WO2020010631A1 - 传输、监测辅载波配置信息的方法、装置、基站及终端 - Google Patents

传输、监测辅载波配置信息的方法、装置、基站及终端 Download PDF

Info

Publication number
WO2020010631A1
WO2020010631A1 PCT/CN2018/095695 CN2018095695W WO2020010631A1 WO 2020010631 A1 WO2020010631 A1 WO 2020010631A1 CN 2018095695 W CN2018095695 W CN 2018095695W WO 2020010631 A1 WO2020010631 A1 WO 2020010631A1
Authority
WO
WIPO (PCT)
Prior art keywords
scc
configuration information
information
physical layer
preset
Prior art date
Application number
PCT/CN2018/095695
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/095695 priority Critical patent/WO2020010631A1/zh
Priority to CN201880001024.5A priority patent/CN108886750B/zh
Publication of WO2020010631A1 publication Critical patent/WO2020010631A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, a device, a base station, and a terminal for transmitting and monitoring secondary carrier configuration information.
  • the terminal After studying the power consumption of the terminal, it is found that the ratio of the power consumed for monitoring the PDCCH to the total power consumption of the terminal exceeds 40%. This is because for a transmission unit, such as a sub-frame, the terminal monitors the PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) during the blind detection times up to 44 times; however, in most cases, the monitored transmission unit There is no data transmission belonging to the terminal, which causes the terminal to waste a lot of power consumption by monitoring the PDCCH. Especially in the CA (Carrier Aggregation, Carrier Aggregation) / DC (Dual Connectivity) application scenario, the terminal needs to perform PDCCH monitoring on multiple carriers, which will cause more waste of power consumption.
  • CA Carrier Aggregation, Carrier Aggregation
  • DC Dual Connectivity
  • a secondary carrier activation / deactivation mechanism in order to adapt to different service types and reduce the PDCCH power overhead. That is, when the traffic of a user (User Equipment) is large or the rate requirement is high, the base station adds carrier resources for the user through an Activate mechanism, that is, Secondary Component Carrier (SCC) resources. On the other hand, when the user's traffic is small or the rate requirement is low, the base station can use a Deactivate mechanism to turn off a secondary carrier monitored by the user to reduce power consumption.
  • SCC Secondary Component Carrier
  • the SCC activation / deactivation configuration information is transmitted by the MAC (Media Access Control) layer signaling. Since it needs to go through the physical layer, its transmission and analysis process takes a long time and cannot be satisfied.
  • the 5G NR system requires dynamic and flexible resource allocation.
  • the embodiments of the present disclosure provide a method, an apparatus, a base station, and user equipment for transmitting and monitoring secondary carrier configuration information, and transmitting SCC deactivation / activation instruction information through a physical layer signal to reduce SCC configuration information.
  • the transmission duration is more dynamic and flexible to implement the SCC deactivation / activation mechanism.
  • a method for transmitting secondary carrier configuration information is provided, and the method is applied to a base station.
  • the method includes:
  • the target physical layer signal is generated according to the SCC configuration information in at least one of the following ways:
  • the preset carrier includes: a secondary carrier SCC of the terminal, and / or a primary carrier of the terminal Carrier PCC; or,
  • the SCC configuration information includes SCC deactivation indication information, load the SCC deactivation indication information into PDCCH information of the terminal transmitted on the SCC to generate the target physical layer signal.
  • loading the SCC configuration information in a target physical layer channel of a preset carrier includes:
  • the determining a target physical layer channel of the preset carrier for carrying the SCC configuration information includes:
  • the configuration information of the target physical layer channel further includes: location information of the preset resource carrying the SCC configuration information, and / or a potential transmission timing of the SCC configuration information.
  • the potential transmission timing of the SCC configuration information includes:
  • the SCC configuration information includes: the SCC deactivation instruction information
  • the preset condition information includes that the terminal does not monitor the PDCCH information belonging to itself within a preset number of consecutive transmission periods of the SCC.
  • the loading the SCC configuration information into a preset resource of the target physical layer channel includes:
  • the SCC configuration information includes: the SCC deactivation indication information, or the SCC activation indication information;
  • the determining the corresponding target status indication value according to the SCC configuration information includes:
  • the SCC deactivation indication information is loaded into the PDCCH information of the terminal transmitted on the SCC in any of the following ways:
  • the preset carrier is the primary carrier and the number of secondary carriers configured by the base station for the terminal is not less than two;
  • the loading the SCC configuration information into a preset resource of the target physical layer channel includes:
  • a method for monitoring secondary carrier configuration information is provided, and the method is applied to a terminal.
  • the method includes:
  • the SCC configuration information includes the secondary carrier deactivation / activation indication information, and the transmission configuration information is used to inform the terminal how to obtain The SCC configuration information;
  • the determining transmission configuration information of a target physical layer signal used to carry the secondary carrier SCC configuration information includes:
  • the transmission configuration information of the target physical layer signal determined by the receiving base station includes:
  • Configuration information of a target physical layer channel issued by a base station where the configuration information includes at least: a frequency range of the target physical layer channel.
  • the configuration information of the target physical layer channel further includes: location information of a preset resource carrying the SCC configuration information, and a potential transmission timing of the SCC configuration information.
  • the potential transmission timing of the SCC configuration information includes:
  • the monitoring the own SCC configuration information from the target physical layer signal includes:
  • the preset condition information includes: no PDCCH information belonging to itself is detected within a preset number of consecutive transmission periods of the SCC;
  • Monitoring the SCC configuration information belonging to itself from the target physical layer signal according to the transmission configuration information of the target physical layer signal and the current user status includes:
  • the terminal When the terminal is in the active state on the SCC, if no PDCCH information belonging to itself is detected in the current transmission period, the terminal starts to record the number of monitoring failures;
  • monitoring the SCC configuration information belonging to itself from the target physical layer signal includes at least one of the following:
  • an apparatus for transmitting secondary carrier configuration information which is provided in a base station, and the apparatus includes:
  • An information determining module configured to determine SCC configuration information of a secondary carrier, where the SCC configuration information is used to instruct deactivation or activation of the secondary carrier;
  • a signal generation module configured to generate a target physical layer signal according to the SCC configuration information
  • the sending module is configured to send the SCC configuration information to a terminal through the target physical layer signal, so that the terminal determines whether to monitor physical downlink control channel PDCCH information on the SCC according to the SCC configuration information.
  • the signal generation module includes:
  • a first signal generation sub-module is configured to load the SCC configuration information in a target physical layer channel of a preset carrier to generate the target physical layer signal
  • the preset carrier includes: a secondary carrier SCC of the terminal , And / or, the primary carrier PCC of the terminal; or,
  • a second signal generating sub-module configured to load the SCC deactivation instruction information into the PDCCH information of the terminal transmitted on the SCC if the SCC configuration information includes SCC deactivation instruction information To generate the target physical layer signal.
  • the first signal generation sub-module includes:
  • a channel determining unit configured to determine a target physical layer channel of the preset carrier for carrying the SCC configuration information
  • the first information loading unit is configured to load the SCC configuration information into a preset resource of the target physical layer channel.
  • the channel determining unit includes:
  • a channel configuration subunit configured to configure the target physical layer channel based on the preset carrier to generate configuration information of the target physical layer channel, where the configuration information includes at least: a frequency range of the target physical layer channel;
  • the configuration sending subunit is configured to send the configuration information of the target physical layer channel to the terminal.
  • the configuration information of the target physical layer channel generated by the channel configuration subunit further includes: location information of the preset resource carrying the SCC configuration information, and / or, the SCC configuration information Potential transmission timing.
  • the potential transmission timing of the SCC configuration information includes:
  • the SCC configuration information includes: the SCC deactivation instruction information
  • the preset condition information includes that the terminal does not monitor the PDCCH information belonging to itself within a preset number of consecutive transmission periods of the SCC.
  • the first information loading unit includes:
  • the indication value determination subunit is configured to determine a corresponding target state indication value according to the SCC configuration information, and the SCC configuration information includes: the SCC deactivation indication information, or the SCC activation indication information;
  • the mapping subunit is configured to map the target status indication value to a preset resource of the target physical layer channel.
  • the indication value determination subunit is configured as:
  • the second preset list includes: a difference between the SCC configuration information and the preset bit indication value Correspondence.
  • the second signal generation sub-module includes:
  • a first identification unit configured to load the SCC deactivation indication information into a preset resource bit of a target resource, where the target resource is used to carry downlink control information DCI of the terminal;
  • the second identification unit is configured to scramble the cyclic redundancy check CRC code in the DCI information of the terminal by using a preset wireless network temporary identification RNTI sequence to generate target PDCCH information identifying the SCC deactivation indication information. ;
  • the third identification unit is configured to identify the SCC deactivation indication information by using a transmission position of the terminal's PDCCH information in the control region.
  • the preset carrier is the primary carrier, and the number of secondary carriers configured by the base station for the terminal is not less than two;
  • the first information loading unit includes:
  • a bitmap generating subunit configured to generate bitmap information for indicating a deactivation / activation state of each of the secondary carriers according to the SCC configuration information of each of the secondary carriers;
  • a bitmap mapping subunit is configured to map the bitmap information to a preset resource of the target physical layer channel of the primary carrier.
  • a device for monitoring secondary carrier configuration information which is provided in a terminal, and the device includes:
  • An information determining module is configured to determine transmission configuration information of a target physical layer signal used to carry secondary carrier SCC configuration information, the SCC configuration information includes the secondary carrier deactivation / activation indication information, and the transmission configuration information is used for Telling the terminal how to obtain the SCC configuration information;
  • a monitoring module configured to monitor SCC configuration information belonging to itself from the target physical layer signal according to the transmission configuration information of the target physical layer signal and the current user status;
  • the determining module is configured to determine whether to monitor physical downlink control channel PDCCH information on the SCC according to the monitored SCC configuration information.
  • the information determining module includes:
  • a first determining submodule configured to determine transmission configuration information of the target physical layer signal according to a preset protocol specification
  • the second determining submodule is configured to receive transmission configuration information of the target physical layer signal determined by the base station.
  • the second determining submodule is configured to receive configuration information of a target physical layer channel issued by a base station, where the configuration information includes at least: a frequency range of the target physical layer channel.
  • the configuration information of the target physical layer channel received by the second determining submodule further includes: location information of a preset resource carrying the SCC configuration information, and a potential transmission timing of the SCC configuration information.
  • the potential transmission timing of the SCC configuration information includes:
  • the monitoring module is configured to monitor SCC configuration information belonging to itself from the target physical layer signal according to a preset transmission period of the SCC configuration information.
  • the preset condition information includes: no PDCCH information belonging to itself is detected within a preset number of consecutive transmission periods of the SCC;
  • the monitoring module includes:
  • the recording trigger submodule is configured to start recording the number of monitoring failures if the terminal does not monitor its own PDCCH information within the current transmission period when the terminal is activated on the SCC;
  • a determination submodule configured to determine whether PDCCH information belonging to itself is monitored in a plurality of consecutive transmission periods in a subsequent sequence
  • the counting sub-module is configured to determine the continuous cumulative number of times that the PDCCH information monitoring fails if no PDCCH information belonging to itself is detected in multiple consecutive transmission periods in subsequent sequences;
  • the monitoring sub-module is configured to start monitoring the deactivation indication information of the SCC when the continuous cumulative number reaches a preset threshold.
  • the monitoring module includes at least one of the following monitoring sub-modules:
  • a first monitoring sub-module configured to monitor SCC configuration information belonging to itself in a preset physical layer channel resource of the SCC
  • a second monitoring submodule configured to monitor SCC configuration information belonging to itself in a preset physical layer channel resource of the main carrier
  • the third monitoring sub-module is configured to monitor the SCC deactivation instruction information belonging to the SCC from the PDCCH resources of the SCC.
  • a non-transitory computer-readable storage medium having computer instructions stored thereon, which when executed by a processor, implement the steps of any of the methods of the first aspect.
  • a non-transitory computer-readable storage medium having computer instructions stored thereon, which, when executed by a processor, implement the steps of any of the methods described in the second aspect above.
