WO2023015535A1 - 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质 - Google Patents

一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023015535A1
WO2023015535A1 PCT/CN2021/112357 CN2021112357W WO2023015535A1 WO 2023015535 A1 WO2023015535 A1 WO 2023015535A1 CN 2021112357 W CN2021112357 W CN 2021112357W WO 2023015535 A1 WO2023015535 A1 WO 2023015535A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal strength
threshold
user equipment
transmission mode
sdt
Prior art date
Application number
PCT/CN2021/112357
Other languages
English (en)
French (fr)
Inventor
牟勤
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002486.0A priority Critical patent/CN113796110A/zh
Priority to PCT/CN2021/112357 priority patent/WO2023015535A1/zh
Priority to EP21953152.2A priority patent/EP4387297A1/en
Publication of WO2023015535A1 publication Critical patent/WO2023015535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a method, device, device and storage medium for performing small data packet transmission and determining a random access message transmission mode.
  • SDT Small Data Transmission
  • SDT supports SDT based on random access process and SDT based on semi-static configuration.
  • the SDT based on the random access process is divided into two ways, namely, the SDT based on the 2-step random access process (2-step Random Access Channel, 2-step RACH) and the SDT based on the 4-step random access process (4 -step Random Access Channel, 4-step RACH) SDT.
  • the present disclosure provides a method, device, device and storage medium for performing small data packet transmission and determining a random access message transmission mode.
  • a method for performing small data packet transmission SDT including:
  • the small data packet transmission SDT is performed based on the signal strength and the signal strength threshold.
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the step of performing the small data packet transmission SDT based on the signal strength and the signal strength threshold includes:
  • the step of performing the small data packet transmission SDT for the user equipment based on the signal strength and the signal strength threshold further includes:
  • the first threshold is smaller than the second threshold.
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the performing the small data packet transmission SDT based on the signal strength and the signal strength threshold includes:
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the performing the small data packet transmission SDT based on the signal strength and the signal strength threshold includes:
  • the coverage enhancement CE capability of the user equipment is not enabled, and the small data packet transmission SDT is performed.
  • the third threshold is greater than or equal to the second threshold.
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the performing the small data packet transmission SDT based on the signal strength and the signal strength threshold includes:
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the performing the small data packet transmission SDT based on the signal strength and the signal strength threshold includes:
  • the small data packet transmission SDT is performed.
  • the acquiring a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT based on whether the user equipment has a coverage enhancement CE capability includes:
  • the performing the small data packet transmission SDT based on the signal strength and the signal strength threshold includes:
  • the acquiring the signal strength threshold related to the small data packet transmission SDT and corresponding to the user equipment includes:
  • Receive signaling from a network device where the signaling includes a signal strength threshold corresponding to the user equipment.
  • the signaling is at least one of the following signaling: remaining minimum system information RMSI, master information block MIB, radio resource control RRC, other system information OSI, downlink control information DCI, media Access Control - Control Element MAC-CE.
  • a method for determining a transmission mode of a random access message including:
  • the transmission mode of the random access message is the first transmission mode or the second transmission mode.
  • the acquiring the signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message based on whether the user equipment has coverage enhancement CE capability includes:
  • the determining that the transmission mode of the random access message is the first transmission mode or the second transmission mode based on the signal strength and the signal strength threshold includes:
  • the acquiring the signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message based on whether the user equipment has coverage enhancement CE capability includes:
  • the determining that the transmission mode of the random access message is the first transmission mode or the second transmission mode based on the signal strength and the signal strength threshold includes:
  • the sixth threshold is smaller than the seventh threshold.
  • the acquiring the signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message based on whether the user equipment has coverage enhancement CE capability includes:
  • the determining that the transmission mode of the random access message is the first transmission mode or the second transmission mode based on the signal strength and the signal strength threshold includes:
  • the coverage enhancement CE capability of the user equipment In response to the signal strength being greater than or equal to the sixth threshold and less than the eighth threshold, enable the coverage enhancement CE capability of the user equipment, and determine that the transmission mode of the random access message is the first transmission mode .
  • the acquiring the signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message based on whether the user equipment has coverage enhancement CE capability includes:
  • the determining that the transmission mode of the random access message is the first transmission mode or the second transmission mode based on the signal strength and the signal strength threshold includes:
  • the acquiring the signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message includes:
  • Receive signaling from a network device where the signaling includes a signal strength threshold corresponding to the user equipment.
  • the signaling is at least one of the following signalings: RMSI, MIB, RRC, OSI, DCI, and MAC-CE.
  • a network device including:
  • Sending signaling where the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine whether to execute SDT.
  • the signal strength threshold includes at least one of the following: a first threshold, a second threshold, a third threshold, a fourth threshold, and a fifth threshold.
  • a network device including:
  • Sending signaling where the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine the transmission mode of the random access message.
  • the signal strength threshold includes at least one of the following: a sixth threshold, a seventh threshold, and an eighth threshold.
  • an apparatus for performing small data packet transmission SDT which is applied to user equipment, including:
  • a communication module configured to receive downlink signals
  • a processing module configured to measure the signal strength of the downlink signal; based on whether the user equipment has a coverage enhancement CE capability, acquire a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT; based on The signal strength and the signal strength threshold perform the small data packet transmission SDT.
  • an apparatus for determining the transmission mode of the random access message, which is applied to a user equipment including:
  • a communication module configured to receive downlink signals
  • a processing module configured to measure the signal strength of the downlink signal; based on whether the user equipment has a coverage enhancement CE capability, acquire a signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message; Based on the signal strength and the signal strength threshold, determine that the transmission mode of the random access message is the first transmission mode or the second transmission mode.
  • an apparatus for performing small data packet transmission SDT which is applied to network equipment, including:
  • the communication module is configured to send signaling, where the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine the transmission mode of the random access message.
  • an apparatus for determining a transmission mode of a random access message which is applied to a network device, including:
  • the communication module is configured to send signaling, where the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine the transmission mode of the random access message.
  • a user equipment including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of any one of the above methods.
  • a network device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of any one of the above methods.
  • a non-transitory computer-readable storage medium on which executable instructions are stored, and when the executable instructions are executed by a processor, the steps of any one of the above-mentioned methods are implemented.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: when the user equipment determines to perform SDT, it also refers to its CE capability while considering the signal strength received by the user equipment, so that it is suitable for user equipment with CE capability to perform SDT .
  • the technical solutions provided by the embodiments of the present disclosure may also include the following beneficial effects: when the user equipment determines the random access transmission mode, it also refers to its CE capability while considering the signal strength received by the user equipment, so that it is suitable for The user equipment performs the determination of the random access transmission mode.
  • Fig. 1 is a flow chart showing a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 4 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 5 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 6 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 7 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 8 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 9 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 10 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 11 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 12 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 13 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 14 is a flowchart of a method for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 15 is a flowchart of a method for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 16 is a flow chart of a method for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 17 is a flowchart of a method for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 18 is a flowchart of a method for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 19 is a flowchart of a method for performing small data packet transmission according to an exemplary embodiment
  • Fig. 20 is a flow chart of a method for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 21 is a block diagram of a device for performing small data packet transmission according to an exemplary embodiment
  • Fig. 22 is a block diagram of an apparatus for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 23 is a block diagram of a device for performing small data packet transmission according to an exemplary embodiment
  • Fig. 24 is a block diagram of an apparatus for determining a transmission mode of a random access message according to an exemplary embodiment
  • Fig. 25 is a structural diagram of a device for performing small data packet transmission according to an exemplary embodiment.
  • Fig. 26 is a structural diagram of a device for performing small data packet transmission according to an exemplary embodiment.
  • an embodiment of the present disclosure may include a plurality of steps; these steps are numbered for ease of description; however, these numbers are not intended to limit the execution time slots and execution order between the steps; these steps may It is implemented in any order, which is not limited by the embodiments of the present disclosure.
  • RACH-based small data packet transmission SDT whether to choose 2-step RACH-based small data packet transmission SDT or 4-step RACH-based small data packet transmission SDT also needs to be judged based on the signal strength received by the user equipment.
  • CE Coverage Enhancement
  • FIG. 1 is a flow chart showing a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 measuring the signal strength of the downlink signal
  • Step 102 based on whether the user equipment has the coverage enhancement CE capability, obtain the signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT;
  • Step 103 based on the signal strength and the signal strength threshold, perform small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is Synchronization Signal-Reference Signal Receiving power (SS-RSRP).
  • SS-RSRP Synchronization Signal-Reference Signal Receiving power
  • the user equipment acquires a corresponding threshold based on whether it has CE capability. In one embodiment, the user equipment obtains the threshold from signaling received by the base station. In an embodiment, the user equipment acquires the threshold based on protocol regulations. The threshold here is used for the user to judge whether to execute small data packet transmission SDT, and the specific method used when executing small data packet transmission SDT, such as small data packet transmission SDT based on 2-step RACH, small data transmission based on 4-step RACH Packet transfer SDT.
  • the user equipment performs small data packet transmission SDT based on whether it has the CE capability and the relationship between the signal strength and the threshold.
  • the user equipment when the user equipment determines to execute the small data packet transmission SDT, it also refers to its CE capability while considering the received signal strength of the user equipment, so that it is suitable for the user equipment with the CE capability to perform the small data packet transmission SDT.
  • FIG. 2 is a flow chart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 2, the method includes:
  • Step 201 measuring the signal strength of the downlink signal
  • Step 202 in response to the user equipment having the coverage enhancement CE capability, acquiring the first threshold as the signal strength threshold of the user equipment;
  • Step 203 based on the signal strength and the signal strength threshold, execute the small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold based on signaling received from the base station. In an embodiment, the user equipment acquires the threshold based on protocol provisions.
  • the first threshold is obtained, and based on the relationship between the signal strength and the first threshold, it is determined whether to perform SDT.
  • FIG. 3 is a flow chart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 3 , the method includes:
  • Step 301 measuring the signal strength of the downlink signal
  • Step 302 in response to the fact that the user equipment does not have the coverage enhancement CE capability, acquire the second threshold as the signal strength threshold of the user equipment;
  • Step 303 based on the signal strength and the signal strength threshold, execute the small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold based on signaling received from the base station. In an embodiment, the user equipment acquires the threshold based on protocol provisions.
  • the second threshold is obtained, and based on the relationship between the signal strength and the second threshold, it is determined whether to perform SDT.
