WO2023070564A1 - 一种部分带宽确定方法、装置及存储介质 - Google Patents

一种部分带宽确定方法、装置及存储介质 Download PDF

Info

Publication number
WO2023070564A1
WO2023070564A1 PCT/CN2021/127596 CN2021127596W WO2023070564A1 WO 2023070564 A1 WO2023070564 A1 WO 2023070564A1 CN 2021127596 W CN2021127596 W CN 2021127596W WO 2023070564 A1 WO2023070564 A1 WO 2023070564A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal
random access
determining
determination method
Prior art date
Application number
PCT/CN2021/127596
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/127596 priority Critical patent/WO2023070564A1/zh
Priority to CN202180003574.2A priority patent/CN114342531A/zh
Publication of WO2023070564A1 publication Critical patent/WO2023070564A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method, device and storage medium for determining a partial bandwidth.
  • LTE Long Term Evolution
  • MTC Machine Type Communication
  • NB-IoT Narrowband Internet of things
  • NR 5G New Radio
  • this new terminal type is called a low-capability terminal, sometimes also called a Reduced capability UE, or a Redcap terminal, or NR-lite for short.
  • the newly introduced A downlink initial partial bandwidth (Initial DL BWP).
  • the newly introduced Initial DL BWP is dedicated to random access (Random Access Channel, RACH), and the Initial DL BWP may not include SSB, etc.
  • Redcap terminals can complete random access. However, after the Redcap terminal completes random access based on the Initial DL BWP dedicated to random access, which BWP the terminal should monitor is an urgent problem to be solved.
  • the present disclosure provides a method, device and storage medium for determining partial bandwidth.
  • a method for determining BWP is provided, which is applied to a terminal, and the method for determining BWP includes:
  • the first BWP is the BWP monitored after the terminal completes random access; the first BWP is different from the second BWP, and the second BWP is used by the terminal when performing random access BWP.
  • the BWP determination method further includes: switching from the second BWP to the first BWP for monitoring in response to the terminal completing random access.
  • the determining the first BWP includes:
  • the instruction includes terminal-specific signaling, and the first BWP that the terminal needs to monitor subsequently is configured in the terminal-specific signaling; or the instruction includes broadcast signaling shared by the first type of terminal , the broadcast signaling is used to configure the first BWP, the communication capability of the first type of terminal is lower than a capability threshold, and the communication capability includes the transmitting and receiving bandwidth, the number of transmitting and receiving antennas, the maximum number of bits of a transmission block, and processing One or more of time delays.
  • the BWP determining method further includes: determining a third BWP in response to the first BWP not being configured in the acquired instruction; the third BWP is the default BWP used by the terminal, and is based on The common control resource set is determined.
  • the method further includes: based on the configuration information, determining to switch to the first BWP for monitoring; the configuration information includes an information field for indicating whether to enable or disable the first BWP .
  • the configuration information in response to meeting a predefined condition, includes an information field for indicating that the first BWP is enabled; the predefined condition includes at least one of the following conditions: the second The BWP is a BWP dedicated to random access: the default BWP of the terminal is not configured in the dedicated signaling of the terminal.
  • the first BWP includes a simulcast broadcast signal block.
  • the method further includes: in response to the timeout of the timer corresponding to the fourth BWP indicated by the terminal monitoring network dynamics, falling back to the first BWP; the timer is for the network to configure dynamic BWP switching for the terminal configured timer.
  • a partial bandwidth BWP determination method is provided, which is applied to a network device, and the BWP determination method includes:
  • the instruction is used to configure the first BWP that the terminal needs to monitor subsequently; the first BWP is the BWP that the terminal monitors after completing random access; the first BWP is different from the second BWP, and the first BWP
  • the second BWP is the BWP used when the terminal performs random access.
  • the instruction includes terminal-specific signaling, and the first BWP that the terminal needs to monitor subsequently is configured in the terminal-specific signaling; or the instruction includes broadcast signaling shared by the first type of terminal , the broadcast signaling is used to configure the first BWP, the communication capability of the first type of terminal is lower than a capability threshold, and the communication capability includes the transmitting and receiving bandwidth, the number of transmitting and receiving antennas, the maximum number of bits of a transmission block, and processing One or more of time delays.
  • the method further includes:
  • the configuration information includes an information field used to indicate enabling or disabling the first BWP.
  • the configuration information in response to meeting a predefined condition, includes an information field for indicating that the first BWP is enabled;
  • the predefined conditions include at least one of the following conditions:
  • the second BWP is a BWP dedicated to random access:
  • the default BWP of the terminal is not configured in the dedicated signaling of the terminal.
  • the method further includes: communicating with the terminal based on the first BWP.
  • an apparatus for determining a partial bandwidth BWP is provided, which is applied to a terminal, and the apparatus for determining BWP includes:
  • the processing unit is configured to determine a first BWP, the first BWP is the BWP monitored after the terminal completes the random access; the first BWP is different from the second BWP, and the second BWP is the random access performed by the terminal BWP to use when entering.
  • the processing unit is further configured to: switch from the second BWP to the first BWP for monitoring in response to the terminal completing the random access.
  • the BWP determination device further includes an acquisition unit configured to: acquire an instruction sent by a network device, the instruction is used to configure the first BWP that the terminal needs to monitor subsequently; the The processing unit is configured to determine a first BWP based on the instruction.
  • the instruction includes terminal-specific signaling, and the first BWP that the terminal needs to monitor subsequently is configured in the terminal-specific signaling; or the instruction includes broadcast signaling shared by the first type of terminal , the broadcast signaling is used to configure the first BWP, the communication capability of the first type of terminal is lower than a capability threshold, and the communication capability includes the transmitting and receiving bandwidth, the number of transmitting and receiving antennas, the maximum number of bits of a transmission block, and processing One or more of time delays.
  • the BWP processing unit is further configured to: determine a third BWP in response to the first BWP not being configured in the acquired instruction; the third BWP is a default BWP used by the terminal, and determined based on the set of common control resources.
  • the processing unit is configured to: determine to switch to the first BWP for monitoring based on the configuration information; information field.
  • the configuration information in response to meeting a predefined condition, includes an information field for indicating that the first BWP is enabled; the predefined condition includes at least one of the following conditions:
  • the second BWP is a BWP dedicated to random access: the default BWP of the terminal is not configured in the dedicated signaling of the terminal.
  • the first BWP includes a simulcast broadcast signal block.
  • the processing unit is further configured to: fall back to the first BWP in response to the timeout of the timer corresponding to the fourth BWP indicated by the terminal monitoring network dynamics; the timer is configured by the network for the terminal The timer configured during dynamic BWP switching.
  • an apparatus for determining a partial bandwidth BWP including:
  • the sending unit is configured to send an instruction, the instruction is used to configure the first BWP that the terminal needs to monitor subsequently; the first BWP is the BWP that the terminal monitors after completing random access; the first BWP and the second The BWP is different, and the second BWP is the BWP used by the terminal when performing random access.
  • the instruction includes terminal-specific signaling, and the first BWP that the terminal needs to monitor subsequently is configured in the terminal-specific signaling; or the instruction includes broadcast signaling shared by the first type of terminal , the broadcast signaling is used to configure the first BWP, the communication capability of the first type of terminal is lower than a capability threshold, and the communication capability includes the transmitting and receiving bandwidth, the number of transmitting and receiving antennas, the maximum number of bits of a transmission block, and processing One or more of time delays.
  • the sending unit is further configured to: send configuration information, where the configuration information includes an information field for indicating enabling or disabling the first BWP.