  • a base station including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a terminal including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the SCC configuration information includes the secondary carrier deactivation / activation indication information, and the transmission configuration information is used to inform the terminal how to obtain all The SCC configuration information;
  • the base station can directly carry the deactivation / activation indication information of the secondary carrier SCC through the physical layer signal, which saves the time it takes to map from the upper layer to the lower layer when the SCC activation / deactivation information is configured by the upper layer, and the data format conversion. Time, which effectively improves the transmission efficiency of SCC configuration information, so that the UE can quickly analyze the SCC configuration information, and determine in time whether to monitor its own PDCCH information on the corresponding SCC according to the above SCC configuration information. For the SCC deactivation indication, you can Notify the UE in time to stop monitoring PDCCH information on the SCC in time, thereby saving UE power consumption.
  • Fig. 1 is a flowchart of a method for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 2 is a flow chart showing another method for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 3 is a flow chart showing another method for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 4 is a flow chart showing another method for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 5 is a flow chart showing another method for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of an application scenario for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of another application scenario for transmitting secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 8 is a flowchart of a method for monitoring secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 9 is a flowchart of another method for monitoring secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 10 is a block diagram of a device for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 11 is a block diagram of another apparatus for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 12 is a block diagram of another apparatus for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 13 is a block diagram of another apparatus for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 14 is a block diagram of another apparatus for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 15 is a block diagram of another apparatus for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 16 is a block diagram of another apparatus for transmitting configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 17 is a block diagram of a device for monitoring configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 18 is a block diagram of another apparatus for monitoring configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 19 is a block diagram of another apparatus for monitoring secondary carrier configuration information according to an exemplary embodiment of the present disclosure.
  • Fig. 20 is a block diagram of another apparatus for monitoring configuration information of a secondary carrier according to an exemplary embodiment of the present disclosure.
  • Fig. 21 is a schematic structural diagram of a base station according to an exemplary embodiment of the present disclosure.
  • Fig. 22 is a schematic structural diagram of a terminal according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” as used herein can be interpreted as “at” or "when” or "in response to determination”.
  • the execution subject involved in this disclosure includes: a base station and a terminal, where the base station may be a base station, a sub base station, etc. provided with a large-scale antenna array.
  • the terminal may be a user equipment (User Equipment, UE), a user node, a mobile terminal, or a tablet computer.
  • UE User Equipment
  • the base station and the terminal are independent of each other, and at the same time, they are related to each other to jointly implement the technical solution provided by the present disclosure.
  • the present disclosure provides a method for transmitting secondary carrier configuration information, which is applied to a preset application scenario of a 5G NR (New Radio) network.
  • the base station can be used in the primary carrier PCC (Primary component UE), you can also configure one or more secondary component carrier (SCC) for the UE, in order to schedule the UE on the secondary carrier SCC, such as CA (Carrier Aggregation, Carrier Aggregation) / DC ( Dual Connectivity (dual connectivity).
  • PCC Primary component UE
  • SCC secondary component carrier
  • CA Carrier Aggregation, Carrier Aggregation
  • DC Dual Connectivity (dual connectivity).
  • a flowchart of a method for transmitting secondary carrier configuration information according to an exemplary embodiment is applied to a base station.
  • the method may include the following steps:
  • step 11 determining SCC configuration information of a secondary carrier, where the SCC configuration information is used to indicate deactivation or activation of the secondary carrier;
  • the base station may determine the deactivation / activation indication information for the secondary carrier SCC of the UE under a preset trigger condition according to a preset rule.
  • the base station For the case where UE1 is in the deactivated state on the secondary carrier SCC, when the traffic of UE1 is large or the service to be transmitted requires a high rate, the base station generates an SCC activation indication information for UE1. It is sent to UE1, and the secondary carrier resource is added to UE1 through the activation mechanism, so that the base station can schedule UE1 on the primary carrier PCC and the secondary carrier SCC at the same time, thereby improving the service transmission volume or service data transmission efficiency of the UE1.
  • the base station may generate an SCC deactivation indication information for UE1 and send it to UE1.
  • SCC deactivation indication information For the case where UE1 is activated on the SCC, when the service volume of UE1 is small or the rate requirements of the services to be transmitted are low, the base station may generate an SCC deactivation indication information for UE1 and send it to UE1.
  • the PDCCH information needs to be continuously monitored on this carrier for normal service scheduling, which results in increased power consumption of the UE. By deactivating a certain carrier, the carrier monitored by UE1 can be reduced. Power consumption.
  • the above SCC configuration information includes: SCC deactivation indication information, or SCC activation indication information.
  • the above SCC configuration information may include deactivation / activation indication information for one or more SCCs.
  • step 12 a target physical layer signal is generated according to the SCC configuration information
  • the base station may directly encode the SCC configuration information into a physical layer signal for subsequent transmission directly through the physical layer channel.
  • the above SCC activation / deactivation indication information is transmitted through MAC signaling.
  • the transmission process is: Since MAC signaling belongs to data link layer signaling, the MAC information containing the SCC activation / deactivation indication information is first transmitted. Only the messages that are mapped from the data link layer to the physical layer and packed to meet the physical layer data format requirements can be transmitted to the UE. After reaching the UE, the physical layer on the UE side first verifies the message and then maps it to the data link layer for parsing. This includes the conversion of the data format between the data link layer and the physical layer and the time taken for the information verification process.
  • the disclosure uses the abundant physical layer signaling resources of the 5G NR system to directly encode the SCC configuration information into a physical layer signal for transmission, thereby effectively reducing the transmission delay of the above SCC configuration information, thereby improving the flexibility of resource configuration.
  • the physical layer resources used to carry the above SCC configuration information are slightly different according to the type of the SCC configuration information.
  • the SCC deactivation indication information may be carried by a dedicated physical layer channel resource of the PCC or the SCC, or carried by using a PDCCH resource on the corresponding SCC.
  • the SCC activation indication information may be carried through a dedicated physical layer channel resource of the PCC or the SCC.
  • step 12 For the transmission of deactivation / activation indication information of an SCC, the implementation of the above step 12 may include:
  • a base station may load SCC configuration information into a target physical layer channel of a preset carrier to generate a target physical layer signal.
  • the preset carrier may be the primary carrier PCC of UE1 or a secondary carrier configured for UE1.
  • step 12 may include:
  • step 121 a target physical layer channel of a preset carrier for carrying the SCC configuration information is determined
  • the base station may determine a target physical layer channel for carrying SCC configuration information according to the protocol, and the target physical layer channel may be a dedicated channel for transmitting the SCC configuration information.
  • the target physical layer channel may be a specified physical layer channel determined by the base station in the UE's primary carrier according to the protocol; or it may be a specified physical layer channel determined by the base station in the UE's secondary carrier according to the protocol.
  • the base station may also configure a target physical layer channel for the UE.
  • the foregoing step 121 may include:
  • the target physical layer channel is configured based on the preset carrier, and configuration information of the target physical layer channel is generated, where the configuration information includes at least: a frequency range of the target physical layer channel;
  • the base station may autonomously configure a target physical layer channel for carrying the above-mentioned SCC configuration information based on the UE's primary carrier or secondary carrier, and obtain the configuration information of the target physical layer channel in order to sequentially configure the target physical layer channel.
  • the information is notified to the UE.
  • the configuration information of the target physical layer channel includes at least: the frequency range of the target physical layer channel, and may further include: a potential transmission timing of the SCC configuration information, and / or a preset resource carrying the SCC configuration information. location information.
  • the frequency range of the target physical layer channel is used to inform the UE of the location of the target physical layer channel, so that the UE can accurately locate the target physical layer channel, and then monitor its own SCC configuration information from the target physical layer channel.
  • the position information of the preset resource carrying the SCC configuration information is used to inform the UE where the time-frequency resources of the target physical layer channel may carry the SCC configuration information, so that the UE can accurately locate the target resource and reduce the monitoring range. Improve the detection efficiency of SCC configuration information, thereby saving UE power consumption.
  • the potential transmission timing of the SCC configuration information is used to inform the UE when to monitor the SCC configuration information, so as to prevent the UE from being in a monitoring state and wasting power.
  • the base station sends the SCC configuration information to the UE on the target physical layer channel according to a preset transmission period.
  • the potential transmission timing of the above SCC configuration information may be a preset transmission period explicitly notified by the base station to the UE, such as 10ms.
  • the UE may perform the detection of the SCC configuration information with reference to the above-mentioned preset transmission period, as shown in the above example, once every 10ms.
  • the potential transmission timing of the above SCC configuration information may also be preset condition information indicating that the base station may send the SCC configuration information.
  • the preset condition information may be: the UE does not monitor its own PDCCH information within a preset number of consecutive transmission cycles of the preset SCC .
  • step 1212 the configuration information of the target physical layer channel is sent to the terminal.
  • the base station may send the configuration information of the target physical layer channel to the UE through higher layer signaling.
  • the high-level signaling may be RRC (Radio Resource Control) signaling, MAC (Medium Access Control) (CE) signaling, or the like.
  • step 122 the SCC configuration information is loaded into a preset resource of the target physical layer channel.
  • step 122 may include the following two cases:
  • the corresponding base station configures an SCC for the UE, that is, the number of SCC configuration information to be transmitted is one, or the case where the base station configures a target physical layer channel on the SCC.
  • the target physical layer channel configured by the base station is used to transmit an SCC deactivation / activation indication information.
  • step 122 may include:
  • step 1221 a corresponding target status indication value is determined according to the SCC configuration information
  • the SCC configuration information determined by the base station may be SCC deactivation indication information, or SCC activation indication information.
  • the system may be preset with a preset status indication value
  • the preset status indication value may be a numerical value specified by a protocol and used to represent SCC deactivation instruction information and SCC activation instruction information, respectively.
  • the value may be a preset sequence value or a preset bit indication value.
  • a first preset list may be preset in the base station, and the first preset list includes a correspondence relationship between different SCC configuration information and a preset sequence value.
  • the base station may query the first preset list according to the SCC configuration information determined in the above step 11 to determine a target sequence value corresponding to the SCC configuration information.
  • the first preset list may be as shown in Table 1:
  • Preset sequence value SCC configuration information
  • First sequence value SCC deactivation instructions
  • Second sequence value SCC activation instructions
  • the base station according to the SCC configuration information determined in step 11 is SCC deactivation instruction information, and by querying the above-mentioned Table 1, it can be seen that the target sequence value is the first sequence value.
  • the base station may preset a second preset list.
  • the second preset list includes a correspondence relationship between different SCC configuration information and a preset bit indication value.
  • the base station may query the second preset list according to the SCC configuration information determined in step 11 above, and determine a target bit indication value corresponding to the SCC configuration information.
  • the SCC configuration information determined in step 11 is SCC deactivation indication information, it can be known from the above-mentioned Table 2 that the target bit indication value is 0.
  • the system may also use a bit value of 0 to represent SCC activation indication information; a bit value of 1 represents SCC deactivation indication information, which is not limited in this disclosure.
  • step 1222 the target status indication value is mapped into a preset resource of the target physical layer channel.
  • the base station After the base station determines the target physical layer channel and the target status indication value corresponding to the SCC configuration information, it can load the target physical status indicator value to the target physical body according to the protocol or the location information of the preset resource configured by the base station in step 1211 above.
  • a target physical layer signal is generated and ready to be transmitted to the terminal.
  • the target physical layer channel may be a preset physical layer channel of a primary carrier or a preset physical layer channel of a secondary carrier.
  • the corresponding base station is configured with multiple secondary carrier SCCs for one terminal, and a target physical layer channel is configured on the UE's main carrier PCC.
  • the target physical layer channel is used to transmit deactivation / activation indication information of each SCC .
  • step 122 may include:
  • bitmap information indicating a deactivation / activation state of each of the secondary carriers is generated according to the SCC configuration information of each of the secondary carriers;
  • the base station is configured with 6 available secondary carriers for the UE, which are respectively represented as: SCC1, SCC2, SCC3, SCC4, SCC5, and SCC6.
  • the SCC configuration information determined by the base station according to the current service scheduling status of the UE includes: deactivating SCC1, SCC3, and SCC4; activating CC2, SCC5, and SCC6.
  • the bitmap information generated by the base station according to the configuration information of each SCC can be shown in FIG. 6.
  • the preset 6 bits are used to carry the SCC configuration information, and each bit corresponds to an SCC. As the above example, when the bit is set If it is 0, it means the instruction for deactivating the SCC. On the contrary, if the bit is set to 1, it means the instruction for activating the SCC.
  • step 1224 the bitmap information is mapped into a preset resource of the target physical layer channel of the primary carrier.
  • the bitmap information may be mapped to a preset resource of a target physical layer channel of the primary carrier, and is ready to be sent to the terminal.
