WO2023151097A1 - 一种测量方法、装置、设备及存储介质 - Google Patents

一种测量方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023151097A1
WO2023151097A1 PCT/CN2022/076252 CN2022076252W WO2023151097A1 WO 2023151097 A1 WO2023151097 A1 WO 2023151097A1 CN 2022076252 W CN2022076252 W CN 2022076252W WO 2023151097 A1 WO2023151097 A1 WO 2023151097A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
ssb
rrm
cell
ncd
Prior art date
Application number
PCT/CN2022/076252
Other languages
English (en)
French (fr)
Inventor
胡子泉
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000443.3A priority Critical patent/CN116918370A/zh
Priority to PCT/CN2022/076252 priority patent/WO2023151097A1/zh
Publication of WO2023151097A1 publication Critical patent/WO2023151097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a measurement method, device, equipment and storage medium.
  • the gNB can flexibly configure multiple different Synchronized Signal Blocks (SSB) transmitted in the time-frequency domain, and the SSB transmitted in different frequency positions can have different Physical Cell Identification (PCI).
  • PCI Physical Cell Identification
  • the SSB is associated with Remaining Minimum System Information (RMSI)
  • RMSI Remaining Minimum System Information
  • the SSB is called Cell Defining SSB (Cell Defining SSB, CD-SSB).
  • RRM Radio Resource Management
  • 3GPP introduces a reduced capability (Reduced Capability, RedCap) terminal type in Rel-17, which has the characteristics of low cost, low complexity, and small size. Compared with eMBB terminals, the bandwidth of RedCap terminals is reduced, FR1 is reduced to 20MHz, and FR2 is reduced to 100MHz. Due to the limited bandwidth of RedCap terminals, 3GPP has agreed that RedCap terminals can perform measurements based on Non-Cell Defining SSB (NCD-SSB).
  • NCD-SSB Non-Cell Defining SSB
  • the present disclosure provides a measurement method, device, equipment and storage medium.
  • a measurement method executed by a user equipment including:
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the RRM measurement being a measurement for a serving cell of the user equipment
  • performing the RRM measurement based on a synchronization signal block SSB on an active bandwidth part BWP of the serving cell, wherein the SSB on the active BWP It is CD-SSB or NCD-SSB.
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the determining whether to perform NCD-SSB-based RRM measurement on the neighboring cell of the serving cell based on the measurement result includes:
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the RRM measurement is performed for an SSB having a higher priority among the CD-SSB and the NCD-SSB.
  • the priority of the CD-SSB and the priority of the NCD-SSB are determined based on an indication of the network device, or determined based on a communication protocol.
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the same-frequency SSB satisfies the first condition.
  • the method includes:
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell
  • the same-frequency SSB satisfies the first condition, and the different-frequency SSB has a different frequency point from the same-frequency SSB.
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the neighboring cells in the second set of neighboring cells are not included in the first set of neighboring cells.
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the first condition includes: having the same center frequency and subcarrier spacing SCS as the reference SSB; the reference SSB is the SSB on the activated BWP of the serving cell.
  • the measurement configuration parameter sent by the network device is received.
  • a measurement method executed by a network device including:
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • a measurement device applied to user equipment including:
  • a processing module configured to perform radio resource management RRM measurement based on a measurement configuration parameter
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • a measurement device applied to network equipment including:
  • a communication module configured to send measurement configuration parameters to the user equipment
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • a mobile terminal including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the above measurement method.
  • a network side device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the above measurement method.
  • a non-transitory computer-readable storage medium on which executable instructions are stored, and when the executable instructions are executed by a processor, the steps of the above measuring method are implemented.
  • the network device issues the measurement configuration parameters used to indicate CD-SSB-based RRM measurement and the measurement configuration parameters used to indicate NCD-SSB-based RRM measurement to the user equipment. Measurement configuration parameters for measurement. Based on the above measurement configuration parameters, the user equipment can perform RRM measurement based on CD-SSB and RRM measurement based on NCD-SSB.
  • Fig. 1 is a flow chart of a measurement method shown according to an exemplary embodiment
  • Fig. 2 is a flow chart of a measurement method shown according to an exemplary embodiment
  • Fig. 3 is a flowchart of a measurement method shown according to an exemplary embodiment
  • Fig. 4 is a flow chart of a measurement method shown according to an exemplary embodiment
  • Fig. 5 is a block diagram of a measuring device according to an exemplary embodiment
  • Fig. 6 is a block diagram of a measuring device according to an exemplary embodiment
  • Fig. 7 is a structural diagram of a measuring device according to an exemplary embodiment
  • Fig. 8 is a structural diagram of a measuring device according to an exemplary embodiment.
  • an embodiment of the present disclosure may include multiple steps; for the convenience of description, these steps are numbered; however, these numbers do not limit the execution time slots and execution order between the steps; these steps It can be implemented in any order, which is not limited by the embodiments of the present disclosure.
  • RAN4 currently has no NCD-SSB-based RRM measurement requirements. After the introduction of NCD-SSB, RRM measurement needs to consider the coexistence of NCD-SSB-based measurement and CD-SSB-based measurement.
  • the network device configures measurement parameters for the terminal through the radio resource control (Radio Resource Control, RRC) parameter MeasObject (measurement object). For the same cell, configure the same PCI, period, power, etc. for NCD-SSB-based measurement and CD-SSB-based measurement, including ssb-PositionsInBurst, PCI, ssb-periodicity, ssb-PBCH-BlockPower, etc.
  • RRC Radio Resource Control
  • Fig. 1 is a flow chart of a measurement method shown according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 based on measurement configuration parameters, perform radio resource management RRM measurement
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • the user equipment performs RRM measurement based on measurement configuration parameters, and these measurement configuration parameters include parameters indicating RRM measurement based on CD-SSB and parameters indicating RRM measurement based on NCD-SSB, such as PCI , period, power and other parameters.
  • the user equipment in this embodiment is a user equipment supporting NCD-SSB measurement capability.
  • the measurement configuration parameter is received from the network device before the user equipment performs this measurement.
  • the measurement configuration parameters are received from the network device before the user equipment performs the last measurement, and this measurement also uses the measurement configuration parameters received during the last measurement.