  • the configuration information in response to satisfying a predefined condition, includes an information field for indicating that the first BWP is enabled.
  • the predefined conditions include at least one of the following conditions: the second BWP is a BWP dedicated to random access: the default BWP of the terminal is not configured in dedicated signaling of the terminal.
  • the sending unit is further configured to: communicate with the terminal based on the first BWP.
  • an apparatus for determining a partial bandwidth BWP including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the first aspect or the method for determining BWP described in any implementation manner of the first aspect.
  • an apparatus for determining a partial bandwidth BWP including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the second aspect or the method for determining BWP described in any implementation manner of the second aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the first aspect or the first The method for determining BWP described in any one of the implementation manners of the aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the second aspect or the second aspect.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: determine the first BWP used for monitoring after the terminal completes random access, the first BWP is different from the second BWP used by the terminal for random access, and realizes that the terminal completes random access. Determination of the BWP to be monitored after access.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flowchart showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 4A to Fig. 4B are flowcharts showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 5A to Fig. 5B are flowcharts showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • Fig. 9 is a block diagram of an apparatus for determining a BWP according to an exemplary embodiment.
  • Fig. 10 is a block diagram of an apparatus for determining a BWP according to an exemplary embodiment.
  • Fig. 11 is a block diagram of an apparatus for determining a BWP according to an exemplary embodiment.
  • Fig. 12 is a block diagram of an apparatus for determining a BWP according to an exemplary embodiment.
  • the wireless communication system includes a terminal and a network device. Information is sent and received between the terminal and the network device through wireless resources.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc. Not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and terminals included in the wireless communication system.
  • the wireless communication system in the embodiment of the present disclosure is a network that provides a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency-division multiple access (single Carrier FDMA, SC-FDMA), carrier sense Multiple Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single Carrier FDMA single Carrier FDMA
  • SC-FDMA carrier sense Multiple Access/Conflict Avoidance
  • Carrier Sense Multiple Access with Collision Avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network device may be: a base station, an evolved base station (evolved node B, base station), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WIFI) system, a wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB in the NR system, or it can also be a component or a part of equipment that constitutes a base station wait.
  • the network device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the network device may also be a vehicle-mounted device. It should be understood that in the embodiments of the present disclosure, no limitation is imposed on the specific technology and specific device form adopted by the network device.
  • terminals involved in this disclosure can also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device providing voice and/or data connectivity for example, a terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • examples of some terminals are: smart phones (Mobile Phone), pocket computers (Pocket Personal Computer, PPC), handheld computers, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the terminal.
  • the terminals involved in the embodiments of the present disclosure can be understood as a new type of terminals designed in 5G NR: low-capability terminals.
  • a low-capability terminal is sometimes called a Reduced capability UE, or a Redcap terminal, or NR-lite for short.
  • the new terminal is called a Redcap terminal.
  • 5G NR-lite Similar to Internet of Things (IoT) devices in Long Term Evolution (LTE), 5G NR-lite usually needs to meet the following requirements:
  • the current NR system is designed for high-end terminals such as high-speed and low-latency, the current design cannot meet the above requirements of NR-lite. Therefore, it is necessary to modify the current NR system to meet the requirements of NR-lite.
  • the radio frequency (Radio Frequency, RF) bandwidth of NR-IoT can be limited, such as limited to 5M Hz or 10M Hz, or the buffer size of NR-lite can be limited. In turn, limit the size of the transmission block received each time, and so on.
  • the possible optimization direction is to simplify the communication process, reduce the number of times NR-lite terminals detect downlink control channels, etc.
  • the NR standard defines BWP.
  • Initial BWP is configured for idle/inactive terminals. When the terminal enters the inactive state from the connected state, it will camp on the Initial BWP and monitor the Initial BWP.
  • the Initial DL BWP dedicated to the random access of the Redcap terminal is also defined for the Redcap terminal.
  • the Initial DL BWP dedicated to random access does not include Synchronization Signal and PBCH block (SSB) and the like.
  • the embodiment of the present disclosure provides a BWP determining method, so as to determine the BWP monitored after the terminal completes the random access.
  • the embodiment of the present disclosure may determine a BWP different from the BWP used by the terminal for random access, as the BWP monitored by the terminal after random access.
  • the BWP used for monitoring after the terminal completes random access is called the first BWP
  • the BWP used by the terminal for random access is called the second BWP.
  • Fig. 2 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal and includes the following steps.
  • step S11 a first BWP is determined.
  • the first BWP is a BWP monitored after the terminal completes the random access.
  • the first BWP is different from the second BWP, and the second BWP is a BWP used when the terminal performs random access.
  • the terminal may determine the first BWP based on the configuration of the network device.
  • the first BWP may also be determined based on a predefined rule.
  • the difference between the first BWP and the second BWP includes: different bandwidths of the first BWP and the second BWP, different subcarrier spacings between the first BWP and the second BWP, different frequency domain positions between the first BWP and the second BWP, and the like.
  • the first BWP used for monitoring after the terminal completes random access is determined.
  • the first BWP is different from the second BWP used by the terminal for random access, so as to realize the determination of the BWP that needs to be monitored after the terminal completes random access.
  • the terminal may switch to the determined first BWP for monitoring.
  • Fig. 3 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determining method is used in a terminal and includes the following steps.
  • step S21 it is determined that the terminal uses the second BWP to complete random access.
  • the random access process performed by the terminal using the second BWP is similar to the random access process in the related art, for example, four-step random access may be performed, or two-step random access may be performed.
  • step S22 switch from the second BWP to the first BWP for monitoring.
  • the terminal since the terminal has determined the first BWP to be monitored after random access, the terminal may automatically switch to the first BWP for monitoring after the random access is completed.
  • the terminal determines the first BWP based on the configuration of the network device.
  • the terminal may determine the first BWP based on signaling configured by the network device.
  • the network device sends signaling for configuring the first BWP, and the terminal receives the signaling sent by the network device, and determines the first BWP based on the signaling.
  • the network device may configure terminal-specific signaling, that is, the network device sends the signaling configured with the first BWP to the signaling-specific terminal.
  • the BWP (the first BWP) that the terminal needs to monitor subsequently may be included in the dedicated signaling of the terminal.
  • the dedicated signaling may not include the BWP that the terminal needs to monitor subsequently.
  • the terminal determines that the BWP that needs to be monitored subsequently is the first BWP.
  • Fig. 4A is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal, and includes the following steps.
  • step S31 the dedicated signaling of the terminal is acquired.
  • the dedicated signaling of the terminal includes the first BWP for configuring the terminal to be monitored subsequently.
  • step S32 the first BWP is determined based on the dedicated signaling of the terminal.
  • the terminal may switch to the first BWP included in the dedicated signaling for monitoring.
  • Fig. 4B is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal, and includes the following steps.
  • step S33 in response to the terminal completing the random access and the terminal's dedicated signaling is configured with the first BWP that the terminal needs to monitor subsequently, switching to the first BWP for monitoring.
  • switching to the first BWP for monitoring can avoid the problem of unclear BWP to be monitored after the random access is completed.
  • the first BWP used for monitoring after random access may be configured in broadcast signaling.
  • the network device may configure broadcast signaling including the first BWP, and the broadcast signaling including the first BWP may be shared among terminals, that is, the network device may send the broadcast signaling including the first BWP to multiple A terminal, for example, can be all terminals of the same type.
  • the terminals sharing the first BWP broadcast signaling are referred to as first type terminals.
  • the first type terminal may be a Redcap terminal.
  • Fig. 5A is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal and includes the following steps.
