WO2023044624A1 - 一种bwp切换方法、装置及存储介质 - Google Patents

一种bwp切换方法、装置及存储介质 Download PDF

Info

Publication number
WO2023044624A1
WO2023044624A1 PCT/CN2021/119708 CN2021119708W WO2023044624A1 WO 2023044624 A1 WO2023044624 A1 WO 2023044624A1 CN 2021119708 W CN2021119708 W CN 2021119708W WO 2023044624 A1 WO2023044624 A1 WO 2023044624A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
data packet
small data
terminal
sdt
Prior art date
Application number
PCT/CN2021/119708
Other languages
English (en)
French (fr)
Inventor
牟勤
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202410339346.8A priority Critical patent/CN118139216B/zh
Priority to EP21957765.7A priority patent/EP4408120A1/en
Priority to PCT/CN2021/119708 priority patent/WO2023044624A1/zh
Priority to JP2024518292A priority patent/JP2024537706A/ja
Priority to KR1020247013002A priority patent/KR20240056653A/ko
Priority to CN202180002991.5A priority patent/CN113994765B/zh
Publication of WO2023044624A1 publication Critical patent/WO2023044624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a BWP switching method, device and storage medium.
  • the new radio new ratio
  • NR new radio
  • BWP bandwidth part
  • the network device configures an initial partial bandwidth (initial BWP) for idle/inactive terminals.
  • the terminal enters the RRC_INACTIVE state when the radio resource control connection (RRC_CONNECTED) enters the radio resource control inactive (RRC_INACTIVE) state, it will switch from the active BWP (active BWP) back to the initial BWP.
  • the terminal receives the paging (paging) message on the initial BWP. Synchronization Signal and PBCH block (SSB), system messages and initiate random access, etc.
  • SSB Synchronization Signal and PBCH block
  • an independent small data packet BWP (separate CG-SDT BWP, or also called separate SDT BWP) can be configured for a terminal that supports SDT.
  • CG-SDT BWP common CG-SDT BWP
  • the terminal can transmit small data packets on the separate SDT BWP, thereby ensuring the transmission bandwidth requirements of small data packets and reducing the degree of congestion on the initial BWP.
  • the present disclosure provides a BWP switching method, device and storage medium.
  • a BWP switching method which is applied to a terminal, and the BWP switching method includes: responding to the terminal being configured with an initial BWP and an independent small data packet BWP and the terminal is triggered from The connected state enters the inactive state, and the target BWP to be switched by the terminal is determined, and the target BWP includes the initial BWP or the independent small data packet BWP; and the activated BWP is switched to the target BWP.
  • determining the BWP for the terminal switching includes at least one of the following:
  • the target BWP of the terminal Based on the communication protocol, determine the target BWP of the terminal, wherein the target BWP is the initial BWP or the independent small data packet BWP;
  • a target BWP for the terminal to switch based on predefined conditions, where the target BWP is an initial BWP or an independent small data packet BWP;
  • the indication information Based on the indication information, determine a target BWP for switching by the terminal, where the indication information is used to indicate a target BWP for switching from a connected state to an inactive state, where the target BWP is an initial BWP or an independent small data packet BWP;
  • the target BWP switched by the terminal is the initial BWP
  • the BWP switching method further includes:
  • the determining that the timing advance of the small data packet transmission is valid includes:
  • the first parameter reference value includes a measured value of the parameter at the initial BWP or the active BWP before entering the inactive state.
  • the determination of the transmission time of the small data packet The effective advance amount includes: determining the small The timing advance of data packet transmission is valid, and the second parameter reference value includes the parameter measurement value on the initial BWP, the independent small data packet BWP or the active BWP before entering the inactive state.
  • the BWP switching method further includes: switching from the independent small data packet BWP to the initial BWP in response to completing the small data packet transmission.
  • the method in response to the target BWP switched by the terminal is an independent small data packet BWP, the method further includes:
  • the independent small data packet BWP includes an initial BWP, or the independent small data packet BWP is configured with one or more of a synchronization signal block, a paging message, a system message, and a random access channel configuration.
  • the determination that the timing advance of the small data packet transmission is valid includes: based on the third parameter reference value and after entering the inactive state, measuring on the independent small data packet BWP and the third parameter reference The third parameter measurement value obtained by the same beam determines that the timing advance of the small data packet transmission is valid, and the third parameter reference value includes the independent small data packet BWP or the active BWP before entering the inactive state Parameter measurements.
  • the target BWP of the terminal switching is an independent small data packet BWP, and no synchronization signal block is configured in the independent small data packet BWP; the determination of the transmission of the small data packet
  • the timing advance is valid, including: determining the transmission of the small data packet based on the fourth parameter reference value and the fourth parameter measurement value obtained by measuring the same beam as the fourth parameter reference value on the initial BWP after entering the inactive state
  • the timing advance amount is effective, and the fourth parameter reference value includes the parameter measurement value on the initial BWP or on the active BWP before entering the inactive state.
  • the method further includes: determining that there is a small data packet to be transmitted, and determining that the timing advance of the transmission of the small data packet is invalid; on the initial BWP or the independent small data packet BWP, performing Small packet transmission for random access.
  • determining the target BWP for the terminal switching includes:
  • the conditions include: one or more parameters in the synchronization signal block, paging message, system message, and random access channel configuration are configured on the independent small data packet BWP.
  • a BWP switching method is provided, which is applied to a network device.
  • the BWP switching method includes: sending indication information, and the indication information is used to indicate the switching target when entering the inactive state from the connected state BWP, the target BWP includes an initial BWP or an independent small data packet BWP.
  • the target BWP includes an initial BWP
  • the independent small data packet BWP is not configured with a synchronization signal block
  • the method further includes: configuring the initial BWP with the same beam measurement information as the beam used for the first parameter reference value measurement , the first parameter reference value is a parameter measurement value on the initial BWP or the activated BWP.
  • the target BWP includes an initial BWP
  • the independent small data packet BWP configures a synchronization signal block
  • the method further includes: configuring the independent small data packet BWP with the same beam as the beam used for the second parameter reference value measurement Measurement information, the second parameter reference value includes the parameter measurement value on the initial BWP, independent small data packet BWP or active BWP before entering the inactive state.
  • the target BWP includes an independent small data packet BWP
  • the independent small data packet BWP includes an initial BWP
  • the independent small data packet BWP is configured with a synchronization signal block, a paging message, and a system message .
  • the method further includes: configuring the beam measurement information for the independent small data packet BWP with the same beam as the beam used for the measurement of the third parameter reference value, and the third parameter refers to Values consist of parameter measurements on the stand-alone packetlet BWP or on the active BWP prior to entering the inactive state.
  • the target BWP includes an independent small data packet BWP, and no synchronization signal block is configured in the independent small data packet BWP, and the method further includes: the initial BWP configuration and the fourth parameter reference value measurement used
  • the beam measurement information is the same as the beam
  • the fourth parameter reference value includes the parameter measurement value on the initial BWP or on the active BWP before entering the inactive state.
  • a BWP switching device including:
  • a processing unit configured to respond to the terminal being configured with an initial BWP and an independent small data packet BWP and the terminal is triggered to enter the inactive state from the connected state, and determine a target BWP for the terminal to switch, the target BWP including the initial A BWP or an independent packet BWP is switched from the active BWP to the target BWP.
  • determining the target BWP to be switched by the terminal includes at least one of the following:
  • the target BWP of the terminal switching Based on the communication protocol, determine the target BWP of the terminal switching; based on the predefined conditions, determine the target BWP of the terminal switching; based on the indication information, determine the target BWP of the terminal switching, the indication information is used to indicate from the connected state The target BWP for transitioning into inactive state.
  • the target BWP is an initial BWP
  • the processing unit is further configured to determine that there is a small data packet to be transmitted, and determine that the timing advance of the transmission of the small data packet is valid; switch from the initial BWP to The independent small data packet BWP is based on semi-static small data packet transmission.
  • the independent small data packet BWP is not configured with a synchronization signal block
  • the processing unit is configured to measure on the initial BWP based on the first parameter reference value and after entering the inactive state and the first parameter reference value
  • the first parameter measurement value obtained by the same beam determines that the timing advance of the small data packet transmission is valid, and the first parameter reference value includes the parameter measurement value on the initial BWP or active BWP before entering the inactive state.
  • the target BWP for the terminal switching is determined to be the initial BWP based on the communication protocol or indication information
  • the independent small data packet BWP is configured with a synchronization signal block
  • the processing unit is configured to: refer to the BWP based on the second parameter value and the second parameter measurement value obtained by measuring the same beam as the second parameter reference value on the independent small data packet BWP or initial BWP after entering the inactive state, to determine that the timing advance of the small data packet transmission is valid, so
  • the second parameter reference value includes the parameter measurement value on the initial BWP, the independent small data packet BWP or the active BWP before entering the inactive state.
  • the processing unit is further configured to: determine that the transmission of the small data packet is completed, and switch from the independent small data packet BWP to the initial BWP.
  • the target BWP is an independent small data packet BWP
  • the processing unit is further configured to: determine that there is a small data packet to be transmitted, and determine that the timing advance of the transmission of the small data packet is valid;
  • the independent small data packet BWP is based on semi-static small data packet transmission.
  • the independent small data packet BWP includes an initial BWP, or the independent small data packet BWP is configured with one or more of a synchronization signal block, a paging message, a system message, and a random access channel configuration.
  • the processing unit is configured to: measure a third parameter obtained by measuring the same beam as the third parameter reference value on the independent small data packet BWP after entering the inactive state based on the third parameter reference value value to determine that the timing advance of the small data packet transmission is valid, and the third parameter reference value includes the parameter measurement value on the independent small data packet BWP or on the active BWP before entering the inactive state.
  • the processing unit is configured to: The fourth parameter reference value and the fourth parameter measurement value obtained by measuring the same beam as the fourth parameter reference value on the initial BWP after entering the inactive state, determine that the timing advance of the small data packet transmission is valid, and the first The four-parameter reference includes parameter measurements on the initial BWP or on the active BWP prior to entering the inactive state.
  • the processing unit is further configured to: determine that there is a small data packet to be transmitted, and determine that the timing advance of the transmission of the small data packet is invalid; on the initial BWP or the independent small data packet BWP , for small packet transmission based on random access.
  • the processing unit is configured to determine the target BWP for the terminal to switch based on predefined conditions in the following manner: determine that the conditions for switching to the independent small data packet BWP are met, and switch to the independent small data packet BWP; Or determine that the condition for switching to the independent small data packet BWP is not met, and switch to the initial BWP; the condition for switching to the independent small data packet BWP includes: the independent small data packet BWP is configured with a synchronization signal block, a paging message, a system One or more parameters in the message, random access channel configuration.
  • a BWP switching device including:
  • the sending unit is configured to send indication information, where the indication information is used to indicate a target BWP to be switched when entering an inactive state from a connected state, and the target BWP includes an initial BWP or an independent small data packet BWP.
  • the BWP switching device further includes a processing unit, the target BWP includes an initial BWP, and the independent small data packet BWP is not configured with a synchronization signal block, and the processing unit is configured to: configure the initial BWP with the first parameter reference The same beam measurement information as the beam used for the value measurement, the first parameter reference value is the parameter measurement value on the initial BWP or the activated BWP.
  • the BWP switching device further includes a processing unit, the target BWP includes the initial BWP, and the independent small data packet BWP is configured with a synchronization signal block, and the processing unit is configured to: configure the independent small data packet BWP with the second The same beam measurement information is used for parameter reference value measurement, and the second parameter reference value includes parameter measurement values on the initial BWP, independent small data packet BWP or active BWP before entering the inactive state.
  • the BWP switching device further includes a processing unit, the target BWP includes an independent small data packet BWP, and the independent small data packet BWP includes an initial BWP, or a synchronization signal is configured on the independent small data packet BWP
  • the processing unit is configured to: configure the same beam as the third parameter reference value measurement for the independent small data packet BWP Beam measurement information, the third parameter reference value includes the parameter measurement value on the independent small data packet BWP or the active BWP before entering the inactive state.
  • the BWP switching device further includes a processing unit
  • the target BWP includes an independent small data packet BWP
  • no synchronization signal block is configured in the independent small data packet BWP
  • the processing unit is configured to: be the initial BWP Configure the same beam measurement information as the beam used for the measurement of the fourth parameter reference value, where the fourth parameter reference value includes the parameter measurement value on the initial BWP or on the active BWP before entering the inactive state.
  • a BWP switching device including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the first aspect or the BWP switching method described in any one implementation manner of the first aspect.
  • a BWP switching device including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the second aspect or the BWP switching method described in any one implementation manner of the second aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the first aspect or the first The BWP switching method described in any one of the implementation manners.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the network device, the network device can execute the second aspect or The BWP switching method described in any one of the implementation manners of the second aspect.
  • the terminal is triggered to enter the inactive state from the connected state, switch from the activated BWP to the initial BWP or independent small data packet BWP, and realize the connection state to enter the inactive state , switch configuration of BWP.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 shows a schematic diagram of switching from active BWP to initial BWP.
  • Fig. 3 shows a schematic diagram of a communication scenario where initial BWP and separate CG-SDT BWP are configured, and the connection state enters the inactive state.
  • Fig. 4 is a flow chart showing a BWP switching method according to an exemplary embodiment.
  • Fig. 5A is a flow chart of SDT transmission according to an exemplary embodiment.
  • Fig. 5B is a flow chart of SDT transmission according to an exemplary embodiment.
  • Fig. 6A is a flow chart of SDT transmission according to an exemplary embodiment.
  • Fig. 6B is a flow chart of SDT transmission according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a BWP switching method according to an exemplary embodiment.
  • Fig. 8 is a block diagram of a BWP switching device according to an exemplary embodiment.
  • Fig. 9 is a block diagram of a BWP switching device according to an exemplary embodiment.
  • Fig. 10 is a block diagram showing a device for BWP handover according to an exemplary embodiment.
  • Fig. 11 is a block diagram showing a device for BWP handover according to an exemplary embodiment.
  • the wireless communication system includes a terminal and a network device. Information is sent and received between the terminal and the network device through wireless resources.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc. Not shown in Figure 1.
  • the embodiment of the present disclosure does not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system in the embodiment of the present disclosure is a network that provides a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency-division multiple access (single Carrier FDMA, SC-FDMA), carrier sense Multiple Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single Carrier FDMA single Carrier FDMA
  • SC-FDMA carrier sense Multiple Access/Conflict Avoidance
  • Carrier Sense Multiple Access with Collision Avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network device may be: a base station, an evolved base station (evolved node B, base station), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WIFI) system, a wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB in the NR system, or it can also be a component or a part of equipment that constitutes a base station wait.
  • the network device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the network device may also be a vehicle-mounted device. It should be understood that in the embodiments of the present disclosure, no limitation is imposed on the specific technology and specific device form adopted by the network device.
  • terminals involved in this disclosure can also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device providing voice and/or data connectivity for example, a terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • examples of some terminals are: smart phones (Mobile Phone), pocket computers (Pocket Personal Computer, PPC), handheld computers, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the terminal.
  • the terminal state may include connected state (also called CONNCETED state or RRC_CONNCETED state), inactive state (also called inactive state, or RRC_INACTIVE state), and idle state (also called idle state, or RRC_IDLE state).
  • connected state also called CONNCETED state or RRC_CONNCETED state
  • inactive state also called inactive state, or RRC_INACTIVE state
  • idle state also called idle state, or RRC_IDLE state.
  • SDT transmission can be understood as completing data transmission without entering the connected state, so as to avoid waste of time-frequency resources, shorten data transmission delay, and save terminal energy. consumption.
  • SDT transmission supports two modes: SDT based on random access process and SDT based on semi-static.
  • the SDT based on the random access process is: the terminal uses two-step random access, or four-step random access, and the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) of message A (msgA) or message 3 (msg3 ) to transmit uplink small data packets.
  • the semi-static SDT is as follows: when the network device switches from the connected state to the inactive state, the RRC resource release (RRRelease) message carries the semi-static time-frequency domain resource allocation information and timing advance (Timing Advance) required for SDT transmission. , TA) validity judgment and other information.
  • the terminal When the terminal has uplink data to transmit in the inactive state, it first performs TA validity judgment, Synchronization Signal Reference Signal Received Power (Synchronization Signal Reference Signal Received Power, SS-RSRP) judgment and data packet size judgment. When all conditions such as TA validity, SS-RSRP, and data packet size are satisfied, the semi-static resources configured by the network device are used to transmit small data packets. Otherwise, for example, when the size of the uplink data packet to be transmitted by the terminal exceeds the threshold, the terminal performs a four-step random access process to enter the connected state, and performs data transmission in the connected state.
  • Synchronization Signal Reference Signal Received Power Synchronization Signal Reference Signal Received Power (Synchronization Signal Reference Signal Received Power, SS-RSRP) judgment and data packet size judgment.
  • SS-RSRP Synchronization Signal Reference Signal Received Power
  • the NR standard a new technology, that is, the adaptive reception bandwidth, is introduced.
  • the receiving bandwidth adaptive technology if the amount of data to be sent is small, the terminal can monitor the downlink control channel on a small bandwidth and receive a small amount of downlink data transmission.
  • the terminal When the terminal has a large amount of data to receive, it will open a larger bandwidth to receive.
  • the NR standard defines BWP.
  • the NR protocol stipulates that a network device can configure up to 4 BWPs in the connected state, and at the same time, BWP switching can be performed through downlink control information (Downlink Control Information, DCI), switch timer (switch timer) and semi-static configuration. .
  • DCI Downlink Control Information
  • switch timer switch timer
  • semi-static configuration When the amount of data is small, the narrower BWP can be regarded as the active BWP, and data packets are transmitted on the active BWP.
  • DCI Downlink Control Information
  • switch timer switch timer
  • semi-static configuration When the amount of data is small, the narrower BWP can be regarded as the active BWP, and data packets are transmitted on the active BWP.
  • DCI can be used to switch to a wider BWP and perform data transmission on the wider BWP.
  • the network device will also configure an initial BWP for the terminal in the IDLE/inactive state.