  • FIG. 4 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 4, the method includes:
  • Step 401 measuring the signal strength of the downlink signal
  • Step 402 in response to the user equipment having the coverage enhanced CE capability, acquiring the first threshold as the signal strength threshold of the user equipment;
  • Step 403 in response to the signal strength being greater than or equal to the first threshold, performing SDT based on 4-step RACH transmission of small data packets.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold based on signaling received from the base station. In an embodiment, the user equipment acquires the threshold based on protocol provisions.
  • the first threshold is obtained, and when the signal strength is greater than or equal to the first threshold, small data packet transmission SDT based on 4-step RACH is performed. In one embodiment, when the signal strength is lower than the first threshold, it indicates that the signal strength is poor, and the small data packet transmission SDT is not performed.
  • the first threshold is smaller than the second threshold above, because, for a user equipment with CE capability, it is located at the edge of the cell, that is, in an environment with poor signal coverage, it can also perform small packet transmission SDT.
  • the signal strength of the received signal is compared with a lower threshold to determine whether to perform small data packet transmission SDT, which can make full use of the CE capability of the user equipment, so that its Small data packet transmission SDT can also be performed in places with poor base station signal coverage, thereby reducing power consumption and resource overhead, while reducing data transmission delay.
  • FIG. 5 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 5, the method includes:
  • Step 501 measuring the signal strength of the downlink signal
  • Step 502 in response to the fact that the user equipment does not have the coverage enhancement CE capability, acquire the second threshold as the signal strength threshold of the user equipment;
  • Step 503 in response to the signal strength being greater than or equal to the second threshold, performing SDT based on 4-step RACH transmission of small data packets.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold based on signaling received from the base station. In an embodiment, the user equipment acquires the threshold based on protocol provisions.
  • the second threshold is obtained, and when the signal strength is greater than or equal to the second threshold, SDT based on 4-step RACH transmission of small data packets is performed. In one embodiment, when the signal strength is less than the second threshold, it indicates that the signal strength is poor, and the small data packet transmission SDT is not performed.
  • the second threshold is greater than the first threshold above, because, for a user equipment without CE capability, when it is located in an environment with poor signal coverage, due to the lack of CE capability to compensate for poor The signal strength of the downlink signal, therefore, it is necessary to set the threshold for judging whether to execute the small data packet transmission SDT higher than the first threshold, so as to ensure the communication quality.
  • An embodiment of the present disclosure provides a method for executing SDT of small data packet transmission, which is executed by a user equipment; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the first threshold is smaller than the second threshold.
  • the first threshold is used to judge whether the user equipment with CE capability performs SDT
  • the second threshold is used to judge whether the user equipment without CE capability performs SDT.
  • the reason why the first threshold is smaller than the second threshold is that, for a user equipment with CE capability, which is located in an environment with poor signal coverage, it can also perform small data packet transmission SDT, thereby reducing power consumption and resource overhead, while reducing data transmission time. delay.
  • Fig. 6 is a flow chart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 6, the method includes:
  • Step 601 measuring the signal strength of the downlink signal
  • Step 602 in response to the user equipment being capable of coverage enhancement CE, acquiring the first threshold and the third threshold as signal strength thresholds of the user equipment;
  • Step 603 in response to the signal strength being greater than or equal to the first threshold and less than the third threshold, enable the coverage enhancement CE capability of the user equipment, and perform small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold related to the small data packet transmission SDT based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the small data packet transmission SDT based on protocol regulations.
  • the user equipment when the user equipment has the CE capability, if the signal strength is greater than or equal to the first threshold and less than the third threshold, the small data packet transmission SDT based on 4-step RACH is performed, and the first threshold is less than the third threshold.
  • the signal strength is less than the third threshold, it indicates that the signal strength of the signal received by the user equipment is not high enough.
  • the user equipment needs to enable the CE capability, for example, enable the retransmission (Repetition) function.
  • the third threshold is equal to the second threshold based on which it is judged whether the user equipment without CE capability can perform the small data packet transmission SDT. In one embodiment, the third threshold is greater than the second threshold.
  • the user equipment when the signal strength of the received signal indicates that it can perform small data packet transmission SDT, but the signal strength is not large enough, the user equipment enables the CE capability, by enabling The CE capability can make up for the lack of signal coverage of the base station, so as to achieve the purpose of reducing power consumption and resource overhead and reducing data transmission delay by implementing small data packet transmission SDT.
  • FIG. 7 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 7, the method includes:
  • Step 701 measuring the signal strength of the downlink signal
  • Step 702 in response to the user equipment being capable of coverage enhancement CE, acquire the third threshold and the fourth threshold as signal strength thresholds of the user equipment;
  • Step 703 in response to the signal strength being greater than or equal to the third threshold and less than the fourth threshold, not enabling the coverage enhancement CE capability of the user equipment, and performing small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold related to the small data packet transmission SDT based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the small data packet transmission SDT based on protocol regulations.
  • the small data packet transmission SDT based on 4-step RACH is performed, where the third threshold is less than the fourth threshold threshold.
  • the signal strength is greater than the third threshold, indicating that the signal strength of the signal received by the user equipment is large enough, and at this time, the user equipment does not need to perform CE, that is, a certain communication quality can be guaranteed.
  • the user equipment when the signal strength of the received signal indicates that it can perform small data packet transmission SDT, and the signal strength is large enough, the user equipment performs small data packet transmission SDT, and There is no need to enable the CE capability, so as to achieve the purpose of reducing power consumption and resource overhead, and at the same time reducing data transmission delay.
  • An embodiment of the present disclosure provides a method for executing SDT of small data packet transmission, which is executed by a user equipment; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the third threshold is greater than or equal to the second threshold.
  • FIG. 8 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 8, the method includes:
  • Step 801 measuring the signal strength of the downlink signal
  • Step 802 in response to the user equipment having the coverage enhanced CE capability, acquire the fourth threshold as the signal strength threshold of the user equipment;
  • Step 803 based on the signal strength and the signal strength threshold, execute the small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold based on signaling received from the base station. In an embodiment, the user equipment acquires the threshold based on protocol provisions.
  • the fourth threshold is acquired, and based on the relationship between the signal strength and the fourth threshold, it is determined whether to perform SDT.
  • FIG. 9 is a flow chart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 9, the method includes:
  • Step 901 measuring the signal strength of the downlink signal
  • Step 902 in response to the user equipment having the coverage enhancement CE capability, obtain the fourth threshold as the signal strength threshold of the user equipment;
  • Step 903 in response to the signal strength being greater than the fourth threshold, perform SDT based on 2-step RACH transmission of small data packets.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold related to the small data packet transmission SDT based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the small data packet transmission SDT based on protocol regulations.
  • the user equipment when the user equipment has the CE capability, if the signal strength is greater than or equal to the fourth threshold, it indicates that the signal strength is sufficiently large. At this time, the user equipment performs SDT based on 2-step RACH transmission of small data packets.
  • the fourth threshold is greater than the first and third thresholds above.
  • the user equipment when the signal strength of the received signal indicates that it can perform small data packet transmission SDT, and the signal strength is large enough, the user equipment performs small data packet transmission based on 2-step RACH Packet transmission SDT, so as to achieve the purpose of reducing power consumption and resource overhead, while reducing data transmission delay.
  • FIG. 10 is a flow chart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 10 , the method includes:
  • Step 1001 measuring the signal strength of the downlink signal
  • Step 1002 in response to the fact that the user equipment does not have the coverage enhancement CE capability, acquire the second threshold and the fifth threshold as signal strength thresholds of the user equipment;
  • Step 1003 in response to the signal strength being greater than or equal to the second threshold and less than the fifth threshold, perform small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold related to the small data packet transmission SDT based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the small data packet transmission SDT based on protocol regulations.
  • the small data packet transmission SDT based on 4-step RACH is performed.
  • the second threshold here is smaller than the fifth threshold, and the second threshold is larger than the first threshold above, and the first threshold is used to judge whether the CE-capable user equipment can perform SDT.
  • the signal strength is less than the fifth threshold, which indicates that the signal strength of the signal received by the user equipment is not high enough. At this time, in order to ensure the communication quality, SDT based on 4-step RACH transmission is performed.
  • the user equipment performs 4-step RACH-based SDT is transmitted in small data packets, so as to achieve the purpose of reducing power consumption and resource overhead, while reducing data transmission delay.
  • FIG. 11 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 11, the method includes:
  • Step 1101 measuring the signal strength of the downlink signal
  • Step 1102 in response to the fact that the user equipment does not have the coverage enhancement CE capability, acquire the fifth threshold as the signal strength threshold of the user equipment;
  • Step 1103 in response to the signal strength being greater than or equal to the fifth threshold, perform 2-step RACH-based small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment obtains the threshold related to the small data packet transmission SDT based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the small data packet transmission SDT based on protocol regulations.
  • the user equipment when the user equipment does not have the CE capability, if the signal strength is greater than or equal to the fifth threshold, it indicates that the signal strength is sufficiently large. At this time, the user equipment performs SDT based on 2-step RACH transmission of small data packets.
  • the fifth threshold is greater than the second threshold above.
  • the user equipment when the signal strength of the received signal indicates that it can perform small data packet transmission SDT, and the signal strength is large enough, the user equipment performs a 2-step RACH-based small Data packet transmission SDT, so as to achieve the purpose of reducing power consumption and resource overhead, while reducing data transmission delay.
  • FIG. 12 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 12 , the method includes:
  • Step 1201 measuring the signal strength of the downlink signal
  • Step 1202 based on whether the user equipment has the coverage enhancement CE capability, receiving signaling from the network device, the signaling includes a signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT;
  • Step 1203 based on the signal strength and the signal strength threshold, execute the small data packet transmission SDT.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP.
  • the user equipment acquires the threshold based on signaling received from the base station, and the threshold includes at least one of the first threshold, the second threshold, the third threshold, the fourth threshold and the fifth threshold.
  • the user equipment may also obtain the foregoing threshold based on protocol regulations.
  • the user equipment judges whether to execute SDT based on the threshold sent by the base station through signaling, which can make a more accurate judgment based on the current network environment, and achieve reduced power consumption and The purpose of reducing resource overhead and reducing data transmission delay.
  • An embodiment of the present disclosure provides a method for executing SDT of small data packet transmission, which is executed by a user equipment; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the signaling is at least one of the following signalings: minimum remaining system information (Minimum Remaining system Information, RMSI), main information block (Main Information Block, MIB), radio resource control (Radio Resource Control, RRC), Other System Information (Other System Information, OSI), Downlink Control Information (Downlink Control Information, DCI), Media Access Control-Control Element (Media Access Control-Control Element, MAC-CE).
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP.
  • the user equipment acquires the threshold based on signaling received from the base station.