  • step S41 the broadcast signaling shared by the first type of terminals is acquired, and the broadcast signaling is used to configure the first BWP.
  • step S42 the first BWP is determined based on the broadcast signaling.
  • the first type of terminal may be a bandwidth capability applicable to the Redcap terminal, so that the Redcap terminal can communicate in the first BWP applicable to the Redcap terminal.
  • the communication capability of the first type of terminal is lower than the capability threshold.
  • the communication capability of the terminal includes one or more of the transmitting and receiving bandwidth, the number of transmitting and receiving antennas, the maximum number of bits of the transmission block, and the processing time delay.
  • the terminal may switch to the first BWP included in the dedicated signaling for monitoring.
  • Fig. 5B is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal, and includes the following steps.
  • step S43 in response to the terminal completing the random access and the first BWP that the terminal needs to monitor subsequently is configured in the broadcast signaling shared by the first type of terminal, switching to the first BWP for monitoring.
  • switching to the first BWP for monitoring can avoid the problem of unclear BWP to be monitored after the random access is completed.
  • the terminal may determine to subsequently switch to the first BWP for monitoring based on a predefined condition.
  • the predefined condition includes at least one of the following conditions: the second BWP is a BWP dedicated to random access.
  • the default BWP (default BWP) of the terminal is not configured in the dedicated signaling of the terminal.
  • the default BWP used by the terminal is called the third BWP.
  • the terminal In response to meeting the predefined condition, the terminal expects to switch to the first BWP for monitoring. In response to not satisfying the predefined condition, the terminal switches to the third BWP for detection.
  • the BWP determination method can determine the first BWP monitored after the terminal completes the random access based on the pre-definition, which can be understood as determining whether to switch to the first BWP after the terminal completes the random access based on the configuration information.
  • the configuration information includes an information field for indicating the first BWP.
  • the information field indicating the first BWP may enable (enable) or disable (disable) the first BWP.
  • the terminal may switch to the first BWP for monitoring after completing the random access.
  • the terminal cannot switch to the first BWP for monitoring after completing random access.
  • the terminal determines the BWP to be monitored subsequently based on the predefined condition. In an example, if the first BWP is not configured in the dedicated signaling of the terminal, the terminal may switch to the default BWP used by the terminal for monitoring after completing the random access. Or if the first BWP is not configured in the broadcast signaling shared by the terminals of the first type, the terminal may switch to the default BWP used by the terminal for monitoring after completing the random access.
  • Fig. 6 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal and includes the following steps.
  • step S51 the instruction sent by the network device is acquired.
  • the instruction sent by the network device may be a dedicated signaling of the terminal, or may be a broadcast signaling shared among terminals.
  • step S52 in response to the acquired signaling not configuring the first BWP, a third BWP is determined.
  • step S53 in response to the terminal completing the random access, switch to the third BWP for monitoring.
  • the third BWP is a default BWP used by the terminal.
  • the default BWP used by the terminal can be determined based on a common control resource set (Control resource set, CORESET).
  • CORESET Control resource set
  • the third BWP may be a BWP defined in CORESET#0.
  • the first BWP includes the SSB.
  • the SSB contained in the first BWP may be a cell-level SSB (cell-defined SSB) or a non-cell-level SSB (non-cell-defined SSB).
  • the terminal when the terminal is configured with dynamic BWP switching, it indicates the BWP that needs to be switched, which is hereinafter referred to as the fourth BWP.
  • the fourth BWP In the related art, it is a timer for switching to the fourth BWP. After the timer ends, the terminal will fall back to the default BWP.
  • the Default BWP can be configured by the network. If the network is not configured, the terminal will fallback to the initial BWP by default.
  • the initial BWP is a BWP dedicated to random access, since this initial BWP is only used for random access, it is not applicable to the connected state.
  • the terminal in response to the terminal determining the first BWP, the terminal monitors that the timer corresponding to the fourth BWP dynamically indicated by the network expires, and falls back to the first BWP.
  • Fig. 7 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in a terminal and includes the following steps.
  • step S61 a first BWP is determined.
  • step S62 the terminal monitors that the timer corresponding to the fourth BWP indicated dynamically by the network expires, and falls back to the first BWP.
  • the timer corresponding to the fourth BWP can be understood as a timer configured when the network configures dynamic BWP switching for the terminal.
  • the terminal determines the first BWP, and the first BWP is different from the BWP used during random access.
  • the terminal monitors that the timer corresponding to the fourth BWP dynamically indicated by the network expires, and falls back to the first BWP, which can solve the problem of timing corresponding to dynamic BWP switching in related technologies The problem that the default BWP is not clear when the timer times out.
  • the terminal When a BWP (Initial DL BWP only for RACH) dedicated to random access is configured for the RedCap terminal, it can be determined that the random access BWP for post-entry monitoring. Moreover, based on the method for determining the BWP provided by the embodiments of the present disclosure, the behavior of the terminal is clarified, for example, the terminal may fall back to the first BWP when the corresponding timer expires during dynamic BWP switching.
  • a BWP Initial DL BWP only for RACH
  • the embodiment of the present disclosure also provides a BWP determination method applied to a network device.
  • Fig. 8 is a flow chart showing a method for determining a BWP according to an exemplary embodiment.
  • the method for determining a BWP may be executed alone or in combination with other embodiments of the present disclosure.
  • the BWP determination method is used in network equipment and includes the following steps.
  • step S71 an instruction is sent, and the instruction is used to configure the first BWP that the terminal needs to monitor subsequently.
  • the first BWP is a BWP monitored after the terminal completes random access; the first BWP is different from the second BWP, and the second BWP is a BWP used by the terminal when performing random access.
  • the instruction sent by the network device includes the terminal's dedicated signaling, and the terminal's dedicated signaling configures the first BWP that the terminal needs to monitor subsequently.
  • the instruction sent by the network device includes the broadcast signaling shared by the first type of terminal, the broadcast signaling is used to configure the first BWP, the communication capability of the first type of terminal is lower than the capability threshold, and the communication capability includes the transceiver bandwidth , the number of transmitting and receiving antennas, the maximum number of bits in a transport block, and one or more of processing time delays.
  • the network device may also send configuration information to the terminal, where the configuration information includes an information field for indicating enabling or disabling the first BWP.
  • the terminal may switch to the first BWP for monitoring after completing the random access.
  • the terminal cannot switch to the first BWP for monitoring after completing random access.
  • the network device may include an information field for indicating that the first BWP is enabled in the configuration information when it is determined that the predefined condition is met.
  • the predefined condition includes at least one of the following conditions: the second BWP is a BWP dedicated to random access: the default BWP of the terminal is not configured in the dedicated signaling of the terminal.
  • the network device may communicate with the terminal based on the first BWP.
  • the network device may specify the first BWP monitored by the terminal after completing the random access, and then perform subsequent communication scheduling on the terminal based on the first BWP.
  • the network device configures the first BWP used by the terminal after random access, so that the terminal can specify the BWP used after random access.
  • the method for determining the BWP provided in the embodiments of the present disclosure may be applicable to an implementation in which a terminal interacts with a network device to implement BWP determination.
  • an embodiment of the present disclosure further provides a device for determining a BWP.
  • the apparatus for determining BWP includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or by computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 9 is a block diagram of an apparatus for determining a BWP according to an exemplary embodiment.
  • the apparatus 100 for determining BWP is applied to a terminal and includes a processing unit 101 .
  • the processing unit 101 is configured to determine a first BWP, where the first BWP is a BWP monitored after the terminal completes random access.
  • the first BWP is different from the second BWP, and the second BWP is a BWP used when the terminal performs random access.