  • the user equipment is a RedCap terminal.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the RRM measurement being a measurement for a serving cell of the user equipment
  • performing the RRM measurement based on a synchronization signal block SSB on an active bandwidth part BWP of the serving cell, wherein the SSB on the active BWP It is CD-SSB or NCD-SSB.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the RRM measurement is for the serving cell of the user equipment
  • the user equipment performs the RRM measurement based on the SSB on the active BWP of the serving cell, wherein the SSB on the active BWP is CD-SSB.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the RRM measurement is for the serving cell of the user equipment
  • the user equipment performs the RRM measurement based on the SSB on the active BWP of the serving cell, wherein the SSB on the active BWP is NCD-SSB.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the RRM measurement being a measurement for a serving cell of the user equipment
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the RRM measurement is the measurement of the serving cell of the user equipment
  • the user equipment performs RRM measurement based on the SSB on the activated BWP of the serving cell, wherein the SSB on the activated BWP is CD-SSB, and determines the activated BWP
  • the SSB above is the reference SSB.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the RRM measurement is the measurement of the serving cell of the user equipment
  • the user equipment performs RRM measurement based on the SSB on the active BWP of the serving cell, wherein the SSB on the active BWP is NCD-SSB, and determines the active BWP
  • the SSB above is the reference SSB.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the RRM measurement is for a neighboring cell of the serving cell of the user equipment, and the SSB of the measurement object of the neighboring cell satisfies the first condition, it is determined that the measurement for the SSB of the measurement object is intra-frequency measurement.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the RRM measurement is for a neighboring cell of the serving cell of the user equipment, and the SSB of the measurement object of the neighboring cell does not meet the first condition, it is determined that the measurement for the SSB of the measurement object is an inter-frequency measurement.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the first condition includes: the SSB of the measurement object has the same center frequency and subcarrier spacing SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • the user equipment does not perform RRM measurement based on NCD-SSB on the neighbor cell.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the signal quality of the serving cell is poor, it is no longer necessary to perform NCD-SSB-based RRM measurement on neighboring cells.
  • the above set threshold may be set based on specific application scenarios.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • the user equipment does not perform RRM measurement based on NCD-SSB on the neighbor cell.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the RRM measurement is performed for an SSB having a higher priority among the CD-SSB and the NCD-SSB.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • RRM measurements based on the measurement configuration parameters.
  • a measurement object is configured with both CD-SSB and NCD-SSB, determine the priority of CD-SSB and NCD-SSB, only for the SSB with higher priority among CD-SSB and NCD-SSB RRM measurements are performed instead of RRM measurements for SSBs with lower priority.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the priority of the CD-SSB and the priority of the NCD-SSB may be determined based on an indication of the network device, or determined based on a communication protocol.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the RRM measurement is performed for an SSB having a higher priority among the CD-SSB and the NCD-SSB.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the above set threshold may be set based on specific application scenarios.
  • the priority of the CD-SSB and the priority of the NCD-SSB may be determined based on an indication of the network device, or determined based on a communication protocol.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • the user equipment does not perform RRM measurement based on NCD-SSB on the neighbor cell.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the same-frequency SSB satisfies the first condition.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the same-frequency SSB satisfies the first condition.
  • the first condition that the same-frequency SSB satisfies includes: the same-frequency SSB has the same center frequency and SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers the measurement configuration parameters used to indicate CD-SSB-based RRM measurement and the measurement configuration parameters used to indicate Based on the measurement configuration parameters of NCD-SSB-based RRM measurement, the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the same-frequency SSB satisfies the first condition.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the UE performs RRM measurements based on the measurement configuration parameters.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement. The same frequency SSB satisfies the first condition.
  • the first condition that the same-frequency SSB satisfies includes: the same-frequency SSB has the same center frequency and SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • the user equipment does not perform RRM measurement based on NCD-SSB on the neighbor cell.
  • FIG. 2 is a flow chart of a measurement method shown according to an exemplary embodiment. As shown in Fig. 2, the method includes:
  • Step 201 perform radio resource management RRM measurement based on the measurement configuration parameters
  • Step 202 reporting the measurement result of the RRM measurement to the network device
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement, such as parameters such as PCI, period, and power.
  • the user equipment in this embodiment is a user equipment supporting NCD-SSB measurement capability.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell
  • the same-frequency SSB satisfies the first condition, and the different-frequency SSB has a different frequency point from the same-frequency SSB.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • the measurement configuration parameter include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell.
  • the same-frequency SSB satisfies the first condition.
  • Different-frequency SSBs have different frequency points from same-frequency SSBs.
  • the first condition met by the same-frequency SSB includes: the same-frequency SSB has the same center frequency and SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the neighboring cells in the second set of neighboring cells are not included in the first set of neighboring cells; the same-frequency measurement is RRM measurement for the same-frequency SSB of the cell, and the inter-frequency measurement is for The RRM measurement of the inter-frequency SSB of the cell; the same-frequency SSB satisfies the first condition, and the inter-frequency SSB has a different frequency point from the same-frequency SSB.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • the network device reports the measurement result of the RRM measurement to the network device.
  • the user equipment determines a first neighbor cell set of the serving cell of the user equipment based on the measurement result of the same-frequency measurement, and reports the measurement result corresponding to the neighbor cells different from the first neighbor cell set in the inter-frequency measurement.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell.
  • the same-frequency SSB satisfies the first condition.
  • Different-frequency SSBs have different frequency points from same-frequency SSBs.
  • the first condition met by the same-frequency SSB includes: the same-frequency SSB has the same center frequency and SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • the measurement configuration parameter include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • the measurement configuration parameter include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • the measurement configuration parameter include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • RRM measurement based on the measurement configuration parameter
  • the measurement configuration parameter include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • FIG. 3 is a flow chart of a measurement method shown according to an exemplary embodiment. As shown in Fig. 3, the method includes:
  • Step 301 perform radio resource management RRM measurement based on the measurement configuration parameters
  • Step 302 reporting the measurement result of the RRM measurement to the network device
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement, such as parameters such as PCI, period, and power.
  • the user equipment in this embodiment is a user equipment supporting NCD-SSB measurement capability.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell
  • the same-frequency SSB satisfies the first condition, and the different-frequency SSB has a different frequency point from the same-frequency SSB.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell.
