WO2020014844A1 - 信道监测方法、装置、系统及存储介质 - Google Patents

信道监测方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2020014844A1
WO2020014844A1 PCT/CN2018/095849 CN2018095849W WO2020014844A1 WO 2020014844 A1 WO2020014844 A1 WO 2020014844A1 CN 2018095849 W CN2018095849 W CN 2018095849W WO 2020014844 A1 WO2020014844 A1 WO 2020014844A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
dci
parameter
indication information
drx
Prior art date
Application number
PCT/CN2018/095849
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880000835.3A priority Critical patent/CN109076552B/zh
Priority to PCT/CN2018/095849 priority patent/WO2020014844A1/zh
Publication of WO2020014844A1 publication Critical patent/WO2020014844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a channel monitoring method, device, system, and storage medium.
  • a physical downlink control channel (English: Physical Downlink Control Channel; PDCCH for short) is a channel used to carry downlink control information (English: Downlink Control Information; Abbreviation: DCI).
  • the base station can send DCI to the user equipment (English: User Equipment), and the UE can monitor the PDCCH to receive the DCI sent by the base station in time on the PDCCH.
  • the UE In order to reduce power consumption, in the connected state, the UE usually does not continuously monitor the PDCCH, but periodically switches from the sleep state to the awake state, and monitors the PDCCH in the awake state.
  • the monitoring mechanism is usually called a discontinuous reception (English: Discontinuous Reception; DRX for short) mechanism.
  • the base station may semi-statically configure DRX parameters for the UE.
  • the DRX parameters are parameters used by the UE to monitor the PDCCH using the DRX mechanism.
  • the UE may monitor the PDCCH according to the semi-statically configured DRX parameters of the base station.
  • the embodiments of the present disclosure provide a channel monitoring method, device, system, and storage medium, which can improve the UE's flexibility in PDCCH monitoring.
  • a channel monitoring method including:
  • Target downlink control information DCI sent by a base station, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate discontinuous reception of DRX parameters;
  • the format of the target DCI is a first target format, and the first target format is different from any DCI format specified by the long-term evolution LTE communication system.
  • the first target format is indicated by the base station to user equipment UE.
  • the target DCI also carries DCI type indication information, and the DCI type indication information is used to indicate the first target format.
  • the target DCI is scrambled using a target wireless network temporary identifier RNTI, and the target RNTI is used to indicate the first target format.
  • RNTI target wireless network temporary identifier
  • the target DCI includes a padding data segment, and a sum of a data length of the padding data segment and a data length of the parameter indication information is equal to a target data length, and the target data length is a DCI specified by a communication protocol. Data length.
  • the format of the target DCI is a second target format
  • the second target format is a format prescribed by the LTE communication system.
  • the target DCI includes a DRX parameter indication domain, and the DRX parameter indication domain carries the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter of a target type, wherein the target type is specified by a communication protocol.
  • the DRX parameter indication field further carries parameter type indication information, and the parameter type indication information is used to indicate a type of the DRX parameter indicated by the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter in a target parameter set
  • the target parameter set includes at least one DRX parameter, and the target parameter set is sent by the base station to user equipment UE through high-level signaling.
  • a channel monitoring method including:
  • Target downlink control information DCI to the user equipment UE, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate discontinuous reception of DRX parameters;
  • the UE is configured to monitor a physical downlink control channel PDCCH according to the DRX parameter.
  • the format of the target DCI is a first target format, and the first target format is different from any DCI format specified by the long-term evolution LTE communication system.
  • the first target format is indicated by the base station to user equipment UE.
  • the target DCI also carries DCI type indication information, and the DCI type indication information is used to indicate the first target format.
  • the target DCI is scrambled using a target wireless network temporary identifier RNTI, and the target RNTI is used to indicate the first target format.
  • RNTI target wireless network temporary identifier
  • the target DCI includes a pad data segment, and a sum of a data length of the pad data segment and a data length of the parameter indication information is equal to a target data length, and the target data length is a DCI specified by a communication protocol Data length.
  • the format of the target DCI is a second target format
  • the second target format is a format prescribed by the LTE communication system.
  • the target DCI includes a DRX parameter indication domain, and the DRX parameter indication domain carries the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter of a target type, wherein the target type is specified by a communication protocol.
  • the DRX parameter indication field further carries parameter type indication information, and the parameter type indication information is used to indicate a type of the DRX parameter indicated by the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter in a target parameter set
  • the target parameter set includes at least one DRX parameter, and the target parameter set is delivered by the base station to the UE through high-level signaling.
  • a channel monitoring device including:
  • a receiving module configured to receive target downlink control information DCI sent by a base station, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate discontinuous reception of DRX parameters;
  • a monitoring module is configured to monitor a physical downlink control channel PDCCH according to the DRX parameter.
  • the format of the target DCI is a first target format, and the first target format is different from any DCI format specified by the long-term evolution LTE communication system.
  • the first target format is indicated by the base station to user equipment UE.
  • the target DCI also carries DCI type indication information, and the DCI type indication information is used to indicate the first target format.
  • the target DCI is scrambled using a target wireless network temporary identifier RNTI, and the target RNTI is used to indicate the first target format.
  • RNTI target wireless network temporary identifier
  • the target DCI includes a padding data segment, and a sum of a data length of the padding data segment and a data length of the parameter indication information is equal to a target data length, and the target data length is a DCI specified by a communication protocol. Data length.
  • the format of the target DCI is a second target format
  • the second target format is a format prescribed by the LTE communication system.
  • the target DCI includes a DRX parameter indication domain, and the DRX parameter indication domain carries the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter of a target type, wherein the target type is specified by a communication protocol.
  • the DRX parameter indication field further carries parameter type indication information, and the parameter type indication information is used to indicate a type of the DRX parameter indicated by the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter in a target parameter set
  • the target parameter set includes at least one DRX parameter, and the target parameter set is sent by the base station to user equipment UE through high-level signaling.
  • a channel monitoring device including:
  • a sending module configured to send target downlink control information DCI to the user equipment UE, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate discontinuous reception of DRX parameters;
  • the UE is configured to monitor a physical downlink control channel PDCCH according to the DRX parameter.
  • the format of the target DCI is a first target format, and the first target format is different from any DCI format specified by the long-term evolution LTE communication system.
  • the first target format is indicated by the base station to user equipment UE.
  • the target DCI also carries DCI type indication information, and the DCI type indication information is used to indicate the first target format.
  • the target DCI is scrambled using a target wireless network temporary identifier RNTI, and the target RNTI is used to indicate the first target format.
  • RNTI target wireless network temporary identifier
  • the target DCI includes a pad data segment, and a sum of a data length of the pad data segment and a data length of the parameter indication information is equal to a target data length, and the target data length is a DCI specified by a communication protocol. Data length.
  • the format of the target DCI is a second target format
  • the second target format is a format prescribed by the LTE communication system.
  • the target DCI includes a DRX parameter indication domain, and the DRX parameter indication domain carries the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter of a target type, wherein the target type is specified by a communication protocol.
  • the DRX parameter indication field further carries parameter type indication information, and the parameter type indication information is used to indicate a type of the DRX parameter indicated by the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter in a target parameter set
  • the target parameter set includes at least one DRX parameter, and the target parameter set is delivered by the base station to the UE through high-level signaling.
  • a user equipment including:
  • Memory for storing instructions executable by the processor
  • the processor is configured to:
  • Target downlink control information DCI sent by a base station, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate discontinuous reception of DRX parameters;
  • a base station including:
  • Memory for storing instructions executable by the processor
  • the processor is configured to:
  • Target downlink control information DCI to the user equipment UE, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate discontinuous reception of DRX parameters;
  • the UE is configured to monitor a physical downlink control channel PDCCH according to the DRX parameter.
  • a channel monitoring system including: the channel monitoring device according to any one of the above third aspects and the channel monitoring device according to any one of the above fourth aspects.
  • a computer-readable storage medium stores at least one instruction, and the instruction is loaded and executed by a processor to implement any of the foregoing first aspect.
  • the instructions are loaded and executed by a processor to implement the channel monitoring method according to any one of the second aspects above.
  • the base station can use the target DCI to control the DRX parameters Perform dynamic configuration, and the UE can monitor the PDCCH according to the DRX parameters dynamically configured by the base station. In this way, compared with the semi-static configuration of the DRX parameters by the base station, the UE can improve the flexibility of the PDCCH monitoring and ensure that the UE The PDCCH monitoring can be adapted to the dynamically changing amount of communication service data.
  • Figure 1 is a schematic diagram of a DRX cycle.
  • Fig. 2 is a schematic diagram showing an implementation environment according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a channel monitoring method according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a channel monitoring method according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a channel monitoring method according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram illustrating a data structure of a target DCI according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram illustrating a data structure of a target DCI according to an exemplary embodiment.
  • Fig. 8 is a schematic diagram illustrating a data structure of a target DCI according to an exemplary embodiment.
  • Fig. 9 is a block diagram of a channel monitoring device according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a channel monitoring device according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a channel monitoring device according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a channel monitoring device according to an exemplary embodiment.
  • Fig. 13 is a block diagram showing a channel monitoring system according to an exemplary embodiment.
  • a base station can send downlink control information (English: Downlink ControlInformation) to a user equipment (English: UserEquipment; UE) via a physical downlink control channel (English: Physical Downlink Control Channel; PDCCH for short). : DCI) to schedule the UE using the transmitted DCI.
  • downlink control information English: Downlink ControlInformation
  • UE UserEquipment
  • PDCCH Physical Downlink Control Channel
  • the UE Since the UE usually cannot predict when the base station issues DCI, in a wireless communication system, the UE needs to monitor the PDCCH in real time according to a certain monitoring mechanism in order to receive the DCI issued by the base station in time.
  • the UE can continuously monitor the PDCCH, that is, the UE can monitor the PDCCH in each subframe.
  • the UE needs to perform a maximum of 44 blind detections when monitoring each PDCCH, and usually, most of the PDCCHs will not carry the DCI issued by the base station to the UE. Therefore, this method will It causes a great waste of the power consumption of the UE, thereby affecting the standby time of the UE.
  • the wireless communication system introduces a discontinuous reception (English: Discontinuous Reception; DRX for short) mechanism.