  • the processing unit 101 is further configured to: switch from the second BWP to the first BWP for monitoring in response to the terminal completing the random access.
  • the BWP determining apparatus further includes an acquiring unit 102 acquiring an instruction sent by the network device, and the instruction is used to configure the first BWP that the terminal needs to monitor subsequently.
  • the processing unit 101 is configured to determine the first BWP based on the instruction.
  • the obtaining unit 102 is configured to: obtain terminal-specific signaling, and the terminal-specific signaling configures the first BWP that the terminal needs to monitor subsequently.
  • the obtaining unit 102 is configured to: obtain the broadcast signaling shared by the first type of terminal, the broadcast signaling is used to configure the first BWP, the communication capability of the first type of terminal is lower than the capability threshold, and the communication capability includes sending and receiving One or more of bandwidth, number of transmit and receive antennas, maximum number of bits in a transport block, and processing time delay.
  • the BWP processing unit 101 is further configured to: determine a third BWP in response to the first BWP not being configured in the acquired instruction.
  • the third BWP is a default BWP used by the terminal, and is determined based on the common control resource set.
  • the processing unit 101 is configured to: based on the configuration information, determine to switch to the first BWP for monitoring.
  • the configuration information includes an information field for indicating enabling or disabling the first BWP.
  • the configuration information in response to meeting the predefined condition, includes an information field for indicating that the first BWP is enabled.
  • the predefined conditions include at least one of the following conditions:
  • the second BWP is a BWP dedicated to random access: the default BWP of the terminal is not configured in the dedicated signaling of the terminal.
  • the first BWP includes a simulcast signal block.
  • the processing unit 101 is further configured to: fall back to the first BWP in response to the timeout of the timer corresponding to the fourth BWP indicated by the terminal monitoring network dynamics.
  • the timer is the timer configured when the network configures dynamic BWP switching for the terminal.
  • Fig. 10 is a block diagram of an apparatus for determining a BWP according to an exemplary embodiment.
  • the BWP determining apparatus 200 is applied to a network device, and includes a sending unit 201 .
  • the sending unit 201 is configured to send instructions, and the instructions are used to configure the first BWP that the terminal needs to monitor subsequently; the first BWP is the BWP that the terminal monitors after completing random access; the first BWP is different from the second BWP, and the second BWP is The BWP used by the terminal for random access.
  • the instruction includes terminal-specific signaling, and the terminal-specific signaling configures the first BWP that the terminal needs to monitor subsequently; or the instruction includes broadcast signaling shared by the first type of terminal, and the broadcast signaling is used to configure the second BWP.
  • the communication capability of the first type of terminal is lower than the capability threshold, and the communication capability includes one or more of the transceiver bandwidth, the number of transceiver antennas, the maximum number of bits of the transmission block, and the processing time delay.
  • the sending unit 201 is further configured to: send configuration information, where the configuration information includes an information field for indicating enabling or disabling the first BWP.
  • the configuration information in response to meeting the predefined condition, includes an information field for indicating that the first BWP is enabled.
  • the predefined conditions include at least one of the following conditions: the second BWP is a BWP dedicated to random access: the default BWP of the terminal is not configured in the terminal's dedicated signaling.
  • the sending unit 201 is further configured to: communicate with the terminal based on the first BWP.
  • Fig. 11 is a block diagram showing a device for determining a BWP according to an exemplary embodiment.
  • the BWP determining apparatus 300 may be provided as the terminal involved in the above embodiments.
  • the apparatus 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operations of the device 300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • the memory 304 is configured to store various types of data to support operations at the device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 300 .
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), which is configured to receive external audio signals when the device 300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 304 or sent via communication component 316 .
  • the audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