  • the same-frequency SSB satisfies the first condition.
  • Different-frequency SSBs have different frequency points from same-frequency SSBs.
  • the first condition met by the same-frequency SSB includes: the same-frequency SSB has the same center frequency and SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • the neighboring cells in the second neighboring cell set are not included in the first neighboring cell set
  • the same-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the different-frequency SSB of the cell
  • the same-frequency SSB satisfies the first condition
  • the The inter-frequency SSB has a different frequency point from the same-frequency SSB.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the user equipment also determines a first neighbor cell set of the serving cell of the user equipment based on the measurement result of the same-frequency measurement, and reports the measurement result corresponding to the neighbor cells different from the first neighbor cell set in the inter-frequency measurement.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the intra-frequency measurement is the RRM measurement for the same-frequency SSB of the cell
  • the inter-frequency measurement is the RRM measurement for the inter-frequency SSB of the cell.
  • the same-frequency SSB satisfies the first condition.
  • Different-frequency SSBs have different frequency points from same-frequency SSBs.
  • the first condition met by the same-frequency SSB includes: the same-frequency SSB has the same center frequency and SCS as the reference SSB; the reference SSB is the SSB on the active BWP of the serving cell.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating the RRM measurement based on the cell-defined synchronization signal block CD-SSB and parameters for indicating the RRM measurement based on the non-cell-defined synchronization signal block NCD-SSB;
  • the performing RRM measurement based on the measurement configuration parameters includes:
  • the reporting the measurement result of the RRM measurement to the network device includes:
  • reporting the measurement results of the multiple measurement objects has a maximum value or the measurement with the smallest value.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the user equipment performs RRM measurement based on the measurement configuration parameter, and then reports the measurement result of the RRM measurement to the network device.
  • the corresponding first measurement result is obtained, and when the first measurement result is greater than the set threshold, that is, when the signal quality of the serving cell is relatively good, it is determined that the service cell is allowed to Neighboring cells perform NCD-SSB based RRM measurements.
  • the measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement method, and the method is executed by a user equipment. This method can be executed independently, and can also be executed in combination with any other embodiment of the present disclosure.
  • the method includes:
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • the user equipment receives measurement configuration parameters from the network device, and performs RRM measurement based on the measurement configuration parameters, and these measurement configuration parameters include parameters indicating CD-SSB-based RRM measurement and parameters indicating NCD-based RRM measurement. - Parameters of the RRM measurement of the SSB.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • FIG. 4 is a flow chart of a measurement method shown according to an exemplary embodiment. As shown in Fig. 4, the method includes:
  • Step 401 sending measurement configuration parameters to user equipment
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • the network device sends measurement configuration parameters to the user equipment, so that the user equipment performs RRM measurement based on these measurement configuration parameters.
  • These measurement configuration parameters include parameters for indicating CD-SSB-based RRM measurement and parameters for indicating NCD-SSB-based RRM measurement.
  • the network device delivers to the user equipment the measurement configuration parameters for indicating CD-SSB-based RRM measurement and the measurement configuration parameters for indicating CD-SSB-based RRM measurement.
  • the user equipment can perform CD-SSB-based RRM measurement and NCD-SSB-based RRM measurement based on the foregoing measurement configuration parameters.
  • An embodiment of the present disclosure provides a measurement device, which is applied to a user equipment, as shown in FIG. 5 , including:
  • the processing module 501 is configured to perform radio resource management RRM measurement based on the measurement configuration parameter;
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • An embodiment of the present disclosure provides a measuring device, which is applied to a network device, as shown in FIG. 6 , including:
  • the communication module 601 is configured to send measurement configuration parameters to the user equipment
  • the measurement configuration parameters include parameters for indicating RRM measurement based on cell-defined synchronization signal block CD-SSB and parameters for indicating RRM measurement based on non-cell-defined synchronization signal block NCD-SSB.
  • An embodiment of the present disclosure provides a mobile terminal, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the above measurement method.
  • An embodiment of the present disclosure provides a network side device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the above measurement method.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium, on which executable instructions are stored, and when the executable instructions are executed by a processor, the steps of the above measurement method are implemented.
  • Fig. 7 is a block diagram of a measurement device 700 according to an exemplary embodiment.
  • the apparatus 700 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 700 may include one or more of the following components: processing component 702, memory 704, power supply component 706, multimedia component 708, audio component 710, input/output (I/O) interface 712, sensor component 714, and communication component 716 .
  • the processing component 702 generally controls the overall operations of the device 700, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 702 may include one or more modules that facilitate interaction between processing component 702 and other components. For example, processing component 702 may include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702 .
  • Memory 704 is configured to store various types of data to support operations at device 700 . Examples of such data include instructions for any application or method operating on device 700, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 704 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 706 provides power to various components of the device 700 .
  • Power components 706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 700 .
  • the multimedia component 708 includes a screen that provides an output interface between the device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 708 includes a front camera and/or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 710 is configured to output and/or input audio signals.
  • the audio component 710 includes a microphone (MIC), which is configured to receive external audio signals when the device 700 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 704 or sent via communication component 716 .
  • the audio component 710 also includes a speaker for outputting audio signals.
  • the I/O interface 712 provides an interface between the processing component 702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 714 includes one or more sensors for providing various aspects of status assessment for device 700 .
  • the sensor component 714 can detect the open/closed state of the device 700, the relative positioning of components, such as the display and keypad of the device 700, and the sensor component 714 can also detect a change in the position of the device 700 or a component of the device 700 , the presence or absence of user contact with the device 700 , the device 700 orientation or acceleration/deceleration and the temperature change of the device 700 .
  • Sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 714 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 716 is configured to facilitate wired or wireless communication between the apparatus 700 and other devices.
  • the device 700 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 716 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • apparatus 700 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 704 including instructions, which can be executed by the processor 720 of the device 700 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 8 is a block diagram of a measurement device 800 according to an exemplary embodiment.
  • apparatus 800 may be provided as a base station.
  • apparatus 800 includes processing component 822 , which further includes one or more processors, and a memory resource represented by memory 832 for storing instructions executable by processing component 822 , such as application programs.
  • the application program stored in memory 832 may include one or more modules each corresponding to a set of instructions.
