WO2023155175A1 - 一种带宽部分配置方法、装置、设备及存储介质 - Google Patents

一种带宽部分配置方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023155175A1
WO2023155175A1 PCT/CN2022/076970 CN2022076970W WO2023155175A1 WO 2023155175 A1 WO2023155175 A1 WO 2023155175A1 CN 2022076970 W CN2022076970 W CN 2022076970W WO 2023155175 A1 WO2023155175 A1 WO 2023155175A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
user equipment
initial downlink
default
response
Prior art date
Application number
PCT/CN2022/076970
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/076970 priority Critical patent/WO2023155175A1/zh
Priority to CN202280000451.8A priority patent/CN114731537A/zh
Publication of WO2023155175A1 publication Critical patent/WO2023155175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular, to a method, device, device and storage medium for configuring a bandwidth part.
  • NB-IoT Narrowband Internet of Things
  • MTC Machine Type Communication
  • NB-IoT Narrowband Internet of Things
  • MTC Machine Type Communication
  • NB-IoT Narrowband Internet of Things
  • the present disclosure provides a bandwidth part configuration method, device, device and storage medium.
  • a method for configuring a bandwidth part which is executed by a user equipment, including:
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the uplink BWP of the user equipment determine one of the multiple initial downlink BWPs as the default BWP.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the corresponding relationship is that the initial uplink BWP and the first initial downlink BWP have the same center frequency point.
  • the correspondence relationship is that the initial uplink BWP includes a random access channel configured for the user equipment to send random access information, and the first initial downlink BWP includes a random access channel for the user equipment The physical layer channel and random access search space configured by the device;
  • the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the determining that the initial downlink BWP configured through the MIB is the default BWP includes:
  • the corresponding relationship is that the uplink BWP has the same center frequency point as the initial downlink BWP configured through the MIB.
  • the corresponding relationship is that the uplink BWP includes a random access channel configured for the user equipment to send random access information, and the initial downlink BWP configured through the MIB includes the The physical layer channel and random access search space configured by the user equipment;
  • the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the first timer is used to count a duration during which the user equipment does not receive scheduling downlink control information on the activated BWP.
  • a method for configuring a bandwidth part which is executed by a network device, including:
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the uplink BWP of the user equipment determine one of the multiple initial downlink BWPs as the default BWP.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the corresponding relationship is that the initial uplink BWP and the first initial downlink BWP have the same center frequency point.
  • the correspondence relationship is that the initial uplink BWP includes a random access channel configured for the user equipment to send random access information, and the first initial downlink BWP includes a random access channel for the user equipment The physical layer channel and random access search space configured by the device;
  • the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the determining that the initial downlink BWP configured through the MIB is the default BWP includes:
  • the corresponding relationship is that the uplink BWP has the same center frequency point as the initial downlink BWP configured through the MIB.
  • the corresponding relationship is that the uplink BWP includes a random access channel configured for the user equipment to send random access information, and the initial downlink BWP configured through the MIB includes the The physical layer channel and random access search space configured by the user equipment;
  • the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the determining that one of the multiple initial downlink BWPs is a default BWP includes:
  • the first timer is used to count a duration during which the user equipment does not receive scheduling downlink control information on the activated BWP.
  • an apparatus for configuring bandwidth part is provided, which is applied to user equipment, including:
  • a processing module configured to determine that one of the multiple initial downlink bandwidth parts BWP is a default BWP in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • an apparatus for configuring bandwidth part which is applied to network equipment, including:
  • a processing module configured to determine that one of the multiple initial downlink bandwidth parts BWP is a default BWP in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • a mobile terminal including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the bandwidth part configuration method described above.
  • a network side device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the bandwidth part configuration method described above.
  • a non-transitory computer-readable storage medium on which executable instructions are stored, and when the executable instructions are executed by a processor, the steps of the above method for configuring a bandwidth portion are implemented.
  • the user equipment By determining the default BWP to be switched to by the user equipment, when the user equipment does not receive scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, making it more suitable for 5G NR-lite systems .
  • Fig. 1 is a flow chart showing a method for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a bandwidth part configuration method according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a bandwidth part configuration method according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a bandwidth part configuration method according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a bandwidth part configuration method according to an exemplary embodiment
  • Fig. 6 is a flow chart showing a method for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a bandwidth part configuration method according to an exemplary embodiment
  • Fig. 8 is a flow chart showing a method for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 9 is a flow chart showing a method for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 10 is a flow chart showing a method for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 11 is a flow chart showing a bandwidth part configuration method according to an exemplary embodiment
  • Fig. 12 is a flow chart showing a method for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 13 is a block diagram of an apparatus for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 14 is a block diagram of an apparatus for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 15 is a structural diagram of an apparatus for configuring bandwidth parts according to an exemplary embodiment
  • Fig. 16 is a structural diagram of an apparatus for configuring bandwidth parts according to an exemplary embodiment.
  • an embodiment of the present disclosure may include multiple steps; for the convenience of description, these steps are numbered; however, these numbers do not limit the execution time slots and execution order between the steps; these steps It can be implemented in any order, which is not limited by the embodiments of the present disclosure.
  • 5G NR-lite-based terminals Similar to IoT devices in LTE, 5G NR-lite-based terminals usually need to meet the following requirements: low cost, low complexity; a certain degree of coverage enhancement; power saving.
  • the current NR new air interface is designed for high-end terminals such as high-speed and low-latency, the current design cannot meet the above requirements of NR-lite. Therefore, it is necessary to modify the current NR system to meet the requirements of NR-lite. For example, in order to meet the requirements of low cost and low complexity, you can limit the RF bandwidth of NR-IoT, for example, to 5MHz or 10MHz, or limit the size of the buffer of NR-lite, and then limit the size of each received transmission block etc. For power saving, the possible optimization direction is to simplify the communication process, reduce the number of times NR-lite users detect downlink control channels, etc.
  • a serving cell can be configured with a bandwidth part (BWP) inactivity timer (InactivityTimer).
  • BWP bandwidth part
  • InactivityTimer Inactivity timer
  • the user equipment does not receive scheduling downlink control information on the active BWP (Downlink Control Information, DCI), the user equipment needs to switch to the default BWP.
  • the default BWP can be configured by the network. If the network does not configure the default BWP for the user equipment, then the user equipment switches to the initial downlink BWP.
  • the user equipment may be configured with one or more initial downlink BWPs according to the configuration of the network side equipment or the communication protocol.
  • "plurality" means two or more.
  • the solution provided by the present disclosure can be used for NR-lite terminals, and of course can also be used for other types of terminals.
  • FIG. 1 is a flowchart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP, determine one of the multiple initial downlink BWPs as the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the user equipment may typically be an NR-lite device.
  • the target BWP refers to the BWP that the user equipment switches to when the first timer expires, and may also be referred to as a handover BWP.
  • the user equipment determines one initial downlink BWP among the multiple initial downlink BWPs as the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the user equipment determines one initial downlink BWP among the multiple initial downlink BWPs as the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the first timer is used to count the time duration during which the user equipment does not receive scheduling downlink control information on the activated BWP.