  • the UE in the DRX mechanism, can monitor the PDCCH according to the DRX cycle (English: DRXCycle), where a DRX cycle can include a monitoring period (English: OnDuration) and a non-monitoring period (English: Opportunity) DRX).
  • a DRX cycle can include a monitoring period (English: OnDuration) and a non-monitoring period (English: Opportunity) DRX).
  • the UE In the connected state, the UE can enter the awake state during the monitoring period of the DRX cycle. In the awake state, the UE can monitor the PDCCH. At the same time, the UE can enter the sleep state during the non-monitoring period of the DRX cycle. In the sleep state, the UE The PDCCH may not be monitored.
  • the base station may determine a monitoring period of each DRX cycle, and send the DCI to the UE within the monitoring period.
  • the DRX parameters may include monitoring duration (English: OnDuration Timer), monitoring extended duration (English: drx-Inactivity timer), short DRX Cycle duration (English: Short DRX-Cycle), long DRX cycle duration (English: Long DRX-Cycle), short DRX cycle number (English: drx Short Cycle Cycle Timer), and so on.
  • monitoring duration English: OnDuration Timer
  • monitoring extended duration English: drx-Inactivity timer
  • short DRX Cycle duration English: Short DRX-Cycle
  • long DRX cycle duration English: Long DRX-Cycle
  • short DRX cycle number English: drx Short Cycle Cycle Timer
  • the monitoring duration refers to the duration of the monitoring period in the DRX cycle.
  • the longer the monitoring duration the greater the UE's monitoring intensity of the PDCCH, and accordingly, the greater the power consumption of the UE, and conversely, the shorter the monitoring duration, the smaller the UE's monitoring intensity of the PDCCH.
  • the power consumption of the UE is also smaller.
  • the base station may just have a large amount of data to send to the UE, and in the remaining monitoring period, the base station cannot completely send the data to the UE.
  • the UE ends at the monitoring period After entering the non-monitoring period, that is, entering the sleep state, the UE cannot receive the DCI sent by the base station through the PDCCH, and cannot receive the data sent by the base station according to the DCI schedule, so the base station can only wait until the next Only in the monitoring period can this data be completely sent to the UE, which will undoubtedly increase the data transmission delay.
  • the DRX mechanism can introduce the concept of monitoring the extended time.
  • the UE can start timing.
  • the UE's timing does not reach the monitoring extended period, the UE will not enter the non-monitoring period even if the monitoring period has ended. That is, it will not enter the sleep state, but continuously monitor the PDCCH, and the UE will enter the non-monitoring period only when the timing reaches the monitoring extended time.
  • Both the short DRX cycle duration and the long DRX cycle duration are used to characterize the duration of the DRX cycle. The difference is that the duration of the DRX cycle represented by the short DRX cycle duration is shorter than the duration of the DRX cycle represented by the long DRX cycle duration.
  • the base station may generally configure the UE with a short DRX cycle duration or a long DRX cycle duration according to the service scenario of the UE. For example, for some communication services where the data exchange between the UE and the base station is frequent, the base station can configure a short DRX cycle time for the UE, and for some communication services where the data exchange between the UE and the base station is infrequent, the base station can be configured for the UE. The length of the long DRX cycle.
  • the UE In the short DRX cycle time, the UE can enter the awake state more frequently, that is, the UE can monitor the PDCCH more frequently. Therefore, in the short DRX cycle time, the UE monitors the PDCCH more strongly, and accordingly , The power consumption of the UE is also large; and under a long DRX time, the UE enters the awake state less frequently, that is, the frequency at which the UE monitors the PDCCH is low. Therefore, under a long DRX cycle time, the UE The monitoring intensity of the PDCCH is small, and accordingly, the power consumption of the UE is also small.
  • the base station can configure a short DRX cycle time and a long DRX cycle time for the UE at the same time, and the UE can switch between the short DRX cycle time and the long DRX cycle time according to its monitoring condition of the PDCCH.
  • n is the number of short DRX cycles, and the number of short DRX cycles is a positive integer.
  • Table 1 shows the possible values of DRX parameters in a wireless communication system.
  • the base station may configure DRX parameters for the UE semi-statically.
  • the base station may configure DRX parameters for the UE through high-level signaling. Due to the semi-static configuration, the DRX parameters configured by the base station for the UE need to meet the data transmission delay requirements of general communication services. In order to meet this requirement, the DRX parameters configured by the base station for the UE usually have a longer monitoring extension time. And the base station tends to configure a short DRX cycle duration for the UE to strengthen the UE's monitoring of the PDCCH.
  • the data volume of communication services often changes dynamically, that is, within a certain period of time, the data volume of communication services may burst out, and in another period, the data volume of communication services may Will be relatively few.
  • the base station When the communication traffic data volume of a UE bursts, the base station needs to send a large amount of DCI to the UE. At this time, the semi-statically configured DRX parameters of the base station for the UE are likely to fail to meet the delay requirements, while the communication traffic data volume of the UE is relatively When less, the base station sends less DCI to the UE. At this time, the UE monitoring the PDCCH according to the base station's semi-statically configured DRX parameters will cause a certain degree of waste of the power consumption of the UE, which will affect the UE's standby time. .
  • the configuration mode of the DRX parameter is difficult to adapt to the dynamically changing data volume of the communication service, and the UE has poor flexibility in monitoring the PDCCH according to the DRX parameter configured by the configuration mode.
  • the embodiment of the present disclosure provides a channel monitoring method, which can improve the flexibility of the UE in monitoring the PDCCH.
  • the UE may receive the target DCI sent by the base station, and monitor the PDCCH according to the DRX parameter indicated by the parameter indication information carried in the target DCI. Since DCI transmission is more flexible and real-time Strong, therefore, the base station can dynamically configure DRX parameters through the target DCI, and the UE can monitor the PDCCH according to the dynamically configured DRX parameters of the base station.
  • the flexibility of the UE for monitoring the PDCCH can be improved, and the UE's monitoring of the PDCCH can be adapted to the dynamically changing amount of communication service data.
  • FIG. 2 is a schematic diagram of an implementation environment involved in a channel monitoring method according to an embodiment of the present disclosure.
  • the implementation environment may include a base station 10 and a UE 20.
  • the base station 10 and the UE 20 may be connected through a communication network, and the UE 20 is any UE in a cell served by the base station 10.
  • the above communication network may be a fifth generation mobile communication technology (English: Generation, Mobile, Communication; 5G) communication network, or a long-term evolution (English: Long term, Evolution; LTE) communication network, or , Other communication networks similar to LTE communication networks or 5G communication networks.
  • 5G Fifth Generation mobile communication technology
  • LTE Long term, Evolution
  • Fig. 3 is a flowchart illustrating a channel monitoring method according to an exemplary embodiment.
  • the channel monitoring method can be used in the UE 20 shown in Fig. 2. As shown in Fig. 3, the channel monitoring method includes the following steps:
  • Step 301 The UE receives the target DCI sent by the base station.
  • the target DCI carries parameter indication information, and the parameter indication information is used to indicate DRX parameters.
  • Step 302 The UE monitors the PDCCH according to the DRX parameter indicated by the parameter indication information.
  • the channel monitoring method monitors the PDCCH by receiving the target DCI sent by the base station, and monitoring the PDCCH according to the DRX parameters indicated by the parameter indication information carried in the target DCI.
  • Real-time performance is strong, so the base station can dynamically configure DRX parameters through the target DCI, and the UE can monitor the PDCCH based on the dynamically configured DRX parameters of the base station.
  • the flexibility of the UE for monitoring the PDCCH can be improved, and the UE's monitoring of the PDCCH can be adapted to the dynamically changing amount of communication service data.
  • Fig. 4 is a flowchart illustrating a channel monitoring method according to an exemplary embodiment.
  • the channel monitoring method can be used in the base station 10 shown in Fig. 2. As shown in Fig. 4, the channel monitoring method includes the following steps:
  • Step 401 The base station sends a target DCI to the UE.
  • the target DCI carries parameter indication information, and the parameter indication information is used to indicate DRX parameters.
  • the UE is configured to monitor the PDCCH according to the DRX parameter indicated by the parameter indication information.
  • the channel monitoring method enables the UE to monitor the PDCCH according to the DRX parameter indicated by the parameter indication information carried in the target DCI by sending the target DCI to the UE. Since the DCI transmission is more flexible , Real-time performance is strong, therefore, the base station can dynamically configure DRX parameters through the target DCI, and the UE can monitor the PDCCH according to the DRX parameters dynamically configured by the base station. In this way, compared to the semi-static configuration of the DRX parameters by the base station In terms of it, it is possible to improve the flexibility of the UE in monitoring the PDCCH, and ensure that the UE's monitoring of the PDCCH can be adapted to the dynamically changing amount of communication service data.
  • Fig. 5 is a flowchart illustrating a channel monitoring method according to an exemplary embodiment.
  • the channel monitoring method can be used in the implementation environment shown in Fig. 2. As shown in Fig. 5, the channel monitoring method includes the following steps:
  • Step 501 The base station sends a target DCI to the UE.
  • the base station may monitor the change of the communication service data amount of the UE in real time or periodically.
  • the base station may determine the DRX parameter according to the change of the communication service data volume of the UE. Then, the base station may indicate the DRX parameter to the UE through the target DCI, so that the UE can monitor the PDCCH according to the DRX parameter.
  • the base station can dynamically configure the DRX parameters for the UE, so that The monitoring of the PDCCH by the UE can adapt to the change of the data volume of the communication service of the UE, improving the flexibility of the monitoring of the PDCCH by the UE.
  • the base station may determine the monitoring duration, monitoring extension duration, short DRX cycle duration, and short DRX cycle number according to the increase of the communication service data quantity of the UE, or according to the increased communication service data quantity. And at least one of the monitoring duration, the monitoring extension duration, the short DRX cycle duration, and the short DRX cycle number is indicated to the UE through the target DCI.
  • the monitoring duration determined by the base station may be longer than the monitoring duration currently being used by the UE, and the monitoring extension duration determined by the base station may be longer than the monitoring extension duration currently being used by the UE.
  • the base station may be a UE By configuring the short DRX cycle duration, the number of short DRX cycles determined by the base station may be greater than the number of short DRX cycles currently being used by the UE.