  • the processing component 822 is configured to execute instructions to perform the above method for accessing an unlicensed channel.
  • Device 800 may also include a power component 826 configured to perform power management of device 800 , a wired or wireless network interface 850 configured to connect device 800 to a network, and an input-output (I/O) interface 859 .
  • the device 800 can operate based on an operating system stored in the memory 832, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the network device issues the measurement configuration parameters used to indicate CD-SSB-based RRM measurement and the measurement configuration parameters used to indicate NCD-SSB-based RRM measurement to the user equipment. Measurement configuration parameters for measurement. Based on the above measurement configuration parameters, the user equipment can perform RRM measurement based on CD-SSB and RRM measurement based on NCD-SSB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种测量方法、装置、设备及存储介质。该测量方法被用户设备执行,包括:基于测量配置参数,执行无线资源管理RRM测量;其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。采用该方法,用户设备能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。

Description

一种测量方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种测量方法、装置、设备及存储介质。
背景技术
gNB可以灵活配置在时频域位置传输的多个不同的同步信号块(Synchrronized Signal Block,SSB),在不同频率位置传输的SSB可以具有不同的物理小区识别码(Physical Cell Identification,PCI)。当SSB与剩余最小系统信息(Remaining Minimum System Information,RMSI)相关联时,SSB被称为小区定义SSB(Cell Defining SSB,CD-SSB)。基于现有协议,终端在进行基于SSB的相关无线资源管理(RadioResourceManagement,RRM)测量时,使用的都是基于CD-SSB的RRM测量。
3GPP在Rel-17引入降低能力的(Reduced Capability,RedCap)终端类型,其具有低成本、低复杂性、小尺寸等特点。相较于eMBB终端,RedCap终端带宽减少,FR1减少到20MHz,FR2减少到100MHz。由于RedCap终端带宽受限,目前3GPP已经同意RedCap终端可以基于非小区定义SSB(Non-Cell Defining SSB,NCD-SSB)进行测量。
发明内容
有鉴于此,本公开提供了一种测量方法、装置、设备及存储介质。
根据本公开实施例的第一个方面,提供一种测量方法,被用户设备执行,包括:
基于测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
在一实施方式中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于所述RRM测量为针对所述用户设备的服务小区的测量,基于所述服务小区的激活带宽部分BWP上的同步信号块SSB,执行所述RRM测量,其中,所述激活BWP上的SSB为CD-SSB或NCD-SSB。
在一实施方式中,所述基于所述测量配置参数,执行RRM测量,包括:
确定所述服务小区的激活BWP上的SSB为参考SSB。
在一实施方式中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于所述RRM测量为针对所述用户设备的服务小区的邻小区的测量,且响应于所述邻小区的测量对象的SSB满足第一条件,确定针对所述测量对象的SSB的测量为同频测量;
响应于所述RRM测量为对所述用户设备的服务小区的邻小区的测量,且响应于所述测量对象的SSB不满足所述第一条件,确定针对所述测量对象的SSB的测量为异频测量。
在一实施方式中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
基于所述第一测量结果,确定是否允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
在一实施方式中,所述基于所述测量结果,确定是否对所述服务小区的邻小区执行基于NCD-SSB的RRM测量,包括:
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
在一实施方式中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于一个测量对象配置有CD-SSB和NCD-SSB,针对所述CD-SSB和所述NCD-SSB中具有较高优先级的SSB,执行所述RRM测量。
在一实施方式中,所述CD-SSB的优先级和所述NCD-SSB的优先级基于所述网络设备的指示确定,或者,基于通信协议的规定确定。
在一实施方式中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于一个测量对象配置有CD-SSB和NCD-SSB,执行针对所述测量对象的同频SSB的测量,所述同频SSB为所述CD-SSB或所述NCD-SSB;
其中,所述同频SSB满足第一条件。
在一实施方式中,所述方法包括:
将所述RRM测量的测量结果上报至所述网络设备。
在一实施方式中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且存在针对一个小区的同频测量 和异频测量,上报所述同频测量的测量结果;
其中,所述同频测量是针对所述小区的同频SSB的RRM测量,所述异频测量是针对所述小区的异频SSB的RRM测量;
所述同频SSB满足第一条件,所述异频SSB具有与所述同频SSB不同的频点。
在一实施方式中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
基于所述同频测量的测量结果,确定所述用户设备的服务小区的第一邻小区集合;
上报所述异频测量中对应于第二邻小区集合的测量结果;
其中,所述第二邻小区集合中的邻小区不包含于所述第一邻小区集合中。
在一实施方式中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的物理小区识别码PCI,上报所述多个测量对象的测量结果中具有最大值的测量结果或者具有最小值的测量结果。
在一实施方式中,所述第一条件包括:具有与参考SSB相同的中心频点和子载波间隔SCS;所述参考SSB为所述服务小区的激活BWP上的SSB。
在一实施方式中,接收网络设备发送的所述测量配置参数。
根据本公开实施例的第二个方面,提供一种测量方法,被网络设备执行,包括:
向用户设备发送测量配置参数;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
根据本公开实施例的第三个方面,提供一种测量装置,应用于用户设备,包括:
处理模块,被配置为基于测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
根据本公开实施例的第四个方面,提供一种测量装置,应用于网络设备,包括:
通信模块,被配置为向用户设备发送测量配置参数;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
根据本公开实施例的第五个方面,提供一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述测量方法的步骤。
根据本公开实施例的第六个方面,提供一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述测量方法的步骤。
根据本公开实施例的第七个方面,提供一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述测量方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种测量方法的流程图;
图2是根据一示例性实施例示出的一种测量方法的流程图;
图3是根据一示例性实施例示出的一种测量方法的流程图;
图4是根据一示例性实施例示出的一种测量方法的流程图;
图5是根据一示例性实施例示出的一种测量装置的框图;
图6是根据一示例性实施例示出的一种测量装置的框图;
图7是根据一示例性实施例示出的一种测量装置的结构图;