  • the terminal When the terminal enters the inactive state from the connected state, it will switch from the active BWP to the initial BWP.
  • Fig. 2 shows a schematic diagram of switching from active BWP to initial BWP.
  • the terminal receives paging messages, SSB, system messages and initiates random access on the initial BWP.
  • a separate SDT BWP can be configured for it.
  • the terminal can transmit small data packets on the separate SDT BWP, thereby ensuring the transmission bandwidth requirements of small data packets and reducing the degree of congestion on the initial BWP.
  • the terminal when the network device configures initial BWP and separate CG-SDT BWP for the terminal, the terminal enters the inactive state from the connected state, and the terminal should switch back to which BWP among the initial BWP and separate CG-SDT BWP. No discussion.
  • an embodiment of the present disclosure provides a BWP switching method to determine a target BWP for switching when a terminal enters an inactive state from a connected state.
  • the BWP switching method provided by the embodiments of the present disclosure is applied to a communication scenario where a terminal is configured with an initial BWP and a separate CG-SDT BWP, and enters an inactive state from a connected state.
  • Fig. 3 shows a schematic diagram of a communication scenario where initial BWP and separate CG-SDT BWP are configured, and the connection state enters the inactive state.
  • a BWP switching method is provided to determine whether the BWP to be switched back is initial BWP or separate when the terminal enters the inactive state from the connected state CG-SDT BWP.
  • Fig. 4 is a flow chart showing a BWP switching method according to an exemplary embodiment. As shown in Fig. 4, the BWP switching method is used in a terminal and includes the following steps.
  • step S11 it is determined that the terminal is configured with initial BWP and separate CG-SDT BWP, and the terminal is triggered to enter the inactive state from the connected state.
  • step S12 the target BWP for terminal handover is determined, and the target BWP includes initial BWP or separate CG-SDT BWP.
  • step S13 switch from the active BWP to the initial BWP or separate CG-SDT BWP.
  • the terminal is configured with initial BWP and separate CG-SDT BWP.
  • initial BWP and separate CG-SDT BWP.
  • it is determined to switch to the initial BWP or separate CG-SDT BWP, and then switch from the activated BWP To initial BWP or separate CG-SDT BWP.
  • step S11 and step S12 may be executed simultaneously, or may be executed one after the other in any order, and the embodiment of the present disclosure does not limit the execution time slots of the two steps.
  • the terminal determines whether the target BWP of the handover is the initial BWP or the separate CG-SDT BWP, at least one of the following methods may be used:
  • Manner 1 Determine a target BWP for terminal handover based on a communication protocol.
  • the communication protocol stipulates that the terminal (for example, it may include terminals that support SDT and those that do not support SDT transmission) always switches to the initial BWP when it enters the inactive state from the connected state. That is, based on the communication protocol, it is determined that the target BWP for terminal handover is the initial BWP.
  • the communication protocol stipulates that the terminal supporting SDT switches to the separate CG-SDT BWP when it enters the inactive state from the connected state. That is, based on the communication protocol, it is determined that the target BWP for terminal switching is the separate CG-SDT BWP.
  • Manner 2 Determine a target BWP for terminal handover based on a predefined condition.
  • the predefined condition may include a condition for switching to a separate CG-SDT BWP, and/or include a condition for switching to an initial BWP. Of course, only one of them may be included, and the terminals meeting the conditions are switched to the corresponding target BWP; the terminals not meeting the conditions are switched to other target BWPs.
  • the predefined condition includes a condition for switching to a separate CG-SDT BWP.
  • the conditions for switching to the separate CG-SDT BWP include at least one of the following: SSB, paging message, system message, and random access channel configuration are configured on the separate CG-SDT BWP.
  • the terminal determines that the conditions for switching to the separate CG-SDT BWP are met, and switches to the separate CG-SDT BWP.
  • the terminal determines that the conditions for switching to the separate CG-SDT BWP are not met, and switches to the initial BWP or other BWPs.
  • the predefined condition includes a condition for switching to the initial BWP.
  • the conditions for switching to the initial BWP include at least one of the following: SSB, paging message, system message and random access channel configuration are not configured on the initial BWP.
  • the terminal determines that the conditions for switching to the initial BWP are met, and switches to the initial BWP.
  • the terminal determines that the conditions for switching to the initial BWP are not met, and switches to the separate CG-SDT BWP.
  • the predefined conditions include a condition for switching to the initial BWP and a condition for switching to a separate CG-SDT BWP.
  • the conditions for switching to the initial BWP and the conditions for switching to the separate CG-SDT BWP can refer to the aforementioned expressions.
  • the terminal determines that it meets the conditions for switching to initial BWP, and switches to initial BWP; the terminal determines that it meets the conditions for switching to separate CG-SDT BWP, and switches to separate CG-SDT BWP; the terminal determines that the above two conditions are not met, and switches to Other BWPs.
  • determining the target BWP for handover of the terminal based on the predefined condition can be understood as a manner of implicitly determining the target BWP for handover. For example, through implicit judgment, when the terminal enters the inactive state from the connected state, switch to the separate CG-SDT BWP. For example, when the network device configures the parameters required for one or more processes such as SSB, paging, system message reception, and random access channel (Random Access Channel, RACH) process for separate CG-SDT BWP, it supports SDT terminal switching Go to separate CG-SDT BWP; otherwise, switch to initial BWP.
  • SSB SSB
  • paging paging
  • system message reception system message reception
  • RACH random access channel
  • Mode 3 Determine the target BWP for the terminal to switch based on the indication information, where the indication information is used to indicate the target BWP for switching from the connected state to the inactive state.
  • the network device may use the indication information to instruct the terminal to switch from the connected state to the inactive state and which BWP to switch to.
  • the indication information may indicate that the terminal enters the inactive state from the connected state and switches to the initial BWP; then in response to the terminal entering the inactive state from the connected state, the terminal determines to switch to the initial BWP based on the indication information.
  • the indication information may indicate that the terminal enters the inactive state from the connected state and switches to the separate CG-SDT BWP; then in response to the terminal entering the inactive state from the connected state, the terminal determines to switch to the separate CG-SDT BWP based on the indication information.
  • the indication information used to indicate the target BWP to switch when the terminal enters the inactive state from the connected state may be an information element Information Element of existing signaling, for example, it may be indicated through RRC release signaling, or it may be passed Indicates the indication information sent by the network device during the execution of the SDT to indicate BWP switching.
  • the terminal when configured with separate CG-SDT BWP and initial BWP, it can determine the time for entering the inactive state from the connected state by applying any one of the above-mentioned method 1, method 2 and method 3. target BWP, and switch from the active BWP to the determined target BWP.
  • the terminal may perform SDT transmission.
  • the SDT transmission includes semi-static SDT transmission, or includes random access-based SDT transmission.
  • the current BWP is the initial BWP
  • the terminal switches from the initial BWP to the separate CG-SDT BWP to perform semi-static based on the condition that there are small data packets to be transmitted and that the time advance of SDT transmission is valid. SDT transmission.
  • Fig. 5A is a flow chart of SDT transmission according to an exemplary embodiment.
  • the method can be implemented alone, or can be implemented in combination with other methods in the embodiments of the present disclosure; the embodiments of the present disclosure do not limit this.
  • the method can be implemented together with the aforementioned embodiment shown in FIG. 4 , or can be implemented together with the following embodiments.
  • the SDT transmission method is used in a terminal, and includes the following steps.
  • step S21 it is determined that the current BWP is the initial BWP.
  • step S22a it is determined that there is a small data packet to be transmitted, and it is determined that the timing advance of SDT transmission is valid.
  • step S23a switch from initial BWP to separate CG-SDT BWP for semi-static SDT transmission.
  • the current BWP is the initial BWP.
  • the initial BWP or separate CG-SDT BWP SDT transmission based on random access is performed.
  • Fig. 5B is a flow chart of SDT transmission according to an exemplary embodiment.
  • the method can be implemented alone, or can be implemented in combination with other methods in the embodiments of the present disclosure; the embodiments of the present disclosure do not limit this.
  • the method can be implemented together with the aforementioned embodiment shown in FIG. 4 , or can be implemented together with the following embodiments.
  • the SDT transmission method is used in a terminal and includes the following steps.
  • step S21 it is determined that the current BWP is the initial BWP.
  • step S22b it is determined that there is a small data packet to be transmitted, and it is determined that the timing advance of SDT transmission is invalid.
  • step S23b SDT transmission based on random access is performed on the initial BWP or separate CG-SDT BWP.
  • the current BWP is a separate CG-SDT BWP.
  • the terminal determines that there are small data packets to be transmitted and that the timing advance of SDT transmission is valid, it performs semi-static SDT transmission in the separate CG-SDT BWP.
  • Fig. 6A is a flow chart of SDT transmission according to an exemplary embodiment.
  • the method can be implemented alone, or can be implemented in combination with other methods in the embodiments of the present disclosure; the embodiments of the present disclosure do not limit this.
  • the method can be implemented together with the aforementioned embodiment shown in FIG. 4 , or can be implemented together with the following embodiments.
  • the SDT transmission method is used in a terminal, and includes the following steps.
  • step S31 it is determined that the current BWP is a separate CG-SDT BWP.
  • step S32a it is determined that there is a small data packet to be transmitted, and it is determined that the timing advance of SDT transmission is valid.
  • step S33a semi-static SDT transmission is performed in the separate CG-SDT BWP.
  • the terminal when the terminal determines that there is a small data packet to be transmitted, and determines that the timing advance of SDT transmission is invalid, it performs random access based on the initial BWP or separate CG-SDT BWP SDT transmission.
  • Fig. 6B is a flow chart of SDT transmission according to an exemplary embodiment.
  • the method can be implemented alone, or can be implemented in combination with other methods in the embodiments of the present disclosure; the embodiments of the present disclosure do not limit this.
  • the method can be implemented together with the aforementioned embodiment shown in FIG. 4 , or can be implemented together with the following embodiments.
  • the SDT transmission method is used in a terminal and includes the following steps.
  • step S31 it is determined that the current BWP is a separate CG-SDT BWP.
  • step S32b it is determined that there is a small data packet to be transmitted, and it is determined that the timing advance of SDT transmission is invalid.
  • step S33b SDT transmission based on random access is performed on the initial BWP or separate CG-SDT BWP.
  • the terminal can determine the current BWP based on the target BWP of switching from the connected state to the inactive state, and judge the validity of the TA , and perform SDT transmission.
  • the target BWP to switch to is the initial BWP as an example.
  • the terminal based on the communication protocol, it is determined that the terminal always switches to the initial BWP when it enters the inactive state from the connected state. Or based on predefined conditions, it is determined that the terminal enters the inactive state from the connected state and switches to the initial BWP. Or it is determined based on the indication information that the terminal enters the inactive state from the connected state and switches to the initial BWP.
  • the terminal In response to the situation that the terminal enters the inactive state from the connected state and switches to the initial BWP, and the terminal has a small data packet to be transmitted; the terminal switches from the initial BWP to the separate CG-SDT BWP for transmission. If there is no SDT transmission currently, it will always stay on the initial BWP. In addition, before performing SDT transmission, the terminal performs TA validity judgment by performing SSB measurement.
  • the terminal enters the inactive state from the connected state, and based on the communication protocol, predefined conditions or indication information, it is determined to switch to the initial BWP, and the separate CG-SDT BWP is not configured with SSB.
  • the terminal performs SSB measurement on the initial BWP, and uses the measured parameter measurement value as a parameter reference value for subsequent TA validity judgment.
  • the parameter reference value is referred to as the first parameter reference value hereinafter.
  • the terminal After the terminal switches from the connected state to the inactive state, before performing SDT transmission, measure the parameter value of the same beam as the first parameter reference value on the initial BWP, hereinafter referred to as the first parameter measurement value. Based on the first parameter reference value and the first parameter measurement value, it is determined whether the timing advance of the SDT transmission is valid.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal performs SSB measurement on the initial BWP, and retains the measured RSRP value as a reference value.
  • the terminal performs SSB measurement on the initial BWP to determine the RSRP value as a reference value may be performed before entering the inactive state, or may be performed while or after entering the inactive state.
  • the terminal before the terminal enters the inactive state, it switches to the initial BWP to perform SSB measurement, and retains the measured RSRP value as a reference value.
  • the terminal switches from the connected state to the inactive state.
  • the terminal Before the terminal initiates SDT in the inactive state, measure the RSRP value of the same SSB subset used in the measurement of the RSRP reference value on the initial BWP as the measured value.
  • the terminal switches from the connected state to the inactive state.
  • the terminal In the inactive state, the terminal switches to the initial BWP, performs SSB measurement on the initial BWP, and retains the measured RSRP value as a reference value.
  • the terminal Before the terminal initiates SDT in the inactive state, the terminal performs SSB measurement in the initial BWP again, and measures the RSRP value of the same SSB subset used in the measurement of the RSRP reference value as the measured value.
  • the terminal compares the measured value with the reference value to determine whether the TA is valid. On the basis of valid TA, switch to separate CG-SDT BWP for SDT transmission. Otherwise, on the basis of satisfying the SDT transmission conditions, perform RA-based SDT on the initial BWP.
  • the terminal enters the inactive state from the connected state, and based on the communication protocol, predefined conditions or indication information, it is determined to switch to the initial BWP, and when the separate CG-SDT BWP is not configured with SSB, the terminal is in the active BWP
  • the SSB measurement is performed on the above, and the measured parameter measurement value is used as a parameter reference value for subsequent TA validity judgment, and the parameter reference value is still referred to as the first parameter reference value in the following.
  • the network device configures the initial BWP with the same beam measurement information as the beam used for the first parameter reference value measurement. The terminal switches from the connected state to the inactive state.
  • the parameter value of the same beam as the first parameter reference value is measured on the initial BWP, which is still referred to as the first parameter measurement value hereinafter. That is, based on the first parameter reference value and the first parameter measurement value, it is determined whether the timing advance of the SDT transmission is valid.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal Before entering the inactive state, the terminal first performs SSB measurement on the active BWP, and uses the measured RSRP as a reference value.
  • the network device will configure individual SSB subset beams and other measurement quantities that are the same as the reference value on the initial BWP for each terminal through high-level signaling. That is, the network device configures the initial BWP with the same beam measurement information as the beam used for the first parameter reference value measurement.
  • the terminal In response to the terminal entering the inactive state and the terminal wants to initiate SDT, it first measures the SSB measurement configured by the network device on the initial BWP to verify the validity of the TA.
  • the same SSB subset is measured as used for RSRP reference measurements.
  • the terminal compares the measured value with the reference value to determine whether the TA is valid. On the basis of valid TA, switch to separate CG-SDT BWP for SDT transmission. Otherwise, on the basis of satisfying the SDT transmission conditions, perform RA-based SDT on the initial BWP.
  • the terminal enters the inactive state from the connected state, and the target BWP of the terminal is determined to be the initial BWP based on the communication protocol or indication information;
  • the SSB measurement is performed on the CG-SDT BWP or the activated BWP, and the measured parameter measurement value is used as a parameter reference value for subsequent TA validity judgment.
  • the parameter reference value is referred to as the second parameter reference value hereinafter.
  • the terminal switches from the connected state to the inactive state.
  • the terminal enters the inactive state from the connected state, and the target BWP of the terminal switching is determined based on the communication protocol or indication information as the initial BWP.
  • the SSB on the initial BWP can be measured to obtain the second
  • the measured value of the parameter can also measure the SSB on the separate CG-SDT BWP to obtain the measured value of the second parameter. If the SSB on the initial BWP is measured to obtain the measured value of the second parameter, for details, reference may be made to the execution process of measuring the SSB on the initial BWP when the separate CG-SDT BWP is not configured with SSB in the above embodiment, and will not be repeated here.
  • the following describes the process of measuring the SSB on the separate CG-SDT BWP to obtain the second parameter measurement value, and determining whether the timing advance of SDT transmission is valid based on the second parameter reference value and the second parameter measurement value.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal performs SSB measurement on the separate CG-SDT BWP to determine the RSRP value as a reference value may be performed before entering the inactive state, or may be performed while or after entering the inactive state.
  • the terminal before the terminal enters the inactive state, switch to the separate CG-SDT BWP to perform SSB measurement, and keep the measured RSRP value as a reference value.
  • the terminal enters the inactive state from the connection state, and switches from separate CG-SDT BWP to initial BWP.
  • the terminal Before performing SDT transmission in the inactive state, the terminal first switches to the separate CG-SDT BWP for SSB measurement, and measures the RSRP value of the same SSB subset used for RSRP reference value measurement as the measurement value.
  • the terminal switches from the connected state to the inactive state, switches to the separate CG-SDT BWP to perform SSB measurement in the inactive state, and retains the measured RSRP value as a reference value.
  • the terminal switches from the separate CG-SDT BWP to the initial BWP.
  • the terminal switches to the separate CG-SDT BWP again to perform SSB measurement, and measures the RSRP value of the same SSB subset used for RSRP reference value measurement as the measured value.
  • the terminal compares the measured value with the reference value to determine whether the TA is valid. SDT transmission is performed on a TA valid basis. Otherwise, on the basis of satisfying the SDT transmission conditions, check whether there are random access resources on the separate CG-SDT BWP. If random access resources exist on the separate CG-SDT BWP, SDT transmission based on random access is performed on the separate CG-SDT BWP. If there is no random access resource on the separate CG-SDT BWP, switch back to the initial BWP for SDT transmission based on random access.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal Before entering the inactive state, the terminal first performs SSB measurement on the active BWP, and uses the measured RSRP as a reference value.
  • the network device configures the separate CG-SDT BWP with the same SSB beam and other measurement quantities as the reference value through high-level signaling. That is, the same beam measurement information as the beam used for the second parameter reference value measurement is configured for the independent small data packet BWP.
  • the terminal enters the inactive state and switches to the initial BWP.
  • the target BWP for terminal switching is determined to be the initial BWP based on the communication protocol or indication information, and the SDT transmission is performed on the separate CG-SDT BWP.
  • -SDT BWP switched to initial BWP. For example, if the terminal is still in the inactive state after the SDT transmission is completed, it will switch from the separate CG-SDT BWP to the initial BWP. For example, after receiving the RRC release signaling, the terminal will switch from the separate CG-SDT BWP to the initial BWP.
  • Embodiments of the present disclosure are described below by taking a situation as an example, that is, the terminal enters the inactive state from the connected state and the target BWP of the switch is separate CG-SDT BWP, the current BWP is determined, the validity of the TA is judged, and the SDT is performed transmission. It should be noted that the following situation is only a possible implementation manner, and other implementation manners may be similar to the following implementation manners.
  • the terminal when the terminal enters the inactive state from the connected state and the switching target BWP is separate CG-SDT BWP, the terminal needs to be a terminal supporting SDT transmission, and the protocol stipulates or the base station configures the SDT-supporting terminal separate CG-SDT BWP.
  • the terminal based on the communication protocol, the terminal always switches to the separate CG-SDT BWP from the connected state to the inactive state. Or determined based on predefined conditions, the terminal enters the inactive state from the connected state and switches to separate CG-SDT BWP. Or determined based on the indication information, the terminal enters the inactive state from the connected state, and switches to the separate CG-SDT BWP.
