如:指定位置为指定数量个子帧后的位置,这样确定的HARQ反馈时间点位于每个上行传输截止时间点之后的指定数量个子帧后的位置,图6B所示的上行传输可能截止时间点#2,为实际传输截止时间点。其中,ACK用于表征解调成功的第一信息,也就是说若在上行传输可能截止时间点#2的盲检测结果为解调成功时,才在指定数量个子帧后的位置向终端发送用于表征解调成功的第一信息即ACK。
又比如:指定位置为指定数量个子帧后的第一个下行控制信道的传输位置,这样确定的HARQ反馈时间点位于每个上行传输截止时间点之后的指定数量个子帧后的第一个下行控制信道的传输位置,如图6C所示的上行传输可能截止时间点#2,为实际传输截止时间点。其中,ACK用于表征解调成功的第一信息,也就是说若在上行传输可能截止时间点#2的盲检测结果为解调成功时,才在下行控制信道可能传输位置向终端发送用于表征解调成功的第一信息即ACK。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中。也就是说,基站可以将指定位置添加到随机接入响应的上行调度许可中,并将该随机接入响应发送至终端,这样终端就可以根据随机接入响应来确定基站配置的指定位置。或者,所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。也就是说,指定位置的具体内容是固定写在设定规则中,这样基站和终端均可以根据设定规则中的第三信息来确定该指定位置。
在一实施例中,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息;在执行步骤130时,如图6A所示,可以包括以下步骤620-630:
在步骤620中,针对任一上行传输截止时间点的盲检测结果,当盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送表征解调成功的第一信息。
在步骤630中,当盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈。
由上述实施例可见,当设定规则是盲检测结果为解调成功时才进行HARQ反馈时,可以先确定各个上行传输截止时间点对应的HARQ反馈时间点,针对任一上行传输截止时间点的盲检测结果,当盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送表征解调成功的第一信息,当盲检测结果为 解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈,从而实现了盲检测结果为解调成功时才进行HARQ反馈这一功能,在保证终端能够收到正确的HARQ反馈信息的前提下,减化了HARQ反馈内容和反馈次数,提高了HARQ反馈的效率。
图7是根据一示例性实施例示出的一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于终端,基站为该终端分配了多个用于提供EDT服务的备用调度资源;如图7所示,该HARQ反馈方法可以包括以下步骤710-730:
在步骤710中,从各个备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站。
在一实施例中,EDT数据是终端在随机接入过程中需要传输的上行数据,且位于随机过程中的消息3中。也就是说,终端可以将EDT数据添加到消息3,并将该消息3发送至基站,这样基站就可以从消息3中获取该终端所传输的EDT数据。
在步骤720中,根据设定规则确定EDT数据对应的HARQ反馈时间点。
本公开实施例中,为了满足了基站和终端的不同需求,事先定义的设定规则可以包括但不限于以下三种,但是至于基站和终端到底是使用哪种设定规则,这可以是基站和终端提前协商好的:
(3-1)设定规则是基于最大上行传输重复次数进行HARQ反馈;其具体实现过程可详见图9所示实施例。
(3-2)设定规则是针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈;其具体实现过程可详见图10所示实施例。
(3-3)设定规则是盲检测结果为解调成功时才进行HARQ反馈;其具体实现过程可详见图11所示实施例。
在步骤730中,当在HARQ反馈时间点接收到基站发送的HARQ反馈信息时,根据HARQ反馈信息确定EDT数据的传输结果。
由上述实施例可见,通过从各个备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,并根据设定规则确定EDT数据对应的HARQ反馈时间点,以及当在HARQ反馈时间点接收到基站发送的HARQ反馈信息时,根据HARQ反馈信息确定EDT数据的传输结果,从而提高了HARQ反馈的可 靠性,还提高了EDT传输的效率。
图8是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于终端,基站为该终端分配了多个用于提供EDT服务的备用调度资源;并建立在图7所示方法的基础上,所述备用调度资源包括TBS和上行传输重复次数;在执行步骤710时,如图8所示,可以包括以下步骤810-820:
在步骤810中,根据各个备用调度资源中包括的TBS和上行传输重复次数,从各个备用调度资源中选取一个备用调度资源。
在步骤820中,在选出的备用调度资源上将EDT数据发送至基站。
由上述实施例可见,可以根据各个备用调度资源中包括的TBS和上行传输重复次数,从各个备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,从而选取备用调度资源的准确性。
图9是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于终端,基站为该终端分配了多个用于提供EDT服务的备用调度资源;并建立在图8所示方法的基础上,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;在执行步骤720时,如图9所示,可以包括以下步骤910-950:
在步骤910中,根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点。
在步骤920中,根据各个备用调度资源中包括的上行传输重复次数,确定最大上行传输重复次数。
在步骤930中,根据各个上行传输截止时间点,确定最大上行传输重复次数对应的上行传输截止时间点。
在步骤940中,根据最大上行传输重复次数对应的上行传输截止时间点确定HARQ反馈时间点,所确定的HARQ反馈时间点位于最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中。也就是说,基站可以将指定位置添加到随机接入响应的上行调度许可中,并将该随机接入响应发送至终端,这样终端就可以根据随机接入响应来确定基站配置的指定位置。或者,所述设定规则中包括用于表征所述 指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。也就是说,指定位置的具体内容是固定写在设定规则中,这样基站和终端均可以根据设定规则中的第三信息来确定该指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;在执行步骤730时,如图9所示,可以包括以下步骤950-970:
在步骤950中,在HARQ反馈时间点接收基站发送的HARQ反馈信息。
在步骤960中,若HARQ反馈信息为用于表征解调成功的第一信息,则确定EDT数据的传输结果为传输成功;
在步骤970中,若HARQ反馈信息为用于表征解调失败的第二信息,则确定EDT数据的传输结果为传输失败。
由上述实施例可见,当设定规则是基于最大上行传输重复次数进行HARQ反馈时,可以根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点、以及根据最大上行传输重复次数对应的上行传输截止时间点,以及根据最大上行传输重复次数对应的上行传输截止时间点,确定HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置,从而实现了基于最大上行传输重复次数进行HARQ反馈这一功能,还保证了终端能够收到正确的HARQ反馈信息,也提高了HARQ反馈的服务质量。
图10是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于终端,基站为该终端分配了多个用于提供EDT服务的备用调度资源;并建立在图8所示方法的基础上,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;在执行步骤720时,如图10所示,可以包括以下步骤1010-1020:
在步骤1010中,根据选出的备用调度资源中包括的TBS和上行传输重复次数,确定该选出的备用调度资源对应的上行传输截止时间点。
在步骤1020中,针对选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该 上行传输截止时间点之后的指定位置。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中。也就是说,基站可以将指定位置添加到随机接入响应的上行调度许可中,并将该随机接入响应发送至终端,这样终端就可以根据随机接入响应来确定基站配置的指定位置。或者,所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。也就是说,指定位置的具体内容是固定写在设定规则中,这样基站和终端均可以根据设定规则中的第三信息来确定该指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;在执行步骤730时,如图10所示,可以包括以下步骤1030-1050:
在步骤1030中,在该上行传输截止时间点对应的HARQ反馈时间点接收基站发送的HARQ反馈信息。
在步骤1040中,若HARQ反馈信息为用于表征解调成功的第一信息时,则确定EDT数据的传输结果为传输成功。
在步骤1050中,若HARQ反馈信息为用于表征解调失败的第二信息时,则确定EDT数据的传输结果为传输失败。
由上述实施例可见,当设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈时,可以只确定选出的备用调度资源对应的上行传输截止时间点,以及该上行传输截止时间点对应的HARQ反馈时间点,并在该上行传输截止时间点对应的HARQ反馈时间点接收基站发送的HARQ反馈信息,以及若HARQ反馈信息为用于表征解调成功的第一信息时,则确定EDT数据的传输结果为传输成功,若HARQ反馈信息为用于表征解调失败的第二信息时,则确定EDT数据的传输结果为传输失败,从而提高了传输结果的准确性。
图11是根据一示例性实施例示出的另一种HARQ反馈方法的流程图,该HARQ反馈方法可以用于终端,基站为该终端分配了多个用于提供EDT服务的备用调度资源;并建立在图8所示方法的基础上,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;在执行步骤720时,如图11所示,可以包括以下步骤1110-1120:
在步骤1110中,根据选出的备用调度资源中包括的TBS和上行传输重复次数,确定该选出的备用调度资源对应的上行传输截止时间点。
在步骤1120中,针对选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中。也就是说,基站可以将指定位置添加到随机接入响应的上行调度许可中,并将该随机接入响应发送至终端,这样终端就可以根据随机接入响应来确定基站配置的指定位置。或者,所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。也就是说,指定位置的具体内容是固定写在设定规则中,这样基站和终端均可以根据设定规则中的第三信息来确定该指定位置。
在一实施例中,所述HARQ反馈信息中包括用于表征解调成功的第一信息;在执行步骤730时,如图11所示,可以包括以下步骤1130-1140:
在步骤1130中,若在该上行传输截止时间点对应的HARQ反馈时间点接收到基站发送的HARQ反馈信息,且HARQ反馈信息为用于表征解调成功的第一信息时,则确定EDT数据的传输结果为传输成功。
在步骤1140中,若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到基站发送的HARQ反馈信息时,则确定EDT数据的传输结果为传输失败。
由上述实施例可见,当设定规则是盲检测结果为解调成功时才进行HARQ反馈时,可以只确定选出的备用调度资源对应的上行传输截止时间点,以及该上行传输截止时间点对应的HARQ反馈时间点,若在该上行传输截止时间点对应的HARQ反馈时间点接收到基站发送的HARQ反馈信息,且HARQ反馈信息为用于表征解调成功的第一信息时,则确定EDT数据的传输结果为传输成功;若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到基站发送的HARQ反馈信息时,则确定EDT数据的传输结果为传输失败,从而在保证传输结果的准确度之外,还减化了HARQ反馈内容和反馈次数,并提高了HARQ反馈的效率。
与前述HARQ反馈方法的实施例相对应,本公开还提供了HARQ反馈装置的 实施例。
图12是根据一示例性实施例示出的一种HARQ反馈装置的框图,该装置可以用于基站上,该基站为终端分配了多个用于提供EDT服务的备用调度资源,并用于执行图1所示的HARQ反馈方法,如图12所示,该HARQ反馈装置可以包括:
检测模块121,被配置为在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
第一确定模块122,被配置为根据设定规则确定所述盲检测对应的HARQ反馈时间点;
发送模块123,被配置为在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。
由上述实施例可见,通过在各个备用调度资源上对终端传输至基站的EDT数据进行盲检测,并根据设定规则确定盲检测对应的HARQ反馈时间点,以及在HARQ反馈时间点向终端发送盲检测对应的HARQ反馈信息,这样终端可以在按照设定规则确定的HARQ反馈时间点接收到基站发送的HARQ反馈信息,并可以根据该HARQ反馈信息确定EDT数据的正确传输结果,从而提高了HARQ反馈的可靠性,还提高了EDT传输的效率。
在一实施例中,建立图12所示装置的基础上,所述EDT数据是所述终端在随机接入过程中传输的上行数据,且位于所述随机过程中的消息3中。
在一实施例中,建立图12所示装置的基础上,所述备用调度资源包括传输块大小TBS和上行传输重复次数;如图13所示,所述检测模块121可以包括:
第一确定子模块131,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
检测子模块132,被配置为在各个所述上行传输截止时间点对所述EDT数据进行盲检测。
由上述实施例可见,可以根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点,并在各个上行传输截止时间点对EDT数据进行盲检测,从而提高了盲检测的准确性。
在一实施例中,建立图13所示装置的基础上,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;如图14所示,所述第一确定模块122可以包括:
第二确定子模块141,被配置为根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
第三确定子模块142,被配置为根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
第四确定子模块142,被配置为根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,建立图14所示装置的基础上,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;如图15所示,所述发送模块123可以包括:
第一发送子模块151,被配置为针对各个所述上行传输截止时间点的盲检测结果,当各个所述盲检测结果包括解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第一信息;
第二发送子模块152,被配置为当各个所述盲检测结果不包括所述解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第二信息。
由上述实施例可见,当设定规则是基于最大上行传输重复次数进行HARQ反馈时,可以根据各个备用调度资源中包括的上行传输重复次数,确定最大上行传输重复次数,并确定最大上行传输重复次数对应的上行传输截止时间点、以及根据最大上行传输重复次数对应的上行传输截止时间点,确定HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置,从而实现了基于最大上行传输重复次数进行HARQ反馈这一功能,还保证了终端能够收到正确的HARQ反馈信息,也提高了HARQ反馈的服务质量。