  • the foregoing first embodiment is applicable to a process of generating a target physical layer signal corresponding to any kind of SCC configuration information.
  • Specialized transmission of SCC configuration information through the target physical layer channel agreed by the system or real-time configured by the base station can improve the transmission efficiency of SCC configuration information, thereby increasing the flexibility of dynamically configuring resources, thereby meeting different business needs and increasing users of 5G NR networks Experience.
  • the SCC configuration information determined in step 11 is: SCC deactivation indication information
  • the above SCC deactivation indication information may be loaded into the PDCCH information of the SCC. For details, see Embodiment 2.
  • the SCC deactivation instruction information is loaded into PDCCH information of the terminal transmitted on the SCC to generate the target physical layer signal.
  • the base station may use any of the following methods to load deactivation indication information of an SCC into the PDCCH information to generate a target physical layer signal.
  • Method 1 Load the SCC deactivation indication information into a preset resource bit of a target resource, where the target resource is used to carry downlink control information DCI of the terminal;
  • DCI Downlink Control Information
  • the base station may determine a target resource region carrying DCI information of UE1, and use the preset resource bits of the target resource region to carry the SCC deactivation indication information according to a preset policy.
  • Method 2 Use a preset RNTI (Radio Network Tempory Identity) sequence to scramble the cyclic redundancy check CRC code in the DCI information of the terminal to generate a target identifying the SCC deactivation instruction information.
  • PDCCH information ;
  • the base station may use a preset RNTI sequence value to scramble a CRC (Cyclic Redundancy Check) code in the DCI of the terminal to represent different SCC configuration information.
  • CRC Cyclic Redundancy Check
  • the SCC configuration information determined in step 11 is SCC deactivation instruction information, it can be known by querying the above table 3 that it corresponds to the first RNTI value.
  • the base station When generating the DCI information of UE1, the base station scrambles the CRC of the DCI by using the first RNTI value to generate DCI information carrying SCC deactivation indication information, that is, target PDCCH information of UE1.
  • the UE1 detects the DCI information on the PDCCH channel of the SCC, if the first RNTI sequence value is used for descrambling successfully, it can be learned that the DCI information carries SCC deactivation indication information.
  • the wireless network temporary identifier RNTI value scrambled on the DCI cyclic redundancy check CRC code is used to indicate deactivation indication information for the current SCC, which can save radio resources used to carry SCC configuration information.
  • Manner 3 Use the transmission position of the PDCCH information of the terminal in the control region to identify the SCC deactivation indication information.
  • the base station may calculate a possible transmission position of the target CCE according to a preset rule, where the target CCE is a control channel unit that can carry terminal DCI information.
  • the base station may divide the possible transmission positions of all target CCEs (Control Channel Elements) of a UE into a first preset transmission position and a second preset transmission position; and define a first preset transmission position; It is assumed that the transmission position or the second preset transmission position is associated with the SCC deactivation indication information.
  • the SCC deactivation indication information is associated with the target CCE of the first preset transmission position.
  • the base station transmits DCI information of the target UE, if the SCC configuration information determined in step 11 is SCC deactivation indication information, the DCI information of UE1 is loaded into the target CCE of the first preset transmission position for transmission.
  • the target UE when the target UE performs a blind inspection, if it detects its own DCI in the CCE in the first preset position, it determines that the SCC deactivation instruction information is detected. Conversely, if the target UE detects its own DCI in the CCE in the second preset position, it is determined that the SCC deactivation indication information is not detected.
  • the target UE is UE1
  • the control area of a transmission unit includes 36 CCEs
  • the base station calculates the target CCEs of UE1 according to preset rules, including CCEs 1, 3, 5, 7, 9, and 11.
  • the target CCE in the first half of the system belongs to the first preset CCE, that is, CCEs No. 1, 3, and 5, and is associated with SCC deactivation instruction information.
  • the DCI information of UE1 may be loaded into one or more CCEs of CCEs 1, 3, and 5 on the PDCCH channel of SCC. transmission.
  • the DCI information of UE1 is loaded into one or more CCEs of CCEs 7, 9, and 11 and transmitted on the PDCCH channel of the SCC. See FIG.
  • the exemplary embodiment illustrates another scenario of transmitting SCC configuration information.
  • the foregoing second embodiment is applicable to when a terminal is activated on an SCC, and the PDCCH information carries the deactivation indication information of the SCC, which can avoid setting an independent physical transmission channel for the SCC configuration information, thereby saving wireless resources.
  • step 13 the SCC configuration information is sent to the terminal through the target physical layer signal, so that the terminal determines whether to monitor the physical downlink control channel PDCCH information on the SCC according to the SCC configuration information.
  • the base station can directly carry the deactivation / activation indication information of the secondary carrier SCC through the physical layer signal, which saves the time it takes to map from the upper layer to the lower layer when the SCC activation / deactivation information is configured by the upper layer, and the data format conversion. Time, which effectively improves the transmission efficiency of SCC configuration information, so that the UE can quickly analyze the SCC configuration information, and determine in time whether to monitor its own PDCCH information on the corresponding SCC according to the above SCC configuration information. For the SCC deactivation indication, you can Notify the UE in time to stop monitoring PDCCH information on the SCC in time, thereby saving UE power consumption.
  • the present disclosure also provides a method for monitoring secondary carrier configuration information, which is applied to a terminal.
  • a flowchart of a method for monitoring secondary carrier configuration information according to an exemplary embodiment is shown. The method may include the following steps:
  • step 21 transmission configuration information of a target physical layer signal used to carry secondary carrier SCC configuration information is determined
  • the transmission configuration information of the target physical layer signal is used to inform the terminal how to obtain the SCC configuration information.
  • the SCC configuration information is used to indicate deactivation or activation of the secondary carrier, and may include: SCC deactivation instruction information or SCC activation instruction information.
  • the UE may determine the transmission configuration information of the target physical layer signal in at least two ways:
  • the first way is to determine the transmission configuration information of the target physical layer signal according to the system protocol.
  • the transmission configuration information of the target physical layer signal may be configuration information preset in the terminal hardware by a device manufacturer or a mobile operator.
  • the transmission configuration information about the SCC configuration information obtained from the system message broadcast by the base station is obtained.
  • the terminal can receive transmission configuration information of the target physical layer signal determined by the base station autonomously.
  • the transmission configuration information of the target physical layer signal may be resource configuration information of the target physical layer channel, including at least: a frequency range of the target physical layer channel, and may further include: carrying the SCC configuration information The location information of the preset resource and the potential transmission timing of the SCC configuration information.
  • the transmission configuration information of the target physical layer signal may also be used to indicate how the PDCCH information carries SCC deactivation instruction information.
  • step 22 according to the transmission configuration information of the target physical layer signal and the current user status, monitor its own SCC configuration information from the target physical layer signal;
  • step 22 in the present disclosure may include three cases:
  • Case 1 monitoring the SCC configuration information belonging to itself in the preset physical layer channel resources of the SCC;
  • the UE when the above-mentioned resource configuration information instructs the UE to monitor its own SCC configuration information in a preset physical layer channel of the SCC, the UE may start from a preset physical layer of an SCC according to a known, timing of SCC configuration information transmission. SCC deactivation / activation indication information is monitored on the channel.
  • Case 2 Monitoring the own SCC configuration information in the preset physical layer channel resources of the main carrier;
  • the UE when the above resource configuration information instructs the UE to monitor its own SCC configuration information in a preset physical layer channel of the PCC, if the base station configures an SCC for the UE, the monitoring process of the SCC configuration information is similar to the first case If the base station is configured with multiple SCCs for the UE, the UE determines the SCC configuration information for the current SCC according to the known SCC configuration information transmission timing and according to the bitmap information corresponding to the current SCC.
  • Case 3 Monitor the SCC deactivation indication information that belongs to the SCC from the PDCCH resources of the SCC.
  • the base station informs the UE, when it is in the activated state on the SCC, it monitors the SCC deactivation indication information from its own PDCCH information. Then, the UE analyzes whether the SCC deactivation instruction information is carried in the PDCCH information according to the known SCC configuration information transmission timing and according to the monitored PDCCH information in a preset manner.
  • the SCC deactivation indication information is determined according to an indication value of a preset resource bit of a target area, and the target resource area is a resource area carrying DCI information of the UE.
  • the CRC in the DCI is descrambled using a preset RNTI sequence value to determine the SCC deactivation indication information.
  • the DCC deactivation indication information is determined according to the transmission position of the target CCE where the DCI information is monitored.
  • the monitoring process of the SCC deactivation instruction information is corresponding to the second embodiment of step 12 above, and reference may be made to each other.
  • the UE can monitor the SCC configuration information in at least two ways:
  • Manner 1 According to a preset transmission period of the SCC configuration information, the SCC configuration information belonging to itself is monitored from the target physical layer signal. For example, in the case of synchronization with system signals, the SCC configuration information is monitored every 10 ms on the target physical layer channel.
  • Method 2 Monitor the SCC configuration information according to the preset condition information
  • step 22 may include:
  • step 221 when the terminal is in an active state on the SCC, if the PDCCH information belonging to itself is not monitored within the current transmission period, it starts to record the number of monitoring failures;
  • step 222 it is determined whether PDCCH information belonging to itself is monitored in multiple consecutive transmission periods in a subsequent sequence
  • step 223 if no PDCCH information belonging to itself is detected in multiple consecutive transmission periods in the subsequent sequence, determine the continuous cumulative number of times that the PDCCH information monitoring fails;
  • step 224 if the number of consecutive accumulations reaches a preset threshold, monitoring the SCC deactivation instruction information is started.
  • step 23 it is determined whether to monitor the physical downlink control channel PDCCH information on the SCC according to the monitored SCC configuration information.
  • the UE When an SCC is activated, the UE will try to monitor the deactivation indication information corresponding to the SCC. If the SCC deactivation indication information is detected, the UE stops monitoring the PDCCH information on the SCC after a period of time, and then the SCC In a deactivated state. On the other hand, if no deactivation indication information corresponding to the SCC is detected, the UE continues to monitor the PDCCH information on the SCC, and the SCC is still in an active state. When an SCC is in a deactivated state, the UE attempts to monitor the activation indication information corresponding to the SCC. Once the activation indication information of the SCC is detected, the SCC will be activated for a period of time and the UE will start on this SCC Monitor PDCCH information.
  • the present disclosure also provides embodiments of an application function implementation device and a corresponding terminal.
  • the present disclosure provides a device for transmitting secondary carrier configuration information, which is provided in a base station.
  • FIG. 10 is a block diagram of an apparatus for transmitting secondary carrier configuration information, according to an exemplary embodiment.
  • the apparatus may include:
  • the information determining module 31 is configured to determine SCC configuration information of a secondary carrier, where the SCC configuration information is used to instruct deactivation or activation of the secondary carrier;
  • a signal generating module 32 configured to generate a target physical layer signal according to the SCC configuration information
  • the sending module 33 is configured to send the SCC configuration information to a terminal through the target physical layer signal, so that the terminal determines whether to monitor the physical downlink control channel PDCCH information on the SCC according to the SCC configuration information.
  • the signal generating module 32 may include:
  • a first signal generation sub-module 321 is configured to load the SCC configuration information in a target physical layer channel of a preset carrier to generate the target physical layer signal, and the preset carrier includes: a secondary carrier of the terminal SCC, and / or, the primary carrier PCC of the terminal; or,
  • the second signal generating sub-module 322 is configured to load the SCC deactivation instruction information on the PDCCH information of the terminal transmitted on the SCC if the SCC configuration information includes SCC deactivation instruction information. And generating the target physical layer signal.
  • the first signal generation sub-module 321 may include:
  • a channel determining unit 3211 configured to determine a target physical layer channel of the preset carrier for carrying the SCC configuration information
  • the first information loading unit 3212 is configured to load the SCC configuration information into a preset resource of the target physical layer channel.
  • the channel determining unit 3211 may include:
  • the channel configuration subunit 301 is configured to configure the target physical layer channel based on the preset carrier, and generate configuration information of the target physical layer channel.
  • the configuration information includes at least: a frequency range of the target physical layer channel. ;
  • the configuration information of the target physical layer channel generated by the channel configuration subunit 301 may further include: location information of the preset resource carrying the SCC configuration information, and / Or, a potential transmission timing of the SCC configuration information.