图8是根据一示例性实施例示出的一种测量装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开的一个实施例中可以包括多个步骤;为了便于描述,这些个步骤被进行了编号;但是这些编号并非是对步骤之间执行时隙、执行顺序的限定;这些步骤可以以任意的顺序被实施,本公开实施例并不对此作出限定。
RAN4目前还没有基于NCD-SSB的RRM测量要求,引入NCD-SSB后,RRM的测量需要考虑基于NCD-SSB的测量和基于CD-SSB的测量共存的方案。
网络设备通过无线资源控制(Radio Resource Control,RRC)参数MeasObject(测量对象)给终端配置测量参数。对于同一小区,为基于NCD-SSB的测量和基于CD-SSB的测量配置相同的PCI、周期、功率等,包括ssb-PositionsInBurst、PCI、ssb-periodicity、ssb-PBCH-BlockPower等。
需要说明的是,本公开的方法不仅适用于RedCap终端,也适用于其它类型的终端。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图1是根据一示例性实施例示出的一种测量方法的流程图,如图1所示,该方法包括:
步骤101,基于测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数,例如PCI、周期、功率等参数。在该实施方式中的用户设备为支持NCD-SSB测量能力的用户设备。
在一实施方式中,测量配置参数是用户设备执行此次测量之前从网络设备接收的。或者,在一实施方式中,测量配置参数是用户设备执行上次测量之前从网络设备接收的,此次测量还使用上次测量时接收的测量配置参数。
在一实施方式中,用户设备为RedCap终端。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于所述RRM测量为针对所述用户设备的服务小区的测量,基于所述服务小区的激活带宽部分BWP上的同步信号块SSB,执行所述RRM测量,其中,所述激活BWP上的SSB为CD-SSB或NCD-SSB。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。在该RRM测量为针对用户设备的服务小区的测量的场景下,用户设备基于服务小区的激活BWP上的SSB,执行RRM测量,其中,激活BWP上的SSB为CD-SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。在该RRM测量为针对用户设备的服务小区的测量的场景下,用户设备基于服务小区的激活BWP上的SSB,执行RRM测量,其中,激活BWP上的SSB为NCD-SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于所述RRM测量为针对所述用户设备的服务小区的测量,基于所述服务小区的激活带宽部分BWP上的同步信号块SSB,执行所述RRM测量,其中,所述激活BWP上的SSB为CD-SSB或NCD-SSB;
确定所述服务小区的激活BWP上的SSB为参考SSB。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。在该RRM测量为针对用户设备的服务小区的测量的场景下,用户设备基于服务小区的激活BWP上的SSB,执行RRM测量,其中,激活BWP上的SSB为CD-SSB,并确定该激活BWP上的SSB为参考SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。在该RRM测量为针对用户设备的服务小区的测量的场景下,用户设备基于服务小区的激活BWP上的SSB,执行RRM测量,其中,激活BWP上的SSB为NCD-SSB,并确定该激活BWP上的SSB为参考SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于所述RRM测量为针对所述用户设备的服务小区的邻小区的测量,且响应于所述邻小区的测量对象的SSB满足第一条件,确定针对所述测量对象的SSB的测量为同频测量;
响应于所述RRM测量为对所述用户设备的服务小区的邻小区的测量,且响应于所述测量对象的SSB不满足所述第一条件,确定针对所述测量对象的SSB的测量为异频测量。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。在该RRM测量为针对用户设备的服务小区的邻小区的测量,且邻小区的测量对象的SSB满足第一条件的场景下,确定针对测量对象的SSB的测量为同频测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。在该RRM测量为针对用户设备的服务小区的邻小区的测量,且邻小区的测量对象的SSB不满足第一条件的场景下,确定针对测量对象的SSB的测量为异频测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,第一条件包括:所述测量对象的SSB具有与参考SSB相同的中心频点和子载波间隔SCS;所述参考SSB为所述服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示 基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
基于所述第一测量结果,确定是否允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,基于该第一测量结果,来确定是否允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。这里基于服务小区的信号质量来确定是否需要对邻小区执行基于NCD-SSB的RRM测量。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。并且,在服务小区的信号质量较差时,用户设备不再对邻小区执行基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。这里,当服务小区的信号质量较差时,则不再需要对邻小区执行基于NCD-SSB的RRM测量。
上述设定阈值可以基于具体应用场景来设置。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。并且,在服务小区的信号质量较差时,用户设备不再对邻小区执行基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于一个测量对象配置有CD-SSB和NCD-SSB,针对所述CD-SSB和所述NCD-SSB中具有较高优先级的SSB,执行所述RRM测量。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,当一个测量对象同时配置有CD-SSB和NCD-SSB时,确定CD-SSB的优先级和NCD-SSB的优先级,只针对CD-SSB和NCD-SSB中具有较高优先级的SSB执行RRM测量,而不再针对具有 较低优先级的SSB执行RRM测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,CD-SSB的优先级和NCD-SSB的优先级可以基于网络设备的指示确定,或者,基于通信协议的规定确定。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量;
响应于一个测量对象配置有CD-SSB和NCD-SSB,针对所述CD-SSB和所述NCD-SSB中具有较高优先级的SSB,执行所述RRM测量。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个测量对象同时配置有CD-SSB和NCD-SSB时,确定CD-SSB的优先级和NCD-SSB的优先级,只针对CD-SSB和NCD-SSB中具有较高优先级的SSB执行RRM测量,而不再针对具有较低优先级的SSB执行RRM测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
上述设定阈值可以基于具体应用场景来设置。
在一实施方式中,CD-SSB的优先级和NCD-SSB的优先级可以基于网络设备的指示确定,或者,基于通信协议的规定确定。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。并且,在服务小区的信号质量较差时,用户设备不再对邻小区执行基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
响应于一个测量对象配置有CD-SSB和NCD-SSB,执行针对所述测量对象的同频SSB的测量,所述同频SSB为所述CD-SSB或所述NCD-SSB;
其中,所述同频SSB满足第一条件。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,当一个测量对象同时配置有CD-SSB和NCD-SSB时,执行针对该测量对象的同频SSB的测量,该同频SSB为CD-SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,当一个测量对象同时配置有CD-SSB和NCD-SSB时,执行针对该测量对象的同频SSB的测量,该同频SSB为NCD-SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。同频SSB满足第一条件。
在一实施方式中,同频SSB满足的第一条件包括:所述同频SSB具有与参考SSB相同的中心频点和SCS;所述参考SSB为所述服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中, 网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量;