在一实施例中,建立图13所示装置的基础上,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;如图16所示,所述第一确定模块122可以包括:
第五确定子模块161,被配置为针对任一所述上行传输截止时间点,确定该上 行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,建立图16所示装置的基础上,如图17所示,所述发送模块123可以包括:
第三发送子模块171,被配置为针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
第四发送子模块172,被配置为当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第二信息。
由上述实施例可见,当设定规则是针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈时,可以先确定各个上行传输截止时间点对应的HARQ反馈时间点,针对任一上行传输截止时间点的盲检测结果,当盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送用于表征解调成功的第一信息,盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送用于表征解调失败的第二信息,从而实现了针对各个备用调度资源对应的上行传输截止时间点均进行HARQ反馈这一功能,同样保证了终端能够收到正确的HARQ反馈信息,进而丰富了HARQ反馈的服务风格。
在一实施例中,建立图13所示装置的基础上,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;如图18所示,所述第一确定模块122可以包括:
第六确定子模块181,被配置为针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,建立图18所示装置的基础上,如图19所示,所述发送模块123可以包括:
第五发送子模块191,被配置为针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
第六发送子模块192,被配置为当所述盲检测结果为解调失败时,则在该上行 传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈。
由上述实施例可见,当设定规则是盲检测结果为解调成功时才进行HARQ反馈时,可以先确定各个上行传输截止时间点对应的HARQ反馈时间点,针对任一上行传输截止时间点的盲检测结果,当盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向终端发送表征解调成功的第一信息,当盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈,从而实现了盲检测结果为解调成功时才进行HARQ反馈这一功能,在保证终端能够收到正确的HARQ反馈信息的前提下,减化了HARQ反馈内容和反馈次数,提高了HARQ反馈的效率。
在一实施例中,建立图14、16、18所示装置的基础上,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
图20是根据一示例性实施例示出的一种HARQ反馈装置的框图,该装置可以用于终端,基站为该终端分配了多个用于提供EDT服务的备用调度资源,并用于执行图7所示的HARQ反馈方法,如图20所示,该HARQ反馈装置可以包括:
选取模块201,被配置为从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
第二确定模块202,被配置为根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
第三确定模块203,被配置为当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
由上述实施例可见,通过从各个备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,并根据设定规则确定EDT数据对应的HARQ反馈时间点,以及当在HARQ反馈时间点接收到基站发送的HARQ反馈信息时,根据HARQ反馈信息确定EDT数据的传输结果,从而提高了HARQ反馈的可靠性,还提高了EDT传输的效率。
在一实施例中,建立图20所示装置的基础上,所述EDT数据是所述终端在随 机接入过程中需要传输的上行数据,且位于所述随机过程中的消息3中。
在一实施例中,建立图20所示装置的基础上,所述备用调度资源包括传输块大小TBS和上行传输重复次数;如图21所示,所述选取模块201可以包括:
选取子模块211,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,从各个所述备用调度资源中选取一个备用调度资源;
发送子模块212,被配置为在选出的备用调度资源上将EDT数据发送至基站。
由上述实施例可见,可以根据各个备用调度资源中包括的TBS和上行传输重复次数,从各个备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,从而选取备用调度资源的准确性。
在一实施例中,建立图21所示装置的基础上,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;如图22所示,所述第二确定模块202可以包括:
第一时间点确定子模块221,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
重复次数确定子模块222,被配置为根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
第二时间点确定子模块223,被配置为根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
第三时间点确定子模块224,被配置为根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
在一实施例中,建立图22所示装置的基础上,如图23所示,所述第三确定模块203可以包括:
第一接收子模块231,被配置为在所述HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
第一处理子模块232,被配置为若所述HARQ反馈信息为所述第一信息,则确定所述EDT数据的传输结果为传输成功;
第二处理子模块232,被配置为若所述HARQ反馈信息为所述第二信息,则确定所述EDT数据的传输结果为传输失败
由上述实施例可见,当设定规则是基于最大上行传输重复次数进行HARQ反馈时,可以根据各个备用调度资源中包括的TBS和上行传输重复次数,确定各个备用调度资源对应的上行传输截止时间点、以及根据最大上行传输重复次数对应的上行传输截止时间点,以及根据最大上行传输重复次数对应的上行传输截止时间点,确定HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置,从而实现了基于最大上行传输重复次数进行HARQ反馈这一功能,还保证了终端能够收到正确的HARQ反馈信息,也提高了HARQ反馈的服务质量。
在一实施例中,建立图21所示装置的基础上,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;如图24所示,所述第二确定模块202可以包括:
第四时间点确定子模块241,被配置为根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
第五时间点确定子模块242,被配置为针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,建立图24所示装置的基础上,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;如图25所示,所述第三确定模块203可以包括:
第二接收子模块251,被配置为在该上行传输截止时间点对应的HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
第三处理子模块252,被配置为若所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