  • the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the device 300 orientation or acceleration/deceleration and the temperature change of the device 300 .
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G or 2G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • apparatus 300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • a storage medium including instructions, such as the memory 304 including instructions, which can be executed by the processor 320 of the device 300 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 12 is a block diagram of an apparatus 400 for determining a BWP according to an exemplary embodiment.
  • apparatus 400 may be provided as a network device. 12
  • apparatus 400 includes processing component 422, which further includes one or more processors, and memory resources represented by memory 432 for storing instructions executable by processing component 422, such as application programs.
  • the application program stored in memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • Device 400 may also include a power component 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input-output (I/O) interface 458 .
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the apparatus 400 is applied to include: a processor; and a memory for storing instructions executable by the processor.
  • the processor is configured to execute the above random access method.
  • non-transitory computer-readable storage medium including instructions, such as the memory 432 including instructions, which can be executed by the processing component 422 of the apparatus 400 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • “plurality” in the present disclosure refers to two or more, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include the plural unless the context clearly dictates otherwise.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another, and do not imply a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种部分带宽确定方法、装置及存储介质。BWP确定方法,应用于终端,所述BWP确定方法包括:确定第一BWP,所述第一BWP为所述终端完成随机接入后监测的BWP;所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。通过本公开实现终端完成随机接入后需要监测的BWP的确定。

Description

一种部分带宽确定方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种部分带宽确定方法、装置及存储介质。
背景技术
在长期演进(Long Term Evolution,LTE)4G系统中,为了支持物联网业务,提出了机器类通信(Machine Type Communication,MTC),窄带物联网(Narrow band Internet of thing,NB-IoT)两大技术。这两大技术主要针对的是低速率,高时延等场景。比如抄表,环境监测等场景。NB-IoT目前最大只能支持几百k的速率,MTC目前最大只能支持几M的速率。随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求,因此相关技术中的MTC还让NB-IoT技术很难满足要求。故,提出了在5G新空口(New Radio,NR)中再设计一种新的终端类型用以来覆盖中端物联网设备的要求。在目前的3GPP标准化中,这种新的终端类型叫做低能力终端,有时也称为Reduced capability UE,或者称为Redcap终端,或者简称为NR-lite。
相关技术中,考虑Redcap终端的时分复用的中心频点分布(TDD center frequency-alignment)以及同步广播信号块(Synchronization Signal and PBCH block,SSB)开销(overhead)等因素,相关技术中,新引入了一种下行初始部分带宽(Initial DL BWP)。该新引入的Initial DL BWP,专用于进行随机接入(Random Access Channel,RACH),并且此Initial DL BWP中可以不包含SSB等。
基于上述专用于随机接入的Initial DL BWP,Redcap终端可以完成随机接入。但是Redcap终端基于该专用于随机接入的Initial DL BWP完成随机接入后,终端应该监测哪个BWP,是一个亟待解决的问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种部分带宽确定方法、装置及存储介质。
根据本公开实施例第一方面,提供一种BWP确定方法,应用于终端,所述BWP确定方法包括:
确定第一BWP,所述第一BWP为所述终端完成随机接入后监测的BWP;所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
一种实施方式中,所述BWP确定方法还包括:响应于所述终端完成随机接入,从所述第二BWP切换至所述第一BWP进行监测。
一种实施方式中,所述确定第一BWP,包括:
获取网络设备发送的指令,所述指令用于配置所述终端后续需要监测的第一BWP;基于所述指令,确定第一BWP。
一种实施方式中,所述指令包括终端的专属信令,所述终端的专属信令中配置所述终端后续需要监测的第一BWP;或者所述指令包括第一类型终端共享的广播信令,所述广播信令用于配置所述第一BWP,所述第一类型终端的通信能力低于能力阈值,所述通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
一种实施方式中,所述BWP确定方法还包括:响应于获取到的指令中未配置所述第一BWP,确定第三BWP;所述第三BWP为所述终端使用的默认BWP,并基于公共控制资源集确定。
一种实施方式中,所述方法还包括:基于配置信息,确定切换至所述第一BWP进行监测;所述配置信息中包括用于指示使能或去使能所述第一BWP的信息域。
一种实施方式中,响应于满足预定义条件,所述配置信息中包括用于指示使能所述第一BWP的信息域;所述预定义条件包括如下条件中的至少一个:所述第二BWP为专用于随机接入的BWP:终端的专属信令中未配置所述终端的默认BWP。
一种实施方式中,所述第一BWP中包括同步广播信号块。
一种实施方式中,所述方法还包括:响应于终端监测网络动态指示的第四BWP对应的定时器超时,回退至所述第一BWP;所述定时器为网络为终端配置动态BWP切换时所配置的定时器。
根据本公开实施例第二方面,提供一种部分带宽BWP确定方法,应用于网络设备,所述BWP确定方法包括:
发送指令,所述指令用于配置终端后续需要监测的第一BWP;所述第一BWP为所述终端完成随机接入后监测的BWP;所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
一种实施方式中,所述指令包括终端的专属信令,所述终端的专属信令中配置所述终端后续需要监测的第一BWP;或者所述指令包括第一类型终端共享的广播信令,所述广播信令用于配置所述第一BWP,所述第一类型终端的通信能力低于能力阈值,所述通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
一种实施方式中,所述方法还包括:
发送配置信息,所述配置信息中包括用于指示使能或去使能所述第一BWP的信息域。
一种实施方式中,响应于满足预定义条件,所述配置信息中包括用于指示使能所述第 一BWP的信息域;
所述预定义条件包括如下条件中的至少一个:
所述第二BWP为专用于随机接入的BWP:
终端的专属信令中未配置所述终端的默认BWP。
一种实施方式中,所述方法还包括:基于所述第一BWP,与所述终端进行通信。
根据本公开实施例第三方面,提供一种部分带宽BWP确定装置,应用于终端,所述BWP确定装置包括:
处理单元,被配置为确定第一BWP,所述第一BWP为终端完成随机接入后监测的BWP;所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
一种实施方式中,所述处理单元还被配置为:响应于所述终端完成随机接入,从所述第二BWP切换至所述第一BWP进行监测。
一种实施方式中,所述BWP确定装置还包括获取单元,所述获取单元被配置为:获取网络设备发送的指令,所述指令用于配置所述终端后续需要监测的第一BWP;所述处理单元被配置为基于所述指令,确定第一BWP。
一种实施方式中,所述指令包括终端的专属信令,所述终端的专属信令中配置所述终端后续需要监测的第一BWP;或者所述指令包括第一类型终端共享的广播信令,所述广播信令用于配置所述第一BWP,所述第一类型终端的通信能力低于能力阈值,所述通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
一种实施方式中,所述BWP处理单元还被配置为:响应于获取到的指令中未配置所述第一BWP,确定第三BWP;所述第三BWP为所述终端使用的默认BWP,并基于公共控制资源集确定。
一种实施方式中,所述处理单元被配置为:基于配置信息,确定切换至所述第一BWP进行监测;所述配置信息中包括用于指示使能或去使能所述第一BWP的信息域。
一种实施方式中,响应于满足预定义条件,所述配置信息中包括用于指示使能所述第一BWP的信息域;所述预定义条件包括如下条件中的至少一个:
所述第二BWP为专用于随机接入的BWP:终端的专属信令中未配置所述终端的默认BWP。
一种实施方式中,所述第一BWP中包括同步广播信号块。
一种实施方式中,所述处理单元还被配置为:响应于终端监测网络动态指示的第四BWP对应的定时器超时,回退至所述第一BWP;所述定时器为网络为终端配置动态BWP 切换时所配置的定时器。
根据本公开实施例第四方面,提供一种部分带宽BWP确定装置,包括:
发送单元,被配置为发送指令,所述指令用于配置终端后续需要监测的第一BWP;所述第一BWP为所述终端完成随机接入后监测的BWP;所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
一种实施方式中,所述指令包括终端的专属信令,所述终端的专属信令中配置所述终端后续需要监测的第一BWP;或者所述指令包括第一类型终端共享的广播信令,所述广播信令用于配置所述第一BWP,所述第一类型终端的通信能力低于能力阈值,所述通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
一种实施方式中,所述发送单元还被配置为:发送配置信息,所述配置信息中包括用于指示使能或去使能所述第一BWP的信息域。
一种实施方式中,响应于满足预定义条件,所述配置信息中包括用于指示使能所述第一BWP的信息域。
所述预定义条件包括如下条件中的至少一个:所述第二BWP为专用于随机接入的BWP:终端的专属信令中未配置所述终端的默认BWP。
一种实施方式中,所述发送单元还被配置为:基于所述第一BWP,与所述终端进行通信。
根据本公开实施例第五方面,提供一种部分带宽BWP确定装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的BWP确定方法。
根据本公开实施例第六方面,提供一种部分带宽BWP确定装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的BWP确定方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行第一方面或者第一方面任意一种实施方式中所述的BWP确定方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行第二方面或者第二方面任意一种实施方式中所述的BWP确定方法。
本公开的实施例提供的技术方案可以包括以下有益效果:确定用于终端完成随机接入后监测的第一BWP,第一BWP不同于终端进行随机接入使用的第二BWP,实现终端完成随机接入后需要监测的BWP的确定。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种BWP确定方法的流程图。
图3是根据一示例性实施例示出的一种BWP确定方法的流程图。
图4A至图4B是根据一示例性实施例示出的一种BWP确定方法的流程图。
图5A至图5B是根据一示例性实施例示出的一种BWP确定方法的流程图。
图6是根据一示例性实施例示出的一种BWP确定方法的流程图。
图7是根据一示例性实施例示出的一种BWP确定方法的流程图。
图8是根据一示例性实施例示出的一种BWP确定方法的流程图。
图9是根据一示例性实施例示出的一种BWP确定装置框图。
图10是根据一示例性实施例示出的一种BWP确定装置框图。
图11是根据一示例性实施例示出的一种用于BWP确定的装置框图。
图12是根据一示例性实施例示出的一种用于BWP确定的装置框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的初始部分带宽确定方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括终端和网络设备。终端和网络设备之间通过无线资源进行信息的发送与接收。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网络设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限 定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网络设备。该无线接入网络设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开实施例涉及的终端可以理解为是在5G NR中设计的新的类型终端:低能力终端。低能力终端有时也称为Reduced capability UE,或者称为Redcap终端,或者简称为NR-lite。本公开实施例中,将该新的终端称为Redcap终端。
同长期演进(Long Term Evolution,LTE)中的物联网(Internet of Thing,IoT)设备类似,5G NR-lite通常需要满足如下要求:
-低造价,低复杂度
-一定程度的覆盖增强
-功率节省
由于目前的NR系统是针对高速率低时延等高端终端设计的,因此当前的设计无法满足NR-lite的上述要求。因此需要对目前的NR系统进行改造用以满足NR-lite的要求。比如,为了满足低造价,低复杂度等要求,可以限制NR-IoT的射频(Radio Frequency,RF)带宽,比如限制到5M Hz或者10M Hz,或者限制NR-lite的缓存(buffer)的大小,进而限制每次接收传输块的大小等等。针对功率节省,可能的优化方向是简化通信流程,减少NR-lite终端检测下行控制信道的次数等。
相关技术中,为了更好地支持不能处理整个载波带宽的终端以及接收带宽自适应,NR标准定义了BWP。在NR系统中,为空闲态/非激活态的终端配置Initial BWP。终端从连接态进入到非激活态时,将驻留(camp on)在Initial BWP,并监测Initial BWP。相关技术中,考虑Redcap终端的TDD center frequency-alignment以及SSB overhead等因素,为Redcap终端也定义了专用于Redcap终端进行随机接入的Initial DL BWP。该专用于随机接入的Initial DL BWP不包括同步广播信号块(Synchronization Signal and PBCH block,SSB)等。
然而,终端基于专用于随机接入的Initial DL BWP完成随机接入后,应该监测哪个BWP是目前还在讨论的问题。其中,一种方法是在随机接入的消息4(Msg.4)中给终端配置一个激活BWP(active BWP)。但是这种方法会导致比较多的开销。并且,这种方法会造成Msg.4有更大的传输块大小(transmission block size,TBS),造成initial DL BWP的拥塞。
本公开实施例提供一种BWP的确定方法,以确定终端完成随机接入后监测的BWP。
一种实施方式中,本公开实施例可以确定不同于终端进行随机接入时所用BWP的BWP,作为终端随机接入后监测的BWP。
本公开实施例中为描述方便,将用于终端完成随机接入后监测的BWP称为第一BWP,将终端进行随机接入使用的BWP称为第二BWP。
图2是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图2所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S11中,确定第一BWP。
其中,第一BWP为终端完成随机接入后监测的BWP。第一BWP与第二BWP不同,第二BWP为终端进行随机接入时使用的BWP。
其中,终端一方面可以基于网络设备的配置,确定第一BWP。另一方面也可以是基于预定义规则,确定第一BWP。
第一BWP与第二BWP不同包括:第一BWP与第二BWP的带宽不同,第一BWP与第二BWP的子载波间隔不同,第一BWP与第二BWP的频域位置不同等。
本公开实施例中确定用于终端完成随机接入后监测的第一BWP,第一BWP不同于终端进行随机接入使用的第二BWP,实现终端完成随机接入后需要监测的BWP的确定。
本公开实施例中,终端完成随机接入,可以切换到确定的第一BWP进行监测。
图3是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图3所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S21中,确定终端使用第二BWP完成随机接入。
其中,终端使用第二BWP进行随机接入过程与相关技术中随机接入过程类似,例如可以是进行四步随机接入,也可以是进行两步随机接入。
在步骤S22中,从第二BWP切换至第一BWP进行监测。
本公开实施例中,由于终端已确定了进行随机接入后需要监测的第一BWP,故在终端完成随机接入后,可以自动切换至第一BWP进行监测。
本公开实施例以下将对终端确定第一BWP的过程进行说明。
一种实施方式中,终端确定第一BWP,基于网络设备的配置确定。
一示例中,终端可以基于网络设备配置的信令确定第一BWP。网络设备发送用于配置第一BWP的信令,终端接收网络设备发送的信令,基于该信令确定第一BWP。
本公开实施例一种实施方式中,网络设备可以配置终端的专属信令,即网络设备将配置有第一BWP的信令发送给该信令专属的终端。在终端的专属信令中可包括终端后续需要监测的BWP(第一BWP)。当然该专属信令中也可以不包括终端后续需要监测的BWP。
一种实施方式中,本公开实施例中在终端的专属信令配置有终端后续需要监测的第一BWP的情况下,终端确定后续需要监测的BWP为第一BWP。
图4A是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图4A所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S31中,获取终端的专属信令。
本公开实施例中,终端的专属信令包含用于配置终端后续需要监测的第一BWP。
在步骤S32中,基于终端的专属信令,确定第一BWP。
进一步的,本公开实施例中,终端确定完成随机接入后,可切换至专属信令中包括的第一BWP进行监测。
图4B是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图4B所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S33中,响应于终端完成随机接入且终端的专属信令中配置有终端后续需要监测的第一BWP,切换至第一BWP进行监测。
本公开实施例中,在终端的专属信令中配置终端后续需要监测的第一BWP情况下,切换至第一BWP进行监测,能够避免完成随机接入后监测的BWP不明确的问题。
本公开实施例提供的BWP确定方法中,用于随机接入后监测的第一BWP,可以在广播信令中配置。
另一示例中,网络设备可以配置包括第一BWP的广播信令,该包括第一BWP的广播信令可以是终端间共享的,即网络设备可以将包括第一BWP的广播信令发送给多个终端,例如可以是同一类型的所有终端。本公开实施例中将共享第一BWP广播信令的终端称为第一类型终端。其中,该第一类型终端可以是Redcap终端。
图5A是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图5所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S41中,获取第一类型终端共享的广播信令,广播信令用于配置第一BWP。
在步骤S42中,基于广播信令,确定第一BWP。
其中,本公开实施例提供的BWP确定方法,第一类型终端可以是适用于Redcap终端的带宽能力,使得Redcap终端能够在适用于Redcap终端的第一BWP中进行通信。第一类型终端的通信能力低于能力阈值。其中,终端的通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
进一步的,本公开实施例中,终端确定完成随机接入后,可切换至专属信令中包括的第一BWP进行监测。