响应于一个测量对象配置有CD-SSB和NCD-SSB,执行针对所述测量对象的同频SSB的测量,所述同频SSB为所述CD-SSB或所述NCD-SSB;
其中,所述同频SSB满足第一条件。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个测量对象同时配置有CD-SSB和NCD-SSB时,执行针对该测量对象的同频SSB的测量,该同频SSB为CD-SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个测量对象同时配置有CD-SSB和NCD-SSB时,执行针对该测量对象的同频SSB的测量,该同频SSB为NCD-SSB。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。同频SSB满 足第一条件。
在一实施方式中,同频SSB满足的第一条件包括:所述同频SSB具有与参考SSB相同的中心频点和SCS;所述参考SSB为所述服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。并且,在服务小区的信号质量较差时,用户设备不再对邻小区执行基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图2是根据一示例性实施例示出的一种测量方法的流程图,如图2所示,该方法包括:
步骤201,基于所述测量配置参数,执行无线资源管理RRM测量;
步骤202,将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数,例如PCI、周期、功率等参数。在该实施方式中的用户设备为支持NCD-SSB测量能力的用户设备。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且存在针对一个小区的同频测量和异频测量,上报所述同频测量的测量结果;
其中,所述同频测量是针对所述小区的同频SSB的RRM测量,所述异频测量是针对所述小区的异频SSB的RRM测量;
所述同频SSB满足第一条件,所述异频SSB具有与所述同频SSB不同的频点。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个小区的工作频段上配置有多个测量对象,且存在针对同一个小区的同频测量和异频测量时,只上报同频测量的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个测量对象同时配置有CD-SSB和NCD-SSB,一个小区的工作频段上配置有多个测量对象,且存在针对同一个小区的同频测量和异频测量时,只上报同频测量的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个测量对象只配置有CD-SSB或只配置有NCD-SSB,一个小区的工作频段上配置有多个测量对象,且存在针对同一个小区的同频测量和异频测量时,只上报同频测量的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
其中,同频测量是针对小区的同频SSB的RRM测量,异频测量是针对小区的异频SSB的RRM测量。同频SSB满足第一条件。异频SSB具有与同频SSB不同的频点。
在一实施方式中,同频SSB满足的第一条件包括:同频SSB具有与参考SSB相同的中心频点和SCS;参考SSB为服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且存在针对一个小区的同频测量和异频测量,上报所述同频测量的测量结果;
基于所述同频测量的测量结果,确定所述用户设备的服务小区的第一邻小区集合;
上报所述异频测量中对应于第二邻小区集合的测量结果;
其中,所述第二邻小区集合中的邻小区不包含于所述第一邻小区集合中;所述同频测量是针对所述小区的同频SSB的RRM测量,所述异频测量是针对所述小区的异频SSB的RRM测量;所述同频SSB满足第一条件,所述异频SSB具有与所述同频SSB不同的频点。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个小区的工作频段上配置有多个测量对象,且存在针对同一个小区的同频测量和异频测量时,只上报同频测量的测量结果。用户设备还基于该同频测量的测量结果,确定用户设备的服务小区的第一邻小区集合,上报异频测量中对应于不同于第一邻小区集合中的邻小区的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
其中,同频测量是针对小区的同频SSB的RRM测量,异频测量是针对小区的异频SSB的RRM测量。同频SSB满足第一条件。异频SSB具有与同频SSB不同的频点。
在一个实施方式中,同频SSB满足的第一条件包括:同频SSB具有与参考SSB相同 的中心频点和SCS;参考SSB为服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的物理小区识别码PCI,上报所述多个测量对象的测量结果中具有最大值的测量结果或者具有最小值的测量结果。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个测量对象同时配置有CD-SSB和NCD-SSB且一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的PCI时,上报多个测量对象的测量结果中具有最大值的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个测量对象只配置有CD-SSB或只配置有NCD-SSB且一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的PCI时,上报多个测量对象的测量结果中具有最大值的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的 测量结果上报至网络设备。其中,当一个测量对象同时配置有CD-SSB和NCD-SSB且一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的PCI时,上报多个测量对象的测量结果中具有最小值的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,当一个测量对象只配置有CD-SSB或只配置有NCD-SSB且一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的PCI时,上报多个测量对象的测量结果中具有最小值的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图3是根据一示例性实施例示出的一种测量方法的流程图,如图3所示,该方法包括:
步骤301,基于所述测量配置参数,执行无线资源管理RRM测量;
步骤302,将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,在对用户设备的服务小区执行RRM测量后,获取对应 的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数,例如PCI、周期、功率等参数。在该实施方式中的用户设备为支持NCD-SSB测量能力的用户设备。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且存在针对一个小区的同频测量和异频测量,上报所述同频测量的测量结果;
其中,所述同频测量是针对所述小区的同频SSB的RRM测量,所述异频测量是针对所述小区的异频SSB的RRM测量;
所述同频SSB满足第一条件,所述异频SSB具有与所述同频SSB不同的频点。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,在对用户设备的服务小区执行RRM测量后,获取对应 的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个小区的工作频段上配置有多个测量对象,且存在针对同一个小区的同频测量和异频测量时,只上报同频测量的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
其中,同频测量是针对小区的同频SSB的RRM测量,异频测量是针对小区的异频SSB的RRM测量。同频SSB满足第一条件。异频SSB具有与同频SSB不同的频点。
在一实施方式中,同频SSB满足的第一条件包括:同频SSB具有与参考SSB相同的中心频点和SCS;参考SSB为服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且存在针对一个小区的同频测量和异频测量,上报所述同频测量的测量结果;
基于所述同频测量的测量结果,确定所述用户设备的服务小区的第一邻小区集合;
上报所述异频测量中对应于第二邻小区集合的测量结果;
其中,所述第二邻小区集合中的邻小区不包含于所述第一邻小区集合中;
其中,所述同频测量是针对所述小区的同频SSB的RRM测量,所述异频测量是针对所述小区的异频SSB的RRM测量;所述同频SSB满足第一条件,所述异频SSB具有与所述同频SSB不同的频点。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个小区的工作频段上配置有多个测量对象,且存在针对同一个小区的同频测量和异频测量时,只上报同频测量的测量结果。用户设备还基于该同频测量的测量结果,确定用户设备的服务小区的第一邻小区集合,上报异频测量中对应于不同于第一邻小区集合中的邻小区的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