  • the first timer is BWP-InactivityTimer. After the user equipment receives the DCI on the Active BWP, the first timer starts counting. In response to receiving new DCI before the first timer expires, the first timer is restarted. In response to no new DCI being received when the first timer expires, the user equipment performs BWP handover. Or, the first timer starts timing after the user equipment is on the Active BWP; in response to still not receiving DCI when the first timer expires, the user equipment performs BWP handover. That is, the first timer is used to record the length of time that the user equipment does not receive DCI.
  • the timing duration of the first timer may be configured by the network device or determined according to a communication protocol.
  • the user equipment does not receive the scheduling downlink control information DCI on the active BWP for a specified time period, for example, when the timer BWP-InactivityTimer expires, the user equipment needs to switch to the default BWP, if The network does not configure a default BWP for the user equipment, and the user equipment is configured with multiple initial downlink BWPs, the user equipment determines that one of the multiple initial downlink BWPs is the default BWP, and switches to the determined default BWP superior.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system.
  • the narrower bandwidth means that the bandwidth of the initial downlink BWP is smaller than the bandwidth of the activated downlink BWP.
  • the narrow bandwidth means that the bandwidth of the initial downlink BWP is smaller than the threshold.
  • FIG. 2 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 2 , the method includes:
  • Step 201 in response to the user equipment being configured with multiple initial downlink bandwidth part BWPs, based on the configuration of the uplink BWP of the user equipment, determine that one of the multiple initial downlink BWPs is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the user equipment determines an initial downlink BWP among the multiple initial downlink BWPs as the default BWP based on the configuration of its uplink BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is a system based on Time Division Duplex (TDD), and when the user equipment performs BWP switching, both the uplink BWP and the downlink BWP need to be switched. Therefore, in a scenario where the user equipment is configured with multiple initial downlink BWPs, the user equipment determines an initial downlink BWP among the multiple initial downlink BWPs as the default BWP based on the configuration of its uplink BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • both the default BWP and the target BWP refer to the downlink BWP to which the user equipment switches.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system. And in the scenario where the user equipment is configured with multiple initial downlink BWPs, the default BWP to be switched to is determined based on the configuration of the uplink BWP.
  • FIG. 3 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 3 , the method includes:
  • Step 301 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP and the user equipment being configured with one initial uplink BWP, determine the corresponding first initial downlink bandwidth part according to the correspondence between the initial uplink BWP and the initial downlink BWP BWP, wherein the first initial downlink BWP is the default BWP;
  • the first initial downlink BWP is one of the multiple initial downlink BWPs; the default BWP is a target BWP that the user equipment will switch to in response to a first timer timeout.
  • the user equipment may determine the default BWP according to the correspondence between the initial uplink BWP and the initial downlink BWP. For example, according to the corresponding relationship configured on the network side, or according to the corresponding corresponding relationship, or according to the corresponding relationship determined by the communication protocol; the user equipment can determine the first initial downlink BWP according to the corresponding relationship, and use the first initial downlink BWP BWP as the default BWP.
  • the first initial downlink BWP corresponding to the initial uplink BWP is the default BWP .
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the first initial downlink BWP is one of the multiple initial downlink BWPs, and the first initial downlink BWP does not indicate its order among the multiple initial downlink BWPs.
  • the initial uplink BWP among the multiple initial downlink BWPs has the same center frequency Point an initial downlink BWP as the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • an initial downlink BWP is the default BWP: the initial uplink BWP includes the random access channel configured for the user equipment to send random access information, and the initial downlink BWP includes the physical layer channel and random access channel configured for the user equipment Into a search space; wherein, the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system. And in the scenario where the user equipment is configured with multiple initial downlink BWPs, the default BWP to be switched to is determined based on the configuration of the uplink BWP.
  • FIG. 4 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 4, the method includes:
  • Step 401 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB, determine the configuration through the MIB
  • the initial downlink BWP of is the default BWP
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is an FDD-based system.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the master system information block MIB, Make sure that the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system. And in the scenario where the user equipment is configured with multiple initial downlink BWPs, the default BWP to be switched to is determined based on the configuration of the uplink BWP.
  • FIG. 5 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 5, the method includes:
  • Step 501 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB and the user equipment is configured with
  • the uplink BWP that has a corresponding relationship with the initial downlink BWP configured through the MIB determines that the initial downlink BWP configured through the MIB is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the master system information block MIB
  • the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is an FDD-based system.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB
  • the user equipment when the user equipment is configured with an uplink BWP corresponding to the initial downlink BWP configured through the MIB, determining that the initial downlink BWP configured through the MIB is the default BWP.
  • the corresponding relationship is: the initial downlink BWP configured through the MIB has the same center frequency point as the uplink BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is an FDD-based system.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB
  • the user equipment when the user equipment is configured with an uplink BWP corresponding to the initial downlink BWP configured through the MIB, determining that the initial downlink BWP configured through the MIB is the default BWP.
  • the corresponding relationship is: the initial uplink BWP includes the random access channel configured for the user equipment for sending random access information, and the initial downlink BWP configured through the MIB includes the physical layer channel and the random access channel configured for the user equipment. Access to a search space; wherein, the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system. And in the scenario where the user equipment is configured with multiple initial downlink BWPs, the default BWP to be switched to is determined based on the configuration of the uplink BWP.
  • FIG. 6 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 6, the method includes:
  • Step 601 in response to the user equipment being configured with multiple initial downlink bandwidth part BWPs, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the MIB, determine the initial downlink BWP configured through the MIB is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is a frequency division duplex (Frequency Division Duplex, FDD) based system
  • the user equipment may not switch the uplink BWP when performing BWP switching. Therefore, in the scenario where the user equipment is configured with multiple initial downlink BWPs, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB, it is determined that the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires. In this scenario, the default BWP does not need to be determined based on the configuration of the uplink BWP of the user equipment.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system.
  • the narrower bandwidth means that the bandwidth of the initial downlink BWP is smaller than the bandwidth of the activated downlink BWP.
  • the narrow bandwidth means that the bandwidth of the initial downlink BWP is smaller than the threshold.
  • An embodiment of the present disclosure provides a bandwidth part configuration method, which is executed by a user equipment.
  • the method includes:
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer;
  • the first timer is used to start timing when the user equipment receives the scheduling downlink control information DCI on the activated BWP , and is used to determine whether the DCI is received within the duration of the first timer.
  • the first timer starts counting. In response to receiving new DCI before the first timer expires, the first timer is restarted. In response to no new DCI being received when the first timer expires, the user equipment performs BWP handover. Or, the first timer starts timing after the user equipment is on the Active BWP; in response to still not receiving DCI when the first timer expires, the user equipment performs BWP handover. That is, the first timer is used to record the length of time that the user equipment does not receive DCI.
  • the user equipment when the user equipment does not receive the scheduled downlink control information DCI on the activated BWP for a duration reaching a specified time range, in response to the user equipment being configured with multiple initial downlink BWPs, the user equipment determines the One initial downlink BWP among the multiple initial downlink BWPs is the default BWP, and is switched to the determined default BWP.