图5B是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图5B所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S43中,响应于终端完成随机接入且第一类型终端共享的广播信令中配置有终端后续需要监测的第一BWP,切换至第一BWP进行监测。
本公开实施例中,在广播信令中配置终端后续需要监测的第一BWP情况下,切换至第一BWP进行监测,能够避免完成随机接入后监测的BWP不明确的问题。
另一种实施方式中,终端可以基于预定义条件,确定后续切换至第一BWP进行监测。
其中,预定义条件包括如下条件中的至少一个:第二BWP为专用于随机接入的BWP。终端的专属信令中未配置终端的默认BWP(default BWP)。以下将终端使用的默认BWP称为第三BWP。
响应于满足预定义条件,终端期待切换至第一BWP上进行监测。响应于不满足预定义条件,终端切换至第三BWP进行检测。
其中,本公开实施例提供的BWP确定方法,可以基于预定义,确定终端完成随机接入后监测的第一BWP,可以理解为是基于配置信息,确定终端完成随机接入后是否切换至第一BWP进行监测。其中,配置信息中包括有用于指示第一BWP的信息域。
一种实施方式中,指示第一BWP的信息域可以使能(enable)或者去使能(disable)第一BWP。其中,使能第一BWP的情况下,终端可以在完成随机接入后切换至第一BWP进行监测。去使能第一BWP的情况下,终端在完成随机接入后将不能切换至第一BWP进行监测。
进一步可以理解的是,本公开实施例中,可以是在网络设备未配置第一BWP的情况下,终端基于预定义条件确定后续需要监测的BWP。一示例中,若终端的专属信令中未配置第一BWP,终端可以在完成随机接入后切换至终端使用的默认BWP上进行监测。或者若第一类型终端共享的广播信令中未配置第一BWP,终端可以在完成随机接入后切换至终端使用的默认BWP上进行监测。
图6是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图6所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S51中,获取网络设备发送的指令。
其中,网络设备发送的指令可以是终端的专属信令,也可以是终端间共享的广播信令。
在步骤S52中,响应于获取到的信令未配置第一BWP,确定第三BWP。
在步骤S53中,响应于终端完成随机接入,切换至第三BWP进行监测。
其中,第三BWP为终端使用的默认BWP。终端使用的默认BWP可基于公共控制资源集(Control resource set,CORESET)确定。例如,第三BWP可以是CORESET#0中定义的BWP。
本公开实施例提供的一种实施方式中,第一BWP中包括SSB。第一BWP中包含的 SSB可以是小区级别的SSB(cell-defined SSB)或者也可以是非小区级别的SSB(non-cell-defined SSB)。
进一步的,在R15/R16中,当终端配置了动态BWP切换时,指示需要切换的BWP,以下称为第四BWP。相关技术中为切换至第四BWP的定时器(timer)。在timer结束后,终端会回退至default BWP。Default BWP可以是网络配置的,如果网络没有配置,在缺省的情况下终端会fallback到initial BWP上。但是对于initial BWP为专用于随机接入的BWP的场景时,由于此initial BWP只用于随机接入,不适用于连接态。
应用本公开实施例提供的BWP确定方法,响应于终端确定了第一BWP,终端监测网络动态指示的第四BWP对应的定时器超时,回退至第一BWP。
图7是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图7所示,BWP确定方法用于终端中,包括以下步骤。
在步骤S61中,确定第一BWP。
在步骤S62中,终端监测网络动态指示的第四BWP对应的定时器超时,回退至第一BWP。
其中,第四BWP对应的定时器可以理解为是网络为终端配置动态BWP切换时所配置的定时器。
本公开实施例提供的BWP确定方法,终端确定第一BWP,第一BWP不同于随机接入时使用的BWP。在配置有专用于随机接入的第二BWP的情况下,终端监测网络动态指示的第四BWP对应的定时器超时,回退至第一BWP,能够解决相关技术中动态进行BWP切换时对应定时器超时的情况下,默认BWP不明确的问题。
可以理解的是,本公开实施例提供的上述BWP确定方法可以适用于Redcap终端。
当给RedCap终端配置了一个专用于随机接入的BWP(Initial DL BWP only for RACH)的情况下,可以基于本公开实施例提供的确定完成随机接入后监测的BWP的方法,确定完成随机接入后监测的BWP。并且,基于本公开实施例提供的确定BWP的方法,明确了终端的行为,例如,在动态进行BWP切换时对应定时器超时的情况下可以回退至第一BWP。
基于相同的构思,本公开实施例还提供一种应用于网络设备的BWP确定方法。
图8是根据一示例性实施例示出的一种BWP确定方法的流程图,该BWP确定方法可以单独被执行,也可以结合本公开其他实施例一起被执行。如图8所示,BWP确定方法用于网络设备中,包括以下步骤。
在步骤S71中,发送指令,指令用于配置终端后续需要监测的第一BWP。
其中,第一BWP为终端完成随机接入后监测的BWP;第一BWP与第二BWP不同,第二BWP为终端进行随机接入时使用的BWP。
一种实施方式中,网络设备发送的指令包括终端的专属信令,终端的专属信令中配置终端后续需要监测的第一BWP。
另一种实施方式中,网络设备发的指令包括第一类型终端共享的广播信令,广播信令用于配置第一BWP,第一类型终端的通信能力低于能力阈值,通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
本公开实施例中,网络设备还可以向终端发送配置信息,配置信息中包括用于指示使能或去使能第一BWP的信息域。其中,使能第一BWP的情况下,终端可以在完成随机接入后切换至第一BWP进行监测。去使能第一BWP的情况下,终端在完成随机接入后将不能切换至第一BWP进行监测。
一种实施方式中,网络设备可以在确定满足预定义条件的情况下,在配置信息中包括用于指示使能第一BWP的信息域。其中,预定义条件包括如下条件中的至少一个:第二BWP为专用于随机接入的BWP:终端的专属信令中未配置终端的默认BWP。
可以理解的是,本公开实施例中,网络设备可以基于第一BWP,与终端进行通信。例如,网络设备可以明确终端完成随机接入后监测的第一BWP,进而基于该第一BWP对终端进行后续的通信调度。
本公开实施例提供的BWP确定方法,网络设备对终端进行随机接入后使用的第一BWP进行配置,使得终端能够明确随机接入后使用的BWP。
可以理解的是,本公开实施例提供的BWP确定方法可以适用于终端与网络设备交互实现BWP确定的实施方案。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种BWP确定装置。
可以理解的是,本公开实施例提供的BWP确定装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究 竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图9是根据一示例性实施例示出的一种BWP确定装置框图。参照图9,该BWP确定装置100应用于终端,包括处理单元101。
处理单元101,被配置为确定第一BWP,第一BWP为终端完成随机接入后监测的BWP。第一BWP与第二BWP不同,第二BWP为终端进行随机接入时使用的BWP。
一种实施方式中,处理单元101还被配置为:响应于终端完成随机接入,从第二BWP切换至第一BWP进行监测。
一种实施方式中,BWP确定装置还包括获取单元102获取网络设备发送的指令,指令用于配置终端后续需要监测的第一BWP。处理单元101被配置为基于指令,确定第一BWP。
一种实施方式中,获取单元102被配置为:获取终端的专属信令,终端的专属信令中配置终端后续需要监测的第一BWP。
一种实施方式中,获取单元102被配置为:获取第一类型终端共享的广播信令,广播信令用于配置第一BWP,第一类型终端的通信能力低于能力阈值,通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
一种实施方式中,BWP处理单元101还被配置为:响应于获取到的指令中未配置第一BWP,确定第三BWP。第三BWP为终端使用的默认BWP,并基于公共控制资源集确定。
一种实施方式中,处理单元101被配置为:基于配置信息,确定切换至第一BWP进行监测。配置信息中包括用于指示使能或去使能第一BWP的信息域。
一种实施方式中,响应于满足预定义条件,配置信息中包括用于指示使能第一BWP的信息域。预定义条件包括如下条件中的至少一个:
第二BWP为专用于随机接入的BWP:终端的专属信令中未配置终端的默认BWP。
一种实施方式中,第一BWP中包括同步广播信号块。
一种实施方式中,处理单元101还被配置为:响应于终端监测网络动态指示的第四BWP对应的定时器超时,回退至第一BWP。定时器为网络为终端配置动态BWP切换时所配置的定时器。
图10是根据一示例性实施例示出的一种BWP确定装置框图。参照图10,该BWP确定装置200应用于网络设备,包括发送单元201。
发送单元201,被配置为发送指令,指令用于配置终端后续需要监测的第一BWP;第一BWP为终端完成随机接入后监测的BWP;第一BWP与第二BWP不同,第二BWP为 终端进行随机接入时使用的BWP。
一种实施方式中,指令包括终端的专属信令,终端的专属信令中配置终端后续需要监测的第一BWP;或者指令包括第一类型终端共享的广播信令,广播信令用于配置第一BWP,第一类型终端的通信能力低于能力阈值,通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
一种实施方式中,发送单元201还被配置为:发送配置信息,配置信息中包括用于指示使能或去使能第一BWP的信息域。
一种实施方式中,响应于满足预定义条件,配置信息中包括用于指示使能第一BWP的信息域。
预定义条件包括如下条件中的至少一个:第二BWP为专用于随机接入的BWP:终端的专属信令中未配置终端的默认BWP。
一种实施方式中,发送单元201还被配置为:基于第一BWP,与终端进行通信。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图11是根据一示例性实施例示出的一种用于BWP确定的装置的框图。BWP确定装置300可以被提供为上述实施例中涉及的终端。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM), 磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或2G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术, 超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图12是根据一示例性实施例示出的一种用于BWP确定的装置400的框图。例如,装置400可以被提供为一网络设备。参照图12,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,装置400应用于包括:处理器;用于存储处理器可执行指令的存储器。其中,所述处理器被配置为执行上述随机接入方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开 范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (20)