  • the potential transmission timing of the SCC configuration information may include:
  • the SCC configuration information includes: the SCC deactivation instruction information
  • the preset condition information may include that the terminal does not monitor the PDCCH information belonging to itself within a preset number of consecutive transmission periods of the SCC.
  • the configuration sending subunit 302 is configured to send the configuration information of the target physical layer channel to the terminal.
  • the first information loading unit 3212 may include:
  • the indication value determination subunit 32121 is configured to determine a corresponding target state indication value according to the SCC configuration information, and the SCC configuration information includes: the SCC deactivation indication information, or the SCC activation indication information;
  • the indication value determination subunit 32121 may be configured to: query a first preset list according to the SCC configuration information, and determine a target sequence value corresponding to the SCC configuration information,
  • the first preset list includes: a correspondence between different SCC configuration information and a preset sequence value;
  • the indication value determination subunit 32121 may be further configured to query a second preset list according to the SCC configuration information, and determine a target bit indication value corresponding to the SCC configuration information.
  • the second preset list includes different correspondences between the SCC configuration information and preset bit indication values.
  • the mapping subunit 32122 is configured to map the target status indication value to a preset resource of the target physical layer channel.
  • the second signal generation sub-module 322 may include:
  • the first identification unit 3221 is configured to load the SCC deactivation indication information into a preset resource bit of a target resource, where the target resource is used to carry downlink control information DCI of the terminal;
  • the second identification unit 3222 is configured to scramble the cyclic redundancy check CRC code in the DCI information of the terminal by using a preset wireless network temporary identification RNTI sequence to generate a target PDCCH identifying the SCC deactivation indication information. information;
  • the third identification unit 3223 is configured to identify the SCC deactivation indication information by using a transmission position of the terminal's PDCCH information in the control region.
  • the first information loading unit 3212 may include:
  • a bitmap generating subunit 32123 configured to generate bitmap information for indicating a deactivation / activation state of each of the secondary carriers according to the SCC configuration information of each of the secondary carriers;
  • a bitmap mapping subunit 32124 is configured to map the bitmap information to a preset resource of the target physical layer channel of the primary carrier.
  • the present disclosure also provides a device for monitoring secondary carrier configuration information, which can be set in a terminal.
  • a device for monitoring secondary carrier configuration information which can be set in a terminal.
  • FIG. 17 a block diagram of a device for monitoring configuration information of a secondary carrier according to an exemplary embodiment.
  • the device may include:
  • the information determining module 41 is configured to determine transmission configuration information of a target physical layer signal used to carry secondary carrier SCC configuration information, the SCC configuration information includes the secondary carrier deactivation / activation indication information, and the transmission configuration information is used for For telling the terminal how to obtain the SCC configuration information;
  • the monitoring module 42 is configured to monitor the SCC configuration information belonging to itself from the target physical layer signal according to the transmission configuration information of the target physical layer signal and the current user status;
  • the determining module 43 is configured to determine whether to monitor the physical downlink control channel PDCCH information on the SCC according to the monitored SCC configuration information.
  • the information determination module 41 may include:
  • a first determining sub-module 411 configured to determine transmission configuration information of the target physical layer signal according to a preset protocol specification
  • the second determining sub-module 412 is configured to receive transmission configuration information of the target physical layer signal determined by the base station.
  • the second determining submodule 412 may be configured to receive configuration information of a target physical layer channel issued by a base station, where the configuration information includes at least: Frequency Range.
  • the configuration information of the target physical layer channel received by the second determining submodule 412 may further include: location information of a preset resource carrying the SCC configuration information, and the SCC Potential transmission timing of configuration information.
  • the potential transmission timing of the SCC configuration information may include:
  • the monitoring module 42 may be configured to monitor SCC configuration information belonging to itself from the target physical layer signal according to a preset transmission period of the SCC configuration information.
  • the preset condition information includes: no PDCCH information belonging to itself is detected within a preset number of consecutive transmission periods of the SCC;
  • the monitoring module 42 may include:
  • the record triggering submodule 421 is configured to start recording the number of monitoring failures if the terminal does not monitor its own PDCCH information within the current transmission period when the terminal is activated on the SCC;
  • a determination sub-module 422 configured to determine whether PDCCH information belonging to itself is monitored in multiple consecutive transmission periods in a subsequent sequence
  • the counting sub-module 423 is configured to determine the continuous cumulative number of times that the PDCCH information monitoring fails if no PDCCH information belonging to itself is detected in multiple consecutive transmission periods in the subsequent sequence;
  • the monitoring sub-module 424 is configured to start monitoring the deactivation instruction information of the SCC when the consecutive cumulative times reach a preset threshold.
  • the monitoring module 42 may include at least one of the following monitoring submodules:
  • a first monitoring sub-module 4201 configured to monitor SCC configuration information belonging to itself in a preset physical layer channel resource of the SCC;
  • a second monitoring sub-module 4202 configured to monitor SCC configuration information belonging to itself in a preset physical layer channel resource of the main carrier;
  • the third monitoring sub-module 4203 is configured to monitor SCC deactivation instruction information belonging to the SCC from the PDCCH resources of the SCC.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, in which the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, which may be located in one Place, or can be distributed across multiple network elements. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solution of the present disclosure. Those of ordinary skill in the art can understand and implement without creative efforts.
  • a base station including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a terminal including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the SCC configuration information includes the secondary carrier deactivation / activation indication information, and the transmission configuration information is used to inform the terminal how to obtain The SCC configuration information;
  • FIG. 21 is a schematic structural diagram of a base station 2100 according to an exemplary embodiment.