  • TA In response to the terminal entering the inactive state from the connected state and switching to the separate CG-SDT BWP, when the terminal has SDT transmission, determine whether the TA is valid. When TA is valid, semi-static SDT transmission is performed on the separate CG-SDT BWP. In the case of invalid TA, SDT transmission based on random access is performed on the separate CG-SDT BWP or initial BWP.
  • the protocol stipulates that one or more parameters such as SSB, paging message, system message, and PRACH channel configuration must be configured on the separate SDT BWP.
  • the separate CG-SDT BWP must include the initial BWP within its own bandwidth, that is, the separate CG-SDT BWP includes the initial BWP.
  • the terminal in response to the terminal entering the inactive state from the connected state, it is determined to switch to the separate CG-SDT BWP based on the communication protocol, predefined conditions or indication information or through any other, and the separate CG-SDT BWP includes the initial One or more parameters such as SSB, paging message, system message, and PRACH channel configuration are configured on BWP or separate SDT BWP.
  • the terminal performs SSB measurement on the separate CG-SDT BWP or the activated BWP, and uses the measured parameter measurement value as a parameter reference value for subsequent TA validity judgment.
  • This parameter reference value is referred to as the third parameter reference value hereinafter.
  • the third parameter measurement value In response to the terminal entering the inactive state, before performing SDT transmission, measure the parameter value of the same beam as the third parameter reference value on the separate CG-SDT BWP, hereinafter referred to as the third parameter measurement value. Based on the third parameter reference value and the third parameter measurement value, it is determined whether the timing advance of the SDT transmission is valid.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal performs SSB measurement on the separate CG-SDT BWP to determine the RSRP value as a reference value may be performed before entering the inactive state, or may be performed while or after entering the inactive state.
  • the terminal before the terminal enters the inactive state, switch to the separate CG-SDT BWP to perform SSB measurement, and keep the measured RSRP value as a reference value.
  • the terminal enters the inactive state from the connected state, and switches to separate CG-SDT BWP.
  • the terminal Before initiating SDT transmission, perform SSB measurement on the separate CG-SDT BWP, and measure the RSRP value of the same SSB subset used for RSRP reference value measurement as the measurement value.
  • the terminal switches from the connected state to the inactive state, switches to the separate CG-SDT BWP, performs SSB measurement on the separate CG-SDT BWP, and retains the measured RSRP value as a reference value.
  • the terminal Before the terminal initiates SDT, the terminal performs SSB measurement on the separate CG-SDT BWP again, and measures the RSRP value of the same SSB subset used for RSRP reference value measurement as the measurement value.
  • the terminal compares the measured value with the reference value to determine whether the TA is valid. SDT transmission is performed on a TA valid basis. Otherwise, on the basis of satisfying the SDT transmission conditions, check whether there are random access resources on the separate CG-SDT BWP. If random access resources exist on the separate CG-SDT BWP, SDT transmission based on random access is performed on the separate CG-SDT BWP. If there is no random access resource on the separate CG-SDT BWP, switch back to the initial BWP for SDT transmission based on random access.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal Before entering the inactive state, the terminal first performs SSB measurement on the active BWP, and uses the measured RSRP as a reference value.
  • the network device configures the separate CG-SDT BWP with the same SSB beam and other measurement quantities as the reference value through high-level signaling. That is, the same beam measurement information as the beam used for the measurement of the third parameter reference value is configured for the independent small data packet BWP.
  • the terminal After the terminal enters the inactive state, it will switch to the separate CG-SDT BWP. If it is determined that SDT transmission is required, it is first necessary to measure the corresponding SSB to verify the validity of the TA.
  • SDT transmission is carried out on the basis of TA validity. Otherwise, on the basis of satisfying the SDT transmission conditions, check whether there are random access resources on the separate CG-SDT BWP. If random access resources exist on the separate CG-SDT BWP, SDT transmission based on random access is performed on the separate CG-SDT BWP. If there is no random access resource on the separate CG-SDT BWP, switch back to the initial BWP for SDT transmission based on random access.
  • the parameter obtained by performing SSB measurement is described by taking RSRP as an example.
  • random access resources based on the communication protocol, random access resources must be configured on the separate CG-SDT BWP, so as to implement SDT transmission based on random access on the separate CG-SDT BWP.
  • the terminal connection state enters the inactive state, and the target BWP of the terminal switching is determined based on the communication protocol or indication information or through any other means to be separate CG-SDT BWP, and no SSB is configured in the separate CG-SDT BWP.
  • the terminal performs SSB measurement on the initial BWP or the activated BWP, and uses the measured parameter measurement value as a parameter reference value for subsequent TA validity judgment.
  • the parameter reference value is referred to as the fourth parameter reference value hereinafter.
  • measure the parameter value of the same beam as the fourth parameter reference value on the initial BWP hereinafter referred to as the fourth parameter measurement value. Based on the fourth parameter reference value and the fourth parameter measurement value, it is determined whether the timing advance of the SDT transmission is valid.
  • the steps described above to determine the fourth parameter measurement may be performed after entering the inactive state and before performing the SDT transmission.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal performs SSB measurement on the initial BWP to determine the RSRP value as a reference value may be performed before entering the inactive state, or may be performed while or after entering the inactive state.
  • the terminal before the terminal enters the inactive state, it switches to the initial BWP to perform SSB measurement, and retains the measured RSRP value as a reference value.
  • the terminal enters the inactive state from the connected state, and switches from the initial BWP to the separate CG-SDT BWP. If the terminal needs to perform SDT transmission, first switch from the separate CG-SDT BWP to the initial BWP to measure the RSRP value of the same SSB subset used in the measurement of the RSRP reference value as the measured value.
  • the terminal switches from the connected state to the inactive state, and in the inactive state, switches to the initial BWP to perform SSB measurement, and retains the measured RSRP value as a reference value.
  • the terminal switches from initial BWP to separate CG-SDT BWP. Before the terminal initiates SDT, the terminal switches from the separate CG-SDT BWP to the initial BWP again, performs SSB measurement on the initial BWP, and measures the RSRP value of the same SSB subset used in RSRP reference value measurement as the measurement value.
  • the terminal compares the measured value with the reference value, so as to judge the validity of the TA. If TA is valid, switch to separate CG-SDT BWP for SDT transmission. If the TA is invalid, the terminal can perform SDT transmission based on random access on the initial BWP under the condition that SDT transmission based on random access is satisfied. In addition, if random access resources are configured on the separate CG-SDT BWP, the terminal can also switch to the separate CG-SDT BWP for SDT transmission based on random access.
  • RSRP is used as an example to describe parameters obtained by performing SSB measurement.
  • the terminal Before entering the inactive state, the terminal first performs SSB measurement on the active BWP, and uses the measured RSRP as a reference value.
  • the network device configures the initial BWP with the same SSB beam and other measurement quantities as the reference value through high-level signaling. That is, the network device configures the same beam measurement information as the beam used for measuring the fourth parameter reference value for the independent small data packet BWP.
  • switch to the separate CG-SDT BWP When the terminal needs to perform SDT transmission, it first switches to the initial BWP to judge the validity of TA.
  • TA If TA is valid, switch to separate CG-SDT BWP for SDT transmission. If the TA is invalid, the terminal can perform SDT transmission based on random access on the initial BWP under the condition that SDT transmission based on random access is satisfied. In addition, if random access resources are configured on the separate CG-SDT BWP, the terminal can also switch to the separate CG-SDT BWP for SDT transmission based on random access.
  • the terminal involved in the above embodiments of the present disclosure switches from the initial BWP to the separate CG-SDT BWP, or switches from the separate CG-SDT BWP to the initial BWP, which may be a terminal autonomous switch or a First, the terminal reports the handover request, and then the network device instructs the handover.
  • the BWP switching method applied to the terminal provided by the embodiment of the present disclosure can be understood as the BWP switching method when the terminal enters the inactive state from the connected state when the separate CG-SDT BWP is configured for the terminal supporting SDT. Whether the target BWP of the handover is separate CG-SDT BWP or initial BWP, so as to effectively support the configuration of separate CG-SDT BWP and reduce the degree of congestion on the initial BWP.
  • the embodiment of the present disclosure also provides a BWP switching method applied to a network device.
  • Fig. 7 is a flow chart showing a BWP switching method according to an exemplary embodiment. As shown in Fig. 7, the BWP switching method is used in a network device and includes the following steps.
  • step S41 sending indication information
  • the indication information is used to indicate the target BWP to switch from the connected state to the inactive state
  • the target BWP includes initial BWP or separate CG-SDT BWP.
  • the network device instructs to switch to initial BWP or switch to separate CG-SDT BWP, so that when separate CG-SDT BWP is configured for a terminal supporting SDT, the terminal enters the inactive state from the connected state, and it can be determined Whether the target BWP of the switch is separate CG-SDT BWP or initial BWP, so as to effectively support the configuration of separate CG-SDT BWP to reduce the degree of congestion on the initial BWP.
  • the network device can further configure the beam information for performing SSB measurement for the terminal according to the indicated switching target BWP and whether the separate CG-SDT BWP configured by the terminal is configured with SSB, so that the TA is valid when the terminal performs SDT transmission sex judgments.
  • the target BWP includes an initial BWP
  • the separate CG-SDT BWP is not configured with SSB
  • the network device configures the initial BWP with the same beam measurement information as the beam used for the first parameter reference value measurement, and the first parameter reference value Measured values for parameters on initial BWP or active BWP.
  • the handover target BWP includes initial BWP, separate CG-SDT BWP configures SSB, and the network device configures separate CG-SDT BWP with the same beam measurement information as the beam used for the second parameter reference value measurement, and the second parameter Reference values include parameter measurements on the initial BWP, separate CG-SDT BWP, or active BWP before entering the inactive state.
  • the handover target BWP includes a separate CG-SDT BWP
  • the separate CG-SDT BWP includes an initial BWP
  • the separate CG-SDT BWP is configured with SSB, paging message, system message, and random access channel configuration
  • One or more parameters in The network device configures the separate CG-SDT BWP with the same beam measurement information as the beam used for the third parameter reference value measurement.
  • the third parameter reference value includes the parameters on the separate CG-SDT BWP or the active BWP before entering the inactive state Measurements.
  • the handover target BWP includes a separate CG-SDT BWP, and no SSB is configured in the separate CG-SDT BWP.
  • the network device configures the initial BWP with the same beam measurement information as the beam used for the measurement of the fourth parameter reference value, and the fourth parameter reference value includes the parameter measurement value on the initial BWP or on the active BWP before entering the inactive state.
  • the BWP switching method performed by the network device in the embodiment of the present disclosure corresponds to the BWP switching method performed by the terminal in the above embodiment, so for the details of the BWP switching method performed by the network device, please refer to the above The terminal executes the BWP switching method, which will not be described in detail here.
  • the BWP switching method provided by the embodiments of the present disclosure may be applicable to a scenario where a terminal interacts with a network device to implement BWP switching.
  • the functions realized by the terminals and network devices involved in the specific implementation process can refer to the relevant descriptions involved in the above embodiments, and will not be described in detail here.
  • an embodiment of the present disclosure further provides a BWP switching device.
  • the BWP switching device provided in the embodiments of the present disclosure includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 8 is a block diagram of a BWP switching device according to an exemplary embodiment.
  • the BWP switching apparatus 100 is applied to a terminal and includes a processing unit 101 .
  • the processing unit 101 is configured to determine a target BWP for terminal switching in response to the terminal being configured with initial BWP and separate CG-SDT BWP and being triggered to enter the inactive state from the connected state, where the target BWP for switching includes initial BWP or separate CG-SDT BWP, switch from active BWP to target BWP.
  • the processing unit 101 determines the target BWP for terminal handover in at least one of the following ways:
  • the target BWP for terminal switching is determined. Based on the predefined conditions, the target BWP for terminal handover is determined. Based on the indication information, a target BWP to be handed over by the terminal is determined, and the indication information is used to indicate the handover target BWP when the terminal enters the inactive state from the connected state.
  • the target BWP for terminal switching is initial BWP
  • the processing unit 101 is further configured to determine that there is a small data packet to be transmitted, and determine that the timing advance of SDT transmission is valid; switch from initial BWP to separate CG-SDT BWP performs semi-static based SDT transmission.
  • the separate CG-SDT BWP is not configured with SSB
  • the processing unit 101 is configured to measure the first parameter reference value on the initial BWP based on the first parameter reference value and the first parameter reference value on the same beam as the first parameter reference value after entering the inactive state.
  • the parameter measurement value determines that the timing advance of SDT transmission is valid.
  • the first parameter reference value includes the parameter measurement value on the initial BWP or active BWP before entering the inactive state.
  • the processing unit 101 is configured to: based on the second parameter reference value and after entering the inactive state Measure the second parameter measurement value obtained by measuring the same beam as the second parameter reference value on the separate CG-SDT BWP or initial BWP to determine that the timing advance of small data packet transmission is valid, and the second parameter reference value is included before entering the inactive state Parameter measurements on the initial BWP, separate CG-SDT BWP, or active BWP.
  • the processing unit 101 is further configured to: determine that the transmission of the small data packet is completed, and switch from the separate CG-SDT BWP to the initial BWP.
  • the target BWP for terminal switching is separate CG-SDT BWP
  • the processing unit 101 is further configured to: determine that there is a small data packet to be transmitted, and determine that the timing advance of small data packet transmission is valid; -SDT BWP performs semi-static based small packet transmission.
  • the separate CG-SDT BWP includes the initial BWP, or the separate CG-SDT BWP is configured with one or more parameters in SSB, paging message, system message, and random access channel configuration; the processing unit 101 is configured to: determine the timing advance of small data packet transmission based on the third parameter reference value and the third parameter measurement value obtained by measuring the same beam as the third parameter reference value on the separate CG-SDT BWP after entering the inactive state Valid, the third parameter reference value includes the parameter measurement value on the separate CG-SDT BWP or on the active BWP before entering the inactive state.
  • the processing unit 101 is configured to: based on the fourth parameter reference value and the entered After the inactive state, measure the fourth parameter measurement value obtained by measuring the same beam as the fourth parameter reference value on the initial BWP to determine that the timing advance of small data packet transmission is valid.
  • the fourth parameter reference value is included in the initial BWP before entering the inactive state. Parameter measurements on the BWP or on the active BWP.
  • the processing unit 101 is further configured to: determine that there is a small data packet to be transmitted, and determine that the timing advance of small data packet transmission is invalid; on the initial BWP or separate CG-SDT BWP, perform random access based Incoming small data packet transmission.
  • the processing unit 101 is configured to determine the target BWP for the terminal to switch based on the predefined conditions in the following manner: determine that the condition for switching to the separate CG-SDT BWP is met, and switch to the separate CG-SDT BWP; or determine not To meet the conditions for switching to separate CG-SDT BWP, switch to initial BWP; to meet the conditions for switching to separate CG-SDT BWP include: separate CG-SDT BWP is configured with SSB, paging message, system message, and random access channel configuration One or more parameters in .
  • Fig. 9 is a block diagram of a BWP switching device according to an exemplary embodiment.
  • the BWP switching apparatus 200 is applied to a network device, and includes a sending unit 201 .
  • the sending unit 201 is configured to send indication information, the indication information is used to indicate the target BWP for switching from the connected state to the inactive state, and the target BWP includes initial BWP or separate CG-SDT BWP.
  • the BWP switching device 200 further includes a processing unit 202, the target BWP includes an initial BWP, and the separate CG-SDT BWP is not configured with an SSB, and the processing unit is configured to: configure the initial BWP and use the first parameter reference value measurement
  • the beam measurement information is the same as the beam
  • the first parameter reference value is the parameter measurement value on the initial BWP or active BWP.
  • the BWP switching device 200 further includes a processing unit 202, the target BWP includes an initial BWP, and the separate CG-SDT BWP configures SSB, and the processing unit 202 is configured to: configure and second parameter reference value for the separate CG-SDT BWP The same beam measurement information as the beam used for measurement, the second parameter reference value includes the parameter measurement value on the initial BWP, separate CG-SDT BWP or active BWP before entering the inactive state.
  • the BWP switching device 200 further includes a processing unit 202, the target BWP includes a separate CG-SDT BWP, the separate CG-SDT BWP includes an initial BWP, or the separate CG-SDT BWP is configured with SSB, paging message, One or more parameters in the system message and random access channel configuration, the processing unit 202 is configured to: configure separate CG-SDT BWP with beam measurement information that is the same as the beam used for the measurement of the third parameter reference value, the third parameter Reference values include parameter measurements on the separate CG-SDT BWP or on the active BWP prior to entering the inactive state.
  • the BWP switching device 200 further includes a processing unit 202
  • the target BWP includes a separate CG-SDT BWP
  • no SSB is configured in the separate CG-SDT BWP
  • the processing unit 202 is configured to: configure the initial BWP with the fourth parameter
  • the reference value measurement uses the same beam measurement information as the beam
  • the fourth parameter reference value includes the parameter measurement value on the initial BWP or on the active BWP before entering the inactive state.
  • Fig. 10 is a block diagram showing a device for BWP handover according to an exemplary embodiment.
  • the apparatus 300 for BWP switching may be provided as the terminal involved in the foregoing embodiments.
  • the apparatus 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operations of the device 300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • the memory 304 is configured to store various types of data to support operations at the device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 300 .
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect a duration and pressure associated with the touch or swipe operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), which is configured to receive external audio signals when the device 300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 304 or sent via communication component 316 .
  • the audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
  • the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the device 300 orientation or acceleration/deceleration and the temperature change of the device 300 .
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • a storage medium including instructions, such as the memory 304 including instructions, which can be executed by the processor 320 of the device 300 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 11 is a block diagram showing a device for BWP handover according to an exemplary embodiment.
  • the apparatus 400 for BWP switching may be provided as a network device.
  • apparatus 400 includes processing component 422 , which further includes one or more processors, and a memory resource represented by memory 432 for storing instructions executable by processing component 422 , such as application programs.
  • the application program stored in memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • Device 400 may also include a power component 426 configured to perform power management of device 400 , a wired or wireless network interface 440 configured to connect device 400 to a network, and an input-output (I/O) interface 448 .
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a storage medium including instructions, such as a memory 432 including instructions, which can be executed by the processing component 422 of the device 400 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • “plurality” in the present disclosure refers to two or more, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include the plural unless the context clearly dictates otherwise.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another, and do not imply a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种BWP切换方法、装置及存储介质。BWP切换方法包括:响应于所述终端配置有初始BWP以及独立小数据包BWP且所述终端被触发从连接态进入到非激活态,确定所述终端切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP;从激活的BWP切换至所述目标BWP。通过本公开实现连接态进入到非激活态时,BWP的切换配置。