  • the base station may determine at least one of a monitoring duration, an extended monitoring duration, a long DRX cycle duration, and a short DRX cycle number according to a decrease in the communication service data volume of the UE, and indicate the monitoring to the UE through the target DCI. At least one of duration, monitoring extension duration, long DRX cycle duration, and short DRX cycle number.
  • the monitoring duration determined by the base station may be shorter than the monitoring duration currently being used by the UE, and the monitoring extension duration determined by the base station may be shorter than the monitoring extension duration currently being used by the UE.
  • the base station may be the UE.
  • the number of short DRX cycles determined by the base station may be less than the number of short DRX cycles currently being used by the UE.
  • the base station may determine the monitoring duration, the extended monitoring duration, the long DRX cycle duration, and the short DRX cycle duration according to the changed communication service type. And at least one of the number of short DRX cycles, and indicates to the UE at least one of the monitoring duration, monitoring extended duration, long DRX cycle duration, short DRX cycle duration, and short DRX cycle number through the target DCI.
  • first amplitude threshold, second amplitude threshold, first data amount threshold, and second data amount threshold may be specified by a communication protocol or may be determined by the base station itself, which is not specifically described in the embodiments of the present disclosure. limited.
  • the base station can pass the target
  • the DCI indicates to the UE the DRX parameters currently used by the UE, or the base station may not send the target DCI to the UE.
  • the wireless communication system may introduce a DCI in a new format (English: format).
  • the so-called DCI in the new format refers to a DCI format that is different from any DCI format specified by the LTE communication system.
  • the DCI in the new format is used to indicate DRX parameters, and the DCI in the new format is the target DCI described above.
  • the DCI of the new format is only referred to in the first target format below.
  • the target DCI may include one or more of a monitoring duration indication domain, a monitoring extended duration indication domain, a long DRX cycle duration indication domain, a short DRX cycle duration indication domain, and a short DRX cycle number indication domain.
  • the exemplary target DCI shown in FIG. 6 may include a monitoring duration indication field, a monitoring extension duration indication field, a long DRX cycle duration indication field, a short DRX cycle duration indication field, and a short DRX cycle number indication field.
  • the monitoring duration indication field is used to carry monitoring duration indication information, the monitoring duration indication information is used to indicate monitoring duration; the monitoring extension duration indication field is used to carry monitoring extension duration indication information, and the monitoring extension duration indication information is used to carry out monitoring Monitor the extended duration to indicate; the long DRX cycle duration indication field is used to carry the long DRX cycle duration indication information, the long DRX cycle duration indication information is used to indicate the long DRX cycle duration; the short DRX cycle duration indication field is used to carry the short DRX Cycle duration indication information, the short DRX cycle duration indication information is used to indicate the short DRX cycle duration; the short DRX cycle number indication field is used to carry short DRX cycle number indication information, and the short DRX cycle number indication information is used to short DRX The number of cycles is indicated.
  • the monitoring duration indication information, the monitoring extension duration indication information, the long DRX cycle duration indication information, the short DRX cycle duration indication information, and the short DRX cycle number indication information may be collectively referred to as parameter indication information.
  • the parameter indication information may be a value of the DRX parameter.
  • the monitoring duration indication information may occupy 4 bits.
  • the monitoring duration indication information may be 1000 (that is, 8 Binary representation).
  • the parameter indication information may be an identification value.
  • the identification value is used to indicate the DRX parameter in the target parameter set.
  • the monitoring duration indication information may occupy 2 bits.
  • the target parameter The set may include 4 monitoring durations, and the 4 monitoring durations may be 3, 40, 10, and 80 respectively. For example, when the monitoring duration indication information is 10, the monitoring duration indication information indicates the first Two monitoring duration values, which is 40.
  • the DRX parameters in the target parameter set can be selected by the base station. After the base station selects the DRX parameters, the base station can send the target parameter set to the UE through high-level signaling; the DRX in the target parameter set
  • the parameters may also be specified by a communication protocol, which is not specifically limited in the embodiments of the present disclosure.
  • the embodiment of the present disclosure may add a padding data segment to the target DCI to ensure that the data length of the target DCI and other formats of DCI The data length is equal to the data length of the DCI specified by the communication protocol.
  • the parameter indication information is parsed from the target DCI, and the target DCI may carry DCI type indication information, or,
  • the base station can use the target wireless network temporary identity (English: Radio Network Tempory Identity; RNTI for short) to scramble the cyclic redundancy check value (English: Cyclic Redundancy Check; CRC for short) of the target DCI.
  • RNTI Radio Network Tempory Identity
  • CRC Cyclic Redundancy Check
  • the target DCI may further include a type information indication field, where the type information indication field is used to carry DCI type indication information, and the DCI type indication information is used to indicate the first target format.
  • the UE can obtain the DCI type indication information by analyzing the target DCI, and then can use the DCI type indication information to identify that the received DCI is indicative of the DRX parameter.
  • the DCI type indication information may occupy one bit.
  • the base station may use the target RNTI to scramble the CRC of the target DCI, where the target RNTI is used to indicate the first target format.
  • the UE performs blind detection on the PDCCH, it can use the target RNTI to try to descramble the DCI carried on the PDCCH. If the UE successfully descrambles a DCI using the target RNTI, the UE can determine that DCI as the target DCI, and That is, the certain DCI is a DCI that indicates DRX parameters.
  • the embodiments of the present disclosure may transform an existing DCI so that the existing DCI can implement an indication of DRX parameters.
  • the transformed existing DCI is the target DCI described above.
  • the format of the target DCI is the second target format, and the second target format is the format specified by the LTE communication system.
  • the embodiment of the present disclosure may add a DRX parameter indication field to the existing DCI, and the DRX parameter indication field may carry the foregoing parameter indication information.
  • the parameter indication information may be one or more of monitoring duration indication information, monitoring extension duration indication information, long DRX cycle duration indication information, short DRX cycle duration indication information, and short DRX cycle number indication information.
  • the parameter indication information carried on the DRX parameter indication domain may indicate the DRX parameter of the target type, wherein the target type may be a monitoring duration type, a monitoring extension duration type, a long DRX cycle duration type, and a short DRX cycle.
  • the target type may be specified by a communication protocol, or may be determined by the base station itself.
  • the DRX parameter indication field may further carry parameter type indication information, and the parameter type indication information is used to indicate the type of the DRX parameter indicated by the parameter indication information carried in the DRX parameter indication field. That is, the parameter type indication information is used to indicate the foregoing target type.
  • Table 2 is an exemplary correspondence table between the parameter type indication information and the target type provided by the embodiment of the present disclosure:
  • Parameter type indication Target type 00 Monitoring duration type 01 Monitoring extended duration types 10 Short DRX cycle duration type 11 Long DRX cycle duration type
  • the target type indicated by the parameter type indication information is the monitoring duration type.
  • the parameter indication information carried in the DRX parameter indication domain may be a value of a DRX parameter or an identification value, which is not repeatedly described in the embodiment of the present disclosure.
  • Step 502 The UE receives the target DCI sent by the base station.
  • the UE can monitor the PDCCH during the monitoring period of the DRX cycle.
  • the UE can use the RNTI allocated by the base station to the UE to descramble the DCI carried on the PDCCH.
  • a DCI descrambling is successful, it indicates that the certain UE is the DCI sent by the base station to the UE.
  • the UE can parse the DCI. If the DCI carries the DCI type indication information, the UE can determine the DCI A certain DCI is a target DCI, and then, the UE may parse and obtain parameter indication information from the target DCI, and obtain a DRX parameter indicated by the parameter indication information.
  • the UE can also use the target RNTI to attempt to descramble the DCI carried on the PDCCH during the monitoring phase of the PDCCH. If the UE successfully descrambles a DCI using the target RNTI, the UE can determine that DCI as the target DCI, and then the UE can parse the parameter indication information from the target DCI, and obtain the DRX parameter indicated by the parameter indication information.
  • the UE may parse the DCI (that is, the target DCI), and obtain parameter indication information from the DRX parameter indication field of the target DCI, and then the UE may obtain the parameter DRX parameters indicated by the indication information.
  • Step 503 The UE monitors the PDCCH according to the DRX parameter indicated by the parameter indication information.
  • the channel monitoring method monitors the PDCCH by receiving the target DCI sent by the base station, and monitoring the PDCCH according to the DRX parameter indicated by the parameter indication information carried in the target DCI. Since DCI transmission is more flexible, Real-time performance is strong, so the base station can dynamically configure DRX parameters through the target DCI, and the UE can monitor the PDCCH based on the dynamically configured DRX parameters of the base station. In other words, the flexibility of the UE for monitoring the PDCCH can be improved, and the UE's monitoring of the PDCCH can be adapted to the dynamically changing amount of communication service data.
  • Fig. 9 is a block diagram of a channel monitoring device 600 according to an exemplary embodiment.
  • the channel monitoring device 600 may be provided in the UE 20 shown in Fig. 2.
  • the channel monitoring device 600 includes a receiving module 601 and a monitoring module 602.
  • the receiving module 601 is configured to receive a target DCI sent by a base station, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate DRX parameters.
  • the monitoring module 602 is configured to monitor a PDCCH according to the DRX parameter.
  • the format of the target DCI is a first target format, and the first target format is different from any DCI format specified by the LTE communication system.
  • the first target format is indicated by the base station to the UE.
  • the target DCI further carries DCI type indication information, and the DCI type indication information is used to indicate a first target format.
  • the target DCI is scrambled using a target wireless network temporary identifier RNTI, and the target RNTI is used to indicate a first target format.
  • the target DCI includes a padding data segment, and a sum of a data length of the padding data segment and a data length of the parameter indication information is equal to a target data length, and the target data length is a DCI specified by a communication protocol. Data length.
  • the format of the target DCI is a second target format
  • the second target format is a format specified by the LTE communication system.
  • the target DCI includes a DRX parameter indication domain, and the DRX parameter indication domain carries the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter of a target type, where the target type is specified by a communication protocol.
  • the DRX parameter indication field further carries parameter type indication information, and the parameter type indication information is used to indicate a type of the DRX parameter indicated by the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter in a target parameter set; the target parameter set includes at least one DRX parameter, and the target parameter set is sent by the base station to the UE through high-level signaling. of.