  • the first timer is BWP-InactivityTimer.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system.
  • FIG. 7 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 7, the method includes:
  • Step 701 in response to the user equipment being configured with multiple initial downlink bandwidth part BWPs, determine that one of the multiple initial downlink BWPs is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the user equipment may typically be an NR-lite device.
  • the network device may typically be a base station.
  • the network device determines one initial downlink BWP among the multiple initial downlink BWPs as the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the network device determines one initial downlink BWP among the multiple initial downlink BWPs as the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the first timer is used to count the time duration during which the user equipment does not receive the scheduling downlink control information DCI on the activated BWP.
  • the first timer is BWP-InactivityTimer. After the user equipment receives the DCI on the Active BWP, the first timer starts counting. In response to receiving new DCI before the first timer expires, the first timer is restarted. In response to no new DCI being received when the first timer expires, the user equipment performs BWP handover. Or, the first timer starts timing after the user equipment is on the Active BWP; in response to still not receiving DCI when the first timer expires, the user equipment performs BWP handover. That is, the first timer is used to record the length of time that the user equipment does not receive DCI.
  • the timing duration of the first timer may be configured by the network device or determined according to a communication protocol.
  • the user equipment does not receive the scheduled downlink control information DCI on the active BWP for a specified time range, for example, when the timer BWP-InactivityTimer expires, the user equipment needs to switch to the default BWP, if If the network does not configure a default BWP for the user equipment, and the user equipment is configured with multiple initial downlink BWPs, the network device determines that one of the multiple initial downlink BWPs is the default BWP.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system.
  • the network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • FIG. 8 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 8, the method includes:
  • Step 801 in response to the user equipment being configured with multiple initial downlink bandwidth part BWPs, based on the configuration of the uplink BWP of the user equipment, determine that one of the multiple initial downlink BWPs is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the network device determines one of the multiple initial downlink BWPs as the default BWP based on the configuration of the uplink BWP of the user equipment.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is a system based on Time Division Duplex (TDD), and when the user equipment performs BWP switching, both the uplink BWP and the downlink BWP need to be switched. Therefore, in a scenario where the user equipment is configured with multiple initial downlink BWPs, the network device determines one of the multiple initial downlink BWPs as the default BWP based on the configuration of the uplink BWP of the user equipment.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • both the default BWP and the target BWP refer to the downlink BWP to which the user equipment switches.
  • both the default BWP and the target BWP refer to the downlink BWP to which the user equipment switches.
  • the network device determines the default BWP to be switched to based on the configuration of the uplink BWP of the user equipment. The network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • FIG. 9 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 9, the method includes:
  • Step 901 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP and the user equipment being configured with one initial uplink BWP, determine the corresponding first initial downlink bandwidth part according to the correspondence between the initial uplink BWP and the initial downlink BWP BWP, wherein the first initial downlink BWP is the default BWP;
  • the first initial downlink BWP is one of the multiple initial downlink BWPs; the default BWP is a target BWP that the user equipment will switch to in response to a first timer timeout.
  • the user equipment may determine the default BWP according to the correspondence between the initial uplink BWP and the initial downlink BWP. For example, according to the corresponding relationship configured on the network side, or according to the corresponding corresponding relationship, or according to the corresponding relationship determined by the communication protocol; the user equipment can determine the first initial downlink BWP according to the corresponding relationship, and use the first initial downlink BWP BWP as the default BWP.
  • the network device determines that the first initial downlink BWP corresponding to the initial uplink BWP is Default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the first initial downlink BWP is one of the multiple initial downlink BWPs, and the first initial downlink BWP does not indicate its order among the multiple initial downlink BWPs.
  • the network device determines that among the multiple initial downlink BWPs, the initial uplink BWP has the same An initial downlink BWP of the center frequency point is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the network device determines that among the multiple initial downlink BWPs, the initial uplink BWP has the following An initial downlink BWP of the relationship is the default BWP: the initial uplink BWP includes the random access channel configured for the user equipment to send random access information, and the initial downlink BWP includes the physical layer channel and the configured physical layer channel for the user equipment A random access search space; wherein, the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the network device determines the default BWP to be switched to based on the configuration of the uplink BWP of the user equipment. The network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • FIG. 10 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 10 , the method includes:
  • Step 1001 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB, determine the configuration through the MIB
  • the initial downlink BWP of is the default BWP
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the network device bases the uplink BWP of the user equipment on According to the configuration status, determine the initial downlink BWP configured through the MIB as the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is an FDD-based system.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the master system information block MIB.
  • the network device determines that the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the network device determines the default BWP to be switched to based on the configuration of the uplink BWP of the user equipment. The network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • FIG. 11 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 11 , the method includes:
  • Step 1101 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB and the user equipment is configured with The uplink BWP that has a corresponding relationship with the initial downlink BWP configured through the MIB determines that the initial downlink BWP configured through the MIB is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the network device determines that the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is an FDD-based system.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB
  • the network device determines that the initial downlink BWP configured through the MIB is the default BWP.
  • the corresponding relationship is: the initial downlink BWP configured through the MIB has the same center frequency point as the uplink BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is an FDD-based system.
  • the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB
  • the network device determines that the initial downlink BWP configured through the MIB is the default BWP.
  • the corresponding relationship is: the initial uplink BWP includes the random access channel configured for the user equipment for sending random access information, and the initial downlink BWP configured through the MIB includes the physical layer channel and the random access channel configured for the user equipment. Access to a search space; wherein, the physical layer channel is used to carry a random access response corresponding to the random access information.
  • the network device determines the default BWP to be switched to based on the configuration of the uplink BWP of the user equipment. The network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • FIG. 12 is a flow chart of a method for configuring bandwidth parts according to an exemplary embodiment. As shown in Fig. 12 , the method includes:
  • Step 1201 in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the MIB, determine the initial downlink BWP configured through the MIB is the default BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • the network device determines the initial downlink BWP configured through the MIB
  • the downlink BWP is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires.
  • the communication system is a frequency division duplex (Frequency Division Duplex, FDD) based system
  • the user equipment may not switch the uplink BWP when performing BWP switching. Therefore, in the scenario where the user equipment is configured with multiple initial downlink BWPs, and the multiple initial downlink BWPs include the initial downlink BWP configured by the network device through the main system information block MIB, the network device determines that the initial downlink BWP configured through the MIB is the default BWP.
  • the default BWP is the target BWP that the user equipment will switch to when the first timer expires. In this scenario, the default BWP does not need to be determined based on the configuration of the uplink BWP of the user equipment.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system.
  • the network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • An embodiment of the present disclosure provides a bandwidth part configuration method, which is executed by a network device.
  • the method includes:
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer; The time is counted.
  • the network device determines the One initial downlink BWP among the multiple initial downlink BWPs is the default BWP, and is switched to the determined default BWP.
  • the first timer is BWP-InactivityTimer.
  • the function of the first timer reference may be made to the descriptions of other embodiments of the present disclosure, and details are not repeated here.
  • the user equipment when the user equipment does not receive the scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, and thus is more suitable for the 5G NR-lite system.