第四处理子模块253,被配置为若所述HARQ反馈信息为所述第二信息时,则确定所述EDT数据的传输结果为传输失败。
由上述实施例可见,当设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈时,可以只确定选出的备用调度资源对应的上行传输截止时间点,以及该上行传输截止时间点对应的HARQ反馈时间点,并在该上行传输截止时间点对应的HARQ反馈时间点接收基站发送的HARQ反馈信息,以及若HARQ反馈信息为用于表征解调成功的第一信息时,则确定EDT数据的传输结果为传输成功,若HARQ反馈信息为用于表征解调失败的第二信息时,则确定EDT数据的传输结果为传输失败,从而提高了传输结果的准确性。
在一实施例中,建立图21所示装置的基础上,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;如图26所示,所述第二确定模块202可以包括:
第六时间点确定子模块261,被配置为根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
第七时间点确定子模块262,被配置为针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
在一实施例中,建立图26所示装置的基础上,如图27所示,所述第三确定模块203可以包括:
第五处理子模块271,被配置为若在该上行传输截止时间点对应的HARQ反馈时间点接收到所述基站发送的HARQ反馈信息,且所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
第六处理子模块272,被配置为若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到所述基站发送的HARQ反馈信息时,则确定所述EDT数据的传输结果为传输失败。
由上述实施例可见,当设定规则是盲检测结果为解调成功时才进行HARQ反馈时,可以只确定选出的备用调度资源对应的上行传输截止时间点,以及该上行传输截止时间点对应的HARQ反馈时间点,若在该上行传输截止时间点对应的HARQ反馈时间点接收到基站发送的HARQ反馈信息,且HARQ反馈信息为用于表征解调成功的第一信息时,则确定EDT数据的传输结果为传输成功;若在该上行传输截止时间点对 应的HARQ反馈时间点没有接收到基站发送的HARQ反馈信息时,则确定EDT数据的传输结果为传输失败,从而在保证传输结果的准确度之外,还减化了HARQ反馈内容和反馈次数,并提高了HARQ反馈的效率。
在一实施例中,建立图22、或图24、或图26所示装置的基础上,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图1至图6C任一所述的HARQ反馈方法。
本公开还提供了一种非临时计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序用于执行上述图7至图11任一所述的HARQ反馈方法。
本公开还提供了一种HARQ反馈装置,所述装置用于基站,所述基站为终端分配了多个用于提供EDT服务的备用调度资源,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
根据设定规则确定所述盲检测对应的HARQ反馈时间点;
在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。
如图28所示,图28是根据一示例性实施例示出的一种HARQ反馈装置的结构示意图。装置2800可以被提供为一基站。参照图28,装置2800包括处理组件2828、无线发射/接收组件2824、天线组件2826、以及无线接口特有的信号处理部分,处理组件2828可进一步包括一个或多个处理器。
处理组件2828中的其中一个处理器可以被配置为用于执行上述任一所述的HARQ反馈方法。
本公开还提供了一种HARQ反馈装置,所述装置用于所述装置用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
图29是根据一示例性实施例示出的一种HARQ反馈装置的结构示意图。如图29所示,根据一示例性实施例示出的一种HARQ反馈装置2900,该装置2900可以是计算机,移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图29,装置2900可以包括以下一个或多个组件:处理组件2901,存储器2902,电源组件2903,多媒体组件2904,音频组件2905,输入/输出(I/O)的接口2906,传感器组件2907,以及通信组件2908。
处理组件2901通常控制装置2900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2901可以包括一个或多个处理器2909来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2901可以 包括一个或多个模块,便于处理组件2901和其它组件之间的交互。例如,处理组件2901可以包括多媒体模块,以方便多媒体组件2904和处理组件2901之间的交互。
存储器2902被配置为存储各种类型的数据以支持在装置2900的操作。这些数据的示例包括用于在装置2900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2902可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2903为装置2900的各种组件提供电力。电源组件2903可以包括电源管理系统,一个或多个电源,及其它与为装置2900生成、管理和分配电力相关联的组件。
多媒体组件2904包括在所述装置2900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2904包括一个前置摄像头和/或后置摄像头。当装置2900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2905被配置为输出和/或输入音频信号。例如,音频组件2905包括一个麦克风(MIC),当装置2900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2902或经由通信组件2908发送。在一些实施例中,音频组件2905还包括一个扬声器,用于输出音频信号。
I/O接口2906为处理组件2901和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2907包括一个或多个传感器,用于为装置2900提供各个方面的状 态评估。例如,传感器组件2907可以检测到装置2900的打开/关闭状态,组件的相对定位,例如所述组件为装置2900的显示器和小键盘,传感器组件2907还可以检测装置2900或装置2900一个组件的位置改变,用户与装置2900接触的存在或不存在,装置2900方位或加速/减速和装置2900的温度变化。传感器组件2907可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2907还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2907还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2908被配置为便于装置2900和其它设备之间有线或无线方式的通信。装置2900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2908经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2908还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置2900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2902,上述指令可由装置2900的处理器2909执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
其中,当所述存储介质中的指令由所述处理器执行时,使得装置2900能够执行上述任一所述的HARQ反馈方法。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (44)