  • the signaling is at least one of the following signalings: RMSI, MIB, RRC, OSI, DCI, MAC-CE.
  • the user equipment acquires the first threshold, the second threshold, the third threshold, the fourth threshold, and the fifth threshold through the same signaling, and at this time, different parameters in the signaling are used to acquire different threshold.
  • the user equipment acquires the first threshold, the second threshold, the third threshold, the fourth threshold and the fifth threshold through different signaling.
  • the first threshold is acquired through signaling RMSI
  • the second threshold is acquired through signaling MIB, and so on.
  • the user equipment judges whether to execute SDT based on the threshold sent by the base station through signaling, which can make a more accurate judgment based on the current network environment, and achieve reduced power consumption and The purpose of reducing resource overhead and reducing data transmission delay.
  • FIG. 13 is a flowchart of a method for determining a random access transmission mode according to an exemplary embodiment. As shown in Fig. 13 , the method includes:
  • Step 1301 measuring the signal strength of the downlink signal
  • Step 1302 Obtain a signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message based on whether the user equipment has the coverage enhancement CE capability;
  • Step 1303 based on the signal strength and the signal strength threshold, determine the transmission mode of the random access message as the first transmission mode or the second transmission mode.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on protocol regulations.
  • the user equipment determines whether the transmission mode of the random access message is the first transmission mode or the second transmission mode based on whether it has the CE capability and the relationship between the signal strength and the threshold.
  • the random access message is a msg3 message in the random access process.
  • the first transmission mode is a random access message transmission mode based on preamble (Preamble) resources in group B.
  • the second transmission mode is a random access message transmission mode based on preamble resources in group A.
  • the user equipment determines the random access transmission mode, it considers the signal strength received by the user equipment and also refers to its CE capability, so that it is suitable for the random access transmission mode of the user equipment with CE capability. Sure.
  • FIG. 14 is a flowchart of a method for determining a random access transmission mode according to an exemplary embodiment. As shown in Fig. 14, the method includes:
  • Step 1401 measuring the signal strength of the downlink signal
  • Step 1402 in response to the user equipment having coverage enhancement CE capability, acquire the sixth threshold as the signal strength threshold of the user equipment;
  • Step 1403 In response to the signal strength being greater than or equal to the sixth threshold, determine the transmission mode of the random access message as the first transmission mode; in response to the signal strength being less than the sixth threshold, determine the transmission mode of the random access message as the second transmission mode.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on protocol regulations.
  • the sixth threshold is acquired, and when the signal strength is greater than or equal to the sixth threshold, it is determined that the random access message transmission mode is the first transmission mode, for example, based on group B The random access message transmission mode of the preamble resource.
  • the transmission mode of the random access message is the second transmission mode, for example, random access based on preamble resources in group A Message transmission method.
  • the sixth threshold is smaller than the seventh threshold, and the seventh threshold is a threshold based on which the random access message transmission mode is determined for the user equipment without CE capability.
  • a relatively small threshold is used to determine the random access message transmission mode of the CE-capable user equipment, so that the user equipment can also use the first transmission mode when it is located in an environment with poor signal coverage .
  • FIG. 15 is a flow chart of a method for determining a random access transmission mode according to an exemplary embodiment. As shown in Fig. 15 , the method includes:
  • Step 1501 measuring the signal strength of the downlink signal
  • Step 1502 in response to the fact that the user equipment does not have the coverage enhancement CE capability, obtain the seventh threshold as the signal strength threshold of the user equipment;
  • Step 1503 In response to the signal strength being greater than or equal to the seventh threshold, determine the transmission mode of the random access message as the first transmission mode; in response to the signal strength being less than the seventh threshold, determine the transmission mode of the random access message as the second transmission mode.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on protocol regulations.
  • the seventh threshold is obtained, and when the signal strength is greater than or equal to the seventh threshold, it is determined that the transmission mode of the random access message is the first transmission mode, for example, based on group B The random access message transmission mode of the preamble resource.
  • the signal strength is less than the seventh threshold, it is determined that the transmission mode of the random access message is the second transmission mode, for example, the random access message based on the preamble resource in group A Incoming message transmission method.
  • the sixth threshold is smaller than the seventh threshold, and the sixth threshold is a threshold based on which the random access message transmission mode is determined for the CE-capable user equipment.
  • the user equipment without CE capability can only use the first transmission mode to transmit the random access message when it is in an environment with good signal coverage.
  • An embodiment of the present disclosure provides a method for determining a random access transmission mode, and the method is executed by a user equipment; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the sixth threshold is smaller than the seventh threshold.
  • the sixth threshold is the threshold based on which the transmission mode of the random access message is determined for the user equipment with CE capability
  • the seventh threshold is the threshold based on which the transmission mode of the random access message is determined for the user equipment without the CE capability.
  • the first transmission mode is a random access message transmission mode based on preamble resources in group B
  • the second transmission mode is a random access message transmission mode based on preamble resources in group A.
  • a relatively small threshold is used to determine the random access message transmission mode of the CE-capable user equipment, so that the user equipment can also use the first transmission mode when it is located in an environment with poor signal coverage .
  • FIG. 16 is a flowchart of a method for determining a random access transmission mode according to an exemplary embodiment. As shown in Fig. 16 , the method includes:
  • Step 1601 measuring the signal strength of the downlink signal
  • Step 1602 in response to the user equipment having coverage enhanced CE capability, acquire the sixth threshold and the eighth threshold as signal strength thresholds of the user equipment;
  • Step 1603 in response to the signal strength being greater than or equal to the sixth threshold and less than the eighth threshold, enable the coverage enhancement CE capability of the user equipment, and determine the random access message transmission mode as the first transmission mode.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on protocol regulations.
  • the user equipment when the user equipment has CE capability, if the signal strength is greater than or equal to the sixth threshold and less than the eighth threshold, it is determined that the random access message transmission mode is the first transmission mode, and the sixth threshold is less than the eighth threshold .
  • the signal strength is less than the eighth threshold, it indicates that the signal strength of the signal received by the user equipment is not high enough. At this time, in order to ensure the communication quality, the user equipment needs to enable the CE capability.
  • the eighth threshold is equal to the seventh threshold based on which the random access message transmission mode of the user equipment without CE capability is judged.
  • the user equipment For a user equipment with CE capability, when the signal strength of the received signal indicates that it can use the second transmission method to transmit the random access message, but the signal strength is not large enough, the user equipment Enable the CE capability to make up for the lack of base station signal coverage by enabling the CE capability.
  • FIG. 17 is a flow chart of a method for determining a random access transmission mode according to an exemplary embodiment. As shown in Fig. 17 , the method includes:
  • Step 1701 measure the signal strength of the downlink signal
  • Step 1702 in response to the user equipment having the coverage enhancement CE capability, obtain the eighth threshold as the signal strength threshold of the user equipment;
  • Step 1703 in response to the signal strength being greater than or equal to the eighth threshold, not enabling the coverage enhancement CE capability of the user equipment, and determining the transmission mode of the random access message as the first transmission mode.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP. In one embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on the signaling received from the base station. In an embodiment, the user equipment acquires the threshold related to the transmission mode of the random access message based on protocol regulations.
  • the user equipment when the user equipment has the CE capability, if the signal strength is greater than or equal to the eighth threshold, it indicates that the signal strength is sufficiently large. At this time, the CE capability of the user equipment may not be enabled, and the first transmission mode is used to transmit the random access message.
  • the eighth threshold is greater than the sixth threshold above.
  • the user equipment uses the first transmission method to transmit the random access message without enabling the CE capability.
  • FIG. 18 is a flowchart of a method for determining a random access transmission mode according to an exemplary embodiment. As shown in Fig. 18 , the method includes:
  • Step 1801 measure the signal strength of the downlink signal
  • Step 1802 based on whether the user equipment has the coverage enhancement CE capability, receiving signaling from the network device, the signaling includes a signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message;
  • Step 1803 based on the signal strength and the signal strength threshold, determine the transmission mode of the random access message as the first transmission mode or the second transmission mode.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP.
  • the user equipment acquires the threshold based on signaling received from the base station, where the threshold includes at least one of the sixth threshold, the seventh threshold, and the eighth threshold.
  • the user equipment may also obtain the foregoing threshold based on protocol regulations.
  • the user equipment determines the random access message transmission mode based on the threshold sent by the base station through signaling, which can make more accurate judgments based on the current network environment and ensure communication quality.
  • An embodiment of the present disclosure provides a method for determining a random access transmission mode, and the method is executed by a user equipment; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the signaling is at least one of the following signalings: RMSI, MIB, RRC, OSI, DCI, and MAC-CE.
  • the user equipment measures the signal strength of the downlink signal, and the signal strength is SS-RSRP.
  • the user equipment acquires the threshold based on signaling received from the base station.
  • the signaling is at least one of the following signalings: RMSI, MIB, RRC, OSI, DCI, MAC-CE.
  • the user equipment obtains the sixth threshold, the seventh threshold and the eighth threshold through the same signaling, and at this time, obtains different thresholds through different parameters in the signaling.
  • the user equipment acquires the sixth threshold, the seventh threshold, and the eighth threshold through different signaling.
  • the sixth threshold is acquired through signaling RMSI
  • the seventh threshold is acquired through signaling MIB, and so on.
  • the user equipment determines the random access message transmission mode based on the threshold sent by the base station through signaling, which can make more accurate judgments based on the current network environment and ensure communication quality.
  • Fig. 19 is a flowchart of a method for performing small data packet transmission SDT according to an exemplary embodiment. As shown in Fig. 19, the method includes:
  • Step 1901 Send signaling, the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine whether to execute SDT.
  • the signaling is at least one of the following signalings: RMSI, MIB, RRC, OSI, DCI, and MAC-CE.
  • the network device sends different signal strength thresholds through the same signaling, and at this time, different thresholds are sent through different parameters in the signaling. In one embodiment, the network device sends different signal strength thresholds through different signaling.
  • the embodiment of the present disclosure provides a method for executing small data packet transmission SDT, and the method is executed by a network device; the method can be executed independently, and can also be executed in combination with any other embodiment of the embodiment of the present disclosure.
  • the signal strength threshold includes at least one of the following: a first threshold, a second threshold, a third threshold, a fourth threshold, and a fifth threshold.
  • FIG. 20 is a flowchart of a method for determining a transmission mode of a random access message according to an exemplary embodiment. As shown in Fig. 20 , the method includes:
  • Step 2001 send signaling, the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine the transmission mode of the random access message.
  • the signaling is at least one of the following signalings: RMSI, MIB, RRC, OSI, DCI, and MAC-CE.