  • the network device determines that the user equipment will switch to the default BWP through the above method, so as to realize communication with the user equipment after BWP switching.
  • An embodiment of the present disclosure provides an apparatus for configuring bandwidth part, which is applied to user equipment, as shown in FIG. 13 , including:
  • the processing module 1301 is configured to determine that one of the multiple initial downlink BWPs is a default BWP in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • An embodiment of the present disclosure provides an apparatus for configuring bandwidth part, which is applied to network equipment, as shown in FIG. 14 , including:
  • the processing module 1401 is configured to determine that one of the multiple initial downlink BWPs is a default BWP in response to the user equipment being configured with multiple initial downlink bandwidth parts BWP;
  • the default BWP is the target BWP that the user equipment will switch to in response to the timeout of the first timer.
  • An embodiment of the present disclosure provides a mobile terminal, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the bandwidth part configuration method described above.
  • An embodiment of the present disclosure provides a network side device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the bandwidth part configuration method described above.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which executable instructions are stored, and when the executable instructions are executed by a processor, the steps of the above-mentioned method for configuring a bandwidth portion are implemented.
  • Fig. 15 is a block diagram showing an apparatus 1500 for configuring bandwidth parts according to an exemplary embodiment.
  • the apparatus 1500 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 1500 may include one or more of the following components: processing component 1502, memory 1504, power supply component 1506, multimedia component 1508, audio component 1510, input/output (I/O) interface 1512, sensor component 1514, and communication component 1516.
  • processing component 1502 memory 1504
  • power supply component 1506 multimedia component 1508, audio component 1510
  • input/output (I/O) interface 1512 sensor component 1514
  • communication component 1516 communication component 1516.
  • the processing component 1502 generally controls the overall operations of the device 1500, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1502 may include one or more processors 1520 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1502 may include one or more modules that facilitate interaction between processing component 1502 and other components. For example, processing component 1502 may include a multimedia module to facilitate interaction between multimedia component 1508 and processing component 1502 .
  • the memory 1504 is configured to store various types of data to support operations at the device 1500 . Examples of such data include instructions for any application or method operating on device 1500, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1504 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1506 provides power to various components of the device 1500 .
  • Power components 1506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 1500 .
  • the multimedia component 1508 includes a screen that provides an output interface between the device 1500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 1508 includes a front camera and/or a rear camera. When the device 1500 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1510 is configured to output and/or input audio signals.
  • the audio component 1510 includes a microphone (MIC), which is configured to receive external audio signals when the device 1500 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 1504 or sent via communication component 1516 .
  • the audio component 1510 also includes a speaker for outputting audio signals.
  • the I/O interface 1512 provides an interface between the processing component 1502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1514 includes one or more sensors for providing status assessments of various aspects of device 1500 .
  • the sensor component 1514 can detect the open/closed state of the device 1500, the relative positioning of components, such as the display and keypad of the device 1500, and the sensor component 1514 can also detect a change in the position of the device 1500 or a component of the device 1500 , the presence or absence of user contact with the device 1500 , the device 1500 orientation or acceleration/deceleration and the temperature change of the device 1500 .
  • Sensor assembly 1514 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1514 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor component 1514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1516 is configured to facilitate wired or wireless communication between the apparatus 1500 and other devices.
  • the device 1500 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1516 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1516 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • apparatus 1500 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1504 including instructions, which can be executed by the processor 1520 of the device 1500 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 16 is a block diagram showing a bandwidth part configuration 1600 according to an exemplary embodiment.
  • apparatus 1600 may be provided as a base station.
  • apparatus 1600 includes processing component 1622, which further includes one or more processors, and a memory resource represented by memory 1632 for storing instructions executable by processing component 1622, such as application programs.
  • the application programs stored in memory 1632 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1622 is configured to execute instructions to perform the above method for accessing an unlicensed channel.
  • Device 1600 may also include a power component 1626 configured to perform power management of device 1600 , a wired or wireless network interface 1650 configured to connect device 1600 to a network, and an input-output (I/O) interface 1659 .