Description

一种BWP切换方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种BWP切换方法、装置及存储介质。
背景技术
新无线(new ratio,NR)标准设计中,引入了接收带宽自适应。通过接收带宽自适应技术,终端可以在一个较小的带宽上监听下行控制信道,以及接收少量的下行数据传输,当终端有大量的数据接收时,则打开整个带宽进行接收。为了更好地支持不能处理整个载波带宽地终端以及接收带宽自适应,NR标准定义了一个新的概念:部分带宽(bandwidth part,BWP)。
BWP技术中,网络设备为空闲态/非激活态(idle/inactive)的终端配置一个初始部分带宽(initial BWP)。终端在无线资源控制连接(RRC_CONNECTED)进入到无线资源控制非激活(RRC_INACTIVE)状态时,将从激活的BWP(active BWP)切换回到initial BWP上终端在initial BWP上接收寻呼(paging)消息,同步信号块(Synchronization Signal and PBCH block,SSB),系统消息以及发起随机接入等。
NR release 17的讨论中,提出在inactive态支持配置授权的小数据包传输(small data transmission,SDT)。SDT技术中,可以为支持SDT的终端配置一个独立小数据包BWP(separate CG-SDT BWP,或者也称为separate SDT BWP)。当支持SDT的终端配置了separate CG-SDT BWP时,终端可以在separate SDT BWP上进行小数据包的传输,从而可以保证小数据包的传输带宽需求,同时减少initial BWP上的拥塞程度。
当网络设备为终端配置了initial BWP和separate CG-SDT BWP时,终端从连接态进入到非激活态,终端应该切换回到initial BWP和separate CG-SDT BWP中的哪个BWP上,是一个亟待解决的问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种BWP切换方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种BWP切换方法,应用于终端,所述BWP切换方法包括:响应于所述终端配置有初始BWP以及独立小数据包BWP且所述终端被触发从连接态进入到非激活态,确定所述终端切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP;从激活的BWP切换至所述目标BWP。
一种实施方式中,确定所述终端切换的BWP包括以下至少一项:
基于通信协议,确定所述终端的目标BWP,其中所述目标BWP为初始BWP或者独 立小数据包BWP;
基于预定义条件,确定所述终端切换的目标BWP,其中所述目标BWP为初始BWP或者独立小数据包BWP;
基于指示信息,确定所述终端切换的目标BWP,所述指示信息用于指示从连接态进入非激活态时切换的目标BWP,其中所述目标BWP为初始BWP或者独立小数据包BWP;。
一种实施方式中,所述终端切换的目标BWP为初始BWP,所述BWP切换方法还包括:
响应于存在待传输的小数据包且所述小数据包传输的时间提前量有效;
从初始BWP切换至独立小数据包BWP进行基于半静态的小数据包传输。
一种实施方式中,响应于所述独立小数据包BWP未配置同步信号块,所述确定所述小数据包传输的时间提前量有效,包括:
基于第一参数参考值以及进入非激活态后在初始BWP上测量与所述第一参数参考值相同波束得到的第一参数测量值,确定所述小数据包传输的时间提前量有效,所述第一参数参考值包括在进入非激活态之前在初始BWP或激活BWP上的参数测量值。
一种实施方式中,响应于基于通信协议或指示信息确定所述终端切换的BWP为初始BWP,且所述独立小数据包BWP配置有同步信号块;所述确定所述小数据包传输的时间提前量有效包括:基于第二参数参考值以及进入非激活态后在独立小数据包BWP或初始BWP上测量与所述第二参数参考值相同波束得到的第二参数测量值,确定所述小数据包传输的时间提前量有效,所述第二参数参考值包括在进入非激活态之前在初始BWP、独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,所述BWP切换方法还包括:响应于完成小数据包传输,从所述独立小数据包BWP切换至所述初始BWP。
一种实施方式中,响应于所述终端切换的目标BWP为独立小数据包BWP,所述方法还包括:
响应于存在待传输的小数据包且所述小数据包传输的时间提前量有效;在所述独立小数据包BWP进行基于半静态的小数据包传输。
一种实施方式中,所述独立小数据包BWP中包括初始BWP,或者所述独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数;所述确定所述小数据包传输的时间提前量有效,包括:基于第三参数参考值以及进入非激活态后在所述独立小数据包BWP上测量与所述第三参数参考值相同波束得到的第三参数测量值,确定所述小数据包传输的时间提前量有效,所述第三参数参考值包括在进入非激 活态之前在独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,基于通信协议或指示信息确定所述终端切换的目标BWP为独立小数据包BWP,所述独立小数据包BWP中未配置同步信号块;所述确定所述小数据包传输的时间提前量有效,包括:基于第四参数参考值以及进入非激活态后在初始BWP上测量与所述第四参数参考值相同波束得到的第四参数测量值,确定所述小数据包传输的时间提前量有效,所述第四参数参考值包括在进入非激活态之前在初始BWP上或激活BWP上的参数测量值。
一种实施方式中,所述方法还包括:确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量无效;在初始BWP或所述独立小数据包BWP上,进行基于随机接入的小数据包传输。
一种实施方式中,基于预定义条件,确定所述终端切换的目标BWP,包括:
确定满足切换至独立小数据包BWP的条件,切换至独立小数据包BWP;或者确定不满足切换至独立小数据包BWP的条件,切换至初始BWP;所述满足切换至独立小数据包BWP的条件包括:独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数。
根据本公开实施例第二方面,提供一种BWP切换方法,应用于网络设备,所述BWP切换方法包括:发送指示信息,所述指示信息用于指示从连接态进入非激活态时切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP。
一种实施方式中,所述目标BWP包括初始BWP,独立小数据包BWP未配置同步信号块,所述方法还包括:为初始BWP配置与第一参数参考值测量使用的波束相同的波束测量信息,所述第一参数参考值为在初始BWP或激活BWP上的参数测量值。
一种实施方式中,所述目标BWP包括初始BWP,独立小数据包BWP配置同步信号块,所述方法还包括:为独立小数据包BWP配置与第二参数参考值测量使用的波束相同的波束测量信息,所述第二参数参考值包括在进入非激活态之前在初始BWP、独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,所述目标BWP包括独立小数据包BWP,所述独立小数据包BWP中包括初始BWP,或者所述独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数,所述方法还包括:为独立小数据包BWP配置与第三参数参考值测量使用的波束相同的波束测量信息,所述第三参数参考值包括在进入非激活态之前在独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,所述目标BWP包括独立小数据包BWP,所述独立小数据包BWP 中未配置同步信号块,所述方法还包括:为初始BWP配置与第四参数参考值测量使用的波束相同的波束测量信息,所述第四参数参考值包括在进入非激活态之前在初始BWP上或激活BWP上的参数测量值。
根据本公开实施例第三方面,提供一种BWP切换装置,包括:
处理单元,被配置为响应于终端配置有初始BWP以及独立小数据包BWP且所述终端被触发从连接态进入到非激活态,并确定所述终端切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP,从激活的BWP切换至所述目标BWP。
一种实施方式中,确定所述终端待切换的目标BWP包括以下至少一项:
基于通信协议,确定所述终端切换的目标BWP;基于预定义条件,确定所述终端切换的目标BWP;基于指示信息,确定所述终端切换的目标BWP,所述指示信息用于指示从连接态进入非激活态切换的目标BWP。
一种实施方式中,所述目标BWP为初始BWP,所述处理单元还被配置为确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量有效;从初始BWP切换至独立小数据包BWP进行基于半静态的小数据包传输。
一种实施方式中,所述独立小数据包BWP未配置同步信号块,所述处理单元被配置为基于第一参数参考值以及进入非激活态后在初始BWP上测量与所述第一参数参考值相同波束得到的第一参数测量值,确定所述小数据包传输的时间提前量有效,所述第一参数参考值包括在进入非激活态之前在初始BWP或激活BWP上的参数测量值。
一种实施方式中,基于通信协议或指示信息确定所述终端切换的目标BWP为初始BWP,所述独立小数据包BWP配置有同步信号块,所述处理单元被配置为:基于第二参数参考值以及进入非激活态后在独立小数据包BWP或初始BWP上测量与所述第二参数参考值相同波束得到的第二参数测量值,确定所述小数据包传输的时间提前量有效,所述第二参数参考值包括在进入非激活态之前在初始BWP、独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,所述处理单元还被配置为:确定完成小数据包传输,从独立小数据包BWP切换至所述初始BWP。
一种实施方式中,所述目标BWP为独立小数据包BWP,所述处理单元还被配置为:确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量有效;在所述独立小数据包BWP进行基于半静态的小数据包传输。
一种实施方式中,所述独立小数据包BWP中包括初始BWP,或者所述独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数; 所述处理单元被配置为:基于第三参数参考值以及进入非激活态后在所述独立小数据包BWP上测量与所述第三参数参考值相同波束得到的第三参数测量值,确定所述小数据包传输的时间提前量有效,所述第三参数参考值包括在进入非激活态之前在独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,基于通信协议或指示信息确定所述终端切换的目标BWP为独立小数据包BWP,所述独立小数据包BWP中未配置同步信号块;所述处理单元被配置为:基于第四参数参考值以及进入非激活态后在初始BWP上测量与所述第四参数参考值相同波束得到的第四参数测量值,确定所述小数据包传输的时间提前量有效,所述第四参数参考值包括在进入非激活态之前在初始BWP上或激活BWP上的参数测量值。
一种实施方式中,所述处理单元还被配置为:确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量无效;在初始BWP或所述独立小数据包BWP上,进行基于随机接入的小数据包传输。
一种实施方式中,所述处理单元被配置为采用如下方式基于预定义条件,确定所述终端切换的目标BWP:确定满足切换至独立小数据包BWP的条件,切换至独立小数据包BWP;或者确定不满足切换至独立小数据包BWP的条件,切换至初始BWP;所述满足切换至独立小数据包BWP的条件包括:独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数。
根据本公开实施例第四方面,提供一种BWP切换装置,包括:
发送单元,被配置为发送指示信息,所述指示信息用于指示从连接态进入非激活态时切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP。
一种实施方式中,BWP切换装置还包括处理单元,所述目标BWP包括初始BWP,独立小数据包BWP未配置同步信号块,所述处理单元被配置为:为初始BWP配置与第一参数参考值测量使用的波束相同的波束测量信息,所述第一参数参考值为在初始BWP或激活BWP上的参数测量值。
一种实施方式中,BWP切换装置还包括处理单元,所述目标BWP包括初始BWP,独立小数据包BWP配置同步信号块,所述处理单元被配置为:为独立小数据包BWP配置与第二参数参考值测量使用的波束相同的波束测量信息,所述第二参数参考值包括在进入非激活态之前在初始BWP、独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,BWP切换装置还包括处理单元,所述目标BWP包括独立小数据包BWP,所述独立小数据包BWP中包括初始BWP,或者所述独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数,所述处理单 元被配置为:为独立小数据包BWP配置与第三参数参考值测量使用的波束相同的波束测量信息,所述第三参数参考值包括在进入非激活态之前在独立小数据包BWP上或激活BWP上的参数测量值。
一种实施方式中,BWP切换装置还包括处理单元,所述目标BWP包括独立小数据包BWP,所述独立小数据包BWP中未配置同步信号块,所述处理单元被配置为:为初始BWP配置与第四参数参考值测量使用的波束相同的波束测量信息,所述第四参数参考值包括在进入非激活态之前在初始BWP上或激活BWP上的参数测量值。
根据本公开实施例第五方面,提供一种BWP切换装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的BWP切换方法。
根据本公开实施例第六方面,提供一种BWP切换装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的BWP切换方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行第一方面或者第一方面任意一种实施方式中所述的BWP切换方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第二方面或者第二方面任意一种实施方式中所述的BWP切换方法。
本公开的实施例提供的技术方案可以包括以下有益效果:终端被触发从连接态进入到非激活态,从激活的BWP切换至初始BWP或者独立小数据包BWP,实现连接态进入到非激活态时,BWP的切换配置。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2示出了一种从active BWP切换至initial BWP的示意图。
图3示出了一种配置了initial BWP和separate CG-SDT BWP,并由连接态进入到非激活态的通信场景示意图。
图4是根据一示例性实施例示出的一种BWP切换方法的流程图。
图5A是根据一示例性实施例示出的一种SDT传输的流程图。
图5B是根据一示例性实施例示出的一种SDT传输的流程图。
图6A是根据一示例性实施例示出的一种SDT传输的流程图。
图6B是根据一示例性实施例示出的一种SDT传输的流程图。
图7是根据一示例性实施例示出的一种BWP切换方法的流程图。
图8是根据一示例性实施例示出的一种BWP切换装置框图。
图9是根据一示例性实施例示出的一种BWP切换装置框图。
图10是根据一示例性实施例示出的一种用于BWP切换的装置的框图。
图11是根据一示例性实施例示出的一种用于BWP切换的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的接入方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括终端和网络设备。终端和网络设备之间通过无线资源进行信息的发送与接收。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网络设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分 为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网络设备。该无线接入网络设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
相关技术中,终端状态可以包括连接态(也称为CONNCETED态或RRC_CONNCETED状态)、非激活态(也称为inactive态,或RRC_INACTIVE态)、空闲态(也称为idle状态,或RRC_IDLE态)。NR release 17的讨论中提出在非激活态支持SDT传输,SDT传输可以理解为是不用进入连接态即可完成数据传输,以避免造成时频资源的浪费,缩短数据传输时延,同时节省终端能耗。
SDT传输支持两种方式:分别为基于随机接入过程的SDT和基于半静态的SDT。其中,基于随机接入过程的SDT为:终端通过两步随机接入,或者四步随机接入,在消息A(msgA)的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或者消息3(msg3)中传输上行小数据包。基于半静态的SDT为:网络设备在由连接态转换为非激活态时,在RRC资源释放(RRCrelease)消息中携带SDT传输所需的半静态时频域资源分配信息以及定时提前量(Timing Advance,TA)有效性判断等信息。终端在非激活态有上行数据要传输时,首先进行TA有效性判断、同步信号参考信号接收功率(Synchronization Signal Reference Signal Received Power,SS-RSRP)判断以及数据包大小的判断。当TA有效性、 SS-RSRP以及数据包大小等全部条件满足时,使用网络设备配置的半静态资源进行小数据包的传输。否则,比如当终端待传输的上行数据包的大小超过阈值时,终端则执行四步随机接入过程进入到连接态,在连接态下进行数据传输。
进一步的,4G网络中,默认所有终端都能够处理20MHZ的载波带宽,这种硬性指标会提升4G终端的成本,但能让传输信道占用的频域资源分散到整个带宽中并获得频率分集增益。由于5G NR需要支持非常大的系统带宽(最大到400MHZ),因此让所有不同的终端接收整个带宽必然是不合理的,例如物联网数据传输一般需要较小的带宽。5G NR标准设计需要考虑下述两个因素:
1)不要求所有终端都具备接收整个载波带宽的能力,NR标准需要为如何处理不同带宽能力的终端引入特别设计。
2)如果要求所有终端都可以接收整个载波带宽,除了需要考虑终端成本,接收整个系统带宽引起的功耗增加也是一个重要的考虑因素。
因此,NR标准设计中,引入了一个新的技术,即接收带宽自适应。通过接收带宽自适应技术,若待发送数据量较少,终端可以在一个较小的带宽上监听下行控制信道,以及接收少量的下行数据传输,当终端有大量的数据接收时,则打开更大的带宽进行接收。为了更好地支持不能处理整个载波带宽地终端以及接收带宽自适应,NR标准定义了BWP。
进一步的,NR协议规定,网络设备可以最多为连接态配置4个BWP,同时可以通过下行控制信息(Downlink Control Information,DCI)、切换定时器(switch timer)以及半静态配置的方式进行BWP的切换。当有数据量较小时,可以将较窄的BWP当作active BWP,并在active BWP上进行数据包的传输。当数据量较大时,可以通过DCI切换到较宽的BWP上,并在较宽的BWP上进行数据传输。
除此之外,相关技术中,网络设备还会为IDLE/非激活态的终端配置一个initial BWP。终端在连接态进入到非激活态时,将从active BWP切换至initial BWP上。图2示出了一种从active BWP切换至initial BWP的示意图。终端在initial BWP上接收paging消息,SSB,系统消息以及发起随机接入等。
进一步的,在Release 17 SDT WI中提出,对于CG-SDT,可以为其配置一个separate SDT BWP。当支持SDT的终端配置了separate SDT BWP时,终端可以在separate SDT BWP上进行小数据包的传输,从而可以保证小数据包的传输带宽需求,并减少initial BWP上的拥塞程度。