  • the channel monitoring apparatus monitors the PDCCH by receiving the target DCI sent by the base station and monitoring the DRX parameter indicated by the parameter indication information carried in the target DCI. Since DCI transmission is more flexible, Real-time performance is strong. Therefore, the base station can dynamically configure DRX parameters through the target DCI, and the UE can monitor the PDCCH according to the dynamically configured DRX parameters of the base station. In this way, compared with the semi-static configuration of the DRX parameters by the base station, In other words, the flexibility of the UE for monitoring the PDCCH can be improved, and the UE's monitoring of the PDCCH can be adapted to the dynamically changing amount of communication service data.
  • Fig. 10 is a block diagram of a channel monitoring device 700 according to an exemplary embodiment.
  • the channel monitoring device 700 may be provided in the base station 10 shown in Fig. 2.
  • the channel monitoring apparatus 700 includes a sending module 701.
  • the sending module 701 is configured to send a target DCI to the UE, where the target DCI carries parameter indication information, and the parameter indication information is used to indicate DRX parameters.
  • the UE is configured to monitor the PDCCH according to the DRX parameter.
  • the format of the target DCI is a first target format, and the first target format is different from any DCI format specified by the LTE communication system.
  • the first target format is indicated by the base station to the UE.
  • the target DCI further carries DCI type indication information, and the DCI type indication information is used to indicate a first target format.
  • the target DCI is scrambled using a target wireless network temporary identifier RNTI, and the target RNTI is used to indicate a first target format.
  • the target DCI includes a padding data segment, and a sum of a data length of the padding data segment and a data length of the parameter indication information is equal to a target data length, and the target data length is a DCI specified by a communication protocol. Data length.
  • the format of the target DCI is a second target format
  • the second target format is a format specified by the LTE communication system.
  • the target DCI includes a DRX parameter indication domain, and the DRX parameter indication domain carries the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter of a target type, where the target type is specified by a communication protocol.
  • the DRX parameter indication field further carries parameter type indication information, and the parameter type indication information is used to indicate a type of the DRX parameter indicated by the parameter indication information.
  • the parameter indication information is used to indicate a DRX parameter in a target parameter set
  • the target parameter set includes at least one DRX parameter, and the target parameter set is issued by the base station to the UE through high-level signaling.
  • the channel monitoring device provided in the embodiment of the present disclosure enables the UE to monitor the PDCCH according to the DRX parameter indicated by the parameter indication information carried in the target DCI by sending the target DCI to the UE. Since the sending of the DCI is more flexible , Real-time performance is strong, therefore, the base station can dynamically configure DRX parameters through the target DCI, and the UE can monitor the PDCCH according to the DRX parameters dynamically configured by the base station.
  • Fig. 11 is a block diagram of a channel monitoring device 800 according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness equipment, a personal digital assistant, and the like.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input / output (I / O) interface 812, a sensor component 814, And communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps performed by the UE 20 in the foregoing method embodiments.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operation at the device 800. Examples of these data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 may be implemented by any type of volatile or non-volatile storage devices, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and / or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and / or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I / O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 814 includes one or more sensors for providing status assessment of various aspects of the device 800.
  • the sensor component 814 can detect the on / off state of the device 800 and the relative positioning of the components, such as the display and keypad of the device 800, and the sensor component 814 can also detect the change of the position of the device 800 or a component of the device 800 , The presence or absence of the user's contact with the device 800, the orientation or acceleration / deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication section 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is configured to execute the technical process performed by the UE 20 in the foregoing method embodiment.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is configured to execute the technical process performed by the UE 20 in the foregoing method embodiment.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, may be provided.
  • the instructions may be executed by the processor 820 of the device 800 to complete the operations performed by the UE 20 in the foregoing method embodiment.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • Fig. 12 is a block diagram of a channel monitoring device 900 according to an exemplary embodiment.
  • the channel monitoring device 900 may be a base station.
  • the channel monitoring device 900 may include a processor 901, a receiver 902, a transmitter 903, and a memory 904.
  • the receiver 902, the transmitter 903, and the memory 904 are connected to the processor 901 through a bus, respectively.
  • the processor 901 includes one or more processing cores, and the processor 901 executes a method performed by a base station in a channel monitoring method provided by an embodiment of the present disclosure by running software programs and modules.