  • the base station 2100 includes a processing component 2122, a wireless transmitting / receiving component 2124, an antenna component 2121, and a signal processing portion unique to a wireless interface.
  • the processing component 2122 may further include one or more processors.
  • One of the processors in the processing component 2122 may be configured as:
  • a non-transitory computer-readable storage medium including instructions is also provided.
  • the computer instructions are stored on the computer instructions, and the computer instructions may be executed by the processing component 2122 of the base station 2100 to complete any of FIG. 1 to FIG. 5.
  • a method for transmitting secondary carrier configuration information may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • Fig. 22 is a schematic structural diagram of a terminal 2200 according to an exemplary embodiment.
  • the terminal 2200 may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a wearable device such as a smart watch, smart glasses, or smart bracelet , Smart running shoes, etc.
  • the terminal 2200 may include one or more of the following components: a processing component 2202, a memory 2204, a power component 2206, a multimedia component 2208, an audio component 2210, an input / output (I / O) interface 2212, a sensor component 2214, And communication component 2216.
  • the processing component 2202 generally controls overall operations of the terminal 2200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 2202 may include one or more processors 2220 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 2202 may include one or more modules to facilitate the interaction between the processing component 2202 and other components.
  • the processing component 2202 may include a multimedia module to facilitate the interaction between the multimedia component 2208 and the processing component 2202.
  • the memory 2204 is configured to store various types of data to support operations on the terminal 2200. Examples of these data include instructions for any application or method for operating on the terminal 2200, contact data, phonebook data, messages, pictures, videos, and so on.
  • the memory 2204 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 2206 provides power to various components of the terminal 2200.
  • the power component 2206 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the terminal 2200.
  • the multimedia component 2208 includes a screen providing an output interface between the terminal 2200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The above-mentioned touch sensor may not only sense a boundary of a touch or sliding action, but also detect duration and pressure related to the above-mentioned touch or sliding operation.
  • the multimedia component 2208 includes a front camera and / or a rear camera. When the device 2200 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2210 is configured to output and / or input audio signals.
  • the audio component 2210 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 2204 or transmitted via the communication component 2216.
  • the audio component 2210 further includes a speaker for outputting audio signals.
  • the I / O interface 2212 provides an interface between the processing component 2202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons can include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 2214 includes one or more sensors for providing the terminal 2200 with a status assessment of various aspects.
  • the sensor component 2214 can detect the on / off state of the device 2200 and the relative positioning of the components.
  • the above components are the display and keypad of the terminal 2200.
  • the sensor component 2214 can also detect the change of the position of the terminal 2200 or a component of the terminal 2200. The presence or absence of the user's contact with the terminal 2200, the orientation or acceleration / deceleration of the terminal 2200, and the temperature change of the terminal 2200.
  • the sensor component 2214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 2214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2214 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 2216 is configured to facilitate wired or wireless communication between the terminal 2200 and other devices.
  • the terminal 2200 can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G, LTE, 5G, NR, or a combination thereof.
  • the communication component 2216 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the aforementioned communication component 2216 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the terminal 2200 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2204 including instructions, may be provided.
  • the instructions may be executed by the processor 2220 of the terminal 2200 to complete any of the foregoing FIG. A method for monitoring secondary carrier configuration information.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输、监测辅载波配置信息的方法、装置、基站及终端,其中,所述传输辅载波配置信息的方法包括:确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;根据所述SCC配置信息生成目标物理层信号;通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。采用本公开提供的传输辅载波配置信息的方法,通过物理层信号传输SCC去激活/激活指示信息,可以减少SCC配置信息的传输时长,更加动态灵活地实现对SCC的去激活/激活机制。

Description

传输、监测辅载波配置信息的方法、装置、基站及终端 技术领域
本公开涉及通信技术领域,尤其涉及一种传输、监测辅载波配置信息的方法、装置、基站及终端。
背景技术
随着移动宽带业务的普及,功耗问题一直是终端如智能手机制造商面对的挑战。经过对终端的功耗研究发现:对于PDCCH的监测所消耗的功率占终端总消耗功率的比例超过40%。这是因为针对一个传输单位比如一个子帧,终端在监测PDCCH(Physical Downlink Control Channel,物理下行控制信道)的过程中,盲检次数多达44次;然而大多数情况下,所监测传输单元中并没有属于该终端的数据传输,导致终端因监测PDCCH浪费大量功耗。尤其是在CA(Carrier Aggregation,载波聚合)/DC(Dual Connectivity,双连接)应用场景中,终端需要在多个载波上进行PDCCH监测,将导致更多的功耗浪费。
相关技术为了适应不同的业务类型,并减少PDCCH的功率开销,引入了辅载波激活/去激活机制。即当用户(User Equipment,UE)的业务量较大或者对速率要求较高时,基站会通过激活(Activate)机制为用户添加载波资源,即SCC(Secondary Component Carrier辅载波)资源。另外一方面,当用户的业务量较小或者对速率要求较低时,基站可以通过去激活(Deactivate)机制关闭用户监测的某个辅载波,以减少功率消耗。
然而,相关技术中SCC的激活/去激活配置信息都是由MAC(Media Access Control,媒体介入控制)层信令传输的,由于需要经过物理层,其传输和解析过程需要较长时间,无法满足5G NR系统对资源配置的动态性和灵活性要求。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种传输、监测辅载波配置信息的方法、装置、基站及用户设备,通过物理层信号传输SCC去激活/激活指示信息,减少SCC配置信息的传输时长,更加动态灵活地实现对SCC的去激活/激活机制。
根据本公开实施例的第一方面,提供了一种传输辅载波配置信息的方法,应用 于基站中,所述方法包括:
确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
根据所述SCC配置信息生成目标物理层信号;
通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
可选地,采用以下至少一种方式,根据所述SCC配置信息生成目标物理层信号:
将所述SCC配置信息加载于预设载波的目标物理层信道中,生成所述目标物理层信号,所述预设载波包括:所述终端的辅助载波SCC,和/或,所述终端的主载波PCC;或者,
若所述SCC配置信息包括SCC去激活指示信息,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中,生成所述目标物理层信号。
可选地,所述将所述SCC配置信息加载于预设载波的目标物理层信道中,包括:
确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道;
将所述SCC配置信息加载于所述目标物理层信道的预设资源中。
可选地,所述确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道,包括:
基于所述预设载波配置所述目标物理层信道,生成所述目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围;
将所述目标物理层信道的配置信息发送给所述终端。
可选地,所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的所述预设资源的位置信息,和/或,所述SCC配置信息的潜在传输时机。
可选地,所述SCC配置信息的潜在传输时机包括:
所述SCC配置信息的预设传输周期;或者,
表示所述基站可能发送所述SCC配置信息的预置条件信息。
可选地,若所述SCC配置信息包括:所述SCC去激活指示信息;
所述预置条件信息包括:所述终端在所述SCC的预设数量的连续传输周期内、未监测到属于自身的所述PDCCH信息。
可选地,所述将所述SCC配置信息加载于所述目标物理层信道的预设资源中, 包括:
根据所述SCC配置信息确定对应的目标状态指示值,所述SCC配置信息包括:所述SCC去激活指示信息,或者,SCC激活指示信息;
将所述目标状态指示值映射于所述目标物理层信道的预设资源中。
可选地,所述根据所述SCC配置信息确定对应的目标状态指示值,包括:
根据所述SCC配置信息查询第一预设列表,确定所述SCC配置信息对应的目标序列值,其中,所述第一预设列表包括:不同所述SCC配置信息与预设序列值的对应关系;或者,
根据所述SCC配置信息查询第二预设列表,确定所述SCC配置信息对应的目标比特指示值,其中,所述第二预设列表包括:不同所述SCC配置信息与预设比特指示值的对应关系。
可选地,采用以下任一方式,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中:
将所述SCC去激活指示信息加载于目标资源的预设资源位中,其中,所述目标资源用于承载所述终端的下行控制信息DCI;
采用预设无线网络临时标识RNTI序列对所述终端的DCI信息中的循环冗余校验CRC码进行加扰,生成标识所述SCC去激活指示信息的目标PDCCH信息;
利用所述终端的PDCCH信息在控制区域中的传输位置,标识所述SCC去激活指示信息。
可选地,若所述预设载波为所述主载波,且所述基站为所述终端配置的辅载波数量不少于两个;
所述将所述SCC配置信息加载于所述目标物理层信道的预设资源中,包括:
根据每个所述辅载波的SCC配置信息,生成用于指示每个所述辅载波去激活/激活状态的位图信息;
将所述位图信息映射于所述主载波的所述目标物理层信道的预设资源中。
根据本公开实施例的第二方面,提供了一种监测辅载波配置信息的方法,应用于终端中,所述方法包括:
确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层 信号中监测属于自身的SCC配置信息;
根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
可选地,所述确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,包括:
根据预设协议规定确定所述目标物理层信号的传输配置信息;或者,
接收基站确定的、所述目标物理层信号的传输配置信息。
可选地,所述接收基站确定的、所述目标物理层信号的传输配置信息,包括:
接收基站下发的目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围。
可选地,所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的预设资源的位置信息、所述SCC配置信息的潜在传输时机。