其中,同频测量是针对小区的同频SSB的RRM测量,异频测量是针对小区的异频SSB的RRM测量。同频SSB满足第一条件。异频SSB具有与同频SSB不同的频点。
在一实施方式中,同频SSB满足的第一条件包括:同频SSB具有与参考SSB相同的中心频点和SCS;参考SSB为服务小区的激活BWP上的SSB。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
基于所述测量配置参数,执行无线资源管理RRM测量;
将所述RRM测量的测量结果上报至所述网络设备;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM 测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数;
其中,所述基于所述测量配置参数,执行RRM测量,包括:
确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量;
其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
响应于一个小区的工作频段上配置有多个测量对象,且针对所述多个测量对象的测量结果对应于相同的物理小区识别码PCI,上报所述多个测量对象的测量结果中具有最大值的测量结果或者具有最小值的测量结果。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的PCI时,上报多个测量对象的测量结果中具有最大值的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备基于测量配置参数,执行RRM测量,然后将RRM测量的测量结果上报至网络设备。其中,在对用户设备的服务小区执行RRM测量后,获取对应的第一测量结果,当该第一测量结果大于设定阈值时,即服务小区的信号质量较好时,确定允许对服务小区的邻小区执行基于NCD-SSB的RRM测量。当一个小区的工作频段上配置有多个测量对象,且针对多个测量对象的测量结果对应于相同的PCI时,上报多个测量对象的测量结果中具有最小值的测量结果。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被用户设备执行。该方法可以独立被执 行,也可以结合本公开实施例的任意一个其他实施例一起被执行该方法包括:
接收网络设备发送的测量配置参数;
基于从网络设备接收的测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
在一实施方式中,用户设备从网络设备接收测量配置参数,并基于该测量配置参数,执行RRM测量,这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量方法,所述方法被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图4是根据一示例性实施例示出的一种测量方法的流程图,如图4所示,该方法包括:
步骤401,向用户设备发送测量配置参数;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
在一实施方式中,网络设备向用户设备发送测量配置参数,以便用户设备基于这些测量配置参数执行RRM测量。这些测量配置参数包括用于指示基于CD-SSB的RRM测量的参数和用于指示基于NCD-SSB的RRM测量的参数。
在上述实施方式中,在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。
本公开实施例提供了一种测量装置,应用于用户设备,参照图5所示,包括:
处理模块501,被配置为基于测量配置参数,执行无线资源管理RRM测量;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
本公开实施例提供了一种测量装置,应用于网络设备,参照图6所示,包括:
通信模块601,被配置为向用户设备发送测量配置参数;
其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
本公开实施例提供了一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述测量方法的步骤。
本公开实施例提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述测量方法的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述测量方法的步骤。
图7是根据一示例性实施例示出的一种测量装置700的框图。例如,装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相 机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在设备700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当设备700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到设备700的打开/关闭状态,组件的相对定位,例如所述 组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图8是根据一示例性实施例示出的一种测量装置800的框图。例如,装置800可以被提供为一基站。参照图8,装置800包括处理组件822,其进一步包括一个或多个处理器,以及由存储器832所代表的存储器资源,用于存储可由处理组件822的执行的指令,例如应用程序。存储器832中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件822被配置为执行指令,以执行上述非授权信道的接入方法。
装置800还可以包括一个电源组件826被配置为执行装置800的电源管理,一个有线或无线网络接口850被配置为将装置800连接到网络,和一个输入输出(I/O)接口859。装置800可以操作基于存储在存储器832的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
在基于NCD-SSB的测量和基于CD-SSB的测量共存的场景中,网络设备向用户设备下发用于指示基于CD-SSB的RRM测量的测量配置参数和用于指示基于NCD-SSB的RRM测量的测量配置参数,用户设备基于上述测量配置参数,能够执行基于CD-SSB的RRM测量和基于NCD-SSB的RRM测量。

Claims (21)

  1. 一种测量方法,被用户设备执行,包括:
    基于测量配置参数,执行无线资源管理RRM测量;
    其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
  2. 如权利要求1所述的方法,其中,所述基于所述测量配置参数,执行RRM测量,包括:
    响应于所述RRM测量为针对所述用户设备的服务小区的测量,基于所述服务小区的激活带宽部分BWP上的同步信号块SSB,执行所述RRM测量,其中,所述激活BWP上的SSB为CD-SSB或NCD-SSB。
  3. 如权利要求2所述的方法,其中,所述基于所述测量配置参数,执行RRM测量,包括:
    确定所述服务小区的激活BWP上的SSB为参考SSB。
  4. 如权利要求1所述的方法,其中,所述基于所述测量配置参数,执行RRM测量,包括:
    响应于所述RRM测量为针对所述用户设备的服务小区的邻小区的测量,且响应于所述邻小区的测量对象的SSB满足第一条件,确定针对所述测量对象的SSB的测量为同频测量;
    响应于所述RRM测量为对所述用户设备的服务小区的邻小区的测量,且响应于所述测量对象的SSB不满足所述第一条件,确定针对所述测量对象的SSB的测量为异频测量。
  5. 如权利要求1所述的方法,其中,所述基于所述测量配置参数,执行RRM测量,包括:
    确定对所述用户设备的服务小区执行所述RRM测量后的第一测量结果;
    基于所述第一测量结果,确定是否允许对所述服务小区的邻小区执行基于NCD-SSB的RRM测量。
  6. 如权利要求5所述的方法,其中,所述基于所述测量结果,确定是否对所述服务小区的邻小区执行基于NCD-SSB的RRM测量,包括:
    响应于所述第一测量结果大于设定阈值,确定允许对所述服务小区的邻小区执行基于 NCD-SSB的RRM测量。
  7. 如权利要求1或6所述的方法,其中,所述基于所述测量配置参数,执行RRM测量,包括:
    响应于一个测量对象配置有CD-SSB和NCD-SSB,针对所述CD-SSB和所述NCD-SSB中具有较高优先级的SSB,执行所述RRM测量。
  8. 如权利要求7所述的方法,其中,所述CD-SSB的优先级和所述NCD-SSB的优先级基于所述网络设备的指示确定,或者,基于通信协议的规定确定。
  9. 如权利要求1或6所述的方法,其中,所述基于所述测量配置参数,执行RRM测量,包括:
    响应于一个测量对象配置有CD-SSB和NCD-SSB,执行针对所述测量对象的同频SSB的测量,所述同频SSB为所述CD-SSB或所述NCD-SSB;
    其中,所述同频SSB满足第一条件。
  10. 如权利要求1或6所述的方法,其中,所述方法包括:
    将所述RRM测量的测量结果上报至所述网络设备。
  11. 如权利要求10所述的方法,其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
    响应于一个小区的工作频段上配置有多个测量对象,且存在针对一个小区的同频测量和异频测量,上报所述同频测量的测量结果;
    其中,所述同频测量是针对所述小区的同频SSB的RRM测量,所述异频测量是针对所述小区的异频SSB的RRM测量;