  • the memory 904 may be used to store software programs and modules. Specifically, the memory 904 may store an application program module 9042 required by the operating system 9041 and at least one function.
  • the receiver 902 is configured to receive communication data sent by other devices, and the transmitter 903 is configured to send communication data to other devices.
  • Fig. 13 is a block diagram of a channel monitoring system 1000 according to an exemplary embodiment. As shown in Fig. 13, the channel monitoring system 1000 includes a base station 1001 and a UE 1002.
  • the base station 1001 is configured to perform a channel monitoring method performed by the base station in the embodiment shown in FIG. 5.
  • the UE 1002 is configured to execute the channel monitoring method performed by the UE in the embodiment shown in FIG. 5.
  • a computer-readable storage medium is also provided.
  • the computer-readable storage medium is a non-volatile computer-readable storage medium, and the computer-readable storage medium stores a computer program therein.
  • the computer program is executed by the processing component, the channel monitoring method provided by the foregoing embodiments of the present disclosure can be implemented.
  • An embodiment of the present disclosure also provides a computer program product.
  • the computer program product stores instructions that, when run on a computer, enable the computer to execute the channel monitoring method provided by the embodiment of the present disclosure.
  • An embodiment of the present disclosure further provides a chip, which includes a programmable logic circuit and / or program instructions. When the chip runs, the chip can perform the channel monitoring method provided by the embodiment of the present disclosure.

Abstract

本公开提供了一种信道监测方法、装置、系统及存储介质,属于无线通信技术领域。所述方法包括:接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;根据所述DRX参数对物理下行控制信道PDCCH进行监测。本公开实施例提供的技术方案能够提高UE对PDCCH监测的灵活性。

Description

信道监测方法、装置、系统及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种信道监测方法、装置、系统及存储介质。
背景技术
物理下行控制信道(英文:Physical Downlink Control Channel;简称:PDCCH)是一种用于承载下行控制信息(英文:Downlink Control Information;简称:DCI)的信道。实际应用中,基站可以通过PDCCH向用户设备(英文:User Equipment;简称:UE)发送DCI,UE可以对PDCCH进行监测,以在PDCCH上及时接收基站发送的DCI。为了降低功耗,UE在连接态下,通常并不会对PDCCH进行不间断地监测,而是周期性地由休眠状态切换至唤醒状态,并在唤醒状态下对PDCCH进行监测,这种对PDCCH进行监测的机制通常称为非连续接收(英文:Discontinuous Reception;简称:DRX)机制。
相关技术中,基站可以为UE半静态地配置DRX参数,该DRX参数为UE采用DRX机制对PDCCH进行监测所需使用的参数,UE可以根据基站半静态配置的DRX参数对PDCCH进行监测。
然而,这样的监测方式灵活性较差,难以与动态变化的通信业务数据量相适应。
发明内容
本公开实施例提供了一种信道监测方法、装置、系统及存储介质,可以提高UE对PDCCH监测的灵活性。
根据本公开实施例的第一方面,提供一种信道监测方法,包括:
接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
根据所述DRX参数对物理下行控制信道PDCCH进行监测。
可选的,所述目标DCI的格式为第一目标格式,所述第一目标格式与长期演进LTE通信系统所规定的任一DCI格式均不同。
可选的,所述第一目标格式由所述基站向用户设备UE进行指示。
可选的,所述目标DCI还携带有DCI类型指示信息,所述DCI类型指示信息用于指示所述第一目标格式。
可选的,所述目标DCI使用目标无线网络临时标识RNTI进行加扰,所述目标RNTI用于指示所述第一目标格式。
可选的,所述目标DCI包括填充数据段,所述填充数据段的数据长度与所述参数指示信息的数据长度之和等于目标数据长度,所述目标数据长度为通信协议所规定的DCI的数据长度。
可选的,所述目标DCI的格式为第二目标格式,所述第二目标格式为LTE通信系统所规定的格式。
可选的,所述目标DCI包括DRX参数指示域,所述DRX参数指示域承载有所述参数指示信息。
可选的,所述参数指示信息用于对目标类型的DRX参数进行指示,其中,所述目标类型由通信协议进行规定。
可选的,所述DRX参数指示域还承载有参数类型指示信息,所述参数类型指示信息用于指示所述参数指示信息所指示的所述DRX参数的类型。
可选的,所述参数指示信息用于对目标参数集合中的DRX参数进行指示;
所述目标参数集合包括至少一个DRX参数,所述目标参数集合是所述基站通过高层信令发送给用户设备UE的。
根据本公开实施例的第二方面,提供一种信道监测方法,包括:
向用户设备UE发送目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
其中,所述UE用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
可选的,所述目标DCI的格式为第一目标格式,所述第一目标格式与长期演进LTE通信系统所规定的任一DCI格式均不同。
可选的,所述第一目标格式由所述基站向用户设备UE进行指示。
可选的,所述目标DCI还携带有DCI类型指示信息,所述DCI类型指示信息用于指示所述第一目标格式。
可选的,所述目标DCI使用目标无线网络临时标识RNTI进行加扰,所述目标RNTI用于指示所述第一目标格式。
可选的,所述目标DCI包括填充数据段,所述填充数据段的数据长度与所述参数指示信息的数据长度之和等于目标数据长度,所述目标数据长度为通信协议所规定的DCI的数据长度。
可选的,所述目标DCI的格式为第二目标格式,所述第二目标格式为LTE通信系统所规定的格式。
可选的,所述目标DCI包括DRX参数指示域,所述DRX参数指示域承载有所述参数指示信息。
可选的,所述参数指示信息用于对目标类型的DRX参数进行指示,其中,所述目标类型由通信协议进行规定。
可选的,所述DRX参数指示域还承载有参数类型指示信息,所述参数类型指示信息用于指示所述参数指示信息所指示的所述DRX参数的类型。
可选的,所述参数指示信息用于对目标参数集合中的DRX参数进行指示;
所述目标参数集合包括至少一个DRX参数,所述目标参数集合由基站通过高层信令向所述UE进行下发。
根据本公开实施例的第三方面,提供一种信道监测装置,包括:
接收模块,用于接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
监测模块,用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
可选的,所述目标DCI的格式为第一目标格式,所述第一目标格式与长期演进LTE通信系统所规定的任一DCI格式均不同。
可选的,所述第一目标格式由所述基站向用户设备UE进行指示。
可选的,所述目标DCI还携带有DCI类型指示信息,所述DCI类型指示信息用于指示所述第一目标格式。
可选的,所述目标DCI使用目标无线网络临时标识RNTI进行加扰,所述目标RNTI用于指示所述第一目标格式。
可选的,所述目标DCI包括填充数据段,所述填充数据段的数据长度与所述参数指示信息的数据长度之和等于目标数据长度,所述目标数据长度为通信协议所规定的DCI的数据长度。
可选的,所述目标DCI的格式为第二目标格式,所述第二目标格式为LTE通信系统所规定的格式。
可选的,所述目标DCI包括DRX参数指示域,所述DRX参数指示域承载有所述参数指示信息。
可选的,所述参数指示信息用于对目标类型的DRX参数进行指示,其中,所述目标类型由通信协议进行规定。
可选的,所述DRX参数指示域还承载有参数类型指示信息,所述参数类型指示信息用于指示所述参数指示信息所指示的所述DRX参数的类型。
可选的,所述参数指示信息用于对目标参数集合中的DRX参数进行指示;
所述目标参数集合包括至少一个DRX参数,所述目标参数集合是所述基站通过高层信令发送给用户设备UE的。
根据本公开实施例的第四方面,提供一种信道监测装置,包括:
发送模块,用于向用户设备UE发送目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
其中,所述UE用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
可选的,所述目标DCI的格式为第一目标格式,所述第一目标格式与长期演进LTE通信系统所规定的任一DCI格式均不同。
可选的,所述第一目标格式由所述基站向用户设备UE进行指示。
可选的,所述目标DCI还携带有DCI类型指示信息,所述DCI类型指示信息用于指示所述第一目标格式。
可选的,所述目标DCI使用目标无线网络临时标识RNTI进行加扰,所述目标RNTI用于指示所述第一目标格式。
可选的,所述目标DCI包括填充数据段,所述填充数据段的数据长度与所述参数指示信息的数据长度之和等于目标数据长度,所述目标数据长度为通信协议所规定的DCI的数据长度。
可选的,所述目标DCI的格式为第二目标格式,所述第二目标格式为LTE通信系统所规定的格式。
可选的,所述目标DCI包括DRX参数指示域,所述DRX参数指示域承载有所述参数指示信息。
可选的,所述参数指示信息用于对目标类型的DRX参数进行指示,其中,所述目标类型由通信协议进行规定。
可选的,所述DRX参数指示域还承载有参数类型指示信息,所述参数类型指示信息用于指示所述参数指示信息所指示的所述DRX参数的类型。
可选的,所述参数指示信息用于对目标参数集合中的DRX参数进行指示;
所述目标参数集合包括至少一个DRX参数,所述目标参数集合由基站通过高层信令向所述UE进行下发。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
根据所述DRX参数对物理下行控制信道PDCCH进行监测。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
向用户设备UE发送目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
其中,所述UE用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
根据本公开实施例的第七方面,提供一种信道监测系统,包括:如上述第三方面任一所述的信道监测装置和如上述第四方面任一所述的信道监测装置。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如上述第一方面任一所述的信道监测方法;或者,
所述指令由处理器加载并执行以实现如上述第二方面任一所述的信道监测方法。
本公开的实施例提供的技术方案至少可以包括以下有益效果:
通过接收基站发送的目标DCI,并根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX 参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动态变化的通信业务数据量相适应。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是一种DRX周期的示意图。
图2是根据一示例性实施例示出的一种实施环境的示意图。
图3是根据一示例性实施例示出的一种信道监测方法的流程图。
图4是根据一示例性实施例示出的一种信道监测方法的流程图。
图5是根据一示例性实施例示出的一种信道监测方法的流程图。
图6是根据一示例性实施例示出的一种目标DCI的数据结构的示意图。
图7是根据一示例性实施例示出的一种目标DCI的数据结构的示意图。
图8是根据一示例性实施例示出的一种目标DCI的数据结构的示意图。