  1. 一种混合自动重传请求HARQ反馈方法,其特征在于,所述方法用于基站,所述基站为终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述方法包括:
    在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
    根据设定规则确定所述盲检测对应的HARQ反馈时间点;
    在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述EDT数据是所述终端在随机接入过程中传输的上行数据,且位于所述随机过程中的消息3中。
  3. 根据权利要求1所述的方法,其特征在于,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
    所述在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测,包括:
    根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
    在各个所述上行传输截止时间点对所述EDT数据进行盲检测。
  4. 根据权利要求3所述的方法,其特征在于,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
    所述根据设定规则确定所述盲检测对应的HARQ反馈时间点,包括:
    根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
    根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
    根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
  5. 根据权利要求4所述的方法,其特征在于,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    所述在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息,包括:
    针对各个所述上行传输截止时间点的盲检测结果,当各个所述盲检测结果包括解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第一信息;
    当各个所述盲检测结果不包括所述解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第二信息。
  6. 根据权利要求3所述的方法,其特征在于,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
    所述根据设定规则确定所述盲检测对应的HARQ反馈时间点,包括:
    针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  7. 根据权利要求6所述的方法,其特征在于,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    所述在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息,包括:
    针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
    当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第二信息。
  8. 根据权利要求3所述的方法,其特征在于,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
    所述根据设定规则确定所述盲检测对应的HARQ反馈时间点,包括:
    针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  9. 根据权利要求8所述的方法,其特征在于,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息;
    所述在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息,包括:
    针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
    当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈。
  10. 根据权利要求4或6或8所述的方法,其特征在于,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
    所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
  11. 一种混合自动重传请求HARQ反馈方法,其特征在于,所述方法用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述方法包括:
    从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
    根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
    当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
  12. 根据权利要求11所述的方法,其特征在于,所述EDT数据是所述终端在随机接入过程中需要传输的上行数据,且位于所述随机过程中的消息3中。
  13. 根据权利要求11所述的方法,其特征在于,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
    所述从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站,包括:
    根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,从各个所述备用调度资源中选取一个备用调度资源;
    在选出的备用调度资源上将EDT数据发送至基站。
  14. 根据权利要求13所述的方法,其特征在于,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
    所述根据设定规则确定所述EDT数据对应的HARQ反馈时间点,包括:
    根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
    根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
    根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
    根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
  15. 根据权利要求14所述的方法,其特征在于,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果,包括:
    在所述HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
    若所述HARQ反馈信息为所述第一信息,则确定所述EDT数据的传输结果为传输成功;
    若所述HARQ反馈信息为所述第二信息,则确定所述EDT数据的传输结果为传输失败。
  16. 根据权利要求13所述的方法,其特征在于,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
    所述根据设定规则确定所述EDT数据对应的HARQ反馈时间点,包括:
    根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
    针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  17. 根据权利要求16所述的方法,其特征在于,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果,包括:
    在该上行传输截止时间点对应的HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