然而,当网络设备为终端配置了initial BWP和separate CG-SDT BWP时,终端从连接态进入到非激活态,终端应该切换回至initial BWP和separate CG-SDT BWP中的哪个 BWP上,目前还没有讨论。
有鉴于此,本公开实施例提供一种BWP切换方法,以在终端由连接态进入到非激活态时,确定切换的目标BWP。
本公开实施例提供的BWP切换方法应用于终端配置了initial BWP和separate CG-SDT BWP,并由连接态进入到非激活态的通信场景中。图3示出了一种配置了initial BWP和separate CG-SDT BWP,并由连接态进入到非激活态的通信场景示意图。
本公开实施例中,针对配置了initial BWP和separate CG-SDT BWP的终端,提供一种BWP切换方法,以在终端由连接态进入到非激活态时,确定切换回的BWP为initial BWP或separate CG-SDT BWP。
图4是根据一示例性实施例示出的一种BWP切换方法的流程图,如图4所示,BWP切换方法用于终端中,包括以下步骤。
在步骤S11中,确定终端配置有initial BWP以及separate CG-SDT BWP,且终端被触发从连接态进入到非激活态。
在步骤S12中,确定终端切换的目标BWP,所述目标BWP包括initial BWP或者separate CG-SDT BWP。
在步骤S13中,从激活BWP切换至initial BWP或者separate CG-SDT BWP。
本公开实施例中,终端配置有initial BWP以及separate CG-SDT BWP,响应于终端被触发从连接态进入到非激活态,确定切换至initial BWP或者separate CG-SDT BWP,进而从激活的BWP切换至initial BWP或者separate CG-SDT BWP。
需要说明的是,前述的步骤S11和步骤S12可以同时被执行,或是以任意顺序一前一后被执行,本公开实施例并不对两个步骤的执行时隙进行限定。
一种实施方式中,本公开实施例中,终端确定切换的目标BWP为initial BWP还是separate CG-SDT BWP时,可以采用如下方式中的至少一种:
方式一:基于通信协议,确定终端切换的目标BWP。
一示例中,通信协议规定终端(示例性的,可以包括支持SDT和不支持SDT传输的终端)从连接态进入到非激活态的情况下,始终切换到initial BWP上。即,基于通信协议确定终端切换的目标BWP为initial BWP。
另一示例中,通信协议规定支持SDT的终端,从连接态进入到非激活态的情况下,切换到separate CG-SDT BWP上。即,基于通信协议确定终端切换的目标BWP为separate CG-SDT BWP。
方式二:基于预定义条件,确定终端切换的目标BWP。
其中,预定义条件可以包括切换至separate CG-SDT BWP的条件,和/或包括切换至initial BWP的条件。当然,可以只包括其中之一,且符合条件的终端切换到对应的目标BWP;不符合该条件的终端切换至其他目标BWP。
一示例中,预定义条件包括切换至separate CG-SDT BWP的条件。其中,切换至separate CG-SDT BWP的条件包括以下的至少一种:separate CG-SDT BWP上配置有SSB、paging消息、系统消息、随机接入信道配置。一方面,终端确定满足切换至separate CG-SDT BWP的条件,切换至separate CG-SDT BWP。或者,另一方面,终端确定不满足切换至separate CG-SDT BWP的条件,切换至initial BWP或是其他BWP。
另一示例中,预定义条件包括切换至initial BWP的条件。其中,切换至initial BWP的条件包括以下的至少一种:initial BWP上未配置SSB、paging消息、系统消息以及随机接入信道配置。一方面,终端确定满足切换至initial BWP的条件,切换至initial BWP。或者另一方面,终端确定不满足切换至initial BWP的条件,切换至separate CG-SDT BWP。
又一示例中,预定义条件包括切换至initial BWP的条件和切换至separate CG-SDT BWP的条件。其中,切换至initial BWP的条件和切换至separate CG-SDT BWP的条件可以参考前述表述。一方面,终端确定满足切换至initial BWP的条件,切换至initial BWP;终端确定满足切换至separate CG-SDT BWP的条件,切换至separate CG-SDT BWP;终端确定不满足上述两个条件,切换至其他BWP。
本公开实施例中,基于预定义条件确定终端切换的目标BWP可以理解为是一种隐性方式确定切换的目标BWP的方式。比如,通过隐式方式判断,当终端从连接态进入到非激活态,切换到separate CG-SDT BWP上。比如,当网络设备为separate CG-SDT BWP配置了SSB、paging、系统消息接收、随机接入信道(Random Access Channel,RACH)过程等一种或多种过程所需参数时,支持SDT的终端切换到separate CG-SDT BWP上;否则,切换到initial BWP上。
方式三:基于指示信息,确定终端切换的目标BWP,指示信息用于指示从连接态进入非激活态时切换的目标BWP。
本公开实施例中,网络设备可以通过指示信息指示终端从连接态进入非激活态,切换到哪种BWP上。一方面,指示信息可以指示终端从连接态进入非激活态,切换至initial BWP;则响应于终端从连接态进入非激活态,终端基于指示信息确定切换至initial BWP。另一方面,指示信息可以指示终端从连接态进入非激活态,切换至separate CG-SDT BWP;则响应于终端从连接态进入非激活态,终端基于指示信息确定切换至separate CG-SDT BWP。
一示例中,用于指示终端从连接态进入非激活态时切换的目标BWP的指示信息,可以为已有信令的一个信息元素Information Element,例如可以通过RRC release信令指示,或者也可以通过SDT执行过程中网络设备发送的用于指示BWP切换的指示信息指示。
本公开实施例中,终端在配置有separate CG-SDT BWP和initial BWP的情况下,应用上述方式一、方式二以及方式三中的任意一种实施方式可以确定出从连接态进入非激活态的目标BWP,并从激活的BWP切换至确定的目标BWP上。
本公开实施例提供的BWP切换方法中,终端可以执行SDT传输。其中,SDT传输包括基于半静态的SDT传输,或者包括基于随机接入的SDT传输。
本公开实施例提供的BWP切换方法中,终端执行SDT传输之前或同时,需要进行TA有效性的判断。
一种实施方式中,当前BWP为initial BWP,终端在确定存在待传输的小数据包,并确定SDT传输的时间提前量有效的情况下,从initial BWP切换至separate CG-SDT BWP进行基于半静态的SDT传输。
图5A是根据一示例性实施例示出的一种SDT传输的流程图。该方法既可以单独被实施,也可以结合本公开实施例的其他方法一起被实施;本公开实施例并不对此做出限定。例如,该方法示例性的可以与前述的如图4所示的实施例一起被实施,或是示例性的可以与随后的实施例一起被实施。如图5A所示,SDT传输方法用于终端中,包括以下步骤。
在步骤S21中,确定当前BWP为initial BWP。
在步骤S22a中,确定存在待传输的小数据包,并确定SDT传输的时间提前量有效。
在步骤S23a中,从initial BWP切换至separate CG-SDT BWP进行基于半静态的SDT传输。
本公开实施例另一种实施方式中,当前BWP为initial BWP,终端在确定存在待传输的小数据包,并确定SDT传输的时间提前量无效的情况下,在initial BWP或separate CG-SDT BWP上,进行基于随机接入的SDT传输。
图5B是根据一示例性实施例示出的一种SDT传输的流程图。该方法既可以单独被实施,也可以结合本公开实施例的其他方法一起被实施;本公开实施例并不对此做出限定。例如,该方法示例性的可以与前述的如图4所示的实施例一起被实施,或是示例性的可以与随后的实施例一起被实施。如图5B所示,SDT传输方法用于终端中,包括以下步骤。
在步骤S21中,确定当前BWP为initial BWP。
在步骤S22b中,确定存在待传输的小数据包,并确定SDT传输的时间提前量无效。
在步骤S23b中,在initial BWP或separate CG-SDT BWP上,进行基于随机接入的SDT 传输。
一种实施方式中,当前BWP为separate CG-SDT BWP。一方面,终端在确定存在待传输的小数据包,并确定SDT传输的时间提前量有效的情况下,在separate CG-SDT BWP进行基于半静态的SDT传输。
图6A是根据一示例性实施例示出的一种SDT传输的流程图。该方法既可以单独被实施,也可以结合本公开实施例的其他方法一起被实施;本公开实施例并不对此做出限定。例如,该方法示例性的可以与前述的如图4所示的实施例一起被实施,或是示例性的可以与随后的实施例一起被实施。如图6A所示,SDT传输方法用于终端中,包括以下步骤。
在步骤S31中,确定当前BWP为separate CG-SDT BWP。
在步骤S32a中,确定存在待传输的小数据包,并确定SDT传输的时间提前量有效。
在步骤S33a中,在separate CG-SDT BWP进行基于半静态的SDT传输。
本公开实施例另一种实施方式中终端在确定存在待传输的小数据包,并确定SDT传输的时间提前量无效的情况下,在initial BWP或separate CG-SDT BWP上,进行基于随机接入的SDT传输。
图6B是根据一示例性实施例示出的一种SDT传输的流程图。该方法既可以单独被实施,也可以结合本公开实施例的其他方法一起被实施;本公开实施例并不对此做出限定。例如,该方法示例性的可以与前述的如图4所示的实施例一起被实施,或是示例性的可以与随后的实施例一起被实施。如图6B所示,SDT传输方法用于终端中,包括以下步骤。
在步骤S31中,确定当前BWP为separate CG-SDT BWP。
在步骤S32b中,确定存在待传输的小数据包,并确定SDT传输的时间提前量无效。
在步骤S33b中,在initial BWP或separate CG-SDT BWP上,进行基于随机接入的SDT传输。
本公开实施例提供的BWP切换方法中,终端执行SDT传输的方法实施过程中,终端可以基于从连接态进入非激活态情况下的切换的目标BWP,确定当前BWP,并进行TA有效性的判断,并进行SDT传输。
本公开实施例中,首先,以终端从连接态进入非激活态,切换到的目标BWP为initial BWP为例进行说明。
本公开实施例一种实施方式中,基于通信协议规定,确定终端从连接态进入到非激活态始终切换到initial BWP。或者基于预定义条件,确定终端从连接态进入到非激活态切换到initial BWP。或者基于指示信息确定终端从连接态进入到非激活态切换到initial BWP。
响应于终端从连接态进入到非激活态切换到initial BWP的情况下,且终端有小数据包 待传输;所述终端从initial BWP上切换到separate CG-SDT BWP上进行传输。若当前无SDT传输,则一直驻留在initial BWP上。此外,终端在进行SDT传输之前,通过执行SSB的测量进行TA有效性判断。
本公开实施例中,终端从连接态进入到非激活态切换到initial BWP上的情况下,可进一步基于separate CG-SDT BWP是否配置SSB,采用不同的TA有效性判断方式。
一种实施方式中,终端从连接态进入到非激活态,基于通信协议、预定义条件或者指示信息,确定切换到initial BWP,separate CG-SDT BWP未配置SSB的情况下。终端在initial BWP上执行SSB测量,并将测量得到的参数测量值作为后续进行TA有效性判断的参数参考值,以下将该参数参考值称为第一参数参考值。终端从连接态切换到非激活态后,在执行SDT传输之前,在initial BWP上测量与第一参数参考值相同波束的参数值,以下称为第一参数测量值。基于第一参数参考值以及第一参数测量值,确定SDT传输的时间提前量是否有效。
一示例中,执行SSB测量得到的参数以RSRP为例进行说明。终端在initial BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。其中,终端在initial BWP上执行SSB测量确定作为参考值的RSRP值可以是在进入非激活态之前执行,也可以是在进入非激活态的同时或之后执行。
例如,终端进入非激活态之前,切换到initial BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。终端从连接态切换到非激活态。在非激活态下终端发起SDT之前,在initial BWP上测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。或者,终端从连接态切换到非激活态,在非激活态下,终端切换至initial BWP,在initial BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。在非激活态下终端发起SDT之前,终端再次在initial BWP执行SSB测量,测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。
终端将测量值与参考值进行比较,从而判断TA是否有效。在TA有效的基础上,切换到separate CG-SDT BWP上进行SDT传输。否则,在满足SDT传输条件的基础上,在initial BWP上进行RA-based SDT。
另一种方式中,终端从连接态进入到非激活态,基于通信协议、预定义条件或者指示信息,确定切换到initial BWP,separate CG-SDT BWP未配置SSB的情况下,终端在激活的BWP上执行SSB测量,并将测量得到的参数测量值作为后续进行TA有效性判断的参数参考值,以下仍将该参数参考值称为第一参数参考值。其中,网络设备为保证终端在相同波束上执行SSB测量,网络设备为initial BWP配置与第一参数参考值测量使用的波束 相同的波束测量信息。终端从连接态切换到非激活态。在initial BWP上测量与第一参数参考值相同波束的参数值,以下仍称为第一参数测量值。即基于第一参数参考值以及第一参数测量值,确定SDT传输的时间提前量是否有效。
一示例中,执行SSB测量得到的参数以RSRP为例进行说明。终端在进入非激活态之前,首先在激活的BWP上执行SSB测量,并将测量得到的RSRP作为参考值。并且,网络设备将通过高层信令为每个终端在initial BWP上配置单独的与参考值相同的SSB subset波束等测量量。即,网络设备为初始BWP配置与第一参数参考值测量使用的波束相同的波束测量信息。响应于终端进入非激活态且终端要发起SDT,则首先测量initial BWP上网络设备配置的SSB测量来进行TA有效性的验证。例如,测量与RSRP参考值测量时使用的相同的SSB子集。终端将测量值与参考值进行比较,从而判断TA是否有效。在TA有效的基础上,切换到separate CG-SDT BWP上进行SDT传输。否则,在满足SDT传输条件的基础上,在initial BWP上进行RA-based SDT。
本公开实施例中,终端从连接态进入到非激活态,基于通信协议或指示信息确定终端切换的目标BWP为initial BWP;separate CG-SDT BWP配置有SSB的情况下,终端在initial BWP、separate CG-SDT BWP上或激活BWP上执行SSB测量,并将测量得到的参数测量值作为后续进行TA有效性判断的参数参考值,以下将该参数参考值称为第二参数参考值。终端从连接态切换到非激活态,在执行SDT传输之前,在initial BWP或separate CG-SDT BWP上测量与第二参数参考值相同波束的参数值,以下称为第二参数测量值。即基于第二参数参考值以及第二参数测量值,确定SDT传输的时间提前量是否有效。
其中,终端从连接态进入到非激活态,基于通信协议或者指示信息确定终端切换的目标BWP为initial BWP,separate CG-SDT BWP配置有SSB的情况下,可以测量initial BWP上的SSB得到第二参数测量值,也可以测量separate CG-SDT BWP上的SSB得到第二参数测量值。若是测量initial BWP上的SSB得到第二参数测量值,则具体可以参考上述实施例中separate CG-SDT BWP未配置SSB的情况下测量initial BWP上的SSB的执行过程,在此不再赘述。以下对测量separate CG-SDT BWP上的SSB得到第二参数测量值,并基于第二参数参考值以及第二参数测量值,确定SDT传输的时间提前量是否有效的过程进行说明。
一示例中,执行SSB测量得到的参数以RSRP为例进行说明。其中,终端在separate CG-SDT BWP上执行SSB测量确定作为参考值的RSRP值可以是在进入非激活态之前执行,也可以是在进入非激活态的同时或之后执行。
例如,终端进入非激活态之前,切换到separate CG-SDT BWP上执行SSB测量,并保 留测量得到的RSRP值作为参考值。终端从连接态进入到非激活态,从separate CG-SDT BWP切换到initial BWP。在非激活态上进行SDT传输之前,终端首先切换到separate CG-SDT BWP上进行SSB测量,测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。或者,终端从连接态切换到非激活态,在非激活态下切换到separate CG-SDT BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。在非激活态下,终端从separate CG-SDT BWP上切换至initial BWP。在终端发起SDT之前,终端再次切换到separate CG-SDT BWP上执行SSB测量,测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。
终端将测量值与参考值进行比较,从而判断TA是否有效。在TA有效的基础上进行SDT传输。否则,在满足SDT传输条件的基础上,查看separate CG-SDT BWP上是否有随机接入资源。若separate CG-SDT BWP上存在随机接入资源,则在separate CG-SDT BWP上进行基于随机接入的SDT传输。若在separate CG-SDT BWP上无随机接入资源,则切换回initial BWP上进行基于随机接入的SDT传输。
另一示例中,执行SSB测量得到的参数以RSRP为例进行说明。终端在进入非激活态之前,首先在激活的BWP上执行SSB测量,并将测量得到的RSRP作为参考值。同时,网络设备通过高层信令为separate CG-SDT BWP配置与参考值相同的SSB波束等测量量。即,为独立小数据包BWP配置与第二参数参考值测量使用的波束相同的波束测量信息。终端在进入非激活态并切换到initial BWP上。在确定需要进行SDT传输时,首先从initial BWP切换到separate CG-SDT BWP,同时通过测量网络设备配置的测量量进行TA有效性判断。在TA有效的基础上进行SDT传输。否则,在满足SDT传输条件的基础上,查看separate CG-SDT BWP上是否有随机接入资源。若separate CG-SDT BWP上存在随机接入资源,则在separate CG-SDT BWP上进行基于随机接入的SDT传输。若在separate CG-SDT BWP上无随机接入资源,则切换回initial BWP上进行基于随机接入的SDT传输。
本公开上述实施例提供的BWP切换方法中,基于通信协议或指示信息确定终端切换的目标BWP为initial BWP,并在separate CG-SDT BWP上进行SDT传输,若确定完成SDT传输,则从separate CG-SDT BWP切换至initial BWP。例如,若SDT传输执行完成后,终端仍处于非激活态,则将从separate CG-SDT BWP上切换到initial BWP上。比如,终端接收到RRC release信令后,将从separate CG-SDT BWP上切换到initial BWP上。
本公开实施例以下以一种情况为例进行说明,即:终端从连接态进入非激活态且切换的目标BWP为separate CG-SDT BWP,确定当前BWP,进行TA有效性的判断,并进行SDT传输。需要说明的是,以下的情况只是一种可能的实施方式,其他情况的实施方式可 以与以下的实施方式类似。