图9是根据一示例性实施例示出的一种信道监测装置的框图。
图10是根据一示例性实施例示出的一种信道监测装置的框图。
图11是根据一示例性实施例示出的一种信道监测装置的框图。
图12是根据一示例性实施例示出的一种信道监测装置的框图。
图13是根据一示例性实施例示出的一种信道监测系统的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描 述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在无线通信系统中,基站可以通过物理下行控制信道(英文:Physical Downlink Control Channel;简称:PDCCH)向用户设备(英文:User Equipment;简称:UE)发送下行控制信息(英文:Downlink Control Information;简称:DCI),以利用发送的DCI对UE进行调度。
由于UE通常情况下并不能预知基站下发DCI的时机,因此,在无线通信系统中,UE需要按照一定的监测机制对PDCCH进行实时监测,以便能够及时接收基站下发的DCI。
在一种可能的实现方式中,UE可以不间断地对PDCCH进行监测,也即是,UE可以对每一子帧中的PDCCH都进行监测。然而,由于UE在对每一PDCCH进行监测时均需执行最多44次的盲检,且,通常情况下,大部分PDCCH都不会承载基站向该UE下发的DCI,因此,这样的方式会对UE的功耗造成较大的浪费,从而影响UE的待机时长。
为了降低UE的功耗,无线通信系统引入了非连续接收(英文:Discontinuous Reception;简称:DRX)机制。
如图1所示,在DRX机制中,UE可以按照DRX周期(英文:DRXCycle)对PDCCH进行监测,其中,一个DRX周期可以包括监测时段(英文:On Duration)和非监测时段(英文:Opportunity for DRX)。在连接态下,UE可以在DRX周期的监测时段进入唤醒状态,在唤醒状态下,UE可以对PDCCH进行监测,同时,UE可以在DRX周期的非监测时段进入睡眠状态,在睡眠状态下,UE可以不对PDCCH进行监测。为了保证UE能够成功接收到DCI,基站可以确定每一DRX周期的监测时段,并在该监测时段内向UE发送DCI。
在DRX机制中,UE需要按照基站所配置的DRX参数对PDCCH进行监测,其中,该DRX参数可以包括监测时长(英文:On Duration Timer)、监测延长时长(英文:drx-Inactivity Timer)、短DRX周期时长(英文:Short DRX-Cycle)、长DRX周期时长(英文:Long DRX-Cycle)和短DRX周期数(英文:drx Short Cycle Timer)等。
下面,本公开实施例将对这些DRX参数的含义进行简要说明:
1、监测时长。
监测时长指的是DRX周期中监测时段的时长。在DRX周期的时长一定的情况下,监测时长越长,UE对PDCCH的监测强度越大,相应地,UE的功耗也越大,反之,监测时长越短,UE对PDCCH的监测强度越小,相应地,UE的功耗也越小。
2、监测延长时长。
在监测时段的后期,基站可能刚好有一个较大的数据需要发送给UE,而在剩余的监测时段内,基站无法将该数据完全发送给UE,在这种情况下,若UE在监测时段结束后进入非监测时段,也即是进入睡眠状态,那么,UE就无法接收基站通过PDCCH下发的DCI,也无法根据该DCI的调度接收基站发送的该数据,因此,基站就只能等到下一个监测时段才能将这个数据完全发送至UE,这无疑会增加数据的传输时延。
为了降低数据的传输时延,DRX机制中可以引入监测延长时长的概念。在监测时段内,当UE在PDCCH上接收到基站下发的DCI时,UE可以启动计时,在UE计时的时长没有达到监测延长时长时,即使监测时段已经结束,UE也不会进入非监测时段,也即是不会进入睡眠状态,而是持续地对PDCCH进行监测,在该计时的时长达到监测延长时长时,UE才会进入非监测时段。
由上述说明可知,监测延长时长越长,UE对PDCCH的监测强度越大,相应地,UE的功耗也越大,反之,监测延长时长越短,UE对PDCCH的监测强度越小,相应地,UE的功耗也越小。
3、短DRX周期时长和长DRX周期时长。
短DRX周期时长和长DRX周期时长均用于表征DRX周期的时长,不同的是,短DRX周期时长表征的DRX周期的时长相较于长DRX周期时长表征的DRX周期的时长而言较短。
在DRX机制中,基站通常可以按照UE的业务场景为UE配置短DRX周期时长或者长DRX周期时长。例如,对于UE和基站数据交互比较频繁的某些通信业务而言,基站可以为UE配置短DRX周期时长,而对于UE和基站数据交互不频繁的某些通信业务而言,基站可以为UE配置长DRX周期时长。
在短DRX周期时长下,UE可以更频繁地进入唤醒状态,也即是,UE可以更频繁地对PDCCH进行监测,因此,在短DRX周期时长下,UE对PDCCH的监测强度较大,相应地,UE的功耗也较大;而在长DRX时长下,UE进入唤醒状态的频率较低,也即是,UE对PDCCH进行监测的频率较低,因此,在长DRX周期时长下,UE对PDCCH的监测强度较小,相应地,UE的功耗也较小。
在一些情况下,基站可以同时为UE配置一个短DRX周期时长和一个长DRX周期时长,UE可以根据自身对PDCCH的监测情况,在短DRX周期时长和长DRX周期时长之间进行切换。
4、短DRX周期数。
若UE在连续n个时长为短DRX周期时长的DRX周期内都没有在PDCCH上接收到基站下发的DCI,那么说明,当前UE和基站数据交互的频率较低,此时,UE可以将短DRX周期时长切换为长DRX周期时长,以节约UE的功耗。其中,上述n即为短DRX周期数,短DRX周期数为正整数。
由上述说明可知,短DRX周期数越小,UE对PDCCH的监测强度越大,相应地,UE的功耗也越大,反之,短DRX周期数越大,UE对PDCCH的监测强度越小,相应地,UE的功耗也越小。
表1所示为无线通信系统中,DRX参数的可能取值。
表1
Figure PCTCN2018095849-appb-000001
相关技术中,基站可以半静态地为UE配置DRX参数,例如,基站可以通过高层信令为UE配置DRX参数。由于是半静态配置,因此,基站为UE配置的DRX参数需要满足一般通信业务对数据传输时延的要求,为了达到这一要求,基站为UE配置的DRX参数中,监测延长时长通常较长,且基站倾向于为UE配置短DRX周期时长,以加强UE对PDCCH的监测。
然而,实际应用中,通信业务的数据量经常是动态变化的,也即是,在某一段时间内,通信业务的数据量可能会集中爆发,而在另一段时间内,通信业务的数据量可能会相对较少。
在UE的通信业务数据量集中爆发时,基站需要向该UE发送大量的DCI,此时,基站为UE半静态配置的DRX参数很可能无法满足时延要求,而在UE的通信业务数据量相对较少时,基站向该UE发送的DCI也较少,此时,UE按照基站半静态配置的DRX参数对PDCCH进行监测会对UE的功耗造成一定程度上的浪费,从而影响UE的待机时长。
因此,相关技术中,DRX参数的配置方式难以与动态变化的通信业务数 据量相适应,UE按照该配置方式所配置的DRX参数进行PDCCH监测的灵活性较差。
本公开实施例提供了一种信道监测方法,可以提高UE对PDCCH监测的灵活性。在本公开实施例提供的信道监测方法中,UE可以接收基站发送的目标DCI,并根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动态变化的通信业务数据量相适应。
下面,将对本公开实施例提供的信道监测方法所涉及到的实施环境进行说明。
图2为本公开实施例提供的信道监测方法所涉及到的实施环境的示意图。如图2所示,该实施环境可以包括基站10和UE20。基站10和UE20可以通过通信网络进行连接,UE20为基站10所服务的小区中的任一个UE。
其中,上述通信网络可以为第五代移动通信技术(英文:The Fifth Generation Mobile Communication Technology;简称:5G)通信网络,也可以为长期演进(英文:Long Term Evolution;简称:LTE)通信网络,或者,其他的与LTE通信网络或5G通信网络类似的通信网络。
图3是根据一示例性实施例示出的一种信道监测方法的流程图,该信道监测方法可以用于图2所示的UE20中,如图3所示,该信道监测方法包括以下步骤:
步骤301、UE接收基站发送的目标DCI。
该目标DCI携带有参数指示信息,该参数指示信息用于对DRX参数进行 指示。
步骤302、UE根据参数指示信息所指示的DRX参数对PDCCH进行监测。
综上所述,本公开实施例提供的信道监测方法,通过接收基站发送的目标DCI,并根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动态变化的通信业务数据量相适应。
图4是根据一示例性实施例示出的一种信道监测方法的流程图,该信道监测方法可以用于图2所示的基站10中,如图4所示,该信道监测方法包括以下步骤:
步骤401、基站向UE发送目标DCI。
该目标DCI携带有参数指示信息,该参数指示信息用于对DRX参数进行指示。UE用于根据参数指示信息所指示的DRX参数对PDCCH进行监测。
综上所述,本公开实施例提供的信道监测方法,通过向UE发送目标DCI,使得UE能够根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动态变化的通信业务数据量相适应。
图5是根据一示例性实施例示出的一种信道监测方法的流程图,该信道监测方法可以用于图2所示的实施环境中,如图5所示,该信道监测方法包括以 下步骤:
步骤501、基站向UE发送目标DCI。
在本公开的一个实施例中,基站可以实时或周期性地对UE的通信业务数据量的变化情况进行监测。在监测到UE的通信业务数据量发生了变化,且,变化的幅度满足预设的条件时,或者,在监测到UE的通信业务数据量发生了变化,且,变化后的通信业务数据量满足另一预设的条件时,基站可以根据UE的通信业务数据量的变化情况确定DRX参数。而后,基站可以通过目标DCI向UE指示该DRX参数,以使UE能够根据该DRX参数对PDCCH进行监测。由于DCI的发送较为灵活,实时性较强,且基站可以根据UE通信业务数据量的变化情况实时确定DRX参数,因此,在本公开实施例中,基站可以实现为UE动态配置DRX参数,从而使UE对PDCCH的监测能够与UE通信业务数据量的变化相适应,提高UE对PDCCH监测的灵活性。
例如,在监测到UE的通信业务数据量增大,且增大的幅度大于第一幅度阈值时,或者,在监测到UE的通信业务数据量增大,且增大后的通信业务数据量大于第一数据量阈值时,基站可以根据UE的通信业务数据量的增大幅度,或者,根据增大后的通信业务数据量确定监测时长、监测延长时长、短DRX周期时长和短DRX周期数中的至少一个,并通过目标DCI向UE指示该监测时长、监测延长时长、短DRX周期时长和短DRX周期数中的至少一个。其中,基站确定的监测时长可以大于UE当前正在使用的监测时长,基站确定的监测延长时长可以大于UE当前正在使用的监测延长时长,在UE当前使用长DRX周期时长的情况下,基站可以为UE配置短DRX周期时长,基站确定的短DRX周期数可以大于UE当前正在使用的短DRX周期数。
又例如,在监测到UE的通信业务数据量减少,且减少的幅度大于第二幅度阈值时,或者,在监测到UE的通信业务数据量减小,且减小后的通信业务数据量小于第二数据量阈值时,基站可以根据UE的通信业务数据量的减小幅度确定监测时长、监测延长时长、长DRX周期时长和短DRX周期数中的至少 一个,并通过目标DCI向UE指示该监测时长、监测延长时长、长DRX周期时长和短DRX周期数中的至少一个。其中,基站确定的监测时长可以小于UE当前正在使用的监测时长,基站确定的监测延长时长可以小于UE当前正在使用的监测延长时长,在UE当前使用短DRX周期时长的情况下,基站可以为UE配置长DRX周期时长,基站确定的短DRX周期数可以小于UE当前正在使用的短DRX周期数。
又例如,由于UE的通信业务数据量大小与UE进行的通信业务的类型相关,比如说,UE进行视频播放类通信业务时,通信业务的数据量较大。因此,在本公开实施例中,若监测到UE进行的通信业务的类型发生了变化,基站可以根据变化后的通信业务的类型确定监测时长、监测延长时长、长DRX周期时长、短DRX周期时长和短DRX周期数中的至少一个,并通过目标DCI向UE指示该监测时长、监测延长时长、长DRX周期时长、短DRX周期时长和短DRX周期数中的至少一个。
需要指出的是,上述第一幅度阈值、第二幅度阈值、第一数据量阈值和第二数据量阈值可以由通信协议进行规定,也可以由基站自行确定,本公开实施例对其不做具体限定。
还需要指出的是,在监测到UE的通信业务数据量没有发生变化,或者,在监测到UE的通信业务数据量发生了变化,但变化的幅度不满足预设的条件时,基站可以通过目标DCI向UE指示该UE当前所使用的DRX参数,或者,基站也可以不向UE发送目标DCI。
下面,本公开实施例将对目标DCI的数据结构进行简要说明。
在第一种可能的实现方式中,无线通信系统可以引入一种新格式(英文:format)的DCI,所谓新格式的DCI指的是与LTE通信系统所规定的任一DCI格式均不相同的DCI格式,该新格式的DCI用于对DRX参数进行指示,该新格式的DCI即为上文所述的目标DCI。为了方便说明,下文仅以第一目标格式代称该新格式的DCI。
在这种实现方式中,目标DCI可以包括监测时长指示域、监测延长时长指示域、长DRX周期时长指示域、短DRX周期时长指示域和短DRX周期数指示域中的一个或多个。请参考图6,图6示出的示例性的目标DCI中可以包括监测时长指示域、监测延长时长指示域、长DRX周期时长指示域、短DRX周期时长指示域和短DRX周期数指示域。
其中,监测时长指示域用于承载监测时长指示信息,该监测时长指示信息用于对监测时长进行指示;监测延长时长指示域用于承载监测延长时长指示信息,该监测延长时长指示信息用于对监测延长时长进行指示;长DRX周期时长指示域用于承载长DRX周期时长指示信息,该长DRX周期时长指示信息用于对长DRX周期时长进行指示;短DRX周期时长指示域用于承载短DRX周期时长指示信息,该短DRX周期时长指示信息用于对短DRX周期时长进行指示;短DRX周期数指示域用于承载短DRX周期数指示信息,该短DRX周期数指示信息用于对短DRX周期数进行指示。
在本公开实施例中,监测时长指示信息、监测延长时长指示信息、长DRX周期时长指示信息、短DRX周期时长指示信息和短DRX周期数指示信息可以统称为参数指示信息。
可选的,参数指示信息可以为DRX参数的值,以监测时长指示信息为例,该监测时长指示信息可以占据4个比特位,例如,该监测时长指示信息可以为1000(也即是8的二进制表示)。