  • the network device sends different signal strength thresholds through the same signaling, and at this time, different thresholds are sent through different parameters in the signaling. In one embodiment, the network device sends different signal strength thresholds through different signaling.
  • An embodiment of the present disclosure provides a method for determining a transmission mode of a random access message, and the method is executed by a network device; the method may be executed independently, or may be executed in combination with any other embodiments of the embodiments of the present disclosure.
  • the signal strength threshold includes at least one of the following: a sixth threshold, a seventh threshold, and an eighth threshold.
  • This embodiment provides an apparatus for performing small data packet transmission SDT, which is applied to user equipment, as shown in FIG. 21 , including:
  • the communication module 2101 is configured to receive a downlink signal
  • the processing module 2102 is configured to measure the signal strength of the downlink signal; based on whether the user equipment has the coverage enhancement CE capability, obtain the signal strength threshold corresponding to the user equipment related to the small data packet transmission SDT; based on the signal strength and the signal strength threshold, Perform small packet transfer SDT.
  • This embodiment provides an apparatus for determining the transmission mode of the random access message, which is applied to user equipment, as shown in FIG. 22 , including:
  • the communication module 2201 is configured to receive downlink signals
  • the processing module 2202 is configured to measure the signal strength of the downlink signal; based on whether the user equipment has the coverage enhancement CE capability, obtain the signal strength threshold corresponding to the user equipment related to the transmission mode of the random access message; based on the signal strength and the signal strength threshold , determining the transmission mode of the random access message as the first transmission mode or the second transmission mode.
  • This embodiment provides a device for performing small data packet transmission SDT, which is applied to network equipment, as shown in FIG. 23 , including:
  • the communication module 2301 is configured to send signaling, where the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine a random access message transmission manner.
  • This embodiment provides an apparatus for determining a transmission mode of a random access message, which is applied to a network device, as shown in FIG. 24 , including:
  • the communication module 2401 is configured to send signaling, where the signaling includes a signal strength threshold, and the signal strength threshold is used by the user equipment to determine a random access message transmission manner.
  • This embodiment provides a user equipment, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute executable instructions in the memory to implement the steps of the above method.
  • This embodiment provides a network device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute executable instructions in the memory to implement the steps of the above method.
  • This embodiment provides a non-transitory computer-readable storage medium on which executable instructions are stored, and when the executable instructions are executed by a processor, the steps of the above method are implemented.
  • Fig. 25 is a block diagram of an apparatus 2500 for sending downlink information according to an exemplary embodiment.
  • the apparatus 2500 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 2500 may include one or more of the following components: a processing component 2502, a memory 2504, a power supply component 2506, a multimedia component 2508, an audio component 2510, an input/output (I/O) interface 2512, a sensor component 2514, and communication component 2516.
  • a processing component 2502 a memory 2504
  • a power supply component 2506 a multimedia component 2508, an audio component 2510, an input/output (I/O) interface 2512, a sensor component 2514, and communication component 2516.
  • I/O input/output
  • the processing component 2502 generally controls the overall operations of the device 2500, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 2502 may include one or more processors 2520 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 2502 may include one or more modules that facilitate interaction between processing component 2502 and other components. For example, processing component 2502 may include a multimedia module to facilitate interaction between multimedia component 2508 and processing component 2502 .
  • the memory 2504 is configured to store various types of data to support operations at the device 2500 . Examples of such data include instructions for any application or method operating on device 2500, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 2504 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 2506 provides power to the various components of the device 2500 .
  • Power components 2506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 2500 .
  • the multimedia component 2508 includes a screen that provides an output interface between the device 2500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • the multimedia component 2508 includes a front camera and/or a rear camera. When the device 2500 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 2510 is configured to output and/or input audio signals.
  • the audio component 2510 includes a microphone (MIC), which is configured to receive external audio signals when the device 2500 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 2504 or sent via communication component 2516 .
  • the audio component 2510 also includes a speaker for outputting audio signals.
  • the I/O interface 2512 provides an interface between the processing component 2502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 2514 includes one or more sensors for providing status assessments of various aspects of device 2500 .
  • the sensor component 2514 can detect the open/closed state of the device 2500, the relative positioning of components, such as the display and keypad of the device 2500, the sensor component 2514 can also detect a change in the position of the device 2500 or a component of the device 2500, the user Presence or absence of contact with device 2500, device 2500 orientation or acceleration/deceleration and temperature change of device 2500.
  • Sensor assembly 2514 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 2514 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor assembly 2514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 2516 is configured to facilitate wired or wireless communication between the apparatus 2500 and other devices.
  • the device 2500 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 2516 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2516 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 2500 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 2504 including instructions, which can be executed by the processor 2520 of the device 2500 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 26 is a block diagram of an apparatus 2600 for performing small data packet transmission SDT according to an exemplary embodiment.
  • apparatus 2600 may be provided as a base station.
  • apparatus 2600 includes processing component 2622, which further includes one or more processors, and a memory resource represented by memory 2632 for storing instructions executable by processing component 2622, such as application programs.
  • the application programs stored in memory 2632 may include one or more modules each corresponding to a set of instructions.