本公开实施例中,终端从连接态进入非激活态且切换的目标BWP为separate CG-SDT BWP的情况下,终端需为支持SDT传输的终端,并且协议规定或基站为支持SDT的终端配置了separate CG-SDT BWP。
本公开实施例一种实施方式中,基于通信协议规定确定,终端从连接态进入到非激活态始终切换到separate CG-SDT BWP。或者基于预定义条件确定,终端从连接态进入到非激活态切换到separate CG-SDT BWP。或者基于指示信息确定,终端从连接态进入到非激活态,切换到separate CG-SDT BWP。
响应于终端从连接态进入到非激活态并切换到separate CG-SDT BWP,当终端有SDT传输时,确定TA是否有效。在TA有效的情况下,在separate CG-SDT BWP上进行基于半静态的SDT传输。在TA无效的情况下,在separate CG-SDT BWP或initial BWP上进行基于随机接入的SDT传输。
本公开实施例中,终端从连接态进入到非激活态且切换到separate CG-SDT BWP的情况下,可进一步基于separate CG-SDT BWP是否配置SSB,采用不同的TA有效性判断方式。
一种实施方式中,为了避免进行BWP的频繁切换,协议规定必须在separate SDT BWP上配置SSB、paging消息、系统消息、PRACH信道配置等一种或多种参数。或者separate CG-SDT BWP必须将initial BWP包含在自身带宽范围内,即,separate CG-SDT BWP中包括initial BWP。
一种实施方式中,响应于终端从连接态进入到非激活态,基于通信协议、预定义条件或指示信息或通过其他任何,确定切换到separate CG-SDT BWP,separate CG-SDT BWP中包括initial BWP或者separate SDT BWP上配置SSB、paging消息、系统消息、PRACH信道配置等一种或多种参数。终端在separate CG-SDT BWP上或激活BWP上执行SSB测量,并将测量得到的参数测量值作为后续进行TA有效性判断的参数参考值,以下将该参数参考值称为第三参数参考值。响应于终端进入非激活态,在执行SDT传输之前,在separate CG-SDT BWP上测量与第三参数参考值相同波束的参数值,以下称为第三参数测量值。基于第三参数参考值以及第三参数测量值,确定SDT传输的时间提前量是否有效。
一示例中,执行SSB测量得到的参数以RSRP为例进行说明。其中,终端在separate CG-SDT BWP上执行SSB测量确定作为参考值的RSRP值可以是在进入非激活态之前执行,也可以是在进入非激活态的同时或之后执行。
例如,终端进入非激活态之前,切换到separate CG-SDT BWP上执行SSB测量,并保 留测量得到的RSRP值作为参考值。终端从连接态进入非激活态,切换至separate CG-SDT BWP。在发起SDT传输之前,在separate CG-SDT BWP上进行SSB测量,测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。或者,终端从连接态切换到非激活态,切换至separate CG-SDT BWP,在separate CG-SDT BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。在终端发起SDT之前,终端再次在separate CG-SDT BWP上执行SSB测量,测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。
终端将测量值与参考值进行比较,从而判断TA是否有效。在TA有效的基础上进行SDT传输。否则,在满足SDT传输条件的基础上,查看separate CG-SDT BWP上是否有随机接入资源。若separate CG-SDT BWP上存在随机接入资源,则在separate CG-SDT BWP上进行基于随机接入的SDT传输。若在separate CG-SDT BWP上无随机接入资源,则切换回initial BWP上进行基于随机接入的SDT传输。
另一示例中,执行SSB测量得到的参数以RSRP为例进行说明。终端在进入非激活态之前,首先在激活的BWP上执行SSB测量,并将测量得到的RSRP作为参考值。同时,网络设备通过高层信令为separate CG-SDT BWP配置与参考值相同的SSB波束等测量量。即,为独立小数据包BWP配置与第三参数参考值测量使用的波束相同的波束测量信息。终端进入非激活态后,将切换到separate CG-SDT BWP上。若确定需要进行SDT传输,首先需要测量相应的SSB从而进行TA有效性验证。在TA有效地基础上,进行SDT传输。否则,在满足SDT传输条件的基础上,查看separate CG-SDT BWP上是否有随机接入资源。若separate CG-SDT BWP上存在随机接入资源,则在separate CG-SDT BWP上进行基于随机接入的SDT传输。若在separate CG-SDT BWP上无随机接入资源,则切换回initial BWP上进行基于随机接入的SDT传输。
一种实施方式中,执行SSB测量得到的参数以RSRP为例进行说明。本公开实施例中可以基于通信协议规定separate CG-SDT BWP上必须配置随机接入资源,实现在separate CG-SDT BWP上进行基于随机接入的SDT传输。
其中,终端连接态进入到非激活态,基于通信协议或指示信息或通过其他任何方式确定终端切换的目标BWP为separate CG-SDT BWP,且separate CG-SDT BWP中未配置SSB。终端在initial BWP上或激活BWP上执行SSB测量,并将测量得到的参数测量值作为后续进行TA有效性判断的参数参考值,以下将该参数参考值称为第四参数参考值。在执行SDT传输之前,在initial BWP上测量与第四参数参考值相同波束的参数值,以下称为第四参数测量值。基于第四参数参考值以及第四参数测量值,确定SDT传输的时间提前量是否有效。 在一些实施方式中,可以在进入非激活态后且在执行SDT传输之前,实行上述步骤以确定第四参数测量值。
一示例中,执行SSB测量得到的参数以RSRP为例进行说明。其中,终端在initial BWP上执行SSB测量确定作为参考值的RSRP值可以是在进入非激活态之前执行,也可以是在进入非激活态的同时或之后执行。
例如,终端进入非激活态之前,切换到initial BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。终端从连接态进入非激活态,从initial BWP切换至separate CG-SDT BWP。若终端需要执行SDT传输,首先从separate CG-SDT BWP切换到initial BWP上测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。或者,终端从连接态切换到非激活态,在非激活态下,切换到initial BWP上执行SSB测量,并保留测量得到的RSRP值作为参考值。终端从initial BWP切换至separate CG-SDT BWP。终端发起SDT之前,终端再次从separate CG-SDT BWP切换到initial BWP上,在initial BWP执行SSB测量,测量与RSRP参考值测量时使用的相同的SSB子集的RSRP值,作为测量值。
终端将测量值与参考值进行比较,从而进行TA有效性判断。若TA有效,则切换到separate CG-SDT BWP上进行SDT传输。若TA无效,则在满足基于随机接入的SDT传输的条件下,终端可以在initial BWP上进行基于随机接入的SDT传输。此外,若separate CG-SDT BWP上配置了随机接入资源,终端也可以切换到separate CG-SDT BWP上进行基于随机接入的SDT传输。
另一示例中,执行SSB测量得到的参数以RSRP为例进行说明。终端在进入非激活态之前,首先在激活的BWP上执行SSB测量,并将测量得到的RSRP作为参考值。同时,网络设备通过高层信令为initial BWP配置与参考值相同的SSB波束等测量量。即,网络设备为独立小数据包BWP配置与第四参数参考值测量使用的波束相同的波束测量信息。终端进入非激活态后,切换至separate CG-SDT BWP上。终端在需要执行SDT传输时,首先切换到initial BWP上进行TA有效性判断。若TA有效,则切换到separate CG-SDT BWP上进行SDT传输。若TA无效,则在满足基于随机接入的SDT传输的条件下,终端可以在initial BWP上进行基于随机接入的SDT传输。此外,若separate CG-SDT BWP上配置了随机接入资源,终端也可以切换到separate CG-SDT BWP上进行基于随机接入的SDT传输。
可以理解的是,本公开上述实施例中涉及的终端从initial BWP上切换到separate CG-SDT BWP上,或者从separate CG-SDT BWP上切换到initial BWP上,可以是终端自 主切换,也可以是首先由终端进行切换请求上报,然后由网络设备指示进行切换。
本公开实施例提供的应用于终端的BWP切换方法,可以理解为是当为支持SDT的终端配置了separate CG-SDT BWP时,终端从连接态进入到非激活态时的BWP切换方法,能够确定出切换的目标BWP是separate CG-SDT BWP,还是initial BWP,从而有效支持separate CG-SDT BWP的配置,以减小initial BWP上的拥塞程度。
基于相同的构思,本公开实施例还提供一种应用于网络设备的BWP切换方法。
图7是根据一示例性实施例示出的一种BWP切换方法的流程图,如图7所示,BWP切换方法用于网络设备中,包括以下步骤。
在步骤S41中,发送指示信息,指示信息用于指示从连接态进入非激活态切换的目标BWP,所述目标BWP包括initial BWP或者separate CG-SDT BWP。
本公开实施例中,网络设备指示切换至initial BWP或者切换至separate CG-SDT BWP,使得当为支持SDT的终端配置了separate CG-SDT BWP时,终端从连接态进入到非激活态,能够确定切换的目标BWP是separate CG-SDT BWP,还是initial BWP,从而有效支持separate CG-SDT BWP的配置,以减小initial BWP上的拥塞程度。
本公开实施例中,网络设备根据指示的切换的目标BWP,以及终端配置的separate CG-SDT BWP是否配置SSB,可以进一步为终端配置执行SSB测量的波束信息,以使终端执行SDT传输中TA有效性的判断。
一种实施方式中,所述目标BWP包括initial BWP,separate CG-SDT BWP未配置SSB,网络设备为initial BWP配置与第一参数参考值测量使用的波束相同的波束测量信息,第一参数参考值为在initial BWP或激活BWP上的参数测量值。
一种实施方式中,切换的目标BWP包括initial BWP,separate CG-SDT BWP配置SSB,网络设备为separate CG-SDT BWP配置与第二参数参考值测量使用的波束相同的波束测量信息,第二参数参考值包括在进入非激活态之前在initial BWP、separate CG-SDT BWP上或激活BWP上的参数测量值。
一种实施方式中,切换的目标BWP包括separate CG-SDT BWP,separate CG-SDT BWP中包括initial BWP,或者separate CG-SDT BWP上配置有SSB、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数。网络设备为separate CG-SDT BWP配置与第三参数参考值测量使用的波束相同的波束测量信息,第三参数参考值包括在进入非激活态之前在separate CG-SDT BWP上或激活BWP上的参数测量值。
一种实施方式中,切换的目标BWP包括separate CG-SDT BWP,separate CG-SDT BWP中未配置SSB。网络设备为initial BWP配置与第四参数参考值测量使用的波束相同的波束 测量信息,第四参数参考值包括在进入非激活态之前在initial BWP上或激活BWP上的参数测量值。
可以理解的是,本公开实施例中由网络设备执行的BWP切换方法,与上述实施例中终端执行BWP切换方法相对应,故对于网络设备执行的BWP切换方法描述不够详尽的地方,可以参阅上述终端执行BWP切换方法,在此不再详述。
进一步可以理解的是,本公开实施例提供的BWP切换方法,可以适用于终端与网络设备交互实现BWP切换的场景,。其中,具体实现过程中涉及的终端、网络设备实现的功能可以参阅上述实施例中涉及的相关描述,在此不再详述。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种BWP切换装置。
可以理解的是,本公开实施例提供的BWP切换装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图8是根据一示例性实施例示出的一种BWP切换装置框图。参照图8,BWP切换装置100应用于终端,包括处理单元101。
处理单元101,被配置为响应于终端配置有initial BWP以及separate CG-SDT BWP且被触发从连接态进入到非激活态,确定终端切换的目标BWP,所述切换的目标BWP包括initial BWP或者separate CG-SDT BWP,从激活的BWP切换至目标BWP。
一种实施方式中,处理单元101采用如下至少一种方式确定终端切换的目标BWP:
基于通信协议,确定终端切换的目标BWP。基于预定义条件,确定终端切换的目标BWP。基于指示信息,确定终端切换的目标BWP,指示信息用于指示从连接态进入非激活态时切换的目标BWP。
一种实施方式中,终端切换的目标BWP为initial BWP,处理单元101还被配置为确定存在待传输的小数据包,并确定SDT传输的时间提前量有效;从initial BWP切换至 separate CG-SDT BWP进行基于半静态的SDT传输。
一种实施方式中,separate CG-SDT BWP未配置SSB,处理单元101被配置为基于第一参数参考值以及进入非激活态后在initial BWP上测量与第一参数参考值相同波束得到的第一参数测量值,确定SDT传输的时间提前量有效,第一参数参考值包括在进入非激活态之前在initial BWP或激活BWP上的参数测量值。
一种实施方式中,基于通信协议或指示信息确定终端切换的目标BWP为initial BWP,separate CG-SDT BWP配置有SSB,处理单元101被配置为:基于第二参数参考值以及进入非激活态后在separate CG-SDT BWP或initial BWP上测量与第二参数参考值相同波束得到的第二参数测量值,确定小数据包传输的时间提前量有效,第二参数参考值包括在进入非激活态之前在initial BWP、separate CG-SDT BWP上或激活BWP上的参数测量值。
一种实施方式中,处理单元101还被配置为:确定完成小数据包传输,从separate CG-SDT BWP切换至initial BWP。
一种实施方式中,终端切换的目标BWP为separate CG-SDT BWP,处理单元101还被配置为:确定存在待传输的小数据包,并确定小数据包传输的时间提前量有效;在separate CG-SDT BWP进行基于半静态的小数据包传输。
一种实施方式中,separate CG-SDT BWP中包括initial BWP,或者separate CG-SDT BWP上配置有SSB、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数;处理单元101被配置为:基于第三参数参考值以及进入非激活态后在separate CG-SDT BWP上测量与第三参数参考值相同波束得到的第三参数测量值,确定小数据包传输的时间提前量有效,第三参数参考值包括在进入非激活态之前在separate CG-SDT BWP上或激活BWP上的参数测量值。
一种实施方式中,基于通信协议或指示信息确定终端切换的目标BWP为separate CG-SDT BWP,separate CG-SDT BWP中未配置SSB;处理单元101被配置为:基于第四参数参考值以及进入非激活态后在initial BWP上测量与第四参数参考值相同波束得到的第四参数测量值,确定小数据包传输的时间提前量有效,第四参数参考值包括在进入非激活态之前在initial BWP上或激活BWP上的参数测量值。
一种实施方式中,处理单元101还被配置为:确定存在待传输的小数据包,并确定小数据包传输的时间提前量无效;在initial BWP或separate CG-SDT BWP上,进行基于随机接入的小数据包传输。
一种实施方式中,处理单元101被配置为采用如下方式基于预定义条件,确定终端切换的目标BWP:确定满足切换至separate CG-SDT BWP的条件,切换至separate CG-SDT  BWP;或者确定不满足切换至separate CG-SDT BWP的条件,切换至initial BWP;满足切换至separate CG-SDT BWP的条件包括:separate CG-SDT BWP上配置有SSB、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数。
图9是根据一示例性实施例示出的一种BWP切换装置框图。参照图9,BWP切换装置200应用于网络设备,包括发送单元201。
发送单元201,被配置为发送指示信息,指示信息用于指示从连接态进入非激活态的切换的目标BWP,目标BWP包括initial BWP或者separate CG-SDT BWP。
一种实施方式中,BWP切换装置200还包括处理单元202,目标BWP包括initial BWP,separate CG-SDT BWP未配置SSB,处理单元被配置为:为initial BWP配置与第一参数参考值测量使用的波束相同的波束测量信息,第一参数参考值为在initial BWP或激活BWP上的参数测量值。
一种实施方式中,BWP切换装置200还包括处理单元202,目标BWP包括initial BWP,separate CG-SDT BWP配置SSB,处理单元202被配置为:为separate CG-SDT BWP配置与第二参数参考值测量使用的波束相同的波束测量信息,第二参数参考值包括在进入非激活态之前在initial BWP、separate CG-SDT BWP上或激活BWP上的参数测量值。
一种实施方式中,BWP切换装置200还包括处理单元202,目标BWP包括separate CG-SDT BWP,separate CG-SDT BWP中包括initial BWP,或者separate CG-SDT BWP上配置有SSB、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数,处理单元202被配置为:为separate CG-SDT BWP配置与第三参数参考值测量使用的波束相同的波束测量信息,第三参数参考值包括在进入非激活态之前在separate CG-SDT BWP上或激活BWP上的参数测量值。
一种实施方式中,BWP切换装置200还包括处理单元202,目标BWP包括separate CG-SDT BWP,separate CG-SDT BWP中未配置SSB,处理单元202被配置为:为initial BWP配置与第四参数参考值测量使用的波束相同的波束测量信息,第四参数参考值包括在进入非激活态之前在initial BWP上或激活BWP上的参数测量值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图10是根据一示例性实施例示出的一种用于BWP切换的装置的框图。BWP切换的装置300可以被提供为上述实施例中涉及的终端。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的一种用于BWP切换的装置的框图。例如,BWP切换的装置400可以被提供为一网络设备。参照图11,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口440被配置为将装置400连接到网络,和一个输入输出(I/O)接口448。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (22)