  1. 一种部分带宽BWP确定方法,其特征在于,应用于终端,所述BWP确定方法包括:
    确定第一BWP,所述第一BWP为所述终端完成随机接入后监测的BWP;
    所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
  2. 根据权利要求1所述的BWP确定方法,其特征在于,所述BWP确定方法还包括:
    响应于所述终端完成随机接入,从所述第二BWP切换至所述第一BWP进行监测。
  3. 根据权利要求1或2所述的BWP确定方法,其特征在于,所述确定第一BWP,包括:
    获取网络设备发送的指令,所述指令用于配置所述终端后续需要监测的第一BWP;
    基于所述指令,确定第一BWP。
  4. 根据权利要求3所述的BWP确定方法,其特征在于,所述指令包括终端的专属信令,所述终端的专属信令中配置所述终端后续需要监测的第一BWP;或者
    所述指令包括第一类型终端共享的广播信令,所述广播信令用于配置所述第一BWP,所述第一类型终端的通信能力低于能力阈值,所述通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
  5. 根据权利要求3或4所述的BWP确定方法,其特征在于,所述BWP确定方法还包括:
    响应于获取到的指令中未配置所述第一BWP,确定第三BWP;
    所述第三BWP为所述终端使用的默认BWP,并基于公共控制资源集确定。
  6. 根据权利要求2至5中任意一项所述的BWP确定方法,其特征在于,所述方法还包括:
    基于配置信息,确定切换至所述第一BWP进行监测;
    所述配置信息中包括用于指示使能或去使能所述第一BWP的信息域。
  7. 根据权利要求6所述的BWP确定方法,其特征在于,响应于满足预定义条件,所述配置信息中包括用于指示使能所述第一BWP的信息域;
    所述预定义条件包括如下条件中的至少一个:
    所述第二BWP为专用于随机接入的BWP:
    终端的专属信令中未配置所述终端的默认BWP。
  8. 根据权利要求1所述的BWP确定方法,其特征在于,所述第一BWP中包括同步广播信号块。
  9. 根据权利要求1所述的BWP确定方法,其特征在于,所述方法还包括:
    响应于终端监测网络动态指示的第四BWP对应的定时器超时,回退至所述第一BWP;
    所述定时器为网络为终端配置动态BWP切换时所配置的定时器。
  10. 一种部分带宽BWP确定方法,其特征在于,应用于网络设备,所述BWP确定方法包括:
    发送指令,所述指令用于配置终端后续需要监测的第一BWP;
    所述第一BWP为所述终端完成随机接入后监测的BWP;
    所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
  11. 根据权利要求10所述的BWP确定方法,其特征在于,所述指令包括终端的专属信令,所述终端的专属信令中配置所述终端后续需要监测的第一BWP;或者
    所述指令包括第一类型终端共享的广播信令,所述广播信令用于配置所述第一BWP,所述第一类型终端的通信能力低于能力阈值,所述通信能力包括收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项。
  12. 根据权利要求10或11所述的BWP确定方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息中包括用于指示使能或去使能所述第一BWP的信息域。
  13. 根据权利要求12所述的BWP确定方法,其特征在于,响应于满足预定义条件,所述配置信息中包括用于指示使能所述第一BWP的信息域;
    所述预定义条件包括如下条件中的至少一个:
    所述第二BWP为专用于随机接入的BWP:
    终端的专属信令中未配置所述终端的默认BWP。
  14. 根据权利要求11至13中任意一项所述的BWP确定方法,其特征在于,所述方法还包括:
    基于所述第一BWP,与所述终端进行通信。
  15. 一种部分带宽BWP确定装置,其特征在于,包括:
    处理单元,被配置为确定第一BWP,所述第一BWP为终端完成随机接入后监测的BWP;
    所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
  16. 一种部分带宽BWP确定装置,其特征在于,包括:
    发送单元,被配置为发送指令,所述指令用于配置终端后续需要监测的第一BWP;
    所述第一BWP为所述终端完成随机接入后监测的BWP;
    所述第一BWP与第二BWP不同,所述第二BWP为所述终端进行随机接入时使用的BWP。
  17. 一种部分带宽BWP确定装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至9中任意一项所述的BWP确定方法。
  18. 一种部分带宽BWP确定装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求10至14中任意一项所述的BWP确定方法。
  19. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求1至9中任意一项所述的BWP确定方法。
  20. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求10至14中任意一项所述的BWP确定方法。
PCT/CN2021/127596 2021-10-29 2021-10-29 一种部分带宽确定方法、装置及存储介质 WO2023070564A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/127596 WO2023070564A1 (zh) 2021-10-29 2021-10-29 一种部分带宽确定方法、装置及存储介质
CN202180003574.2A CN114342531A (zh) 2021-10-29 2021-10-29 一种部分带宽确定方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127596 WO2023070564A1 (zh) 2021-10-29 2021-10-29 一种部分带宽确定方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023070564A1 true WO2023070564A1 (zh) 2023-05-04

Family

ID=81022439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127596 WO2023070564A1 (zh) 2021-10-29 2021-10-29 一种部分带宽确定方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114342531A (zh)
WO (1) WO2023070564A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备
US20210029726A1 (en) * 2019-07-24 2021-01-28 Samsung Electronics Co., Ltd. Control signaling design for improved resource utilization
US20210058905A1 (en) * 2019-08-19 2021-02-25 Lenovo (Singapore) Pte. Ltd. Using a configured feedback resource for feedback
CN113170475A (zh) * 2021-03-17 2021-07-23 北京小米移动软件有限公司 一种带宽部分配置方法、带宽部分配置装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备
US20210029726A1 (en) * 2019-07-24 2021-01-28 Samsung Electronics Co., Ltd. Control signaling design for improved resource utilization
US20210058905A1 (en) * 2019-08-19 2021-02-25 Lenovo (Singapore) Pte. Ltd. Using a configured feedback resource for feedback
CN113170475A (zh) * 2021-03-17 2021-07-23 北京小米移动软件有限公司 一种带宽部分配置方法、带宽部分配置装置及存储介质

Also Published As

Publication number Publication date
CN114342531A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2022126556A1 (zh) 一种接入控制方法、接入控制装置及存储介质
EP4175338A1 (en) Communication processing method, communication processing apparatus and storage medium
WO2023279297A1 (zh) 随机接入方法、装置及存储介质
WO2022178734A1 (zh) 一种网络接入方法、网络接入装置及存储介质
WO2022006721A1 (zh) 通信方法、通信装置及存储介质
WO2023050354A1 (zh) 一种sdt传输方法、装置及存储介质
WO2023044626A1 (zh) 一种初始部分带宽确定方法、装置及存储介质
WO2022193194A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
US20230029170A1 (en) Method and device for obtaining information and storage medium
WO2023077271A1 (zh) 一种bwp确定方法、装置及存储介质
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2023077446A1 (zh) 一种物理上行控制信道资源确定方法、装置及存储介质
WO2023000341A1 (zh) 一种信息配置方法、信息配置装置及存储介质
CN112514317B (zh) 一种通信方法、通信装置及存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2023070564A1 (zh) 一种部分带宽确定方法、装置及存储介质
CN111527723B (zh) 控制信令检测方法、控制信令检测装置及存储介质
WO2023283837A1 (zh) 一种资源池配置方法、装置及存储介质
WO2023115396A1 (zh) 一种信道测量方法、装置及存储介质
WO2022252190A1 (zh) 一种直连带宽部分配置方法、装置及存储介质
WO2023283833A1 (zh) 随机接入方法、装置及存储介质
WO2023279262A1 (zh) 一种消息配置方法、消息配置装置及存储介质
WO2022067768A1 (zh) 一种资源配置方法、资源配置装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961919

Country of ref document: EP

Kind code of ref document: A1