  • the processing component 2622 is configured to execute instructions to perform the above method for accessing an unlicensed channel.
  • the device 2600 may also include a power component 2626 configured to perform power management of the device 2600, a wired or wireless network interface 2650 configured to connect the device 2600 to a network, and an input output (I/O) interface 2659.
  • the device 2600 can operate based on an operating system stored in the memory 2632, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the user equipment determines to execute the SDT, it also refers to its CE capability while considering the signal strength received by the user equipment, so that it is suitable for the user equipment with the CE capability to execute the SDT.
  • the user equipment determines the random access transmission mode it considers the received signal strength of the user equipment and also refers to its CE capability, so that it is suitable for the user equipment with CE capability to determine the random access transmission mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质。执行小数据包传输的方法包括:测量下行信号的信号强度;基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值;基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT。

Description

一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质。
背景技术
在非激活态支持小数据包的传输(Small Data Transmission,SDT),表示不用进入连接态即可完成数据传输,以避免造成时频资源的浪费,并且缩短数据传输时延、节省终端能耗。
SDT支持基于随机接入过程的SDT和基于半静态配置的SDT。其中,基于随机接入过程的SDT又分为两种方式,分别为基于2步随机接入过程(2-step Random Access Channel,2-step RACH)的SDT和基于4步随机接入过程(4-step Random Access Channel,4-step RACH)的SDT。
发明内容
有鉴于此,本公开提供了一种一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质。
根据本公开实施例的第一个方面,提供一种执行小数据包传输SDT的方法,所述方法被用户设备执行,包括:
测量下行信号的信号强度;
基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值;
基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具有所述覆盖增强CE能力,获取第一阈值作为所述用户设备的所述信号强度阈值。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备不具有所述覆盖增强CE能力,获取第二阈值作为所述用户设备的所述信号强度阈值。
在一实施方式中,所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT的步骤,包括:
响应于所述信号强度大于或等于所述第一阈值,执行基于4步随机接入过程RACH的所述小数据包传输SDT。
在一实施方式中,所述基于所述信号强度和所述信号强度阈值,为所述用户设备执行所述小数据包传输SDT的步骤,进一步包括:
响应于所述信号强度大于或等于所述第二阈值,执行基于4步RACH的所述小数据包 传输SDT。
在一实施方式中,所述第一阈值小于所述第二阈值。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具备所述覆盖增强CE能力,获取第一阈值和第三阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
响应于所述信号强度大于或等于所述第一阈值且小于所述第三阈值,开启所述用户设备的所述覆盖增强CE能力,并执行所述小数据包传输SDT。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具备所述覆盖增强CE能力,获取第三阈值和第四阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
响应于所述信号强度大于或等于所述第三阈值且小于所述第四阈值,不开启所述用户设备的所述覆盖增强CE能力,并执行所述小数据包传输SDT。
在一实施方式中,所述第三阈值大于或等于所述第二阈值。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具有所述覆盖增强CE能力,获取第四阈值作为所述用户设备的所述信号强度阈值。
在一实施方式中,所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
响应于所述信号强度大于所述第四阈值,执行基于2步RACH的所述小数据包传输SDT。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备不具备所述覆盖增强CE能力,获取第二阈值和第五阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
响应于所述信号强度大于或等于所述第二阈值且小于所述第五阈值,执行所述小数据包传输SDT。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备不具备所述覆盖增强CE能力,获取第五阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
响应于所述信号强度大于或等于所述第五阈值,执行基于2步RACH的所述小数据包传输SDT。
在一实施方式中,所述获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
接收来自于网络设备的信令,所述信令包括与所述用户设备对应的信号强度阈值。
在一实施方式中,所述信令是下述信令中的至少一种:剩余最小系统信息RMSI、主信息块MIB、无线资源控制RRC、其它系统信息OSI、下行链路控制信息DCI、媒体接入控制-控制单元MAC-CE。
根据本公开实施例的第二个方面,提供一种确定随机接入消息传输方式的方法,所述方法被用户设备执行,包括:
测量下行信号的信号强度;
基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值;
基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具有所述覆盖增强CE能力,获取第六阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
响应于所述信号强度大于或等于第六阈值,确定所述随机接入消息传输方式为第一传输方式;
响应于所述信号强度小于第六阈值,确定所述随机接入消息传输方式为第二传输方式。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备不具有所述覆盖增强CE能力,获取第七阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
响应于所述信号强度大于或等于第七阈值,确定所述随机接入消息传输方式为第一传输方式;
响应于所述信号强度小于第七阈值,确定所述随机接入消息传输方式为第二传输方式。
在一实施方式中,所述第六阈值小于所述第七阈值。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随 机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具备所述覆盖增强CE能力,获取第六阈值和第八阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
响应于所述信号强度大于或等于所述第六阈值且小于所述第八阈值,开启所述用户设备的所述覆盖增强CE能力,并确定所述随机接入消息传输方式为第一传输方式。
在一实施方式中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
响应于所述用户设备具备所述覆盖增强CE能力,获取第八阈值作为所述用户设备的所述信号强度阈值;
所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
响应于所述信号强度大于或等于所述第八阈值,不开启所述用户设备的所述覆盖增强CE能力,并确定所述随机接入消息传输方式为第一传输方式。
在一实施方式中,所述获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
接收来自于网络设备的信令,所述信令包括与所述用户设备对应的信号强度阈值。
在一实施方式中,所述信令是下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
根据本公开实施例的第三个方面,提供一种执行小数据包传输SDT的方法,所述方法被网络设备执行,包括:
发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备判断是否执行小数据包传输SDT。
在一实施方式中,所述信号强度阈值包括下述中至少一个:第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值。
根据本公开实施例的第四个方面,提供一种确定随机接入消息传输方式的方法,所述方法被网络设备执行,包括:
发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备确定所述随机接入消息传输方式。
在一实施方式中,所述信号强度阈值包括下述中至少一个:第六阈值、第七阈值以及第八阈值。
根据本公开实施例的第五个方面,提供一种执行小数据包传输SDT的装置,应用于用户设备,包括:
通信模块,被配置为接收下行信号;
处理模块,被配置为测量所述下行信号的信号强度;基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值; 基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT。
根据本公开实施例的第六个方面,提供一种确定所述随机接入消息传输方式的装置,应用于用户设备,包括:
通信模块,被配置为接收下行信号;
处理模块,被配置为测量所述下行信号的信号强度;基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值;基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式。
根据本公开实施例的第七个方面,提供一种执行小数据包传输SDT的装置,应用于网络设备,包括:
通信模块,被配置为发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备确定所述随机接入消息传输方式。
根据本公开实施例的第八个方面,提供一种确定随机接入消息传输方式的装置,应用于网络设备,包括:
通信模块,被配置为发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备确定所述随机接入消息传输方式。
根据本公开实施例的第九个方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述任一项的方法的步骤。
根据本公开实施例的第十个方面,提供一种网络设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述任一项的方法的步骤。
根据本公开实施例的第十一个方面,提供一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述任一项的方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:用户设备确定执行SDT时,在考虑用户设备接收的信号强度的同时,也参考其CE能力,从而适用于具有CE能力的用户设备执行SDT。
本公开的实施例提供的技术方案还可以包括以下有益效果:用户设备在确定随机接入传输方式时,在考虑用户设备接收的信号强度的同时,也参考其CE能力,从而适用于具有CE能力的用户设备执行随机接入传输方式的确定。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图2是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图3是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图4是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图5是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图6是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图7是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图8是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图9是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图10是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图11是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图12是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图13是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图14是根据一示例性实施例示出的确定随机接入消息传输方式的方法的流程图;
图15是根据一示例性实施例示出的确定随机接入消息传输方式的方法的流程图;
图16是根据一示例性实施例示出的确定随机接入消息传输方式的方法的流程图;
图17是根据一示例性实施例示出的确定随机接入消息传输方式的方法的流程图;
图18是根据一示例性实施例示出的确定随机接入消息传输方式的方法的流程图;
图19是根据一示例性实施例示出的执行小数据包传输的方法的流程图;
图20是根据一示例性实施例示出的确定随机接入消息传输方式的方法的流程图;
图21是根据一示例性实施例示出的执行小数据包传输的装置的框图;
图22是根据一示例性实施例示出的确定随机接入消息传输方式的装置的框图;
图23是根据一示例性实施例示出的执行小数据包传输的装置的框图;
图24是根据一示例性实施例示出的确定随机接入消息传输方式的装置的框图;
图25是根据一示例性实施例示出的执行小数据包传输的装置的结构图。
图26是根据一示例性实施例示出的执行小数据包传输的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开的一个实施例中可以包括多个步骤;为了便于描述,这些步骤被进行了编号;但是这些编号并非是对步骤之间执行时隙、执行顺序的限定;这些步骤可以以任意的顺序被实施,本公开实施例并不对此作出限定。
在判断是否开启基于RACH的小数据包传输SDT时,需要基于用户设备接收的信号强度,例如SS-RSRP,进行判断。即,保证只有在良好的覆盖条件下才执行小数据包传输SDT的传输,以免造成上行传输资源的浪费。
另外,对于基于RACH的小数据包传输SDT,选择基于2-step RACH的小数据包传输SDT还是选择基于4-step RACH的小数据包传输SDT,也需要基于用户设备接收的信号强度进行判断。
在release-17中,由于引入了覆盖增强(Coverage Enhancement,CE)的功能,因此希望即使处于小区边缘信号覆盖较差的用户设备,也能够使用小数据包传输SDT以减少功耗和资源开销,同时减少数据传输时延。
因此,为了使得具有CE能力的用户设备能够在小区边缘执行小数据包传输SDT,提出了本申请的方法。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图1是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图1所示,该方法包括:
步骤101,测量下行信号的信号强度;
步骤102,基于用户设备是否具备覆盖增强CE能力,获取与小数据包传输SDT相关的与用户设备对应的信号强度阈值;