可选地,所述SCC配置信息的潜在传输时机包括:
所述SCC配置信息的预设传输周期;或者,
表示所述基站可能发送所述SCC配置信息的预置条件信息。
可选地,所述从目标物理层信号中监测属于自身的SCC配置信息,包括:
按照所述SCC配置信息的预设传输周期,从所述目标物理层信号中监测属于自身的SCC配置信息。
可选地,所述预置条件信息包括:在所述SCC的预设数量的连续传输周期内、没有监测到属于自身的PDCCH信息;
所述根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息,包括:
当所述终端在所述SCC上处于激活状态时,若在当前传输周期内未监测到属于自身的PDCCH信息,开始记录监测失败次数;
确定在后序连续多个传输周期内是否监测到属于自身的PDCCH信息;
若在后序连续多个传输周期内均未监测到属于自身的PDCCH信息,确定所述PDCCH信息监测失败的连续累计次数;
若所述连续累计次数达到预设阈值,开始监测所述SCC去激活指示信息。
可选地,所述从所述目标物理层信号中监测属于自身的SCC配置信息,包括以下至少一项:
在所述SCC的预设物理层信道资源中监测属于自身的SCC配置信息;
在主载波的预设物理层信道资源中监测属于自身的SCC配置信息;
从所述SCC的PDCCH资源中监测属于自身的SCC去激活指示信息。
根据本公开实施例的第三方面,提供了一种传输辅载波配置信息的装置,设置于基站中,所述装置包括:
信息确定模块,被配置为确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
信号生成模块,被配置为根据所述SCC配置信息生成目标物理层信号;
发送模块,被配置为通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
可选的,所述信号生成模块包括:
第一信号生成子模块,被配置为将所述SCC配置信息加载于预设载波的目标物理层信道中,生成所述目标物理层信号,所述预设载波包括:所述终端的辅助载波SCC,和/或,所述终端的主载波PCC;或者,
第二信号生成子模块,被配置为在所述SCC配置信息包括SCC去激活指示信息的情况下,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中,生成所述目标物理层信号。
可选的,所述第一信号生成子模块,包括:
信道确定单元,被配置为确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道;
第一信息加载单元,被配置为将所述SCC配置信息加载于所述目标物理层信道的预设资源中。
可选的,所述信道确定单元,包括:
信道配置子单元,被配置为基于所述预设载波配置所述目标物理层信道,生成所述目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围;
配置发送子单元,被配置为将所述目标物理层信道的配置信息发送给所述终端。
可选的,所述信道配置子单元生成的所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的所述预设资源的位置信息,和/或,所述SCC配置信息的潜在传输时机。
可选的,所述SCC配置信息的潜在传输时机包括:
所述SCC配置信息的预设传输周期;或者,
表示所述基站可能发送所述SCC配置信息的预置条件信息。
可选的,若所述SCC配置信息包括:所述SCC去激活指示信息;
所述预置条件信息包括:所述终端在所述SCC的预设数量的连续传输周期内、未监测到属于自身的所述PDCCH信息。
可选的,所述第一信息加载单元包括:
指示值确定子单元,被配置为根据所述SCC配置信息确定对应的目标状态指示值,所述SCC配置信息包括:所述SCC去激活指示信息,或者,SCC激活指示信息;
映射子单元,被配置为将所述目标状态指示值映射于所述目标物理层信道的预设资源中。
可选的,所述指示值确定子单元,被配置为:
根据所述SCC配置信息查询第一预设列表,确定所述SCC配置信息对应的目标序列值,其中,所述第一预设列表包括:不同所述SCC配置信息与预设序列值的对应关系;或者,
根据所述SCC配置信息查询第二预设列表,确定所述SCC配置信息对应的目标比特指示值,其中,所述第二预设列表包括:不同所述SCC配置信息与预设比特指示值的对应关系。
可选的,所述第二信号生成子模块包括:
第一标识单元,被配置为将所述SCC去激活指示信息加载于目标资源的预设资源位中,其中,所述目标资源用于承载所述终端的下行控制信息DCI;
第二标识单元,被配置为采用预设无线网络临时标识RNTI序列对所述终端的DCI信息中的循环冗余校验CRC码进行加扰,生成标识所述SCC去激活指示信息的目标PDCCH信息;
第三标识单元,被配置为利用所述终端的PDCCH信息在控制区域中的传输位置,标识所述SCC去激活指示信息。
可选的,若所述预设载波为所述主载波,且所述基站为所述终端配置的辅载波数量不少于两个;
所述第一信息加载单元,包括:
位图生成子单元,被配置为根据每个所述辅载波的SCC配置信息,生成用于 指示每个所述辅载波去激活/激活状态的位图信息;
位图映射子单元,被配置为将所述位图信息映射于所述主载波的所述目标物理层信道的预设资源中。
根据本公开实施例的第四方面,提供了一种监测辅载波配置信息的装置,设置于终端中,所述装置包括:
信息确定模块,被配置为确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
监测模块,被配置为根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
确定模块,被配置为根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
可选的,所述信息确定模块,包括:
第一确定子模块,被配置为根据预设协议规定确定所述目标物理层信号的传输配置信息;或者,
第二确定子模块,被配置为接收基站确定的、所述目标物理层信号的传输配置信息。
可选的,所述第二确定子模块,被配置为接收基站下发的目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围。
可选的,所述第二确定子模块接收的所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的预设资源的位置信息、所述SCC配置信息的潜在传输时机。
可选的,所述SCC配置信息的潜在传输时机包括:
所述SCC配置信息的预设传输周期;或者,
表示所述基站可能发送所述SCC配置信息的预置条件信息。
可选的,所述监测模块,被配置为按照所述SCC配置信息的预设传输周期,从所述目标物理层信号中监测属于自身的SCC配置信息。
可选的,所述预置条件信息包括:在所述SCC的预设数量的连续传输周期内、没有监测到属于自身的PDCCH信息;
所述监测模块包括:
记录触发子模块,被配置为在所述终端在所述SCC上处于激活状态的情况下,若在当前传输周期内未监测到属于自身的PDCCH信息,开始记录监测失败次数;
确定子模块,被配置为确定在后序连续多个传输周期内是否监测到属于自身的PDCCH信息;
计数子模块,被配置为若在后序连续多个传输周期内均未监测到属于自身的PDCCH信息,确定所述PDCCH信息监测失败的连续累计次数;
监测子模块,被配置为在所述连续累计次数达到预设阈值的情况下,开始监测所述SCC的去激活指示信息。
可选的,所述监测模块包括以下至少一个监测子模块:
第一监测子模块,被配置为在所述SCC的预设物理层信道资源中监测属于自身的SCC配置信息;
第二监测子模块,被配置为在主载波的预设物理层信道资源中监测属于自身的SCC配置信息;
第三监测子模块,被配置为从所述SCC的PDCCH资源中监测属于自身的SCC去激活指示信息。
根据本公开实施例的第五方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第一方面任一所述方法的步骤。
根据本公开实施例的第六方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第二方面任一所述方法的步骤。
根据本公开实施例的第七方面,提供了一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
根据所述SCC配置信息生成目标物理层信号;
通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
根据本公开实施例的第八方面,提供了一种终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述 SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中,基站可以直接通过物理层信号承载辅载波SCC的去激活/激活指示信息,节省了由高层配置上述SCC激活/去激活信息时从高层向低层映射所花费的时间,以及数据格式转换时间,有效提高了SCC配置信息的传输效率,使得UE可以快速解析SCC配置信息,并根据上述SCC配置信息及时确定是否在相应SCC上监测属于自己的PDCCH信息,对于SCC去激活指示的情况,可以及时告知UE适时停止在SCC上监测PDCCH信息,从而节约UE功耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本公开根据一示例性实施例示出的一种传输辅载波配置信息的方法流程图。
图2是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图。
图3是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图。
图4是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图。
图5是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图。
图6是本公开根据一示例性实施例示出的一种传输辅载波配置信息的应用场景示意图。
图7是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的应用场 景示意图。
图8本公开根据一示例性实施例示出的一种监测辅载波配置信息的方法流程图。
图9是本公开根据一示例性实施例示出的另一种监测辅载波配置信息的方法流程图。
图10是本公开根据一示例性实施例示出的一种传输辅载波配置信息的装置框图。
图11是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图。
图12是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图。
图13是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图。
图14是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图。
图15是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图。
图16是本公开根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图。
图17是本公开根据一示例性实施例示出的一种监测辅载波配置信息的装置框图。
图18是本公开根据一示例性实施例示出的另一种监测辅载波配置信息的装置框图。
图19是本公开根据一示例性实施例示出的另一种监测辅载波配置信息的装置框图。
图20是本公开根据一示例性实施例示出的另一种监测辅载波配置信息的装置框图。
图21是本公开根据一示例性实施例示出的一种基站的一结构示意图。
图22是本公开根据一示例性实施例示出的一种终端的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开涉及的执行主体包括:基站和终端,其中,基站可以是设置有大规模天线阵列的基站、子基站等。终端可以是用户设备(User Equipment,UE)、用户节点、移动终端或平板电脑等。在具体实现过程中,基站和终端各自独立,同时又相互联系,共同实现本公开提供的技术方案。
基于此,本公开提供了一种传输辅载波配置信息的方法,应用于5G NR(New Radio,新空口)网络的预设应用场景中,该应用场景中,基站除了可以在主载波PCC(Primary component carrier)上调度UE,还可以为UE配置一个或多个辅载波SCC(Secondary component carrier,辅载波),以便在上述辅载波SCC上调度UE,比如CA(Carrier Aggregation,载波聚合)/DC(Dual Connectivity,双连接)应用场景中。
参见图1根据一示例性实施例示出的一种传输辅载波配置信息的方法流程图,应用于基站中,所述方法可以包括以下步骤:
在步骤11中,确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
本公开中,基站可以按照预置规则在预设触发条件下针对UE的辅载波SCC确定去激活/激活指示信息。
以终端为UE1为例,对于UE1在辅载波SCC上处于去激活状态的情况,当 UE1的业务量较大或者待传输业务对速率要求较高时,基站会针对UE1生成一个SCC激活指示信息,发送给UE1,通过激活机制为UE1添加辅载波资源,以便基站可以同时在主载波PCC和上述辅载波SCC上同时调度UE1,提高该UE1的业务传输量或业务数据的传输效率。
另一方面,对于UE1在SCC上处于激活状态的情况,当UE1的业务量较小或者待传输业务对速率要求较低时,基站可以针对UE1生成一个SCC去激活指示信息,发送给UE1。由于UE1在某个辅载波上处于激活状态时,需要在此载波上不断监测PDCCH信息以进行正常的业务调度,导致UE的功耗增加,通过去激活机制关闭UE1监测的某个载波,可以减少功率消耗。
对于UE的一个SCC而言,上述SCC配置信息包括:SCC去激活指示信息,或者,SCC激活指示信息。
若基站为UE配置有多个SCC,上述SCC配置信息可以包括针对一个或多个SCC的去激活/激活指示信息。
在步骤12中,根据所述SCC配置信息生成目标物理层信号;
本公开中,基站在确定了SCC配置信息之后,可以直接将该SCC配置信息编码成物理层信号,以便后续直接通过物理层信道进行传输。
相关技术如LTE(Long Term Evoluttion,长期演进)系统中,由于物理层信令资源有限,又鉴于辅载波激活/去激活机制的实现需要大量的控制信令,一般通过上层信令如MAC信令传输上述SCC激活/去激活指示信息。
假设相关技术中,通过MAC信令传输上述SCC激活/去激活指示信息,则其传输过程为:由于MAC信令属于数据链路层信令,首先将包含SCC激活/去激活指示信息的MAC信令由数据链路层映射至物理层,包装成满足物理层数据格式要求的消息才能传输给UE。到达UE后,UE侧的物理层首先对消息进行验证,再映射到数据链路层进行解析。其中包括了数据链路层与物理层之间数据格式的转换以及信息验证过程所花费的时间,实践证明上述时间约为20ms,导致SCC配置信息的传输时延过长。若5G NR系统仍采用相关技术中的SCC配置信息传输方式,将无法满足5G NR系统对资源配置的灵活性要求。
本公开利用5G NR系统丰富的物理层信令资源,可以直接将SCC配置信息编码成物理层信号进行传输,从而有效缩短上述SCC配置信息的传输时延,进而提高资源配置的灵活性。
关于物理层资源对SCC配置信息的承载,根据SCC配置信息的类型不同,用 于承载上述SCC配置信息的物理层资源也略有不同。
对于SCC去激活指示信息,可以通过PCC或SCC的专用物理层信道资源承载,或者,利用对应SCC上的PDCCH资源承载。
对于SCC激活指示信息,可以通过PCC或SCC的专用物理层信道资源承载。
针对一个SCC的去激活/激活指示信息的传输,上述步骤12的实施可以包括:
实施方式一、本公开中,基站可以将SCC配置信息加载于预设载波的目标物理层信道中,生成目标物理层信号。其中,仍以UE1为例,上述预设载波可以是UE1的主载波PCC,也可以是配置给UE1的辅载波。
参见图2根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图,上述步骤12可以包括:
在步骤121中,确定用于承载所述SCC配置信息的、预设载波的目标物理层信道;
本公开一实施例中,基站可以按照协议规定,确定用于承载SCC配置信息的目标物理层信道,该目标物理层信道可以是传输上述SCC配置信息的专用信道。上述目标物理层信道可以是基站按照协议规定,在UE的主载波中确定的指定物理层信道;也可以是基站按照协议规定,在UE的辅载波中确定的指定物理层信道。
在本公开另一实施例中,基站也可以为UE配置目标物理层信道。
参见图3根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图,上述步骤121可以包括:
在步骤1211中,基于所述预设载波配置所述目标物理层信道,生成所述目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围;
本公开中,基站可以基于UE的主载波或者辅载波,自主配置用于承载上述SCC配置信息的目标物理层信道,获得目标物理层信道的配置信息,以便后序将上述目标物理层信道的配置信息告知UE。其中,上述目标物理层信道的配置信息至少包括:目标物理层信道的频率范围;还可以包括:所述SCC配置信息的潜在传输时机,和/或,承载所述SCC配置信息的预设资源的位置信息。
其中,上述目标物理层信道的频率范围用于告知UE目标物理层信道的位置,以便UE精确定位目标物理层信道,进而从该目标物理层信道上监测属于自己的SCC配置信息。
上述承载所述SCC配置信息的预设资源的位置信息,用于告知UE在目标物理层信道什么位置的时频资源中可能承载有SCC配置信息,以便UE可以精确定位目标 资源,缩小监测范围,提高SCC配置信息的检测效率,进而节约UE功耗。
所述SCC配置信息的潜在传输时机,用于告知UE在什么时机监测SCC配置信息,避免UE一直处于监测状态而浪费功耗。
本公开一实施例中,若基站按照预设传输周期在目标物理层信道上向UE发送SCC配置信息。则上述SCC配置信息的潜在传输时机,可以是基站明确告知UE的预设传输周期,比如10ms。对应的,UE在获取上述潜在传输时机后,可以参照上述预设传输周期进行SCC配置信息的检测,如上示例,每10ms检测一次。
在公开另一实施例中,上述SCC配置信息的潜在传输时机,还可以是表示基站可能发送SCC配置信息的预置条件信息。
其中,若上述SCC配置信息为SCC去激活指示信息,在一实施例中,上述预置条件信息可以是:UE在预设SCC的预设数量的连续传输周期内未监测到属于自己的PDCCH信息。
在步骤1212中,将所述目标物理层信道的配置信息发送给所述终端。
本公开中,基站可以通过高层信令将目标物理层信道的配置信息发送给UE。其中,上述高层信令可以是RRC(Radio Resource Control,无线资源控制)信令、MAC(Medium Access Control,媒介访问控制)CE(Control Element,控制单元)信令等。