  • the device 1600 can operate based on an operating system stored in the memory 1632, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the user equipment By determining the default BWP to be switched to by the user equipment, when the user equipment does not receive scheduling DCI for a long time, it switches to the initial downlink BWP with a narrower bandwidth, which can reduce the power consumption of the user equipment, making it more suitable for 5G NR-lite systems .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种带宽部分配置方法、装置、设备及存储介质。该方法被用户设备执行,包括:响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。

Description

一种带宽部分配置方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种带宽部分配置方法、装置、设备及存储介质。
背景技术
在LTE 4G系统中,为了支持物联网业务提出了机器类通信(Machine Type Communication,MTC),窄带物联网(Narrow band Internet of Thing,NB-IoT)NB-IoT两大技术。这两大技术主要针对的是低速率,高时延等场景。比如抄表,环境监测等场景。NB-IoT目前最大只能支持几百K的速率,MTC目前最大只能支持几M的速率。另外一方面,随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求,因此LTE中的MTC,NB-IoT技术很难满足要求。基于这种情况,很多公司提出了在5G新空口中再设计一种新的用户设备用以来覆盖这种中端物联网设备的要求。在目前的3GPP标准化中,这种新的终端类型叫做低能力(Reduced capability,RedCap)终端或者简称为NR-lite终端。
发明内容
有鉴于此,本公开提供了一种带宽部分配置方法、装置、设备及存储介质。
根据本公开实施例的第一个方面,提供一种带宽部分配置方法,被用户设备执行,包括:
响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
基于所述用户设备的上行BWP的配置情况,确定所述多个初始下行BWP中之一为所述默认BWP。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
响应于所述用户设备配置有一个初始上行BWP,确定与所述初始上行BWP存在对应关系的第一初始下行BWP为所述默认BWP,其中,所述第一初始下行BWP为所述多个初始下行BWP中之一。
在一实施方式中,所述对应关系为所述初始上行BWP与所述第一初始下行BWP具有相同的中心频点。
在一实施方式中,所述对应关系为所述初始上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述第一初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
响应于所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
在一实施方式中,所述确定所述通过MIB配置的初始下行BWP为所述默认BWP,包括:
响应于所述用户设备配置有与所述通过MIB配置的初始下行BWP存在对应关系的上行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
在一实施方式中,所述对应关系为所述上行BWP与所述通过MIB配置的初始下行BWP具有相同的中心频点。
在一实施方式中,所述对应关系为所述上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述通过MIB配置的初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
响应于所述多个初始下行BWP包含所述网络设备通过MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
在一实施方式中,所述第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息的持续时间进行计时。
根据本公开实施例的第二个方面,提供一种带宽部分配置方法,被网络设备执行,包 括:
响应于用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应第一定时器超时将切换到的目标BWP。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
基于所述用户设备的上行BWP的配置情况,确定所述多个初始下行BWP中之一为所述默认BWP。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
响应于所述用户设备配置有一个初始上行BWP,确定与所述初始上行BWP存在对应关系的第一初始下行BWP为所述默认BWP,其中,所述第一初始下行BWP为所述多个初始下行BWP中之一。
在一实施方式中,所述对应关系为所述初始上行BWP与所述第一初始下行BWP具有相同的中心频点。
在一实施方式中,所述对应关系为所述初始上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述第一初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
响应于所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
在一实施方式中,所述确定所述通过MIB配置的初始下行BWP为所述默认BWP,包括:
响应于所述用户设备配置有与所述通过MIB配置的初始下行BWP存在对应关系的上行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
在一实施方式中,所述对应关系为所述上行BWP与所述通过MIB配置的初始下行BWP具有相同的中心频点。
在一实施方式中,所述对应关系为所述上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述通过MIB配置的初始下行BWP包含为所述用户 设备配置的物理层信道和随机接入搜索空间;
其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
在一实施方式中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
响应于所述多个初始下行BWP包含所述网络设备通过MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
在一实施方式中,所述第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息的持续时间进行计时。
根据本公开实施例的第三个方面,提供一种带宽部分配置装置,应用于用户设备,包括:
处理模块,被配置为响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
根据本公开实施例的第四个方面,提供一种带宽部分配置装置,应用于网络设备,包括:
处理模块,被配置为响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
根据本公开实施例的第五个方面,提供一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述带宽部分配置方法的步骤。
根据本公开实施例的第六个方面,提供一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述带宽部分配置方法的步骤。
根据本公开实施例的第七个方面,提供一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述带宽部分配置方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过确定用户设备待切换到的默认BWP,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图2是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图3是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图4是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图5是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图6是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图7是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图8是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图9是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图10是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图11是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图12是根据一示例性实施例示出的一种带宽部分配置方法的流程图;
图13是根据一示例性实施例示出的一种带宽部分配置装置的框图;
图14是根据一示例性实施例示出的一种带宽部分配置装置的框图;
图15是根据一示例性实施例示出的一种带宽部分配置装置的结构图;
图16是根据一示例性实施例示出的一种带宽部分配置装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开的一个实施例中可以包括多个步骤;为了便于描述,这些个步骤被进行了编号;但是这些编号并非是对步骤之间执行时隙、执行顺序的限定;这些步骤可以以任意的顺序被实施,本公开实施例并不对此作出限定。
尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。
同LTE中的物联网设备类似,基于5G NR-lite的终端通常需要满足如下要求:低造价,低复杂度;具有一定程度的覆盖增强;功率节省。
由于目前的NR新空口是针对高速率低时延等高端终端设计的,因此当前的设计无法满足NR-lite的上述要求。因此需要对目前的NR系统进行改造用以满足NR-lite的要求。比如,为了满足低造价,低复杂度等要求,可以限制NR-IoT的RF带宽,比如限制到5M Hz或者10M Hz,或者限制NR-lite的buffer的大小,进而限制每次接收传输块的大小等等。针对功率节省,可能的优化方向是简化通信流程,减少NR-lite用户检测下行控制信道的次数等。
在NR系统中,一个服务小区可以配置带宽部分(Bandwidth part,BWP)非激活定时器(InactivityTimer),在该定时器规定的时间范围内,用户设备在在激活BWP上没有接收到调度下行控制信息(Downlink Control Information,DCI),则用户设备需要切换到默认BWP上。该默认BWP可以由网络配置,如果网络没有为用户设备配置默认BWP,那 么用户设备则切换到初始下行BWP上。在一种可能的实现方式中,用户设备可以根据网络侧设备的配置或是通信协议,被配置有一个或多个初始下行BWP。在本公开实施例中,“多个”是指两个或两个以上。
本公开提供的方案可用于NR-lite终端,当然也可以用于其它类型的终端。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。图1是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图1所示,该方法包括:
步骤101,响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在本公开实施例中,该用户设备典型的可以为NR-lite设备。
目标BWP是指用户设备在第一定时器超时时切换到的BWP,也可以称为切换BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,用户设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,在基于NR-lite的用户设备配置有多个初始下行BWP的场景下,用户设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息的持续时间进行计时。在一实施方式中,第一定时器为BWP-InactivityTimer。当用户设备在Active BWP上接收到DCI后,第一定时器开始计时。响应于在第一定时器超时之前接收到新的DCI,该第一定时器重新开始计时。响应于第一定时器超时时依然没有接收到新的DCI,该用户设备进行BWP切换。或,用户设备在Active BWP上后第一定时器开始计时;响应于第一定时器超时时依然没有接收到DCI,则该用户设备进行BWP切换。即,所述第一定时器用于记录用户设备未接收到DCI的时间长度。其中,该第一定时器的计时时长可以为网络设备配置或根据通信协议确定。