    若所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
    若所述HARQ反馈信息为所述第二信息时,则确定所述EDT数据的传输结果为传输失败。
  18. 根据权利要求13所述的方法,其特征在于,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
    所述根据设定规则确定所述EDT数据对应的HARQ反馈时间点,包括:
    根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
    针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  19. 根据权利要求18所述的方法,其特征在于,所述HARQ反馈信息中包括用于表征解调成功的第一信息;
    当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果,包括:
    若在该上行传输截止时间点对应的HARQ反馈时间点接收到所述基站发送的HARQ反馈信息,且所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
    若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到所述基站发送的HARQ反馈信息时,则确定所述EDT数据的传输结果为传输失败。
  20. 根据权利要求14或16或18所述的方法,其特征在于,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
    所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
  21. 一种混合自动重传请求HARQ反馈装置,其特征在于,所述装置用于基站,所述基站为终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
    检测模块,被配置为在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
    第一确定模块,被配置为根据设定规则确定所述盲检测对应的HARQ反馈时间点;
    发送模块,被配置为在所述HARQ反馈时间点向所述终端发送所述盲检测对应的 HARQ反馈信息。
  22. 根据权利要求21所述的装置,其特征在于,所述EDT数据是所述终端在随机接入过程中传输的上行数据,且位于所述随机过程中的消息3中。
  23. 根据权利要求21所述的装置,其特征在于,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
    所述检测模块包括:
    第一确定子模块,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
    检测子模块,被配置为在各个所述上行传输截止时间点对所述EDT数据进行盲检测。
  24. 根据权利要求23所述的装置,其特征在于,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
    所述第一确定模块包括:
    第二确定子模块,被配置为根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
    第三确定子模块,被配置为根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
    第四确定子模块,被配置为根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
  25. 根据权利要求24所述的装置,其特征在于,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    所述发送模块包括:
    第一发送子模块,被配置为针对各个所述上行传输截止时间点的盲检测结果,当各个所述盲检测结果包括解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第一信息;
    第二发送子模块,被配置为当各个所述盲检测结果不包括所述解调成功时,则在所述HARQ反馈时间点向所述终端发送所述第二信息。
  26. 根据权利要求23所述的装置,其特征在于,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
    所述第一确定模块包括:
    第五确定子模块,被配置为针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  27. 根据权利要求26所述的装置,其特征在于,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    所述发送模块包括:
    第三发送子模块,被配置为针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
    第四发送子模块,被配置为当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第二信息。
  28. 根据权利要求23所述的装置,其特征在于,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
    所述第一确定模块包括:
    第六确定子模块,被配置为针对任一所述上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  29. 根据权利要求28所述的装置,其特征在于,所述盲检测对应的HARQ反馈信息中包括用于表征解调成功的第一信息;
    所述发送模块包括:
    第五发送子模块,被配置为针对任一所述上行传输截止时间点的盲检测结果,当所述盲检测结果为解调成功时,则在该上行传输截止时间点对应的HARQ反馈时间点向所述终端发送所述第一信息;
    第六发送子模块,被配置为当所述盲检测结果为解调失败时,则在该上行传输截止时间点对应的HARQ反馈时间点不进行HARQ反馈。
  30. 根据权利要求24或26或28所述的装置,其特征在于,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
    所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
  31. 一种混合自动重传请求HARQ反馈装置,其特征在于,所述装置用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
    选取模块,被配置为从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
    第二确定模块,被配置为根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
    第三确定模块,被配置为当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
  32. 根据权利要求31所述的装置,其特征在于,所述EDT数据是所述终端在随机接入过程中需要传输的上行数据,且位于所述随机过程中的消息3中。
  33. 根据权利要求31所述的装置,其特征在于,所述备用调度资源包括传输块大小TBS和上行传输重复次数;
    所述选取模块包括:
    选取子模块,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,从各个所述备用调度资源中选取一个备用调度资源;
    发送子模块,被配置为在选出的备用调度资源上将EDT数据发送至基站。
  34. 根据权利要求33所述的装置,其特征在于,所述设定规则是基于最大上行传输重复次数进行HARQ反馈;
    所述第二确定模块包括:
    第一时间点确定子模块,被配置为根据各个所述备用调度资源中包括的所述TBS和所述上行传输重复次数,确定各个所述备用调度资源对应的上行传输截止时间点;
    重复次数确定子模块,被配置为根据各个所述备用调度资源中包括的所述上行传输重复次数,确定最大上行传输重复次数;
    第二时间点确定子模块,被配置为根据各个所述上行传输截止时间点,确定所述最大上行传输重复次数对应的上行传输截止时间点;