可选的,参数指示信息可以为标识值,该标识值用于对目标参数集合中的DRX参数进行指示,以监测时长指示信息为例,该监测时长指示信息可以占据2个比特位,目标参数集合可以包括4个监测时长,该4个监测时长可以分别为3,40,10和80,例如,当该监测时长指示信息为10时,该监测时长指示信息指示的是目标参数集合中的第2个监测时长值,也即是40。
需要指出的是,该目标参数集合中的DRX参数可以由基站选定,在基站选定了DRX参数之后,基站可以通过高层信令将该目标参数集合发送至UE; 该目标参数集合中的DRX参数也可以由通信协议进行规定,本公开实施例对此不做具体限定。
在无线通信系统中,为了减小UE对PDCCH的盲检次数,通常需要保证不同格式(英文:format)的DCI具有相同的数据长度。因此,若在无线通信系统中引入了新格式的目标DCI,也需要保证该目标DCI的数据长度与其他格式的DCI的数据长度相等。
为了达到上述目的,在参数指示信息的数据长度小于通信协议规定的DCI的数据长度的情况下,本公开实施例可以为目标DCI添加填充数据段,以保证目标DCI的数据长度与其他格式的DCI的数据长度相等,也即是与通信协议所规定的DCI的数据长度相等。
在本公开实施例中,为了使UE能够识别出目标DCI,继而在识别出该目标DCI后,从该目标DCI中解析出参数指示信息,该目标DCI中可以携带有DCI类型指示信息,或者,基站可以使用目标无线网络临时标识(英文:Radio Network Tempory Identity;简称:RNTI)对目标DCI的循环冗余检验值(英文:Cyclic Redundancy Check;简称:CRC)进行加扰。
请参考图7,如图7所示,目标DCI中还可以包括类型信息指示域,该类型信息指示域用于承载DCI类型指示信息,该DCI类型指示信息用于指示第一目标格式。这样,UE在接收到目标DCI后,通过对该目标DCI进行解析,即可得到该DCI类型指示信息,继而可以通过该DCI类型指示信息识别出接收到的该目标DCI为对DRX参数进行指示的DCI。可选的,该DCI类型指示信息可以占据一个比特位。
请参考图8,如图8所示,基站可以使用目标RNTI对该目标DCI的CRC进行加扰,其中,该目标RNTI用于指示该第一目标格式。UE在对PDCCH进行盲检时,可以使用该目标RNTI尝试解扰PDCCH上承载的DCI,若UE使用目标RNTI成功解扰了某一DCI,则UE即可确定该某一DCI为目标DCI,也即是该某一DCI为对DRX参数进行指示的DCI。
在第二种可能的实现方式中,本公开实施例可以对现有的DCI进行改造,以使现有的DCI能够实现对DRX参数的指示,在这种情况下,该经过改造的现有的DCI即为上文所述的目标DCI,该目标DCI的格式为第二目标格式,该第二目标格式为LTE通信系统所规定的格式。
可选的,本公开实施例可以在现有的DCI中增加DRX参数指示域,该DRX参数指示域可以承载上述参数指示信息。
其中,该参数指示信息可以为监测时长指示信息、监测延长时长指示信息、长DRX周期时长指示信息、短DRX周期时长指示信息和短DRX周期数指示信息中的一种或多种。换句话说,该DRX参数指示域上承载的参数指示信息可以对目标类型的DRX参数进行指示,其中,该目标类型可以为监测时长类型、监测延长时长类型、长DRX周期时长类型、短DRX周期时长类型和短DRX周期数类型中的一种或多种。
在本公开实施例中,该目标类型可以由通信协议进行规定,也可以由基站自行确定。在基站自行确定该目标类型的情况下,该DRX参数指示域还可以承载有参数类型指示信息,该参数类型指示信息用于指示DRX参数指示域中承载的参数指示信息所指示的DRX参数的类型,也即是,该参数类型指示信息用于对上述目标类型进行指示。
表2为本公开实施例提供的一种示例性的参数类型指示信息与目标类型的对应关系表:
表2
参数类型指示信息 目标类型
00 监测时长类型
01 监测延长时长类型
10 短DRX周期时长类型
11 长DRX周期时长类型
如表2所示,在参数类型指示信息为00时,该参数类型指示信息所指示 的目标类型为监测时长类型。
与上述第一种实现方式类似的,DRX参数指示域中承载的参数指示信息可以为DRX参数的值或者为标识值,本公开实施例在此不再赘述。
步骤502、UE接收基站发送的目标DCI。
UE可以在DRX周期的监测时段内对PDCCH进行监测,在对PDCCH进行监测时,UE可以使用基站分配给该UE的RNTI对PDCCH上承载的DCI尝试进行解扰,当UE对PDCCH上承载的某一DCI解扰成功时,说明该某一UE为基站发送给该UE的DCI。
与上述第一种实现方式对应的,在UE对该某一DCI解扰成功后,UE可以对该某一DCI进行解析,若该某一DCI携带有上述DCI类型指示信息,则UE可以确定该某一DCI为目标DCI,而后,UE可以从该目标DCI中解析得到参数指示信息,并获取该参数指示信息所指示的DRX参数。
当然,UE也可以在对PDCCH进行监测的阶段使用目标RNTI尝试对PDCCH上承载的DCI进行解扰,若UE使用目标RNTI对该某一DCI解扰成功,则UE可以确定该某一DCI为目标DCI,而后,UE可以从该目标DCI中解析得到参数指示信息,并获取该参数指示信息所指示的DRX参数。
与上述第二种实现方式对应的,UE可以对该某一DCI(也即是目标DCI)进行解析,并从该目标DCI的DRX参数指示域中获取参数指示信息,而后,UE可以获取该参数指示信息所指示的DRX参数。
步骤503、UE根据参数指示信息所指示的DRX参数对PDCCH进行监测。
综上所述,本公开实施例提供的信道监测方法,通过接收基站发送的目标DCI,并根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动 态变化的通信业务数据量相适应。
图9是根据一示例性实施例示出的一种信道监测装置600的框图,该信道监测装置600可以设置于图2所示的UE20中。参照图9,该信道监测装置600包括接收模块601和监测模块602。
该接收模块601,用于接收基站发送的目标DCI,该目标DCI携带有参数指示信息,该参数指示信息用于指示DRX参数。
该监测模块602,用于根据该DRX参数对PDCCH进行监测。
在本公开的一个实施例中,该目标DCI的格式为第一目标格式,该第一目标格式与LTE通信系统所规定的任一DCI格式均不同。
在本公开的一个实施例中,该第一目标格式由基站向UE进行指示。
在本公开的一个实施例中,该目标DCI还携带有DCI类型指示信息,该DCI类型指示信息用于指示第一目标格式。
在本公开的一个实施例中,该目标DCI使用目标无线网络临时标识RNTI进行加扰,该目标RNTI用于指示第一目标格式。
在本公开的一个实施例中,该目标DCI包括填充数据段,该填充数据段的数据长度与该参数指示信息的数据长度之和等于目标数据长度,该目标数据长度为通信协议所规定的DCI的数据长度。
在本公开的一个实施例中,该目标DCI的格式为第二目标格式,该第二目标格式为LTE通信系统所规定的格式。
在本公开的一个实施例中,该目标DCI包括DRX参数指示域,该DRX参数指示域承载有该参数指示信息。
在本公开的一个实施例中,该参数指示信息用于对目标类型的DRX参数进行指示,其中,该目标类型由通信协议进行规定。
在本公开的一个实施例中,该DRX参数指示域还承载有参数类型指示信息,该参数类型指示信息用于指示该参数指示信息所指示的该DRX参数的类 型。
在本公开的一个实施例中,该参数指示信息用于对目标参数集合中的DRX参数进行指示;该目标参数集合包括至少一个DRX参数,该目标参数集合是该基站通过高层信令发送给UE的。
综上所述,本公开实施例提供的信道监测装置,通过接收基站发送的目标DCI,并根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动态变化的通信业务数据量相适应。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图10是根据一示例性实施例示出的一种信道监测装置700的框图,该信道监测装置700可以设置于图2所示的基站10中。参照图10,该信道监测装置700包括发送模块701。
其中,该发送模块701,用于向UE发送目标DCI,该目标DCI携带有参数指示信息,该参数指示信息用于指示DRX参数。该UE用于根据该DRX参数对PDCCH进行监测。
在本公开的一个实施例中,该目标DCI的格式为第一目标格式,该第一目标格式与LTE通信系统所规定的任一DCI格式均不同。
在本公开的一个实施例中,该第一目标格式由基站向UE进行指示。
在本公开的一个实施例中,该目标DCI还携带有DCI类型指示信息,该DCI类型指示信息用于指示第一目标格式。
在本公开的一个实施例中,该目标DCI使用目标无线网络临时标识RNTI 进行加扰,该目标RNTI用于指示第一目标格式。
在本公开的一个实施例中,该目标DCI包括填充数据段,该填充数据段的数据长度与该参数指示信息的数据长度之和等于目标数据长度,该目标数据长度为通信协议所规定的DCI的数据长度。
在本公开的一个实施例中,该目标DCI的格式为第二目标格式,该第二目标格式为LTE通信系统所规定的格式。
在本公开的一个实施例中,该目标DCI包括DRX参数指示域,该DRX参数指示域承载有该参数指示信息。
在本公开的一个实施例中,该参数指示信息用于对目标类型的DRX参数进行指示,其中,该目标类型由通信协议进行规定。
在本公开的一个实施例中,该DRX参数指示域还承载有参数类型指示信息,该参数类型指示信息用于指示该参数指示信息所指示的该DRX参数的类型。
在本公开的一个实施例中,该参数指示信息用于对目标参数集合中的DRX参数进行指示;
该目标参数集合包括至少一个DRX参数,该目标参数集合由基站通过高层信令向UE进行下发。
综上所述,本公开实施例提供的信道监测装置,通过向UE发送目标DCI,使得UE能够根据目标DCI中携带的参数指示信息所指示的DRX参数对PDCCH进行监测,由于DCI的发送较为灵活,实时性较强,因此,基站可以通过目标DCI对DRX参数进行动态地配置,而UE可以根据基站动态配置的DRX参数对PDCCH进行监测,这样,相较于基站对DRX参数半静态配置的方式而言,可以提高UE对PDCCH监测的灵活性,保证UE对PDCCH的监测能够与动态变化的通信业务数据量相适应。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图11是根据一示例性实施例示出的一种信道监测装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法实施例中UE20所执行的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信 号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们 的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法实施例中UE20所执行的技术过程。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法实施例中UE20所执行的技术过程。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图12是根据一示例性实施例示出的一种信道监测装置900的框图。例如,信道监测装置900可以是基站。如图12所示,信道监测装置900可以包括:处理器901、接收机902、发射机903和存储器904。接收机902、发射机903和存储器904分别通过总线与处理器901连接。
其中,处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块以执行本公开实施例提供的信道监测方法中基站所执行的方法。存储器904可用于存储软件程序以及模块。具体的,存储器904可存储操作系统9041、至少一个功能所需的应用程序模块9042。接收机902用于接收其他设备发送的通信数据,发射机903用于向其他设备发送通信数据。
图13是根据一示例性实施例示出的一种信道监测系统1000的框图,如图 13所示,该信道监测系统1000包括基站1001和UE1002。
其中,基站1001用于执行图5所示实施例中基站所执行的信道监测方法。
UE1002用于执行图5所示实施例中UE所执行的信道监测方法。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质为非易失性的计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现本公开上述实施例提供的信道监测方法。
本公开实施例还提供了一种计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机能够执行本公开实施例提供的信道监测方法。
本公开实施例还提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时能够执行本公开实施例提供的信道监测方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种信道监测方法,其特征在于,所述方法包括:
    接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
    根据所述DRX参数对物理下行控制信道PDCCH进行监测。
  2. 根据权利要求1所述的方法,其特征在于,所述目标DCI的格式为第一目标格式,所述第一目标格式与长期演进LTE通信系统所规定的任一DCI格式均不同。
  3. 根据权利要求2所述的方法,其特征在于,所述第一目标格式由所述基站向用户设备UE进行指示。
  4. 根据权利要求3所述的方法,其特征在于,所述目标DCI还携带有DCI类型指示信息,所述DCI类型指示信息用于指示所述第一目标格式。
  5. 根据权利要求3所述的方法,其特征在于,所述目标DCI使用目标无线网络临时标识RNTI进行加扰,所述目标RNTI用于指示所述第一目标格式。
  6. 根据权利要求2所述的方法,其特征在于,所述目标DCI包括填充数据段,所述填充数据段的数据长度与所述参数指示信息的数据长度之和等于目标数据长度,所述目标数据长度为通信协议所规定的DCI的数据长度。
  7. 根据权利要求1所述的方法,其特征在于,所述目标DCI的格式为第二目标格式,所述第二目标格式为LTE通信系统所规定的格式。
  8. 根据权利要求7所述的方法,其特征在于,所述目标DCI包括DRX参数指示域,所述DRX参数指示域承载有所述参数指示信息。
  9. 根据权利要求8所述的方法,其特征在于,所述参数指示信息用于对目标类型的DRX参数进行指示,其中,所述目标类型由通信协议进行规定。