    所述同频SSB满足第一条件,所述异频SSB具有与所述同频SSB不同的频点。
  12. 如权利要求11所述的方法,其中,所述将所述RRM测量的测量结果上报至所述网络设备,包括:
    基于所述同频测量的测量结果,确定所述用户设备的服务小区的第一邻小区集合;
    上报所述异频测量中对应于第二邻小区集合的测量结果;
    其中,所述第二邻小区集合中的邻小区不包含于所述第一邻小区集合中。
  13. 如权利要求10所述的方法,其中,所述将所述RRM测量的测量结果上报至所述 网络设备,包括:
    响应于一个小区的工作频段上配置有多个测量对象,且针对所述多个测量对象的测量结果对应于相同的物理小区识别码PCI,上报所述多个测量对象的测量结果中具有最大值的测量结果或者具有最小值的测量结果。
  14. 如权利要求4、9或11中任一项所述的方法,其中,所述第一条件包括:具有与参考SSB相同的中心频点和子载波间隔SCS;所述参考SSB为所述服务小区的激活BWP上的SSB。
  15. 如权利要求1所述的方法,其中,所述方法包括:
    接收网络设备发送的所述测量配置参数。
  16. 一种测量方法,被网络设备执行,包括:
    向用户设备发送测量配置参数;
    其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
  17. 一种测量装置,应用于用户设备,包括:
    处理模块,被配置为基于测量配置参数,执行无线资源管理RRM测量;
    其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
  18. 一种测量装置,应用于网络设备,包括:
    通信模块,被配置为向用户设备发送测量配置参数;
    其中,所述测量配置参数包括用于指示基于小区定义的同步信号块CD-SSB的RRM测量的参数和用于指示基于非小区定义的同步信号块NCD-SSB的RRM测量的参数。
  19. 一种移动终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至15中任一项的测量方法的步骤。
  20. 一种网络侧设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求16所述的测量方法的步骤。
  21. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至15中任一项的测量方法的步骤或者权利要求16所述的测量方法的步骤。
PCT/CN2022/076252 2022-02-14 2022-02-14 一种测量方法、装置、设备及存储介质 WO2023151097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000443.3A CN116918370A (zh) 2022-02-14 2022-02-14 一种测量方法、装置、设备及存储介质
PCT/CN2022/076252 WO2023151097A1 (zh) 2022-02-14 2022-02-14 一种测量方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076252 WO2023151097A1 (zh) 2022-02-14 2022-02-14 一种测量方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023151097A1 true WO2023151097A1 (zh) 2023-08-17

Family

ID=87563459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076252 WO2023151097A1 (zh) 2022-02-14 2022-02-14 一种测量方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116918370A (zh)
WO (1) WO2023151097A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818564A (zh) * 2019-08-02 2020-10-23 维沃移动通信有限公司 测量的方法、测量指示的方法和设备
CN112236977A (zh) * 2020-09-11 2021-01-15 北京小米移动软件有限公司 参数配置方法、装置、通信设备和存储介质
WO2022028436A1 (en) * 2020-08-05 2022-02-10 Essen Innovation Company Limited Radio access method, user equipment, and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818564A (zh) * 2019-08-02 2020-10-23 维沃移动通信有限公司 测量的方法、测量指示的方法和设备
WO2022028436A1 (en) * 2020-08-05 2022-02-10 Essen Innovation Company Limited Radio access method, user equipment, and base station
CN112236977A (zh) * 2020-09-11 2021-01-15 北京小米移动软件有限公司 参数配置方法、装置、通信设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "RRM aspects of NR UE power saving", 3GPP DRAFT; R1-1811503 RRM ASPECTS OF NR UE POWER SAVING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518906 *

Also Published As

Publication number Publication date
CN116918370A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN107113673B (zh) 用于小区切换的方法、装置及用户设备
US20210336737A1 (en) Measurement configuration method, apparatus, devices, system, and storage medium
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
US11178637B2 (en) Paging message receiving method and device, and paging configuration method and device
CN106851723B (zh) 小区切换方法及装置
CN109196909B (zh) 小区切换方法及装置
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
WO2019061085A1 (zh) 信道检测、信息发送方法、装置及通信设备
US11722283B2 (en) Information transmission method, device, system, and storage medium
WO2019119421A1 (zh) 小区接入方法、装置及存储介质
WO2019140685A1 (zh) 进行最小化路测测量的方法、装置和系统
US11540294B2 (en) Method and apparatus for eliminating intermodulation interference, user equipment and base station
US11665586B2 (en) Method and apparatus for data transmission, electronic device and computer readable storage medium
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
US11218940B2 (en) Cell reselection method and device, and storage medium
WO2019104507A1 (zh) 网络配置方法、网络测量方法及装置
WO2023151097A1 (zh) 一种测量方法、装置、设备及存储介质
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2018000322A1 (zh) 数据传输方法及装置
CN110268779B (zh) 直连链路数据发送和直连链路资源配置方法以及装置
WO2020118706A1 (zh) 传输配置信息的方法及装置
WO2023039889A1 (zh) 一种传输和获取调度信息的方法、装置、设备及存储介质
EP3322117A1 (en) Rate configuration method and device
WO2018214169A1 (zh) 移动性测量的方法、装置及计算机可读存储介质
WO2022261861A1 (zh) 通信状态变更方法、装置及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000443.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925459

Country of ref document: EP

Kind code of ref document: A1