  1. 一种BWP切换方法,其特征在于,应用于终端,所述BWP切换方法包括:
    响应于所述终端配置有初始BWP以及独立小数据包BWP且所述终端被触发从连接态进入到非激活态,确定所述终端切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP;
    从激活的BWP切换至所述目标BWP。
  2. 根据权利要求1所述的BWP切换方法,其特征在于,确定所述目标BWP包括以下至少一项:
    基于通信协议,确定所述终端的目标BWP;
    基于预定义条件,确定所述终端的目标BWP;
    基于指示信息,确定所述终端的目标BWP,所述指示信息用于指示从连接态进入非激活态的切换的目标BWP。
  3. 根据权利要求2所述的BWP切换方法,其特征在于,所述终端切换的目标BWP为初始BWP,所述BWP切换方法还包括:
    确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量有效;
    从初始BWP切换至独立小数据包BWP进行基于半静态的小数据包传输。
  4. 根据权利要求3所述的BWP切换方法,其特征在于,所述独立小数据包BWP未配置同步信号块,所述确定所述小数据包传输的时间提前量有效,包括:
    基于第一参数参考值以及进入非激活态后在初始BWP上测量与所述第一参数参考值相同波束得到的第一参数测量值,确定所述小数据包传输的时间提前量有效,所述第一参数参考值包括在进入非激活态之前在初始BWP或激活BWP上的参数测量值。
  5. 根据权利要求3所述的切换方法,其特征在于,基于通信协议或指示信息确定所述终端切换的目标BWP为初始BWP,所述独立小数据包BWP配置有同步信号块,所述确定所述小数据包传输的时间提前量有效,包括:
    基于第二参数参考值以及进入非激活态后在独立小数据包BWP或初始BWP上测量与所述第二参数参考值相同波束得到的第二参数测量值,确定所述小数据包传输的时间提前量有效,所述第二参数参考值包括在进入非激活态之前在初始BWP、独立小数据包BWP上或激活BWP上的参数测量值。
  6. 根据权利要求3所述的BWP切换方法,其特征在于,所述BWP切换方法还包括:
    确定完成小数据包传输,从独立小数据包BWP切换至所述初始BWP。
  7. 根据权利要求2所述的BWP切换方法,其特征在于,所述终端切换的目标BWP为独立小数据包BWP,所述方法还包括:
    确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量有效;
    在所述独立小数据包BWP进行基于半静态的小数据包传输。
  8. 根据权利要求7所述的BWP切换方法,其特征在于,所述独立小数据包BWP中包括初始BWP,或者所述独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数;
    所述确定所述小数据包传输的时间提前量有效,包括:
    基于第三参数参考值以及进入非激活态后在所述独立小数据包BWP上测量与所述第三参数参考值相同波束得到的第三参数测量值,确定所述小数据包传输的时间提前量有效,所述第三参数参考值包括在进入非激活态之前在独立小数据包BWP上或激活BWP上的参数测量值。
  9. 根据权利要求7所述的BWP切换方法,其特征在于,基于通信协议或指示信息确定所述终端切换的目标BWP为独立小数据包BWP,所述独立小数据包BWP中未配置同步信号块;
    所述确定所述小数据包传输的时间提前量有效,包括:
    基于第四参数参考值以及进入非激活态后在初始BWP上测量与所述第四参数参考值相同波束得到的第四参数测量值,确定所述小数据包传输的时间提前量有效,所述第四参数参考值包括在进入非激活态之前在初始BWP上或激活BWP上的参数测量值。
  10. 根据权利要求3至9中任意一项所述的BWP切换方法,其特征在于,所述方法还包括:
    确定存在待传输的小数据包,并确定所述小数据包传输的时间提前量无效;
    在初始BWP或所述独立小数据包BWP上,进行基于随机接入的小数据包传输。
  11. 根据权利要求2所述的BWP切换方法,其特征在于,基于预定义条件,确定所述终端切换的目标BWP,包括:
    确定满足切换至独立小数据包BWP的条件,切换至独立小数据包BWP;或者
    确定不满足切换至独立小数据包BWP的条件,切换至初始BWP;
    所述满足切换至独立小数据包BWP的条件包括:独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数。
  12. 一种BWP切换方法,其特征在于,应用于网络设备,所述BWP切换方法包括:
    发送指示信息,所述指示信息用于指示从连接态进入非激活态的切换的目标BWP,所 述目标BWP包括初始BWP或者独立小数据包BWP。
  13. 根据权利要求12所述的BWP切换方法,其特征在于,所述目标BWP包括初始BWP,独立小数据包BWP未配置同步信号块,所述方法还包括:
    为初始BWP配置与第一参数参考值测量使用的波束相同的波束测量信息,所述第一参数参考值为在初始BWP或激活BWP上的参数测量值。
  14. 根据权利要求12所述的BWP切换方法,其特征在于,所述目标BWP包括初始BWP,独立小数据包BWP配置同步信号块,所述方法还包括:
    为独立小数据包BWP配置与第二参数参考值测量使用的波束相同的波束测量信息,所述第二参数参考值包括在进入非激活态之前在初始BWP、独立小数据包BWP上或激活BWP上的参数测量值。
  15. 根据权利要求12所述的BWP切换方法,其特征在于,所述目标BWP包括独立小数据包BWP,所述独立小数据包BWP中包括初始BWP,或者所述独立小数据包BWP上配置有同步信号块、寻呼消息、系统消息、随机接入信道配置中的一种或多种参数,所述方法还包括:
    为独立小数据包BWP配置与第三参数参考值测量使用的波束相同的波束测量信息,所述第三参数参考值包括在进入非激活态之前在独立小数据包BWP上或激活BWP上的参数测量值。
  16. 根据权利要求12所述的BWP切换方法,其特征在于,所述目标BWP包括独立小数据包BWP,所述独立小数据包BWP中未配置同步信号块,所述方法还包括:
    为初始BWP配置与第四参数参考值测量使用的波束相同的波束测量信息,所述第四参数参考值包括在进入非激活态之前在初始BWP上或激活BWP上的参数测量值。
  17. 一种BWP切换装置,其特征在于,包括:
    处理单元,被配置为响应于终端配置有初始BWP以及独立小数据包BWP且所述终端被触发从连接态进入到非激活态,确定所述终端切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP,从激活的BWP切换至所述目标BWP。
  18. 一种BWP切换装置,其特征在于,包括:
    发送单元,被配置为发送指示信息,所述指示信息用于指示从连接态进入非激活态的切换的目标BWP,所述目标BWP包括初始BWP或者独立小数据包BWP。
  19. 一种BWP切换装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至11中任意一项所述的BWP切换方法。
  20. 一种BWP切换装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求12至16中任意一项所述的BWP切换方法。
  21. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求1至11中任意一项所述的BWP切换方法。
  22. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求12至16中任意一项所述的BWP切换方法。
PCT/CN2021/119708 2021-09-22 2021-09-22 一种bwp切换方法、装置及存储介质 WO2023044624A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202410339346.8A CN118139216B (zh) 2021-09-22 2021-09-22 一种bwp切换方法、装置及存储介质
EP21957765.7A EP4408120A1 (en) 2021-09-22 2021-09-22 Bwp switching method and apparatus, and storage medium
PCT/CN2021/119708 WO2023044624A1 (zh) 2021-09-22 2021-09-22 一种bwp切换方法、装置及存储介质
JP2024518292A JP2024537706A (ja) 2021-09-22 2021-09-22 Bwp切り替え方法、装置および記憶媒体
KR1020247013002A KR20240056653A (ko) 2021-09-22 2021-09-22 Bwp 전환 방법, 장치 및 저장 매체(bwp switching method and apparatus, and storage medium)
CN202180002991.5A CN113994765B (zh) 2021-09-22 2021-09-22 一种bwp切换方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119708 WO2023044624A1 (zh) 2021-09-22 2021-09-22 一种bwp切换方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023044624A1 true WO2023044624A1 (zh) 2023-03-30