在一实施方式中,用户设备在激活BWP上没有接收到调度下行控制信息DCI的持续时间达到规定的时间范围,例如计时器BWP-InactivityTimer超时的情况下,用户设备需要切换到默认BWP上,如果网络没有为该用户设备配置默认BWP,且该用户设备配置有多 个初始下行BWP,则用户设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP,并切换到该确定的默认BWP上。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。其中,带宽较窄是指,初始下行BWP的带宽小于激活下行BWP的带宽。或,带宽较窄是指,初始下行BWP的带宽小于阈值。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。图2是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图2所示,该方法包括:
步骤201,响应于所述用户设备配置有多个初始下行带宽部分BWP,基于所述用户设备的上行BWP的配置情况,确定所述多个初始下行BWP中之一为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,用户设备基于其上行BWP的配置情况,确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于时分双工(Time Division Duplex,TDD)的系统,用户设备在进行BWP切换时,上行BWP和下行BWP都需要切换。因此,在用户设备配置有多个初始下行BWP的场景下,用户设备基于其上行BWP的配置情况,确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。在该场景下,该默认BWP和目标BWP都是指用户设备切换到的下行BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。并且在用户设备配置有多个初始下行BWP的场景下,基于其上行BWP的配置情况,来确定将要切换到的默认BWP。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。图3是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图3所示,该方法包括:
步骤301,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述用户设备 配置有一个初始上行BWP,根据所述初始上行BWP与初始下行BWP的对应关系确定对应第一初始下行BWP,其中所述第一初始下行BWP为所述默认BWP;
其中,所述第一初始下行BWP为所述多个初始下行BWP中之一;所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一些可能的实现方式中,用户设备可以根据初始上行BWP与初始下行BWP之间的对应关系,确定默认BWP。例如,可以根据网络侧配置的对应关系,或根据对应的对应关系,或根据通信协议确定的对应关系;所述用户设备能够根据该对应关系确定第一初始下行BWP,并将该第一初始下行BWP作为默认BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且在用户设备配置有一个初始上行BWP时,确定与该初始上行BWP存在对应关系的第一初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。这里的第一初始下行BWP为所述多个初始下行BWP中之一,第一初始下行BWP并不表示其在多个初始下行BWP中的排序。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且在用户设备配置有一个初始上行BWP时,确定在多个初始下行BWP中与该初始上行BWP具有相同的中心频点的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且在用户设备配置有一个初始上行BWP时,确定在多个初始下行BWP中与该初始上行BWP具有下述关系的一个初始下行BWP为默认BWP:该初始上行BWP包含为该用户设备配置的用于发送随机接入信息的随机接入信道,且该初始下行BWP包含为该用户设备配置的物理层信道和随机接入搜索空间;其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。并且在用户设备配置有多个初始下行BWP的场景下,基于其上行BWP的配置情况,来确定将要切换到的默认BWP。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。图4是根据一 示例性实施例示出的一种带宽部分配置方法的流程图,如图4所示,该方法包括:
步骤401,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于FDD的系统,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。并且在用户设备配置有多个初始下行BWP的场景下,基于其上行BWP的配置情况,来确定将要切换到的默认BWP。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。图5是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图5所示,该方法包括:
步骤501,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP并且所述用户设备配置有与所述通过MIB配置的初始下行BWP存在对应关系的上行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
其中,该对应关系可以如本公开其他实施例所述的,在此不再赘述。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,当用户设备配置有与 该通过MIB配置的初始下行BWP存在对应对应关系的上行BWP时,确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于FDD的系统,在用户设备配置有多个初始下行BWP的场景下,且多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,当用户设备配置有与该通过MIB配置的初始下行BWP存在对应关系的上行BWP时,确定通过MIB配置的初始下行BWP为默认BWP。该对应关系为:通过MIB配置的初始下行BWP与该上行BWP具有相同的中心频点。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于FDD的系统,在用户设备配置有多个初始下行BWP的场景下,且多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,当用户设备配置有与该通过MIB配置的初始下行BWP存在对应关系的上行BWP时,确定通过MIB配置的初始下行BWP为默认BWP。该对应关系为:该初始上行BWP包含为该用户设备配置的用于发送随机接入信息的随机接入信道,且该通过MIB配置的初始下行BWP包含为该用户设备配置的物理层信道和随机接入搜索空间;其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。并且在用户设备配置有多个初始下行BWP的场景下,基于其上行BWP的配置情况,来确定将要切换到的默认BWP。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。图6是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图6所示,该方法包括:
步骤601,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述多个初始下行BWP包含所述网络设备通过MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,确定通过MIB配置 的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于频分双工(Frequency Division Duplex,FDD)的系统,用户设备在进行BWP切换时,可以不切换上行BWP。因此,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。在这种场景下,不需要基于用户设备的上行BWP的配置情况来确定默认BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。其中,带宽较窄是指,初始下行BWP的带宽小于激活下行BWP的带宽。或,带宽较窄是指,初始下行BWP的带宽小于阈值。
本公开实施例提供了一种带宽部分配置方法,该方法被用户设备执行。该方法包括:
响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP;所述第一定时器用于对所述用户设备在激活BWP上接收到调度下行控制信息DCI开始计时,并用于确定在第一定时器的计时时长内是否接收到DCI。
当用户设备在Active BWP上接收到DCI后,第一定时器开始计时。响应于在第一定时器超时之前接收到新的DCI,该第一定时器重新开始计时。响应于第一定时器超时时依然没有接收到新的DCI,该用户设备进行BWP切换。或,用户设备在Active BWP上后第一定时器开始计时;响应于第一定时器超时时依然没有接收到DCI,则该用户设备进行BWP切换。即,所述第一定时器用于记录用户设备未接收到DCI的时间长度。在一实施方式中,用户设备在激活BWP上没有接收到调度下行控制信息DCI的持续时间达到规定的时间范围的情况下,响应于该用户设备配置有多个初始下行BWP,则用户设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP,并切换到该确定的默认BWP上。
在一实施方式中,第一定时器为BWP-InactivityTimer。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始 下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。图7是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图7所示,该方法包括:
步骤701,响应于用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应第一定时器超时将切换到的目标BWP。
在本公开实施中,该用户设备典型的可以为NR-lite设备。在本公开实施例中,网络设备典型的可以为基站。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,网络设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,在基于NR-lite的用户设备配置有多个初始下行BWP的场景下,网络设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息DCI的持续时间进行计时。在一实施方式中,第一定时器为BWP-InactivityTimer。当用户设备在Active BWP上接收到DCI后,第一定时器开始计时。响应于在第一定时器超时之前接收到新的DCI,该第一定时器重新开始计时。响应于第一定时器超时时依然没有接收到新的DCI,该用户设备进行BWP切换。或,用户设备在Active BWP上后第一定时器开始计时;响应于第一定时器超时时依然没有接收到DCI,则该用户设备进行BWP切换。即,所述第一定时器用于记录用户设备未接收到DCI的时间长度。其中,该第一定时器的计时时长可以为网络设备配置或根据通信协议确定。
在一实施方式中,用户设备在激活BWP上没有接收到调度下行控制信息DCI的持续时间达到规定的时间范围,例如计时器BWP-InactivityTimer超时的情况下,用户设备需要切换到默认BWP上,如果网络没有为该用户设备配置默认BWP,且该用户设备配置有多个初始下行BWP,则网络设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始 下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。图8是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图8所示,该方法包括:
步骤801,响应于所述用户设备配置有多个初始下行带宽部分BWP,基于所述用户设备的上行BWP的配置情况,确定所述多个初始下行BWP中之一为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,网络设备基于用户设备的上行BWP的配置情况,确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于时分双工(Time Division Duplex,TDD)的系统,用户设备在进行BWP切换时,上行BWP和下行BWP都需要切换。因此,在用户设备配置有多个初始下行BWP的场景下,网络设备基于用户设备的上行BWP的配置情况,确定该多个初始下行BWP中的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。在该场景下,该默认BWP和目标BWP都是指用户设备切换到的下行BWP。在该场景下,该默认BWP和目标BWP都是指用户设备切换到的下行BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。在用户设备配置有多个初始下行BWP的场景下,网络设备基于用户设备的上行BWP的配置情况,来确定将要切换到的默认BWP。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。图9是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图9所示,该方法包括:
步骤901,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述用户设备配置有一个初始上行BWP,根据所述初始上行BWP与初始下行BWP的对应关系确定对 应第一初始下行BWP,其中所述第一初始下行BWP为所述默认BWP;
其中,所述第一初始下行BWP为所述多个初始下行BWP中之一;所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一些可能的实现方式中,用户设备可以根据初始上行BWP与初始下行BWP之间的对应关系,确定默认BWP。例如,可以根据网络侧配置的对应关系,或根据对应的对应关系,或根据通信协议确定的对应关系;所述用户设备能够根据该对应关系确定第一初始下行BWP,并将该第一初始下行BWP作为默认BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且在用户设备配置有一个初始上行BWP时,网络设备确定与该初始上行BWP存在对应关系的第一初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。这里的第一初始下行BWP为所述多个初始下行BWP中之一,第一初始下行BWP并不表示其在多个初始下行BWP中的排序。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且在用户设备配置有一个初始上行BWP时,网络设备确定在多个初始下行BWP中与该初始上行BWP具有相同的中心频点的一个初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且在用户设备配置有一个初始上行BWP时,网络设备确定在多个初始下行BWP中与该初始上行BWP具有下述关系的一个初始下行BWP为默认BWP:该初始上行BWP包含为该用户设备配置的用于发送随机接入信息的随机接入信道,且该初始下行BWP包含为该用户设备配置的物理层信道和随机接入搜索空间;其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。在用户设备配置有多个初始下行BWP的场景下,网络设备基于用户设备的上行BWP的配置情况,来确定将要切换到的默认BWP。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。图10是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图10所示,该方法包括:
步骤1001,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,网络设备基于用户设备的上行BWP的配置情况,确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于FDD的系统,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,网络设备基于用户设备的上行BWP的配置情况,确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。在用户设备配置有多个初始下行BWP的场景下,网络设备基于用户设备的上行BWP的配置情况,来确定将要切换到的默认BWP。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。图11是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图11所示,该方法包括:
步骤1101,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP并且所述用户设备配置有与所述通过MIB配置的初始下行BWP存在对应关系的上行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
其中,该对应关系可以如本公开其他实施例所述的,在此不再赘述。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,当用户设备配置有与该通过MIB配置的初始下行BWP存在对应关系的上行BWP时,网络设备确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于FDD的系统,在用户设备配置有多个初始下行BWP的场景下,且多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,当用户设备配置有与该通过MIB配置的初始下行BWP存在对应关系的上行BWP时,网络设备确定通过MIB配置的初始下行BWP为默认BWP。该对应关系为:通过MIB配置的初始下行BWP与该上行BWP具有相同的中心频点。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于FDD的系统,在用户设备配置有多个初始下行BWP的场景下,且多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,当用户设备配置有与该通过MIB配置的初始下行BWP存在对应关系的上行BWP时,网络设备确定通过MIB配置的初始下行BWP为默认BWP。该对应关系为:该初始上行BWP包含为该用户设备配置的用于发送随机接入信息的随机接入信道,且该通过MIB配置的初始下行BWP包含为该用户设备配置的物理层信道和随机接入搜索空间;其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。在用户设备配置有多个初始下行BWP的场景下,网络设备基于用户设备的上行BWP的配置情况,来确定将要切换到的默认BWP。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。图12是根据一示例性实施例示出的一种带宽部分配置方法的流程图,如图12所示,该方法包括:
步骤1201,响应于所述用户设备配置有多个初始下行带宽部分BWP,且所述多个初始下行BWP包含所述网络设备通过MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
在一实施方式中,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,网络设备确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。
在一实施方式中,通信系统为基于频分双工(Frequency Division Duplex,FDD)的系统,用户设备在进行BWP切换时,可以不切换上行BWP。因此,在用户设备配置有多个初始下行BWP的场景下,且该多个初始下行BWP包含网络设备通过主系统信息块MIB配置的初始下行BWP,网络设备确定通过MIB配置的初始下行BWP为默认BWP。该默认BWP为用户设备在第一定时器超时的场景下将要切换到的目标BWP。在这种场景下,不需要基于用户设备的上行BWP的配置情况来确定默认BWP。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置方法,该方法被网络设备执行。该方法包括:
响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP;所述第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息的持续时间进行计时。
在一实施方式中,用户设备在激活BWP上没有接收到调度下行控制信息DCI的持续时间达到规定的时间范围的情况下,响应于该用户设备配置有多个初始下行BWP,则网络设备确定该多个初始下行BWP中的一个初始下行BWP为默认BWP,并切换到该确定的默认BWP上。
在一实施方式中,第一定时器为BWP-InactivityTimer。第一定时器的功能可以参考本公开其他实施例的描述,在此不再赘述。
在上述实施方式中,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始 下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。网络设备通过上述方法来确定用户设备将切换的到默认BWP,从而实现与BWP切换后的用户设备的通信。
本公开实施例提供了一种带宽部分配置装置,应用于用户设备,参照图13所示,包括:
处理模块1301,被配置为响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
本公开实施例提供了一种带宽部分配置装置,应用于网络设备,参照图14所示,包括:
处理模块1401,被配置为响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
本公开实施例提供了一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述带宽部分配置方法的步骤。
本公开实施例提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述带宽部分配置方法的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述带宽部分配置方法的步骤。
图15是根据一示例性实施例示出的一种用于带宽部分配置装置1500的框图。例如,装置1500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,装置1500可以包括以下一个或多个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)的接口1512,传感器组件1514,以及通信组件1516。
处理组件1502通常控制装置1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1502可以包括一个或多个处理器1520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1502可以包括一个或多个模块,便于处理组件1502和其他组件之间的交互。例如,处理组件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。
存储器1504被配置为存储各种类型的数据以支持在设备1500的操作。这些数据的示例包括用于在装置1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为装置1500的各种组件提供电力。电源组件1506可以包括电源管理系统,一个或多个电源,及其他与为装置1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在所述装置1500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当设备1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当装置1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克 风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1516发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1514包括一个或多个传感器,用于为装置1500提供各个方面的状态评估。例如,传感器组件1514可以检测到设备1500的打开/关闭状态,组件的相对定位,例如所述组件为装置1500的显示器和小键盘,传感器组件1514还可以检测装置1500或装置1500一个组件的位置改变,用户与装置1500接触的存在或不存在,装置1500方位或加速/减速和装置1500的温度变化。传感器组件1514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1516被配置为便于装置1500和其他设备之间有线或无线方式的通信。装置1500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1504,上述指令可由装置1500的处理器1520执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图16是根据一示例性实施例示出的一种带宽部分配置1600的框图。例如,装置1600 可以被提供为一基站。参照图16,装置1600包括处理组件1622,其进一步包括一个或多个处理器,以及由存储器1632所代表的存储器资源,用于存储可由处理组件1622的执行的指令,例如应用程序。存储器1632中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1622被配置为执行指令,以执行上述非授权信道的接入方法。
装置1600还可以包括一个电源组件1626被配置为执行装置1600的电源管理,一个有线或无线网络接口1650被配置为将装置1600连接到网络,和一个输入输出(I/O)接口1659。装置1600可以操作基于存储在存储器1632的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
通过确定用户设备待切换到的默认BWP,用户设备长时间没有接收到调度DCI时,切换到带宽较窄的初始下行BWP上,能够降低用户设备的功耗,从而更加适用于5G NR-lite系统。

Claims (27)

  1. 一种带宽部分配置方法,被用户设备执行,包括:
    响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
    其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
  2. 如权利要求1所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    基于所述用户设备的上行BWP的配置情况,确定所述多个初始下行BWP中之一为所述默认BWP。