    第三时间点确定子模块,被配置为根据所述最大上行传输重复次数对应的上行传输截止时间点确定所述HARQ反馈时间点,所确定的HARQ反馈时间点位于所述最大上行传输重复次数对应的上行传输截止时间点之后的指定位置。
  35. 根据权利要求34所述的装置,其特征在于,所述HARQ反馈信息中包括用 于表征解调成功的第一信息或用于表征解调失败的第二信息;
    所述第三确定模块包括:
    第一接收子模块,被配置为在所述HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
    第一处理子模块,被配置为若所述HARQ反馈信息为所述第一信息,则确定所述EDT数据的传输结果为传输成功;
    第二处理子模块,被配置为若所述HARQ反馈信息为所述第二信息,则确定所述EDT数据的传输结果为传输失败。
  36. 根据权利要求33所述的装置,其特征在于,所述设定规则是针对各个所述备用调度资源对应的上行传输截止时间点均进行HARQ反馈;
    所述第二确定模块包括:
    第四时间点确定子模块,被配置为根据所述选出的备用调度资源中包括的所述TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
    第五时间点确定子模块,被配置为针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  37. 根据权利要求36所述的装置,其特征在于,所述HARQ反馈信息中包括用于表征解调成功的第一信息或用于表征解调失败的第二信息;
    所述第三确定模块包括:
    第二接收子模块,被配置为在该上行传输截止时间点对应的HARQ反馈时间点接收所述基站发送的HARQ反馈信息;
    第三处理子模块,被配置为若所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
    第四处理子模块,被配置为若所述HARQ反馈信息为所述第二信息时,则确定所述EDT数据的传输结果为传输失败。
  38. 根据权利要求33所述的装置,其特征在于,所述设定规则是盲检测结果为解调成功时才进行HARQ反馈;
    所述第二确定模块包括:
    第六时间点确定子模块,被配置为根据所述选出的备用调度资源中包括的所述 TBS和所述上行传输重复次数,确定所述选出的备用调度资源对应的上行传输截止时间点;
    第七时间点确定子模块,被配置为针对所述选出的备用调度资源对应的上行传输截止时间点,确定该上行传输截止时间点对应的HARQ反馈时间点,所确定的HARQ反馈时间点位于该上行传输截止时间点之后的指定位置。
  39. 根据权利要求38所述的装置,其特征在于,所述HARQ反馈信息中包括用于表征解调成功的第一信息;
    所述第三确定模块包括:
    第五处理子模块,被配置为若在该上行传输截止时间点对应的HARQ反馈时间点接收到所述基站发送的HARQ反馈信息,且所述HARQ反馈信息为所述第一信息时,则确定所述EDT数据的传输结果为传输成功;
    第六处理子模块,被配置为若在该上行传输截止时间点对应的HARQ反馈时间点没有接收到所述基站发送的HARQ反馈信息时,则确定所述EDT数据的传输结果为传输失败。
  40. 根据权利要求34或36或38所述的装置,其特征在于,所述指定位置是所述基站配置的,并位于所述基站向所述终端发送的随机接入响应的上行调度许可中;或
    所述设定规则中包括用于表征所述指定位置的第三信息,所述第三信息是用于指示HARQ反馈时间点和确定的上行传输截止时间点之间的相对关系。
  41. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述计算机程序用于执行上述权利要求1-10任一所述的HARQ反馈方法。
  42. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述计算机程序用于执行上述权利要求11-20任一所述的HARQ反馈方法。
  43. 一种混合自动重传请求HARQ反馈装置,其特征在于,所述装置用于基站,所述基站为终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在各个所述备用调度资源上对所述终端传输至所述基站的EDT数据进行盲检测;
    根据设定规则确定所述盲检测对应的HARQ反馈时间点;
    在所述HARQ反馈时间点向所述终端发送所述盲检测对应的HARQ反馈信息。
  44. 一种混合自动重传请求HARQ反馈装置,其特征在于,所述装置用于终端,基站为所述终端分配了多个用于提供数据提前传输EDT服务的备用调度资源,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    从各个所述备用调度资源中选取一个备用调度资源,并在选出的备用调度资源上将EDT数据发送至基站;
    根据设定规则确定所述EDT数据对应的HARQ反馈时间点;
    当在所述HARQ反馈时间点接收到所述基站发送的HARQ反馈信息时,根据所述HARQ反馈信息确定所述EDT数据的传输结果。
PCT/CN2018/084680 2018-04-26 2018-04-26 Harq反馈方法及装置 WO2019205061A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP18916208.4A EP3787324B1 (en) 2018-04-26 2018-04-26 Harq feedback method and apparatus
JP2020559410A JP7045479B2 (ja) 2018-04-26 2018-04-26 Harqフィードバック方法および装置
ES18916208T ES2929733T3 (es) 2018-04-26 2018-04-26 Método y aparato de retroalimentación de HARQ
CN201880000651.7A CN108513714B (zh) 2018-04-26 2018-04-26 Harq反馈方法及装置
KR1020207033620A KR102519978B1 (ko) 2018-04-26 2018-04-26 Harq 피드백 방법 및 장치
BR112020021829-4A BR112020021829A2 (pt) 2018-04-26 2018-04-26 método e aparelho de feedback harq
RU2020138003A RU2758794C1 (ru) 2018-04-26 2018-04-26 Способ и аппарат для обратной связи гибридного автоматического запроса на повторную передачу
PCT/CN2018/084680 WO2019205061A1 (zh) 2018-04-26 2018-04-26 Harq反馈方法及装置
PL18916208.4T PL3787324T3 (pl) 2018-04-26 2018-04-26 Sposób i urządzenie do tworzenia informacji zwrotnych harq
SG11202010360VA SG11202010360VA (en) 2018-04-26 2018-04-26 Harq feedback method and apparatus
US17/072,578 US11456824B2 (en) 2018-04-26 2020-10-16 HARQ feedback method and apparatus
US17/889,663 US11909534B2 (en) 2018-04-26 2022-08-17 HARQ feedback method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084680 WO2019205061A1 (zh) 2018-04-26 2018-04-26 Harq反馈方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/072,578 Continuation US11456824B2 (en) 2018-04-26 2020-10-16 HARQ feedback method and apparatus