Family

ID=79734962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119708 WO2023044624A1 (zh) 2021-09-22 2021-09-22 一种bwp切换方法、装置及存储介质

Country Status (5)

Country Link
EP (1) EP4408120A1 (zh)
JP (1) JP2024537706A (zh)
KR (1) KR20240056653A (zh)
CN (2) CN113994765B (zh)
WO (1) WO2023044624A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201673A1 (en) * 2022-04-22 2023-10-26 Apple Inc. Rrm for sdt with edrx and other ue activities
CN116996862A (zh) * 2022-04-25 2023-11-03 华为技术有限公司 一种信息传输方法及装置
WO2023230971A1 (zh) * 2022-06-01 2023-12-07 北京小米移动软件有限公司 一种多prach传输方法及其装置
WO2024031227A1 (en) * 2022-08-08 2024-02-15 Apple Inc. Reference signal measurement and beam filtering for small data transmission by wireless device
CN118524547A (zh) * 2023-02-17 2024-08-20 维沃移动通信有限公司 小数据传输方法、装置、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886804A (zh) * 2018-06-26 2018-11-23 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN111727614A (zh) * 2020-04-30 2020-09-29 北京小米移动软件有限公司 终端状态切换处理、控制方法及装置、通信设备及介质
US20210227623A1 (en) * 2018-05-24 2021-07-22 Samsung Electronics Co., Ltd. Method and device for reducing power consumption by terminal in wireless communication system
CN113329493A (zh) * 2020-02-28 2021-08-31 华为技术有限公司 一种通信方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811072A (zh) * 2017-05-04 2018-11-13 夏普株式会社 用户设备、基站和相关方法
CN111147212B (zh) * 2018-11-02 2022-11-15 大唐移动通信设备有限公司 非激活频率资源的信道测量方法、基站及终端
CN112997444B (zh) * 2019-06-05 2022-11-29 Oppo广东移动通信有限公司 一种工作带宽切换方法、用户设备及网络设备
CN117015047A (zh) * 2020-01-08 2023-11-07 北京紫光展锐通信技术有限公司 数据包传输带宽的指示方法、基站、电子设备及介质
CN115211222A (zh) * 2020-02-27 2022-10-18 鸿颖创新有限公司 用于小数据传输的用户设备和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210227623A1 (en) * 2018-05-24 2021-07-22 Samsung Electronics Co., Ltd. Method and device for reducing power consumption by terminal in wireless communication system
CN108886804A (zh) * 2018-06-26 2018-11-23 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN113329493A (zh) * 2020-02-28 2021-08-31 华为技术有限公司 一种通信方法及装置
CN111727614A (zh) * 2020-04-30 2020-09-29 北京小米移动软件有限公司 终端状态切换处理、控制方法及装置、通信设备及介质

Also Published As

Publication number Publication date
CN118139216B (zh) 2024-08-06
KR20240056653A (ko) 2024-04-30
EP4408120A1 (en) 2024-07-31
CN118139216A (zh) 2024-06-04
CN113994765B (zh) 2024-04-09
JP2024537706A (ja) 2024-10-16
CN113994765A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2022126556A1 (zh) 一种接入控制方法、接入控制装置及存储介质
WO2023279297A1 (zh) 随机接入方法、装置及存储介质
US11540214B2 (en) Timer adjustment method and device
WO2023050354A1 (zh) 一种sdt传输方法、装置及存储介质
WO2023004692A1 (zh) 基于测量放松机制的通信方法、装置及存储介质
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
WO2022198459A1 (zh) 一种搜索空间监测方法、搜索空间监测装置及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2023279262A1 (zh) 一种消息配置方法、消息配置装置及存储介质
WO2022104745A1 (zh) 通信方法、通信装置及存储介质
WO2023155175A1 (zh) 一种带宽部分配置方法、装置、设备及存储介质
WO2023070564A1 (zh) 一种部分带宽确定方法、装置及存储介质
WO2024011527A1 (zh) 信息上报、上报指示方法和装置
WO2023028927A1 (zh) 一种载波确定方法、载波确定装置及存储介质
WO2024011528A1 (zh) 端口切换、端口切换指示方法和装置
WO2024138627A1 (zh) 一种发送或接收指示信息的方法、装置及可读存储介质
WO2023115396A1 (zh) 一种信道测量方法、装置及存储介质
WO2023283833A1 (zh) 随机接入方法、装置及存储介质
WO2023004679A1 (zh) 一种信号监测方法、信号监测装置及存储介质
RU2819423C1 (ru) Способ конфигурации параметров, устройство для конфигурации параметров и носитель данных
WO2023206036A1 (zh) 一种随机接入的方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18692875

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2024518292

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005623

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202447030380

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20247013002

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021957765

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957765

Country of ref document: EP

Effective date: 20240422

WWE Wipo information: entry into national phase

Ref document number: 11202401991V

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112024005623

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240321