在步骤122中,将所述SCC配置信息加载于所述目标物理层信道的预设资源中。
根据基站为UE配置的辅载波数量,以及在哪个载波上配置上述目标物理层信道不同,上述步骤122的实施可以包括以下两种情况:
第一种情况,对应基站为UE配置有一个SCC,即需要传输的SCC配置信息的数量为一个,或者,基站在SCC上配置目标物理层信道的情况。此种情况下,针对一个UE,基站配置的目标物理层信道用于传输一个SCC的去激活/激活指示信息。
参见图4根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图,上述步骤122可以包括:
在步骤1221中,根据所述SCC配置信息确定对应的目标状态指示值;
如上所述,对于一个UE,基站为其确定的SCC配置信息可以是SCC去激活指示信息,或者,SCC激活指示信息。
本公开中,系统可以预置有预设状态指示值,该预设状态指示值可以是协议规定的、用于分别表示SCC去激活指示信息和SCC激活指示信息的数值。该数值可以是预设序列值,也可以是预设比特指示值。
假设上述预设状态指示值为预设序列值,本公开中,基站中可以预置有第一预设列表,该第一预设列表包括:不同SCC配置信息与预设序列值的对应关系。基站可以根据上述步骤11确定的SCC配置信息查询第一预设列表,确定SCC配置信息对应的目标序列值。
示例性的,上述第一预设列表可以如表一所示:
预设序列值 SCC配置信息
第一序列值 SCC去激活指示信息
第二序列值 SCC激活指示信息
表一
假设基站根据步骤11确定的SCC配置信息为SCC去激活指示信息,查询上述表一可知,目标序列值为第一序列值。
同理,若上述预设状态指示值为预设比特指示值,则基站中可以预置有第二预设列表。该第二预设列表包括:不同SCC配置信息与预设比特指示值之间的对应关系。基站可以根据上述步骤11确定的SCC配置信息查询第二预设列表,确定SCC配置信息对应的目标比特指示值。
示例性的,上述第二预设列表可以如表二所示:
SCC配置信息 预设比特指示值
SCC去激活指示信息 0
SCC激活指示信息 1
表二
如上示例,若步骤11确定的SCC配置信息为SCC去激活指示信息,查询上述表二可知,目标比特指示值为0。
此处需要说明的是,在本公开另一实施例中,系统也可以采用比特值0代表SCC激活指示信息;比特值1代表SCC去激活指示信息,本公开对此不做限定。
在步骤1222中,将所述目标状态指示值映射于所述目标物理层信道的预设资源中。
基站在确定了目标物理层信道、SCC配置信息对应的目标状态指示值之后,可以按照协议规定或者上述步骤1211中基站配置的、预设资源的位置信息,将上述目标状态指示值加载于目标物理层信道的预设资源中,生成目标物理层信号,准备发送给终端。其中,上述目标物理层信道可以是主载波的预设物理层信道,也可以是辅载波的预设物理层信道。
第二种情况,对应基站为一个终端配置有多个辅载波SCC,并且在UE的主载波PCC上配置有目标物理层信道,该目标物理层信道用于传输各个SCC的去激活/激活指示信息。
参见图5根据一示例性实施例示出的另一种传输辅载波配置信息的方法流程图,上述步骤122可以包括:
在步骤1223中,根据每个所述辅载波的SCC配置信息,生成用于指示每个所述辅载波去激活/激活状态的位图信息;
示例性的,假设基站为UE配置有6个可用的辅载波,分别表示为:SCC1、SCC2、SCC3、SCC4、SCC5、SCC6。假设基站根据UE当前业务调度状态确定的SCC配置信息包括:去激活SCC1、SCC3、SCC4;激活CC2、SCC5、SCC6。则基站根据上述各SCC的配置信息生成的位图bitmap信息可以参见图6所示,采用预设6个bit承载上述SCC配置信息,每个bit位对应一个SCC,如上示例,当该bit被置为0,代表去激活该SCC的指示信息,反之,若当该bit被置为1,代表激活该SCC的指示信息。
在步骤1224中,将所述位图信息映射于所述主载波的所述目标物理层信道的预设资源中。
在确定了上述位图信息之后,可以将该位图信息映射至主载波目标物理层信道的预设资源中,准备发送给终端。
上述实施方式一,适用于任何一种SCC配置信息对应的目标物理层信号的生成过程。
通过系统约定的或者基站实时配置的目标物理层信道,专门传输SCC配置信息,可以提高SCC配置信息的传输效率,进而提高动态配置资源的灵活性,从而满足不同业务需求,提高5G NR网络的用户体验。
本公开中,若步骤11确定的SCC配置信息为:SCC去激活指示信息,则可以将上述SCC去激活指示信息加载于该SCC的PDCCH信息中,详见实施方式二。
实施方式二,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中,生成所述目标物理层信号。
本公开中,基站可以采用以下任一方式,将一个SCC的去激活指示信息加载于PDCCH信息中,生成目标物理层信号。
方式一、将所述SCC去激活指示信息加载于目标资源的预设资源位中,其中,所述目标资源用于承载所述终端的下行控制信息DCI;
根据相关知识,一个SCC的PDCCH信道上可以同时传输多个UE的DCI (Downlink Control Information,下行控制信息)。对于一个目标UE如UE1,基站可以确定承载UE1的DCI信息的目标资源区域,并按照预置策略将上述目标资源区域的预设资源位用来承载上述SCC去激活指示信息。
方式二、采用预设RNTI(Radio Network Tempory Identity,无线网络临时标识)序列对所述终端的DCI信息中的循环冗余校验CRC码进行加扰,生成标识所述SCC去激活指示信息的目标PDCCH信息;
本公开实施例中,基站可以采用预设RNTI序列值对终端的DCI中的CRC(Cyclic Redundancy Check,循环冗余校验)码进行加扰,以表示不同的SCC配置信息。
其中,预设RNTI序列值与不同SCC配置信息的对应关系,可以如表三所示:
SCC配置信息 预设RNTI序列值
SCC去激活指示信息 第一RNTI值
SCC激活指示信息 第二RNTI值
表三
如上示例,若步骤11确定的SCC配置信息为SCC去激活指示信息,查询上述表三可知,对应第一RNTI值。
则基站在生成UE1的DCI信息时,采用上述第一RNTI值对DCI的CRC加扰,生成携带有SCC去激活指示信息的DCI信息,即UE1的目标PDCCH信息。
相应的,UE1在SCC的PDCCH信道检测DCI信息时,若采用第一RNTI序列值解扰成功,可以获知该DCI信息中携带了SCC去激活指示信息。
本公开实施例中,通过加扰在DCI循环冗余校验CRC码上的无线网络临时标识RNTI值指示对当前SCC的去激活指示信息,可以节约用于承载SCC配置信息的无线资源。
方式三,利用所述终端的PDCCH信息在控制区域中的传输位置,标识所述SCC去激活指示信息。
针对每一个传输单元比如时隙slot,基站可以按照预置规则计算目标CCE的可能传输位置,其中,目标CCE为可以承载终端DCI信息的控制信道单元。
本公开中,基站可以将一个UE的所有目标CCE(Control Channel Element,控制信道单元)的可能传输位置进行划分,分为第一预设传输位置和第二预设传输位置;并定义第一预设传输位置或第二预设传输位置与SCC去激活指示信息的关联关系。比如,将SCC去激活指示信息与第一预设传输位置的目标CCE关联。
基站在传输目标UE的DCI信息时,若步骤11确定的SCC配置信息为SCC去激 活指示信息,则将UE1的DCI信息加载于第一预设传输位置的目标CCE中进行传输。
相应的,目标UE在进行盲检时,若在第一预设位置的CCE中检测到属于自己的DCI,则确定监测到了该SCC的去激活指示信息。反之,若目标UE在第二预设位置的CCE中检测到了属于自身的DCI,则确定没有监测到该SCC的去激活指示信息。
仍假设目标UE是UE1,假设一个传输单元的控制区域包括36个CCE,基站按照预置规则,计算出UE1的目标CCE包括:1、3、5、7、9、11号CCE。
假设系统约定前半部分的目标CCE属于第一预设位置的CCE,即第1、3、5号CCE,并关联SCC去激活指示信息。
如上示例,若步骤11确定的SCC配置信息为SCC去激活指示信息,则可以将UE1的DCI信息加载于第1、3、5号CCE中的一个或多个CCE中,在SCC的PDCCH信道上传输。
反之,若基站未确定SCC去激活指示信息,则将UE1的DCI信息加载于第7、9、11号CCE中的一个或多个CCE中,在SCC的PDCCH信道上传输,参见图7根据一示例性实施例示出的另一种传输SCC配置信息的场景示意图。
本公开实施例中,通过设置DCI信息的承载资源位置隐形指示SCC去激活指示信息,也可以节约承载SCC配置信息的无线资源。
上述实施方式二,适用于终端在一个SCC上处于激活状态时,通过PDCCH信息携带该SCC的去激活指示信息,可以避免为SCC配置信息设置独立的物理传输信道,进而可以节约无线资源。
在步骤13中,通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
本公开中,基站可以直接通过物理层信号承载辅载波SCC的去激活/激活指示信息,节省了由高层配置上述SCC激活/去激活信息时从高层向低层映射所花费的时间,以及数据格式转换时间,有效提高了SCC配置信息的传输效率,使得UE可以快速解析SCC配置信息,并根据上述SCC配置信息及时确定是否在相应SCC上监测属于自己的PDCCH信息,对于SCC去激活指示的情况,可以及时告知UE适时停止在SCC上监测PDCCH信息,从而节约UE功耗。
相应的,本公开还提供了一种监测辅载波配置信息的方法,应用于终端中。参见图8根据一示例性实施例示出的一种监测辅载波配置信息的方法流程图,所述方法可以包括以下步骤:
在步骤21中,确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息;
其中,所述目标物理层信号的传输配置信息用于告知终端如何获取SCC配置信息。所述SCC配置信息用于指示去激活或激活所述辅载波,可以包括:SCC去激活指示信息或SCC激活指示信息。
本公开中,UE可以采用以下至少两种方式确定上述目标物理层信号的传输配置信息:
第一种方式,按照系统协议约定,确定上述目标物理层信号的传输配置信息。该目标物理层信号的传输配置信息可以是设备制造商或移动运营商预置在终端硬件中的配置信息。或者,在终端接入小区网络后,从基站广播的系统消息中获取到的、关于SCC配置信息的传输配置信息。
第二种方式,对应基站可以自主配置的情况,终端可以接收基站自主确定的、目标物理层信号的传输配置信息。
对应上述步骤12的实施方式一,上述目标物理层信号的传输配置信息可以是目标物理层信道的资源配置信息,至少包括:目标物理层信道的频率范围,还可以包括:承载所述SCC配置信息的预设资源的位置信息、所述SCC配置信息的潜在传输时机。
对应上述步骤12的实施方式二,上述目标物理层信号的传输配置信息也可以是用于指示PDCCH信息如何携带SCC去激活指示信息。
在步骤22中,根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
根据承载SCC配置信息的物理层资源的不同,本公开中步骤22的实施方式可以包括三种情况:
情况一、在所述SCC的预设物理层信道资源中监测属于自身的SCC配置信息;
本公开中,当上述资源配置信息指示UE在SCC的预设物理层信道中监测属于自身的SCC配置信息时,UE可以根据已知的、SCC配置信息传输时机,从一个SCC的预设物理层信道上监测SCC去激活/激活指示信息。
情况二、在主载波的预设物理层信道资源中监测属于自身的SCC配置信息;
本公开中,当上述资源配置信息指示UE在PCC的预设物理层信道中监测属于自身的SCC配置信息时,若基站为UE配置有一个SCC,上述SCC配置信息的监测过程与上述情况一类似;若基站为UE配置有多个SCC,则UE根据已知的、SCC配 置信息传输时机,根据当前SCC对应的位图信息确定针对当前SCC的SCC配置信息。
情况三、从所述SCC的PDCCH资源中监测属于自身的SCC去激活指示信息。
若基站告知UE,当其在SCC上处于激活状态时,从属于其自身的PDCCH信息中监测该SCC的去激活指示信息。则UE根据已知的、SCC配置信息传输时机,按照预设方式根据监测到的属于自身的PDCCH信息,解析PDCCH信息中是否携带有该SCC的去激活指示信息。
例如,根据目标区域的预设资源位的指示值确定SCC去激活指示信息,上述目标资源区域为承载UE的DCI信息的资源区域。或者,利用预设RNTI序列值解扰DCI中的CRC确定SCC去激活指示信息。或者,根据监测到DCI信息的目标CCE的传输位置确定DCC去激活指示信息。上述SCC去激活指示信息的监测过程与上述步骤12的实施方式二相对应,相互参见即可。
针对预设载波设置有目标物理层信道的情况,根据所述SCC配置信息的潜在传输时机的不同,UE可以采用以下至少两种方式监测SCC配置信息:
方式一、按照所述SCC配置信息的预设传输周期,从所述目标物理层信号中监测属于自身的SCC配置信息。比如,在与系统信号同步的情况下,在目标物理层信道上每10ms监测一次SCC配置信息。
方式二、按照上述预置条件信息,监测SCC配置信息
参见图9根据一示例性实施例示出的另一种监测辅载波配置信息的方法流程图,上述步骤22可以包括:
在步骤221中,当所述终端在所述SCC上处于激活状态时,若在当前传输周期内未监测到属于自身的PDCCH信息,开始记录监测失败次数;
在步骤222中,确定在后序连续多个传输周期内是否监测到属于自身的PDCCH信息;
在步骤223中,若在后序连续多个传输周期内均未监测到属于自身的PDCCH信息,确定所述PDCCH信息监测失败的连续累计次数;
在步骤224中,若所述连续累计次数达到预设阈值,开始监测所述SCC去激活指示信息。
在步骤23中,根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
当某个SCC处于激活状态时,UE会尝试监测对应此SCC的去激活指示信息,如果监测到此SCC的去激活指示信息,UE在一段时间后停止在此SCC上监测PDCCH 信息,然后该SCC处于去激活状态。另一方面,如果没有监测到对应此SCC的去激活指示信息,UE则继续监测此SCC上的PDCCH信息,此SCC仍处于激活状态。当某个SCC处于去激活状态时,UE则尝试监测此SCC对应的激活指示信息,一旦检测到该SCC的激活指示信息,则该SCC在一段时间内将被激活,UE将在此SCC上开始监测PDCCH信息。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。
其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置及相应终端的实施例。
相应的,本公开提供了一种传输辅载波配置信息的装置,设置于基站中。参见图10根据一示例性实施例示出的一种传输辅载波配置信息的装置框图,所述装置可以包括:
信息确定模块31,被配置为确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
信号生成模块32,被配置为根据所述SCC配置信息生成目标物理层信号;
发送模块33,被配置为通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
参见图11根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图,在图10所示装置实施例的基础上,所述信号生成模块32可以包括:
第一信号生成子模块321,被配置为将所述SCC配置信息加载于预设载波的目标物理层信道中,生成所述目标物理层信号,所述预设载波包括:所述终端的辅助载波SCC,和/或,所述终端的主载波PCC;或者,
第二信号生成子模块322,被配置为在所述SCC配置信息包括SCC去激活指示信息的情况下,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中,生成所述目标物理层信号。
参见图12根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图,在图11所示装置实施例的基础上,所述第一信号生成子模块321可以包括:
信道确定单元3211,被配置为确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道;
第一信息加载单元3212,被配置为将所述SCC配置信息加载于所述目标物理层信道的预设资源中。
参见图13根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图,在图12所示装置实施例的基础上,所述信道确定单元3211可以包括:
信道配置子单元301,被配置为基于所述预设载波配置所述目标物理层信道,生成所述目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围;
在本公开另一装置实施例中,所述信道配置子单元301生成的所述目标物理层信道的配置信息还可以包括:承载所述SCC配置信息的所述预设资源的位置信息,和/或,所述SCC配置信息的潜在传输时机。
其中,所述SCC配置信息的潜在传输时机可以包括:
所述SCC配置信息的预设传输周期;或者,
表示所述基站可能发送所述SCC配置信息的预置条件信息。
在本公开一装置实施例中,若所述SCC配置信息包括:所述SCC去激活指示信息;
所述预置条件信息可以包括:所述终端在所述SCC的预设数量的连续传输周期内、未监测到属于自身的所述PDCCH信息。
配置发送子单元302,被配置为将所述目标物理层信道的配置信息发送给所述终端。
参见图14根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图,在图12所示装置实施例的基础上,所述第一信息加载单元3212可以包括:
指示值确定子单元32121,被配置为根据所述SCC配置信息确定对应的目标状态指示值,所述SCC配置信息包括:所述SCC去激活指示信息,或者,SCC激活指示信息;
其中,在本公开一装置实施例中,所述指示值确定子单元32121,可以被配置为:根据所述SCC配置信息查询第一预设列表,确定所述SCC配置信息对应的目标序列值,其中,所述第一预设列表包括:不同所述SCC配置信息与预设序列值的对应关系;
在本公开另一装置实施例中,所述指示值确定子单元32121,还可以被配置为 根据所述SCC配置信息查询第二预设列表,确定所述SCC配置信息对应的目标比特指示值,其中,所述第二预设列表包括:不同所述SCC配置信息与预设比特指示值的对应关系。
映射子单元32122,被配置为将所述目标状态指示值映射于所述目标物理层信道的预设资源中。
参见图15根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图,在图11所示装置实施例的基础上,所述第二信号生成子模块322可以包括:
第一标识单元3221,被配置为将所述SCC去激活指示信息加载于目标资源的预设资源位中,其中,所述目标资源用于承载所述终端的下行控制信息DCI;
第二标识单元3222,被配置为采用预设无线网络临时标识RNTI序列对所述终端的DCI信息中的循环冗余校验CRC码进行加扰,生成标识所述SCC去激活指示信息的目标PDCCH信息;