步骤103,基于信号强度和信号强度阈值,执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为同步信号-参考信号接收功率(Synchronization Signal-Reference Signal Receiving power,SS-RSRP)。
在一个实施方式中,用户设备基于其是否具有CE能力,来获取相应的阈值。在一个实施方式中,用户设备从基站接收的信令来获取该阈值。在一实施方式中,用户设备基于协议规定来获取该阈值。这里的阈值用于用户判断是否执行小数据包传输SDT,以及在执行小数据包传输SDT时采用的具体方式,例如基于2-step RACH的小数据包传输SDT、基于4-step RACH的小数据包传输SDT。
在一个实施方式中,用户设备基于其是否具有CE能力以及信号强度与阈值的大小关系,执行小数据包传输SDT。
在该实施方式中,用户设备确定执行小数据包传输SDT时,在考虑用户设备接收的信号强度的同时,也参考其CE能力,从而适用于具有CE能力的用户设备执行小数据包传输SDT。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图2是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图2所示, 该方法包括:
步骤201,测量下行信号的信号强度;
步骤202,响应于用户设备具有覆盖增强CE能力,获取第一阈值作为该用户设备的信号强度阈值;
步骤203,基于信号强度和信号强度阈值,执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取阈值。在一实施方式中,用户设备基于协议规定来获取阈值。
在一个实施方式中,当用户设备具有CE能力时,获取第一阈值,基于信号强度和第一阈值的关系,确定是否执行小数据包传输SDT。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图3是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图3所示,该方法包括:
步骤301,测量下行信号的信号强度;
步骤302,响应于用户设备不具有覆盖增强CE能力,获取第二阈值作为用户设备的信号强度阈值;
步骤303,基于信号强度和信号强度阈值,执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取阈值。在一实施方式中,用户设备基于协议规定来获取阈值。
在一个实施方式中,当用户设备不具有CE能力时,获取第二阈值,基于信号强度和第二阈值的关系,确定是否执行小数据包传输SDT。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图4是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图4所示,该方法包括:
步骤401,测量下行信号的信号强度;
步骤402,响应于用户设备具有覆盖增强CE能力,获取第一阈值作为该用户设备的信号强度阈值;
步骤403,响应于信号强度大于或等于第一阈值,执行基于4步RACH的小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取阈值。在一实施方式中,用户设备基于协议规定来获取阈值。
在一个实施方式中,当用户设备具有CE能力时,获取第一阈值,当信号强度大于或 等于第一阈值时,执行基于4步RACH的小数据包传输SDT。在一个实施方式中,当信号强度小于第一阈值时,表明信号强度较差,则不执行小数据包传输SDT。
在一个实施方式中,第一阈值小于上文中的第二阈值,这是因为,对于具有CE能力的用户设备,其位于小区边缘,即信号覆盖较差的环境中,也能执行小数据包传输SDT。
在该实施方式中,对于具有CE能力的用户设备,将其接收信号的信号强度与较低的阈值相比较来确定是否执行小数据包传输SDT,可以能够充分利用用户设备的CE能力,使得其能够在基站信号覆盖较差的地方也能执行小数据包传输SDT,从而减少功耗和资源开销,同时减少数据传输时延。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图5是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图5所示,该方法包括:
步骤501,测量下行信号的信号强度;
步骤502,响应于用户设备不具有覆盖增强CE能力,获取第二阈值作为用户设备的信号强度阈值;
步骤503,响应于信号强度大于或等于第二阈值,执行基于4步RACH的小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取阈值。在一实施方式中,用户设备基于协议规定来获取阈值。
在一个实施方式中,当用户设备不具有CE能力时,获取第二阈值,当信号强度大于或等于第二阈值,执行基于4步RACH的小数据包传输SDT。在一个实施方式中,当信号强度小于第二阈值时,表明信号强度较差,则不执行小数据包传输SDT。
在一个实施方式中,第二阈值大于上文中的第一阈值,这是因为,对于不具有CE能力的用户设备,其位于信号覆盖较差的环境中时,由于没有CE能力来补偿较差的下行信号的信号强度,因此需要将判断是否执行小数据包传输SDT的阈值设定得比第一阈值高,从而保证通信质量。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,第一阈值小于第二阈值。
其中第一阈值用于判断具有CE能力的用户设备是否执行小数据包传输SDT,第二阈值用于判断不具有CE能力的用户设备是否执行小数据包传输SDT。第一阈值小于第二阈值是因为,对于具有CE能力的用户设备,其位于信号覆盖较差的环境中,也能执行小数据包传输SDT,从而减少功耗和资源开销,同时减少数据传输时延。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该 方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图6是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图6所示,该方法包括:
步骤601,测量下行信号的信号强度;
步骤602,响应于用户设备具备覆盖增强CE能力,获取第一阈值和第三阈值作为用户设备的信号强度阈值;
步骤603,响应于信号强度大于或等于第一阈值且小于第三阈值,开启用户设备的覆盖增强CE能力,并执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与小数据包传输SDT相关的阈值。在一实施方式中,用户设备基于协议规定来获取与小数据包传输SDT相关的阈值。
在一个实施方式中,当用户设备具有CE能力时,若信号强度大于或等于第一阈值且小于第三阈值,则执行基于4步RACH的小数据包传输SDT,第一阈值小于第三阈值。这里,信号强度小于第三阈值,表明用户设备接收信号的信号强度不是足够大,此时为了保证通信质量,则需要用户设备开启CE能力,例如启动重传(Repetition)功能。
在一个实施方式中,第三阈值等于判断不具有CE能力的用户设备是否能够执行小数据包传输SDT时所基于的第二阈值。在一个实施方式中,第三阈值大于第二阈值。
在该实施方式中,对于具有CE能力的用户设备,当其接收信号的信号强度指示其能够执行小数据包传输SDT,但该信号强度又不足够大时,该用户设备开启CE能力,通过开启CE能力来弥补基站信号覆盖的不足,从而通过执行小数据包传输SDT,来实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图7是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图7所示,该方法包括:
步骤701,测量下行信号的信号强度;
步骤702,响应于用户设备具备覆盖增强CE能力,获取第三阈值和第四阈值作为用户设备的信号强度阈值;
步骤703,响应于信号强度大于或等于第三阈值且小于第四阈值,不开启用户设备的覆盖增强CE能力,并执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与小数据包传输SDT相关的阈值。在一实施方式中,用户设备基于协议规定来获取与小数据包传输SDT相关的阈值。
在一个实施方式中,当用户设备具有CE能力时,若信号强度大于或等于第三阈值且小于第四阈值,则执行基于4步RACH的小数据包传输SDT,这里的第三阈值小于第四阈值。这里,信号强度大于第三阈值,表明用户设备接收信号的信号强度足够大,此时不需要用户设备执行CE,即能保证一定的通信质量。
在该实施方式中,对于具有CE能力的用户设备,当其接收信号的信号强度指示其能够执行小数据包传输SDT,且该信号强度足够大时,该用户设备执行小数据包传输SDT,且不需开启CE能力,从而实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,第三阈值大于或等于第二阈值。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图8是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图8所示,该方法包括:
步骤801,测量下行信号的信号强度;
步骤802,响应于用户设备具有覆盖增强CE能力,获取第四阈值作为用户设备的信号强度阈值;
步骤803,基于信号强度和信号强度阈值,执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取阈值。在一实施方式中,用户设备基于协议规定来获取阈值。
在一个实施方式中,当用户设备具有CE能力时,获取第四阈值,基于信号强度和第四阈值的关系,确定是否执行小数据包传输SDT。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图9是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图9所示,该方法包括:
步骤901,测量下行信号的信号强度;
步骤902,响应于用户设备具有覆盖增强CE能力,获取第四阈值作为用户设备的信号强度阈值;
步骤903,响应于信号强度大于第四阈值,执行基于2步RACH的小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与小数据包传输SDT相关的阈值。在一实施方式中,用户设备基于协议规定来获取与小数据包传输SDT相关的阈值。
在一个实施方式中,当用户设备具有CE能力时,若信号强度大于或等于第四阈值,则表明该信号强度足够大。此时,用户设备执行基于2步RACH的小数据包传输SDT。第四阈值大于上文中的第一阈值和第三阈值。
在该实施方式中,对于具有CE能力的用户设备,当其接收信号的信号强度指示其能够执行小数据包传输SDT,且该信号强度足够大时,该用户设备执行基于2步RACH的小 数据包传输SDT,从而实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图10是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图10所示,该方法包括:
步骤1001,测量下行信号的信号强度;
步骤1002,响应于用户设备不具备覆盖增强CE能力,获取第二阈值和第五阈值作为用户设备的信号强度阈值;
步骤1003,响应于信号强度大于或等于第二阈值且小于第五阈值,执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与小数据包传输SDT相关的阈值。在一实施方式中,用户设备基于协议规定来获取与小数据包传输SDT相关的阈值。
在一个实施方式中,当用户设备不具有CE能力时,若信号强度大于或等于第二阈值且小于第五阈值,则执行基于4步RACH的小数据包传输SDT。这里的第二阈值小于第五阈值,且第二阈值大于上文中的第一阈值,该第一阈值用于判断具有CE能力用户设备是否能够执行小数据包传输SDT。这里,信号强度小于第五阈值,表明用户设备接收信号的信号强度不是足够大,此时为了保证通信质量,执行基于4步RACH的小数据包传输SDT。
在该实施方式中,对于不具有CE能力的用户设备,当其接收信号的信号强度指示其能够执行小数据包传输SDT,且该信号强度不足够大时,该用户设备执行基于4步RACH的小数据包传输SDT,从而实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图11是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图11所示,该方法包括:
步骤1101,测量下行信号的信号强度;
步骤1102,响应于用户设备不具备覆盖增强CE能力,获取第五阈值作为用户设备的信号强度阈值;
步骤1103,响应于信号强度大于或等于第五阈值,执行基于2步RACH的小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与小数据包传输SDT相关的阈值。在一实施方式中,用户设备基于协议规定来获取与小数据包传输SDT相关的阈值。
在一个实施方式中,当用户设备不具有CE能力时,若信号强度大于或等于第五阈值,则表明该信号强度足够大。此时,用户设备执行基于2步RACH的小数据包传输SDT。第五阈值大于上文中的第二阈值。
在该实施方式中,对于不具有CE能力的用户设备,当其接收信号的信号强度指示其能够执行小数据包传输SDT,且该信号强度足够大时,该用户设备执行基于2步RACH的小数据包传输SDT,从而实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图12是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图12所示,该方法包括:
步骤1201,测量下行信号的信号强度;
步骤1202,基于用户设备是否具备覆盖增强CE能力,接收来自于网络设备的信令,信令包括与小数据包传输SDT相关的与用户设备对应的信号强度阈值;
步骤1203,基于信号强度和信号强度阈值,执行小数据包传输SDT。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。
在一个实施方式中,用户设备基于从基站接收的信令,来获取阈值,该阈值包括第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值中的至少一个。
需要说明的是,用户设备也可以基于协议规定来获取上述阈值。
在该实施方式中,用户设备基于基站通过信令发送的阈值来判断是否执行小数据包传输SDT,能够基于当前的网络环境进行更加准确的判断,在保证通信质量的同时,实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,信令是下述信令中的至少一种:剩余最小系统信息(Minimum Remaining system Information,RMSI)、主信息块(Main Information Block,MIB)、无线资源控制(Radio Resource Control,RRC)、其它系统信息(Other System Information,OSI)、下行链路控制信息(Downlink Control Information,DCI)、媒体接入控制-控制单元(Media Access Control-Control Element,MAC-CE)。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。
在一个实施方式中,用户设备基于从基站接收的信令,来获取阈值。信令为下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
在一个实施方式中,用户设备通过相同的信令来获取第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值,此时,通过该信令中的不同参数来获取不同的阈值。在一个实施方式中,用户设备通过不同的信令来获取第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值。例如,通过信令RMSI来获取第一阈值,通过信令MIB来获取第二阈值,等等。
在该实施方式中,用户设备基于基站通过信令发送的阈值来判断是否执行小数据包传输SDT,能够基于当前的网络环境进行更加准确的判断,在保证通信质量的同时,实现减少功耗和资源开销、同时减少数据传输时延的目的。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图13是根据一示例性实施例示出的一种确定随机接入传输方式的方法的流程图,如图13所示,该方法包括:
步骤1301,测量下行信号的信号强度;
步骤1302,基于用户设备是否具备覆盖增强CE能力,获取与随机接入消息传输方式相关的与用户设备对应的信号强度阈值;
步骤1303,基于信号强度和信号强度阈值,确定随机接入消息传输方式为第一传输方式或第二传输方式。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与随机接入消息传输方式相关的阈值。在一实施方式中,用户设备基于协议规定来获取与随机接入消息传输方式相关的阈值。
在一个实施方式中,用户设备基于其是否具有CE能力以及信号强度与阈值的大小关系,来确定随机接入消息传输方式为第一传输方式或第二传输方式。在一个实施方式中,随机接入消息为随机接入过程中的msg3消息。在一个实施方式中,第一传输方式为基于group B中的前导码(Preamble)资源的随机接入消息传输方式。在一个实施方式中,第二传输方式为基于group A中的前导码(Preamble)资源的随机接入消息传输方式。
在该实施方式中,用户设备在确定随机接入传输方式时,在考虑用户设备接收的信号强度的同时,也参考其CE能力,从而适用于具有CE能力的用户设备进行随机接入传输方式的确定。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图14是根据一示例性实施例示出的一种确定随机接入传输方式的方法的流程图,如图14所示,该方法包括:
步骤1401,测量下行信号的信号强度;