  3. 如权利要求2所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    响应于所述用户设备配置有一个初始上行BWP,确定与所述初始上行BWP存在对应关系的第一初始下行BWP为所述默认BWP,其中,所述第一初始下行BWP为所述多个初始下行BWP中之一。
  4. 如权利要求3所述的方法,其中,所述对应关系为所述初始上行BWP与所述第一初始下行BWP具有相同的中心频点。
  5. 如权利要求3所述的方法,其中,所述对应关系为所述初始上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述第一初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
    其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
  6. 如权利要求2所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    响应于所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
  7. 如权利要求6所述的方法,其中,所述确定所述通过MIB配置的初始下行BWP为所述默认BWP,包括:
    响应于所述用户设备配置有与所述通过MIB配置的初始下行BWP存在对应关系的上 行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
  8. 如权利要求7所述的方法,其中,所述对应关系为所述上行BWP与所述通过MIB配置的初始下行BWP具有相同的中心频点。
  9. 如权利要求7所述的方法,其中,所述对应关系为所述上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述通过MIB配置的初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
    其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
  10. 如权利要求1所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    响应于所述多个初始下行BWP包含所述网络设备通过MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
  11. 如权利要求1所述的方法,其中,所述第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息的持续时间进行计时。
  12. 一种带宽部分配置方法,被网络设备执行,包括:
    响应于用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
    其中,所述默认BWP为所述用户设备响应第一定时器超时将切换到的目标BWP。
  13. 如权利要求12所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    基于所述用户设备的上行BWP的配置情况,确定所述多个初始下行BWP中之一为所述默认BWP。
  14. 如权利要求13所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    响应于所述用户设备配置有一个初始上行BWP,确定与所述初始上行BWP存在对应关系的第一初始下行BWP为所述默认BWP,其中,所述第一初始下行BWP为所述多个初始下行BWP中之一。
  15. 如权利要求14所述的方法,其中,所述对应关系为所述初始上行BWP与所述第一初始下行BWP具有相同的中心频点。
  16. 如权利要求14所述的方法,其中,所述对应关系为所述初始上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述第一初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
    其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
  17. 如权利要求13所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    响应于所述多个初始下行BWP包含所述网络设备通过主系统信息块MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
  18. 如权利要求17所述的方法,其中,所述确定所述通过MIB配置的初始下行BWP为所述默认BWP,包括:
    响应于所述用户设备配置有与所述通过MIB配置的初始下行BWP存在对应关系的上行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
  19. 如权利要求18所述的方法,其中,所述对应关系为所述上行BWP与所述通过MIB配置的初始下行BWP具有相同的中心频点。
  20. 如权利要求18所述的方法,其中,所述对应关系为所述上行BWP包含为所述用户设备配置的用于发送随机接入信息的随机接入信道,且所述通过MIB配置的初始下行BWP包含为所述用户设备配置的物理层信道和随机接入搜索空间;
    其中,所述物理层信道用于承载对应于所述随机接入信息的随机接入响应。
  21. 如权利要求12所述的方法,其中,所述确定所述多个初始下行BWP中之一为默认BWP,包括:
    响应于所述多个初始下行BWP包含所述网络设备通过MIB配置的初始下行BWP,确定所述通过MIB配置的初始下行BWP为所述默认BWP。
  22. 如权利要求12所述的方法,其中,所述第一定时器用于对所述用户设备在激活BWP上没有接收到调度下行控制信息的持续时间进行计时。
  23. 一种带宽部分配置装置,应用于用户设备,包括:
    处理模块,被配置为响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
    其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
  24. 一种带宽部分配置装置,应用于网络设备,包括:
    处理模块,被配置为响应于所述用户设备配置有多个初始下行带宽部分BWP,确定所述多个初始下行BWP中之一为默认BWP;
    其中,所述默认BWP为所述用户设备响应于第一定时器超时将切换到的目标BWP。
  25. 一种移动终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至11中任一项的带宽部分配置方法的步骤。
  26. 一种网络侧设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求12至22中任一项的带宽部分配置方法的步骤。
  27. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至11中任一项的带宽部分配置方法的步骤或者权利要求12至22中任一项的带宽部分配置方法的步骤。
PCT/CN2022/076970 2022-02-18 2022-02-18 一种带宽部分配置方法、装置、设备及存储介质 WO2023155175A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/076970 WO2023155175A1 (zh) 2022-02-18 2022-02-18 一种带宽部分配置方法、装置、设备及存储介质
CN202280000451.8A CN114731537A (zh) 2022-02-18 2022-02-18 一种带宽部分配置方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076970 WO2023155175A1 (zh) 2022-02-18 2022-02-18 一种带宽部分配置方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023155175A1 true WO2023155175A1 (zh) 2023-08-24

Family

ID=82233051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076970 WO2023155175A1 (zh) 2022-02-18 2022-02-18 一种带宽部分配置方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114731537A (zh)
WO (1) WO2023155175A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110621058A (zh) * 2018-06-20 2019-12-27 华为技术有限公司 通信方法和装置
CN111587600A (zh) * 2018-01-12 2020-08-25 上海诺基亚贝尔股份有限公司 用于在多带宽部分上通信的方法、设备和计算机可读存储介质
CN111756499A (zh) * 2019-03-29 2020-10-09 中国移动通信有限公司研究院 调整带宽部分计时器的方法、终端以及存储介质
WO2021242300A1 (en) * 2020-05-25 2021-12-02 Qualcomm Incorporated Default resource bandwidth and inactivity timer
CN114026893A (zh) * 2021-09-30 2022-02-08 北京小米移动软件有限公司 一种sdt传输方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587600A (zh) * 2018-01-12 2020-08-25 上海诺基亚贝尔股份有限公司 用于在多带宽部分上通信的方法、设备和计算机可读存储介质
CN110621058A (zh) * 2018-06-20 2019-12-27 华为技术有限公司 通信方法和装置
CN111756499A (zh) * 2019-03-29 2020-10-09 中国移动通信有限公司研究院 调整带宽部分计时器的方法、终端以及存储介质
WO2021242300A1 (en) * 2020-05-25 2021-12-02 Qualcomm Incorporated Default resource bandwidth and inactivity timer
CN114026893A (zh) * 2021-09-30 2022-02-08 北京小米移动软件有限公司 一种sdt传输方法、装置及存储介质

Also Published As

Publication number Publication date
CN114731537A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US11924869B2 (en) Method and device for configuration and adjusting search space parameter
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
US20230232211A1 (en) Communication processing method, communication processing apparatus and storage medium
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
WO2023050354A1 (zh) 一种sdt传输方法、装置及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
WO2022198459A1 (zh) 一种搜索空间监测方法、搜索空间监测装置及存储介质
US20230379879A1 (en) Paging configuration methods and apparatuses, paging methods and apparatuses
CN107223360B (zh) 一种发送缓存状态的方法及装置
WO2023077271A1 (zh) 一种bwp确定方法、装置及存储介质
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2023155175A1 (zh) 一种带宽部分配置方法、装置、设备及存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2022188067A1 (zh) 一种发送、接收下行控制信道的方法、装置、设备及介质
WO2024011528A1 (zh) 端口切换、端口切换指示方法和装置
WO2024011527A1 (zh) 信息上报、上报指示方法和装置
WO2023283837A1 (zh) 一种资源池配置方法、装置及存储介质
WO2022188074A1 (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质
WO2023097699A1 (zh) 一种srs触发方法、装置及存储介质
WO2023070564A1 (zh) 一种部分带宽确定方法、装置及存储介质
WO2023082111A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质
WO2024021123A1 (zh) 上行传输切换、上行传输切换指示方法和装置
WO2023272511A1 (zh) 一种小区切换方法、小区切换装置及存储介质
WO2023151086A1 (zh) 带宽可部分切换方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926502

Country of ref document: EP

Kind code of ref document: A1