  10. 根据权利要求8所述的方法,其特征在于,所述DRX参数指示域还承载有参数类型指示信息,所述参数类型指示信息用于指示所述参数指示信息所指示的所述DRX参数的类型。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述参数指示信息用于对目标参数集合中的DRX参数进行指示;
    所述目标参数集合包括至少一个DRX参数,所述目标参数集合是所述基站通过高层信令发送给UE的。
  12. 一种信道监测方法,其特征在于,所述方法包括:
    向用户设备UE发送目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
    其中,所述UE用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
  13. 根据权利要求12所述的方法,其特征在于,所述目标DCI的格式为第一目标格式,所述第一目标格式与长期演进LTE通信系统所规定的任一DCI格式均不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一目标格式由所述基站向用户设备UE进行指示。
  15. 根据权利要求14所述的方法,其特征在于,所述目标DCI还携带有DCI类型指示信息,所述DCI类型指示信息用于指示所述第一目标格式。
  16. 根据权利要求14所述的方法,其特征在于,所述目标DCI使用目标无线网络临时标识RNTI进行加扰,所述目标RNTI用于指示所述第一目标格式。
  17. 根据权利要求13所述的方法,其特征在于,所述目标DCI包括填充数据段,所述填充数据段的数据长度与所述参数指示信息的数据长度之和等于目标数据长度,所述目标数据长度为通信协议所规定的DCI的数据长度。
  18. 根据权利要求12所述的方法,其特征在于,所述目标DCI的格式为第二目标格式,所述第二目标格式为LTE通信系统所规定的格式。
  19. 根据权利要求18所述的方法,其特征在于,所述目标DCI包括DRX参数指示域,所述DRX参数指示域承载有所述参数指示信息。
  20. 根据权利要求19所述的方法,其特征在于,所述参数指示信息用于对目标类型的DRX参数进行指示,其中,所述目标类型由通信协议进行规定。
  21. 根据权利要求19所述的方法,其特征在于,所述DRX参数指示域还承载有参数类型指示信息,所述参数类型指示信息用于指示所述参数指示信息所指示的所述DRX参数的类型。
  22. 根据权利要求12至21任一所述的方法,其特征在于,所述参数指示信息用于对目标参数集合中的DRX参数进行指示;
    所述目标参数集合包括至少一个DRX参数,所述目标参数集合由基站通过 高层信令向所述UE进行下发。
  23. 一种信道监测装置,其特征在于,所述装置包括:
    接收模块,用于接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
    监测模块,用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
  24. 一种信道监测装置,其特征在于,所述装置包括:
    发送模块,用于向用户设备UE发送目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
    其中,所述UE用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
  25. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
    根据所述DRX参数对物理下行控制信道PDCCH进行监测。
  26. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    向用户设备UE发送目标下行控制信息DCI,所述目标DCI携带有参数指示信息,所述参数指示信息用于指示非连续接收DRX参数;
    其中,所述UE用于根据所述DRX参数对物理下行控制信道PDCCH进行监测。
  27. 一种信道监测系统,其特征在于,所述信道监测系统包括如权利要求23所述的信道监测装置和如权利要求24所述的信道监测装置。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1至11任一所述的信道监测方法;或者,
    所述指令由处理器加载并执行以实现如权利要求12至22任一所述的信道监测方法。
PCT/CN2018/095849 2018-07-16 2018-07-16 信道监测方法、装置、系统及存储介质 WO2020014844A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000835.3A CN109076552B (zh) 2018-07-16 2018-07-16 信道监测方法、装置、系统及存储介质
PCT/CN2018/095849 WO2020014844A1 (zh) 2018-07-16 2018-07-16 信道监测方法、装置、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095849 WO2020014844A1 (zh) 2018-07-16 2018-07-16 信道监测方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020014844A1 true WO2020014844A1 (zh) 2020-01-23

Family

ID=64789380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095849 WO2020014844A1 (zh) 2018-07-16 2018-07-16 信道监测方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN109076552B (zh)
WO (1) WO2020014844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670603A (zh) * 2020-04-13 2020-09-15 北京小米移动软件有限公司 监听信道的方法、装置、用户设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405642B (zh) * 2019-01-03 2024-04-16 华为技术有限公司 一种消息发送方法、接收方法、装置和设备
CN111436164B (zh) * 2019-01-11 2024-04-12 华为技术有限公司 一种通信方法及装置
WO2020168458A1 (zh) * 2019-02-18 2020-08-27 北京小米移动软件有限公司 Drx定时器的运行方法、装置、设备及存储介质
CN111726852B (zh) * 2019-03-18 2021-11-19 华为技术有限公司 通信方法和设备
CN112118590A (zh) * 2019-06-20 2020-12-22 海信集团有限公司 一种终端drx配置的方法、终端及基站
CN112118616A (zh) * 2019-06-20 2020-12-22 海信集团有限公司 一种终端盲解码的方法、终端及基站
CN112312558A (zh) * 2019-08-02 2021-02-02 中国移动通信有限公司研究院 一种传输方法、检测方法、网络设备及终端
EP4014549A4 (en) * 2019-08-14 2023-05-03 Nokia Technologies Oy APPARATUS, METHODS AND COMPUTER PROGRAMS
EP4218321A4 (en) * 2021-01-15 2024-01-10 Zte Corp SYSTEM AND METHOD FOR PDCCH MONITORING
CN115715018A (zh) * 2021-08-19 2023-02-24 维沃移动通信有限公司 非连续接收参数指示方法、装置、终端及网络侧设备
CN115865287A (zh) * 2021-12-31 2023-03-28 中兴通讯股份有限公司 配置方法、信道监控方法、通信节点及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595573A (zh) * 2012-02-02 2012-07-18 电信科学技术研究院 一种配置drx参数的方法、系统和设备
CN103945505A (zh) * 2013-01-23 2014-07-23 中国电信股份有限公司 长期演进系统非连续接收参数的配置方法与系统
US20170318620A1 (en) * 2016-04-28 2017-11-02 Mediatek Inc. Connected Mode Discontinuous Reception for Narrow Band Internet of Things
CN108282868A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 控制信令配置方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886208B2 (en) * 2012-03-19 2014-11-11 Qualcomm Incorporated Method and apparatus of simultaneously monitoring GSM channels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595573A (zh) * 2012-02-02 2012-07-18 电信科学技术研究院 一种配置drx参数的方法、系统和设备
CN103945505A (zh) * 2013-01-23 2014-07-23 中国电信股份有限公司 长期演进系统非连续接收参数的配置方法与系统
US20170318620A1 (en) * 2016-04-28 2017-11-02 Mediatek Inc. Connected Mode Discontinuous Reception for Narrow Band Internet of Things
CN108282868A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 控制信令配置方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670603A (zh) * 2020-04-13 2020-09-15 北京小米移动软件有限公司 监听信道的方法、装置、用户设备及存储介质

Also Published As

Publication number Publication date
CN109076552B (zh) 2021-10-08
CN109076552A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020014844A1 (zh) 信道监测方法、装置、系统及存储介质
US11844136B2 (en) Discontinuous reception (DRX) parameter configuration method and device
CN106604376B (zh) 信道监听控制方法、装置和用户终端
WO2020034074A1 (zh) 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
CN108370544B (zh) 非连续接收的实现方法、装置、用户设备和基站
WO2020061847A1 (zh) 资源确定方法和装置
WO2020024287A1 (zh) 时隙格式指示方法、装置、设备、系统及存储介质
WO2019227430A1 (zh) 信道监测方法、装置、系统及存储介质
KR20210044261A (ko) 타임 슬롯 포맷 지시 방법, 장치, 기기, 시스템 및 저장 매체
WO2020034073A1 (zh) 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
CN110337830B (zh) 监听方法、信令下发方法及装置、通信设备及存储
US11765662B2 (en) Physical downlink control signaling detection method, device, and computer readable storage medium
WO2020029262A1 (zh) 监听方法、装置、设备及存储介质
WO2020010631A1 (zh) 传输、监测辅载波配置信息的方法、装置、基站及终端
US11722283B2 (en) Information transmission method, device, system, and storage medium
US11937180B2 (en) Carrier activation method, device, apparatus, system, and storage medium
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
WO2020029088A1 (zh) 一种资源分配指示方法及装置、基站及终端
CN111147210B (zh) 状态转换方法及装置
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
CN109983731B (zh) 数据传输方法、装置、系统及存储介质
CN109792750B (zh) 载波配置方法及装置
CN109644081B (zh) 下行控制信令的检测方法、装置及系统
CN109691186B (zh) 下行通道监听方法、终端、基站及存储介质
US20210392520A1 (en) Network parameter configuration method and apparatus, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926500

Country of ref document: EP

Kind code of ref document: A1