步骤1402,响应于用户设备具有覆盖增强CE能力,获取第六阈值作为用户设备的信号强度阈值;
步骤1403,响应于信号强度大于或等于第六阈值,确定随机接入消息传输方式为第一传输方式;响应于信号强度小于第六阈值,确定随机接入消息传输方式为第二传输方式。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与随机接入消息传输方式相关的阈值。在一实施方式中,用户设备基于协议规定来获取与随机接入消息传输方式相关的阈值。
在一个实施方式中,当用户设备具有CE能力时,获取第六阈值,当信号强度大于或等于第六阈值时,确定随机接入消息传输方式为第一传输方式,例如为基于group B中的前导码资源的随机接入消息传输方式。在一个实施方式中,当用户设备具有CE能力时, 若信号强度小于第六阈值,则确定随机接入消息传输方式为第二传输方式,例如为基于group A中的前导码资源的随机接入消息传输方式。
在一个实施方式中,第六阈值小于第七阈值,第七阈值是为不具有CE能力的用户设备确定随机接入消息传输方式所基于的阈值。
在该实施方式中,采用相对较小的阈值来确定具有CE能力的用户设备的随机接入消息传输方式,可以使得用户设备在位于信号覆盖较差的环境中时,也能采用第一传输方式。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图15是根据一示例性实施例示出的一种确定随机接入传输方式的方法的流程图,如图15所示,该方法包括:
步骤1501,测量下行信号的信号强度;
步骤1502,响应于用户设备不具有覆盖增强CE能力,获取第七阈值作为用户设备的信号强度阈值;
步骤1503,响应于信号强度大于或等于第七阈值,确定随机接入消息传输方式为第一传输方式;响应于信号强度小于第七阈值,确定随机接入消息传输方式为第二传输方式。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与随机接入消息传输方式相关的阈值。在一实施方式中,用户设备基于协议规定来获取与随机接入消息传输方式相关的阈值。
在一个实施方式中,当用户设备不具有CE能力时,获取第七阈值,当信号强度大于或等于第七阈值,确定随机接入消息传输方式为第一传输方式,例如为基于group B中的前导码资源的随机接入消息传输方式。在一个实施方式中,当用户设备不具有CE能力时,若信号强度小于第七阈值,则确定随机接入消息传输方式为第二传输方式,例如为基于group A中的前导码资源的随机接入消息传输方式。
在一个实施方式中,第六阈值小于第七阈值,第六阈值是为具有CE能力的用户设备确定随机接入消息传输方式所基于的阈值。
在该实施方式中,不具有CE能力的用户设备在处于信号覆盖较好的环境中时,才能采用第一传输方式进行随机接入消息的传输。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,第六阈值小于第七阈值。
第六阈值是为具有CE能力的用户设备确定随机接入消息传输方式所基于的阈值,第七阈值是为不具有CE能力的用户设备确定随机接入消息传输方式所基于的阈值。
在一个实施方式中,第一传输方式为基于group B中的前导码资源的随机接入消息传输方式,第二传输方式为基于group A中的前导码资源的随机接入消息传输方式。
在该实施方式中,采用相对较小的阈值来确定具有CE能力的用户设备的随机接入消 息传输方式,可以使得用户设备在位于信号覆盖较差的环境中时,也能采用第一传输方式。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图16是根据一示例性实施例示出的一种确定随机接入传输方式的方法的流程图,如图16所示,该方法包括:
步骤1601,测量下行信号的信号强度;
步骤1602,响应于用户设备具备覆盖增强CE能力,获取第六阈值和第八阈值作为用户设备的信号强度阈值;
步骤1603,响应于信号强度大于或等于第六阈值且小于第八阈值,开启用户设备的覆盖增强CE能力,并确定随机接入消息传输方式为第一传输方式。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与随机接入消息传输方式相关的阈值。在一实施方式中,用户设备基于协议规定来获取与随机接入消息传输方式相关的阈值。
在一个实施方式中,当用户设备具有CE能力时,若信号强度大于或等于第六阈值且小于第八阈值,则确定随机接入消息传输方式为第一传输方式,第六阈值小于第八阈值。这里,信号强度小于第八阈值,表明用户设备接收信号的信号强度不是足够大,此时为了保证通信质量,则需要用户设备开启CE能力。
在一个实施方式中,第八阈值等于判断不具有CE能力的用户设备的随机接入消息传输方式所基于的第七阈值。
在该实施方式中,对于具有CE能力的用户设备,当其接收信号的信号强度指示其能够采用第二传输方式进行随机接入消息的传输,但该信号强度又不足够大时,该用户设备开启CE能力,通过开启CE能力来弥补基站信号覆盖的不足。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图17是根据一示例性实施例示出的一种确定随机接入传输方式的方法的流程图,如图17所示,该方法包括:
步骤1701,测量下行信号的信号强度;
步骤1702,响应于用户设备具备覆盖增强CE能力,获取第八阈值作为用户设备的信号强度阈值;
步骤1703,响应于信号强度大于或等于第八阈值,不开启用户设备的覆盖增强CE能力,并确定随机接入消息传输方式为第一传输方式。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。在一个实施方式中,用户设备基于从基站接收的信令来获取与随机接入消息传输方式相关的阈值。在一实施方式中,用户设备基于协议规定来获取与随机接入消息传输方式相关的阈值。
在一个实施方式中,当用户设备具有CE能力时,若信号强度大于或等于第八阈值,则表明该信号强度足够大。此时可以不开启用户设备的CE能力,并采用第一传输方式进行随机接入消息的传输。第八阈值大于上文中的第六阈值。
在该实施方式中,对于具有CE能力的用户设备,当其接收信号的信号强度足够大时,该用户设备在不开启CE能力的情况下,并采用第一传输方式进行随机接入消息的传输。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图18是根据一示例性实施例示出的一种确定随机接入传输方式的方法的流程图,如图18所示,该方法包括:
步骤1801,测量下行信号的信号强度;
步骤1802,基于用户设备是否具备覆盖增强CE能力,接收来自于网络设备的信令,信令包括与随机接入消息传输方式相关的与用户设备对应的信号强度阈值;
步骤1803,基于信号强度和信号强度阈值,确定随机接入消息传输方式为第一传输方式或第二传输方式。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。
在一个实施方式中,用户设备基于从基站接收的信令,来获取阈值,该阈值包括第六阈值、第七阈值以及第八阈值中的至少一个。
需要说明的是,用户设备也可以基于协议规定来获取上述阈值。
在该实施方式中,用户设备基于基站通过信令发送的阈值来确定随机接入消息传输方式,能够基于当前的网络环境进行更加准确的判断,保证通信质量。
本公开实施例提供了一种确定随机接入传输方式的方法,该方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,信令是下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
在一个实施方式中,用户设备测量下行信号的信号强度,该信号强度为SS-RSRP。
在一个实施方式中,用户设备基于从基站接收的信令,来获取阈值。信令为下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
在一个实施方式中,用户设备通过相同的信令来获取第六阈值、第七阈值以及第八阈值,此时,通过该信令中的不同参数来获取不同的阈值。在一个实施方式中,用户设备通过不同的信令来获取第六阈值、第七阈值以及第八阈值。例如,通过信令RMSI来获取第六阈值,通过信令MIB来获取第七阈值,等等。
在该实施方式中,用户设备基于基站通过信令发送的阈值来确定随机接入消息传输方式,能够基于当前的网络环境进行更加准确的判断,保证通信质量。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被网络设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图19是根据一示例性实施例示出的一种执行小数据包传输SDT的方法的流程图,如图19所示, 该方法包括:
步骤1901,发送信令,信令包括信号强度阈值,信号强度阈值用于用户设备判断是否执行小数据包传输SDT。
在一个实施方式中,信令为下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
在一个实施方式中,网络设备通过相同的信令来发送不同的信号强度阈值,此时,通过该信令中的不同参数来发送不同的阈值。在一个实施方式中,网络设备通过不同的信令来发送不同的信号强度阈值。
本公开实施例提供了一种执行小数据包传输SDT的方法,该方法被网络设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述信号强度阈值包括下述中至少一个:第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值。
本公开实施例提供了一种确定随机接入消息传输方式的方法,该方法被网络设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图20是根据一示例性实施例示出的一种确定随机接入消息传输方式的方法的流程图,如图20所示,该方法包括:
步骤2001,发送信令,信令包括信号强度阈值,信号强度阈值用于用户设备确定随机接入消息传输方式。
在一个实施方式中,信令为下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
在一个实施方式中,网络设备通过相同的信令来发送不同的信号强度阈值,此时,通过该信令中的不同参数来发送不同的阈值。在一个实施方式中,网络设备通过不同的信令来发送不同的信号强度阈值。
本公开实施例提供了一种确定随机接入消息传输方式的方法,该方法被网络设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述信号强度阈值包括下述中至少一个:第六阈值、第七阈值以及第八阈值。
本实施例提供了一种执行小数据包传输SDT的装置,应用于用户设备,参照图21所示,包括:
通信模块2101,被配置为接收下行信号;
处理模块2102,被配置为测量下行信号的信号强度;基于用户设备是否具备覆盖增强CE能力,获取与小数据包传输SDT相关的与用户设备对应的信号强度阈值;基于信号强度和信号强度阈值,执行小数据包传输SDT。
本实施例提供了一种确定所述随机接入消息传输方式的装置,应用于用户设备,参照 图22所示,包括:
通信模块2201,被配置为接收下行信号;
处理模块2202,被配置为测量下行信号的信号强度;基于用户设备是否具备覆盖增强CE能力,获取与随机接入消息传输方式相关的与用户设备对应的信号强度阈值;基于信号强度和信号强度阈值,确定随机接入消息传输方式为第一传输方式或第二传输方式。
本实施例提供了一种执行小数据包传输SDT的装置,应用于网络设备,参照图23所示,包括:
通信模块2301,被配置为发送信令,信令包括信号强度阈值,信号强度阈值用于用户设备确定随机接入消息传输方式。
本实施例提供了一种确定随机接入消息传输方式的装置,应用于网络设备,参照图24所示,包括:
通信模块2401,被配置为发送信令,信令包括信号强度阈值,信号强度阈值用于用户设备确定随机接入消息传输方式。
本实施例提供了一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为执行存储器中的可执行指令以实现上述方法的步骤。
本实施例提供了一种网络设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为执行存储器中的可执行指令以实现上述方法的步骤。
本实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述方法的步骤。
图25是根据一示例性实施例示出的一种用于发送下行信息的装置2500的框图。例如,装置2500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图25,装置2500可以包括以下一个或多个组件:处理组件2502,存储器2504,电源组件2506,多媒体组件2508,音频组件2510,输入/输出(I/O)的接口2512,传感器组件2514,以及通信组件2516。
处理组件2502通常控制装置2500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2502可以包括一个或多个处理器2520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2502可以包括一个或多 个模块,便于处理组件2502和其他组件之间的交互。例如,处理组件2502可以包括多媒体模块,以方便多媒体组件2508和处理组件2502之间的交互。
存储器2504被配置为存储各种类型的数据以支持在设备2500的操作。这些数据的示例包括用于在装置2500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2506为装置2500的各种组件提供电力。电源组件2506可以包括电源管理系统,一个或多个电源,及其他与为装置2500生成、管理和分配电力相关联的组件。
多媒体组件2508包括在装置2500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2508包括一个前置摄像头和/或后置摄像头。当设备2500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2510被配置为输出和/或输入音频信号。例如,音频组件2510包括一个麦克风(MIC),当装置2500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2504或经由通信组件2516发送。在一些实施例中,音频组件2510还包括一个扬声器,用于输出音频信号。
I/O接口2512为处理组件2502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2514包括一个或多个传感器,用于为装置2500提供各个方面的状态评估。例如,传感器组件2514可以检测到设备2500的打开/关闭状态,组件的相对定位,例如组件为装置2500的显示器和小键盘,传感器组件2514还可以检测装置2500或装置2500一个组件的位置改变,用户与装置2500接触的存在或不存在,装置2500方位或加速/减速和装置2500的温度变化。传感器组件2514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2516被配置为便于装置2500和其他设备之间有线或无线方式的通信。装置2500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2516经由广播信道接收来自外部广播管理系统的广播信号或广 播相关信息。在一个示例性实施例中,通信组件2516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2504,上述指令可由装置2500的处理器2520执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图26是根据一示例性实施例示出的一种执行小数据包传输SDT的装置2600的框图。例如,装置2600可以被提供为一基站。参照图26,装置2600包括处理组件2622,其进一步包括一个或多个处理器,以及由存储器2632所代表的存储器资源,用于存储可由处理组件2622的执行的指令,例如应用程序。存储器2632中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件2622被配置为执行指令,以执行上述非授权信道的接入方法。
装置2600还可以包括一个电源组件2626被配置为执行装置2600的电源管理,一个有线或无线网络接口2650被配置为将装置2600连接到网络,和一个输入输出(I/O)接口2659。装置2600可以操作基于存储在存储器2632的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
用户设备确定执行SDT时,在考虑用户设备接收的信号强度的同时,也参考其CE能力,从而适用于具有CE能力的用户设备执行SDT。此外,用户设备在确定随机接入传输方式时,在考虑用户设备接收的信号强度的同时,也参考其CE能力,从而适用于具有CE能力的用户设备进行随机接入传输方式的确定。

Claims (34)

  1. 一种执行小数据包传输SDT的方法,所述方法被用户设备执行,包括:
    测量下行信号的信号强度;
    基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值;
    基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT。
  2. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具有所述覆盖增强CE能力,获取第一阈值作为所述用户设备的所述信号强度阈值。
  3. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备不具有所述覆盖增强CE能力,获取第二阈值作为所述用户设备的所述信号强度阈值。
  4. 如权利要求2所述的方法,其中,所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT的步骤,包括:
    响应于所述信号强度大于或等于所述第一阈值,执行基于4步随机接入过程RACH的所述小数据包传输SDT。