Publications (1)

Publication Number Publication Date
WO2019205061A1 true WO2019205061A1 (zh) 2019-10-31

Family

ID=63404329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084680 WO2019205061A1 (zh) 2018-04-26 2018-04-26 Harq反馈方法及装置

Country Status (11)

Country Link
US (2) US11456824B2 (zh)
EP (1) EP3787324B1 (zh)
JP (1) JP7045479B2 (zh)
KR (1) KR102519978B1 (zh)
CN (1) CN108513714B (zh)
BR (1) BR112020021829A2 (zh)
ES (1) ES2929733T3 (zh)
PL (1) PL3787324T3 (zh)
RU (1) RU2758794C1 (zh)
SG (1) SG11202010360VA (zh)
WO (1) WO2019205061A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219367A (zh) * 2020-09-07 2021-01-12 北京小米移动软件有限公司 一种混合自动重传请求harq时延配置方法、装置及存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045479B2 (ja) 2018-04-26 2022-03-31 ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッド Harqフィードバック方法および装置
WO2020056639A1 (en) * 2018-09-19 2020-03-26 Nokia Shanghai Bell Co., Ltd. Methods, devices and computer readable medium for resource information for early data transmission
US11729836B2 (en) * 2018-09-26 2023-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Early data delivery for random access procedure
WO2020062098A1 (zh) 2018-09-28 2020-04-02 华为技术有限公司 信号传输方法及通信装置
KR102634704B1 (ko) * 2018-11-02 2024-02-06 지티이 코포레이션 피드백 코드북 결정
CN111182630B (zh) * 2018-11-09 2022-11-11 华为技术有限公司 数据接收和发送的方法、设备及系统
WO2020164138A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种监听方法及装置
CN110383733B (zh) * 2019-06-10 2022-07-01 北京小米移动软件有限公司 Harq反馈方法、装置及存储介质
WO2021088995A1 (en) * 2019-11-07 2021-05-14 FG Innovation Company Limited Methods and apparatuses for random access procedure in medium access control layer
CN112436924B (zh) * 2020-11-17 2022-04-22 联想(北京)有限公司 一种数据传输方法及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431395A (zh) * 2007-11-06 2009-05-13 中兴通讯股份有限公司 一种反馈信息生成方法
CN101997663A (zh) * 2009-08-28 2011-03-30 中兴通讯股份有限公司 Harq的定时方法和装置
CN108513714A (zh) * 2018-04-26 2018-09-07 北京小米移动软件有限公司 Harq反馈方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767797B2 (en) * 2009-10-05 2014-07-01 Qualcomm Incorporated Apparatus and method for providing HARQ feedback in a multi-carrier wireless communication system
BR112017009269A2 (pt) * 2014-11-06 2017-12-19 Intel Ip Corp terminação antecipada de transmissões repetidas para mtc
WO2018062957A1 (ko) * 2016-09-29 2018-04-05 삼성전자 주식회사 Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치
US20180324869A1 (en) * 2017-05-04 2018-11-08 Qualcomm Incorporated Uplink early data transmission
US11398882B2 (en) * 2017-05-04 2022-07-26 Lg Electronics Inc. Early termination of repeated transmissions between terminal and base station in wireless communication system
US11350445B2 (en) * 2017-08-10 2022-05-31 Kyocera Corporation Communication control method for controlling a user equipment to perform early data transmission
JP6900472B2 (ja) * 2017-11-15 2021-07-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるランダムアクセス手続きで速いデータ転送を遂行するための方法及びそのための装置
US10708956B2 (en) * 2017-11-17 2020-07-07 Qualcomm Incorporated Physical layer enhancements for early data transmission
CN110062474B (zh) * 2018-01-19 2024-05-10 夏普株式会社 用户设备、基站和相关方法
CN110149722A (zh) * 2018-02-12 2019-08-20 普天信息技术有限公司 一种业务调度方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431395A (zh) * 2007-11-06 2009-05-13 中兴通讯股份有限公司 一种反馈信息生成方法
CN101997663A (zh) * 2009-08-28 2011-03-30 中兴通讯股份有限公司 Harq的定时方法和装置
CN108513714A (zh) * 2018-04-26 2018-09-07 北京小米移动软件有限公司 Harq反馈方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Early Data Transmission in RACH for NB-IoT", 3GPP TSG RAN WGI MEETING #92, RL-1801438, 2 March 2018 (2018-03-02), XP051396934 *
HUAWEI ET AL.: "Remaining Issues on HARQ", 3GPP TSG RAN WG1 MEETING 91, RL-1719401, 1 December 2017 (2017-12-01), XP051369310 *
See also references of EP3787324A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219367A (zh) * 2020-09-07 2021-01-12 北京小米移动软件有限公司 一种混合自动重传请求harq时延配置方法、装置及存储介质
CN112219367B (zh) * 2020-09-07 2023-10-10 北京小米移动软件有限公司 一种混合自动重传请求harq时延配置方法、装置及存储介质

Also Published As

Publication number Publication date
US11909534B2 (en) 2024-02-20
EP3787324A4 (en) 2021-04-28
JP2021520152A (ja) 2021-08-12
PL3787324T3 (pl) 2023-01-02
US20210036810A1 (en) 2021-02-04
US11456824B2 (en) 2022-09-27
KR102519978B1 (ko) 2023-04-10
KR20210005129A (ko) 2021-01-13
RU2758794C1 (ru) 2021-11-01
BR112020021829A2 (pt) 2021-02-23
JP7045479B2 (ja) 2022-03-31
CN108513714A (zh) 2018-09-07
SG11202010360VA (en) 2020-11-27
ES2929733T3 (es) 2022-12-01
US20220393804A1 (en) 2022-12-08
EP3787324B1 (en) 2022-10-12
EP3787324A1 (en) 2021-03-03
CN108513714B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2019205061A1 (zh) Harq反馈方法及装置
WO2020019218A1 (zh) 传输配置方法及装置
WO2020019217A1 (zh) 传输配置方法及装置
WO2020014960A1 (zh) 波束故障恢复请求发送方法、响应方法、装置及存储介质
WO2020019216A1 (zh) 传输配置方法及装置
US12021629B2 (en) Hybrid automatic repeat request feedback method and device
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2018086121A1 (zh) 获取、传输harq反馈信息的方法及装置
WO2021012279A1 (zh) 随机接入方法、装置及存储介质
WO2019192021A1 (zh) 上行资源请求方法及装置
WO2020029035A1 (zh) 上行消息传输方法、装置及存储介质
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
WO2018086072A1 (zh) 传输、获取上行harq反馈信息的方法及装置
WO2020034072A1 (zh) 上行调度请求的发送方法、装置、设备及存储介质
WO2018201433A1 (zh) Harq反馈方法及装置、设备、计算机可读存储介质
US20220394704A1 (en) Feedback method, feedback apparatus and storage medium
WO2019218366A1 (zh) 前导码和调度请求的发送方法及装置
WO2020237449A1 (zh) 控制信息传输方法及装置
WO2018232726A1 (zh) 数据传输方法及装置、用户设备和基站
WO2018227574A1 (zh) Harq反馈方法、装置、用户设备和基站
WO2018232755A1 (zh) 抢占时频资源的确定方法及装置和用户设备
US11917562B2 (en) Vehicle-to-everything synchronization method and device
EP3751892A1 (en) Trigger hold method and trigger hold apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020021829

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207033620

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018916208

Country of ref document: EP

Effective date: 20201124

ENP Entry into the national phase

Ref document number: 112020021829

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201023