  5. 如权利要求3所述的方法,其中,所述基于所述信号强度和所述信号强度阈值,为所述用户设备执行所述小数据包传输SDT的步骤,进一步包括:
    响应于所述信号强度大于或等于所述第二阈值,执行基于4步RACH的所述小数据包传输SDT。
  6. 如权利要求4或5所述的任一方法,其中,所述第一阈值小于所述第二阈值。
  7. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具备所述覆盖增强CE能力,获取第一阈值和第三阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
    响应于所述信号强度大于或等于所述第一阈值且小于所述第三阈值,开启所述用户设备的所述覆盖增强CE能力,并执行所述小数据包传输SDT。
  8. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具备所述覆盖增强CE能力,获取第三阈值和第四阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
    响应于所述信号强度大于或等于所述第三阈值且小于所述第四阈值,不开启所述用户设备的所述覆盖增强CE能力,并执行所述小数据包传输SDT。
  9. 如权利要求5、7或8所述的任一方法,其中,所述第三阈值大于或等于所述第二阈值。
  10. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具有所述覆盖增强CE能力,获取第四阈值作为所述用户设备的所述信号强度阈值。
  11. 如权利要求10所述的方法,其中,所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
    响应于所述信号强度大于所述第四阈值,执行基于2步RACH的所述小数据包传输SDT。
  12. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备不具备所述覆盖增强CE能力,获取第二阈值和第五阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
    响应于所述信号强度大于或等于所述第二阈值且小于所述第五阈值,执行所述小数据包传输SDT。
  13. 如权利要求1所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备不具备所述覆盖增强CE能力,获取第五阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT,包括:
    响应于所述信号强度大于或等于所述第五阈值,执行基于2步RACH的所述小数据包传输SDT。
  14. 如权利要求1中所述的方法,其中,所述获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值,包括:
    接收来自于网络设备的信令,所述信令包括与所述用户设备对应的信号强度阈值。
  15. 如权利要求14所述的方法,其中,所述信令是下述信令中的至少一种:剩余最小系统信息RMSI、主信息块MIB、无线资源控制RRC、其它系统信息OSI、下行链路控制信息DCI、媒体接入控制-控制单元MAC-CE。
  16. 一种确定随机接入消息传输方式的方法,所述方法被用户设备执行,包括:
    测量下行信号的信号强度;
    基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值;
    基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式。
  17. 如权利要求16所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE 能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具有所述覆盖增强CE能力,获取第六阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
    响应于所述信号强度大于或等于第六阈值,确定所述随机接入消息传输方式为第一传输方式;
    响应于所述信号强度小于第六阈值,确定所述随机接入消息传输方式为第二传输方式。
  18. 如权利要求16所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备不具有所述覆盖增强CE能力,获取第七阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
    响应于所述信号强度大于或等于第七阈值,确定所述随机接入消息传输方式为第一传输方式;
    响应于所述信号强度小于第七阈值,确定所述随机接入消息传输方式为第二传输方式。
  19. 如权利要求17或18所述的任一方法,其中,所述第六阈值小于所述第七阈值。
  20. 如权利要求16所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具备所述覆盖增强CE能力,获取第六阈值和第八阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式,包括:
    响应于所述信号强度大于或等于所述第六阈值且小于所述第八阈值,开启所述用户设备的所述覆盖增强CE能力,并确定所述随机接入消息传输方式为第一传输方式。
  21. 如权利要求16所述的方法,其中,所述基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
    响应于所述用户设备具备所述覆盖增强CE能力,获取第八阈值作为所述用户设备的所述信号强度阈值;
    所述基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一 传输方式或第二传输方式,包括:
    响应于所述信号强度大于或等于所述第八阈值,不开启所述用户设备的所述覆盖增强CE能力,并确定所述随机接入消息传输方式为第一传输方式。
  22. 如权利要求16中所述的方法,其中,所述获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值,包括:
    接收来自于网络设备的信令,所述信令包括与所述用户设备对应的信号强度阈值。
  23. 如权利要求22所述的方法,其中,所述信令是下述信令中的至少一种:RMSI、MIB、RRC、OSI、DCI、MAC-CE。
  24. 一种执行小数据包传输SDT的方法,所述方法被网络设备执行,包括:
    发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备判断是否执行小数据包传输SDT。
  25. 如权利要求24所述的方法,其中,所述信号强度阈值包括下述中至少一个:第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值。
  26. 一种确定随机接入消息传输方式的方法,所述方法被网络设备执行,包括:
    发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备确定所述随机接入消息传输方式。
  27. 如权利要求26所述的方法,其中,所述信号强度阈值包括下述中至少一个:第六阈值、第七阈值以及第八阈值。
  28. 一种执行小数据包传输SDT的装置,应用于用户设备,包括:
    通信模块,被配置为接收下行信号;
    处理模块,被配置为测量所述下行信号的信号强度;基于所述用户设备是否具备覆盖增强CE能力,获取与所述小数据包传输SDT相关的与所述用户设备对应的信号强度阈值;基于所述信号强度和所述信号强度阈值,执行所述小数据包传输SDT。
  29. 一种确定所述随机接入消息传输方式的装置,应用于用户设备,包括:
    通信模块,被配置为接收下行信号;
    处理模块,被配置为测量所述下行信号的信号强度;基于所述用户设备是否具备覆盖增强CE能力,获取与所述随机接入消息传输方式相关的与所述用户设备对应的信号强度阈值;基于所述信号强度和所述信号强度阈值,确定所述随机接入消息传输方式为第一传输方式或第二传输方式。
  30. 一种执行小数据包传输SDT的装置,应用于网络设备,包括:
    通信模块,被配置为发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备确定所述随机接入消息传输方式。
  31. 一种确定随机接入消息传输方式的装置,应用于网络设备,包括:
    通信模块,被配置为发送信令,所述信令包括信号强度阈值,所述信号强度阈值用于用户设备确定所述随机接入消息传输方式。
  32. 一种用户设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至15或16至23中任一项的方法的步骤。
  33. 一种网络设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求24至25或26至27中任一项的方法的步骤。
  34. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至15中或者权利要求16至23中或者权利要求24至25中或者权利要求26至27中任一项的方法的步骤。
PCT/CN2021/112357 2021-08-12 2021-08-12 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质 WO2023015535A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002486.0A CN113796110A (zh) 2021-08-12 2021-08-12 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
PCT/CN2021/112357 WO2023015535A1 (zh) 2021-08-12 2021-08-12 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
EP21953152.2A EP4387297A1 (en) 2021-08-12 2021-08-12 Method and apparatus for performing small data transmission, method and apparatus for determining random access message transmission mode, device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112357 WO2023015535A1 (zh) 2021-08-12 2021-08-12 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023015535A1 true WO2023015535A1 (zh) 2023-02-16

Family

ID=78877398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112357 WO2023015535A1 (zh) 2021-08-12 2021-08-12 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质

Country Status (3)

Country Link
EP (1) EP4387297A1 (zh)
CN (1) CN113796110A (zh)
WO (1) WO2023015535A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197330A1 (zh) * 2022-04-15 2023-10-19 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565670A (zh) * 2016-08-05 2019-04-02 诺基亚技术有限公司 基于功率等级的覆盖增强级别选择
CN110753324A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 一种信息上报及接收方法、装置和存储介质
CN111465067A (zh) * 2020-03-17 2020-07-28 深圳前海达闼云端智能科技有限公司 网络接入的方法、装置、存储介质及网络设备和终端
WO2020221861A1 (en) * 2019-05-02 2020-11-05 Nokia Technologies Oy Enhanced initial access for efficient small data transmission
CN112262597A (zh) * 2020-09-17 2021-01-22 北京小米移动软件有限公司 通信方法及装置、网络设备、ue及存储介质
US20210243614A1 (en) * 2018-10-25 2021-08-05 Huawei Technologies Co., Ltd. Communication method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565670A (zh) * 2016-08-05 2019-04-02 诺基亚技术有限公司 基于功率等级的覆盖增强级别选择
CN110753324A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 一种信息上报及接收方法、装置和存储介质
US20210243614A1 (en) * 2018-10-25 2021-08-05 Huawei Technologies Co., Ltd. Communication method and apparatus
WO2020221861A1 (en) * 2019-05-02 2020-11-05 Nokia Technologies Oy Enhanced initial access for efficient small data transmission
CN111465067A (zh) * 2020-03-17 2020-07-28 深圳前海达闼云端智能科技有限公司 网络接入的方法、装置、存储介质及网络设备和终端
CN112262597A (zh) * 2020-09-17 2021-01-22 北京小米移动软件有限公司 通信方法及装置、网络设备、ue及存储介质

Also Published As

Publication number Publication date
EP4387297A1 (en) 2024-06-19
CN113796110A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2020019217A1 (zh) 传输配置方法及装置
WO2020019218A1 (zh) 传输配置方法及装置
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
WO2020014844A1 (zh) 信道监测方法、装置、系统及存储介质
CN108496390B (zh) 非授权小区中的数据传输方法及装置、基站和用户设备
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
CN110622616A (zh) 非活动定时器的控制方法和装置
WO2019232807A1 (zh) 下行控制信令检测方法、装置及存储介质
WO2022205348A1 (zh) 一种发送和接收下行信息的方法、装置、设备及存储介质
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2022077274A1 (zh) 一种无线感知资源协调方法、装置及存储介质
US11665586B2 (en) Method and apparatus for data transmission, electronic device and computer readable storage medium
WO2018120779A1 (zh) 下行链路数据的传输方法及装置
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2022188067A1 (zh) 一种发送、接收下行控制信道的方法、装置、设备及介质
WO2018000322A1 (zh) 数据传输方法及装置
CN110268779B (zh) 直连链路数据发送和直连链路资源配置方法以及装置
WO2020118706A1 (zh) 传输配置信息的方法及装置
WO2023151097A1 (zh) 一种测量方法、装置、设备及存储介质
US20210392520A1 (en) Network parameter configuration method and apparatus, and computer-readable storage medium
EP3751951A1 (en) Method, apparatus and system for establishing connection between terminal and core network to be accessed
WO2023039889A1 (zh) 一种传输和获取调度信息的方法、装置、设备及存储介质
WO2023133768A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质
WO2022147764A1 (zh) 一种非授权信道的接入方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953152

Country of ref document: EP

Effective date: 20240312