第三标识单元3223,被配置为利用所述终端的PDCCH信息在控制区域中的传输位置,标识所述SCC去激活指示信息。
在本公开另一装置实施例中,若所述预设载波为所述主载波,且所述基站为所述终端配置的辅载波数量不少于两个;参见图16根据一示例性实施例示出的另一种传输辅载波配置信息的装置框图,在图12所示装置实施例的基础上,所述第一信息加载单元3212可以包括:
位图生成子单元32123,被配置为根据每个所述辅载波的SCC配置信息,生成用于指示每个所述辅载波去激活/激活状态的位图信息;
位图映射子单元32124,被配置为将所述位图信息映射于所述主载波的所述目标物理层信道的预设资源中。
另一方面,本公开还提供了一种监测辅载波配置信息的装置,可以设置于终端中。参见图17根据一示例性实施例示出的一种监测辅载波配置信息的装置框图,所述装置可以包括:
信息确定模块41,被配置为确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
监测模块42,被配置为根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
确定模块43,被配置为根据监测到的所述SCC配置信息,确定是否在所述SCC 上监测物理下行控制信道PDCCH信息。
参见图18根据一示例性实施例示出的另一种监测辅载波配置信息的装置框图,在图17所示装置实施例的基础上,所述信息确定模块41可以包括:
第一确定子模块411,被配置为根据预设协议规定确定所述目标物理层信号的传输配置信息;或者,
第二确定子模块412,被配置为接收基站确定的、所述目标物理层信号的传输配置信息。
在本公开另一装置实施例中,所述第二确定子模块412,可以被配置为接收基站下发的目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围。
在本公开另一装置实施例中,所述第二确定子模块412接收的所述目标物理层信道的配置信息还可以包括:承载所述SCC配置信息的预设资源的位置信息、所述SCC配置信息的潜在传输时机。
本公开中,所述SCC配置信息的潜在传输时机可以包括:
所述SCC配置信息的预设传输周期;或者,
表示所述基站可能发送所述SCC配置信息的预置条件信息。
在本公开一装置实施例中,所述监测模块42,可以被配置为按照所述SCC配置信息的预设传输周期,从所述目标物理层信号中监测属于自身的SCC配置信息。
在本公开一装置实施例中,若所述预置条件信息包括:在所述SCC的预设数量的连续传输周期内、没有监测到属于自身的PDCCH信息;
参见图19根据一示例性实施例示出的另一种监测辅载波配置信息的装置框图,在图17所示装置实施例的基础上,所述监测模块42可以包括:
记录触发子模块421,被配置为在所述终端在所述SCC上处于激活状态的情况下,若在当前传输周期内未监测到属于自身的PDCCH信息,开始记录监测失败次数;
确定子模块422,被配置为确定在后序连续多个传输周期内是否监测到属于自身的PDCCH信息;
计数子模块423,被配置为若在后序连续多个传输周期内均未监测到属于自身的PDCCH信息,确定所述PDCCH信息监测失败的连续累计次数;
监测子模块424,被配置为在所述连续累计次数达到预设阈值的情况下,开始监测所述SCC的去激活指示信息。
参见图20根据一示例性实施例示出的另一种监测辅载波配置信息的装置框图, 在图17所示装置实施例的基础上,所述监测模块42可以包括以下至少一个监测子模块:
第一监测子模块4201,被配置为在所述SCC的预设物理层信道资源中监测属于自身的SCC配置信息;
第二监测子模块4202,被配置为在主载波的预设物理层信道资源中监测属于自身的SCC配置信息;
第三监测子模块4203,被配置为从所述SCC的PDCCH资源中监测属于自身的SCC去激活指示信息。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应的,一方面提供了一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
根据所述SCC配置信息生成目标物理层信号;
通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
另一方面,提供了一种终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层 信号中监测属于自身的SCC配置信息;
根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
如图21所示,图21是根据一示例性实施例示出的一种基站2100的一结构示意图。参照图21,基站2100包括处理组件2122、无线发射/接收组件2124、天线组件2121、以及无线接口特有的信号处理部分,处理组件2122可进一步包括一个或多个处理器。
处理组件2122中的其中一个处理器可以被配置为:
确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
根据所述SCC配置信息生成目标物理层信号;
通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,其上存储有计算机指令,上述计算机指令可由基站2100的处理组件2122执行以完成图1~图5任一所述的传输辅载波配置信息的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图22是根据一示例性实施例示出的一种终端2200的结构示意图。例如,终端2200可以具体为移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,可穿戴设备如智能手表、智能眼镜、智能手环、智能跑鞋等。
参照图22,终端2200可以包括以下一个或多个组件:处理组件2202,存储器2204,电源组件2206,多媒体组件2208,音频组件2210,输入/输出(I/O)的接口2212,传感器组件2214,以及通信组件2216。
处理组件2202通常控制终端2200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2202可以包括一个或多个处理器2220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2202可以包括一个或多个模块,便于处理组件2202和其他组件之间的交互。例如,处理组件2202可以包括多媒体模块,以方便多媒体组件2208和处理组件2202之间的交互。
存储器2204被配置为存储各种类型的数据以支持在终端2200上的操作。这些 数据的示例包括用于在终端2200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2206为终端2200的各种组件提供电力。电源组件2206可以包括电源管理系统,一个或多个电源,及其他与为终端2200生成、管理和分配电力相关联的组件。
多媒体组件2208包括在上述终端2200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。上述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与上述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2208包括一个前置摄像头和/或后置摄像头。当设备2200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2210被配置为输出和/或输入音频信号。例如,音频组件2210包括一个麦克风(MIC),当终端2200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2204或经由通信组件2216发送。在一些实施例中,音频组件2210还包括一个扬声器,用于输出音频信号。
I/O接口2212为处理组件2202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2214包括一个或多个传感器,用于为终端2200提供各个方面的状态评估。例如,传感器组件2214可以检测到设备2200的打开/关闭状态,组件的相对定位,例如上述组件为终端2200的显示器和小键盘,传感器组件2214还可以检测终端2200或终端2200一个组件的位置改变,用户与终端2200接触的存在或不存在,终端2200方位或加速/减速和终端2200的温度变化。传感器组件2214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2214 还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2216被配置为便于终端2200和其他设备之间有线或无线方式的通信。终端2200可以接入基于通信标准的无线网络,如WiFi,2G,3G,4G LTE,5G NR或它们的组合。在一个示例性实施例中,通信组件2216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,上述通信组件2216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端2200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2204,上述指令可由终端2200的处理器2220执行以完成上述图8或图9任一所述的监测辅载波配置信息的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (42)

  1. 一种传输辅载波配置信息的方法,其特征在于,应用于基站中,所述方法包括:
    确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
    根据所述SCC配置信息生成目标物理层信号;
    通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
  2. 根据权利要求1所述的方法,其特征在于,采用以下至少一种方式,根据所述SCC配置信息生成目标物理层信号:
    将所述SCC配置信息加载于预设载波的目标物理层信道中,生成所述目标物理层信号,所述预设载波包括:所述终端的辅助载波SCC,和/或,所述终端的主载波PCC;或者,
    若所述SCC配置信息包括SCC去激活指示信息,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中,生成所述目标物理层信号。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述SCC配置信息加载于预设载波的目标物理层信道中,包括:
    确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道;
    将所述SCC配置信息加载于所述目标物理层信道的预设资源中。
  4. 根据权利要求3所述的方法,其特征在于,所述确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道,包括:
    基于所述预设载波配置所述目标物理层信道,生成所述目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围;
    将所述目标物理层信道的配置信息发送给所述终端。
  5. 根据权利要求4所述的方法,其特征在于,所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的所述预设资源的位置信息,和/或,所述SCC配置信息的潜在传输时机。
  6. 根据权利要求5所述的方法,其特征在于,所述SCC配置信息的潜在传输时机包括:
    所述SCC配置信息的预设传输周期;或者,
    表示所述基站可能发送所述SCC配置信息的预置条件信息。
  7. 根据权利要求6所述的方法,其特征在于,若所述SCC配置信息包括:所述 SCC去激活指示信息;
    所述预置条件信息包括:所述终端在所述SCC的预设数量的连续传输周期内、未监测到属于自身的所述PDCCH信息。
  8. 根据权利要求3所述的方法,其特征在于,所述将所述SCC配置信息加载于所述目标物理层信道的预设资源中,包括:
    根据所述SCC配置信息确定对应的目标状态指示值,所述SCC配置信息包括:所述SCC去激活指示信息,或者,SCC激活指示信息;
    将所述目标状态指示值映射于所述目标物理层信道的预设资源中。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述SCC配置信息确定对应的目标状态指示值,包括:
    根据所述SCC配置信息查询第一预设列表,确定所述SCC配置信息对应的目标序列值,其中,所述第一预设列表包括:不同所述SCC配置信息与预设序列值的对应关系;或者,
    根据所述SCC配置信息查询第二预设列表,确定所述SCC配置信息对应的目标比特指示值,其中,所述第二预设列表包括:不同所述SCC配置信息与预设比特指示值的对应关系。
  10. 根据权利要求2所述的方法,其特征在于,采用以下任一方式,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中:
    将所述SCC去激活指示信息加载于目标资源的预设资源位中,其中,所述目标资源用于承载所述终端的下行控制信息DCI;
    采用预设无线网络临时标识RNTI序列对所述终端的DCI信息中的循环冗余校验CRC码进行加扰,生成标识所述SCC去激活指示信息的目标PDCCH信息;
    利用所述终端的PDCCH信息在控制区域中的传输位置,标识所述SCC去激活指示信息。
  11. 根据权利要求3所述的方法,其特征在于,若所述预设载波为所述主载波,且所述基站为所述终端配置的辅载波数量不少于两个;
    所述将所述SCC配置信息加载于所述目标物理层信道的预设资源中,包括:
    根据每个所述辅载波的SCC配置信息,生成用于指示每个所述辅载波去激活/激活状态的位图信息;
    将所述位图信息映射于所述主载波的所述目标物理层信道的预设资源中。
  12. 一种监测辅载波配置信息的方法,其特征在于,应用于终端中,所述方法包 括:
    确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
    根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
    根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
  13. 根据权利要求12所述的方法,其特征在于,所述确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,包括:
    根据预设协议规定确定所述目标物理层信号的传输配置信息;或者,
    接收基站确定的、所述目标物理层信号的传输配置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述接收基站确定的、所述目标物理层信号的传输配置信息,包括:
    接收基站下发的目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围。
  15. 根据权利要求14所述的方法,其特征在于,所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的预设资源的位置信息、所述SCC配置信息的潜在传输时机。
  16. 根据权利要求15所述的方法,其特征在于,所述SCC配置信息的潜在传输时机包括:
    所述SCC配置信息的预设传输周期;或者,
    表示所述基站可能发送所述SCC配置信息的预置条件信息。
  17. 根据权利要求16所述的方法,所述从目标物理层信号中监测属于自身的SCC配置信息,包括:
    按照所述SCC配置信息的预设传输周期,从所述目标物理层信号中监测属于自身的SCC配置信息。
  18. 根据权利要求16所述的方法,所述预置条件信息包括:在所述SCC的预设数量的连续传输周期内、没有监测到属于自身的PDCCH信息;
    所述根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息,包括:
    当所述终端在所述SCC上处于激活状态时,若在当前传输周期内未监测到属于自身的PDCCH信息,开始记录监测失败次数;
    确定在后序连续多个传输周期内是否监测到属于自身的PDCCH信息;
    若在后序连续多个传输周期内均未监测到属于自身的PDCCH信息,确定所述PDCCH信息监测失败的连续累计次数;
    若所述连续累计次数达到预设阈值,开始监测所述SCC去激活指示信息。
  19. 根据权利要求12所述的方法,其特征在于,所述从所述目标物理层信号中监测属于自身的SCC配置信息,包括以下至少一项:
    在所述SCC的预设物理层信道资源中监测属于自身的SCC配置信息;
    在主载波的预设物理层信道资源中监测属于自身的SCC配置信息;
    从所述SCC的PDCCH资源中监测属于自身的SCC去激活指示信息。
  20. 一种传输辅载波配置信息的装置,其特征在于,设置于基站中,所述装置包括:
    信息确定模块,被配置为确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
    信号生成模块,被配置为根据所述SCC配置信息生成目标物理层信号;
    发送模块,被配置为通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
  21. 根据权利要求20所述的装置,其特征在于,所述信号生成模块包括:
    第一信号生成子模块,被配置为将所述SCC配置信息加载于预设载波的目标物理层信道中,生成所述目标物理层信号,所述预设载波包括:所述终端的辅助载波SCC,和/或,所述终端的主载波PCC;或者,
    第二信号生成子模块,被配置为在所述SCC配置信息包括SCC去激活指示信息的情况下,将所述SCC去激活指示信息加载于所述SCC上传输的、所述终端的PDCCH信息中,生成所述目标物理层信号。
  22. 根据权利要求21所述的装置,其特征在于,所述第一信号生成子模块,包括:
    信道确定单元,被配置为确定用于承载所述SCC配置信息的、所述预设载波的目标物理层信道;
    第一信息加载单元,被配置为将所述SCC配置信息加载于所述目标物理层信道的预设资源中。
  23. 根据权利要求22所述的装置,其特征在于,所述信道确定单元,包括:
    信道配置子单元,被配置为基于所述预设载波配置所述目标物理层信道,生成所述目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围;
    配置发送子单元,被配置为将所述目标物理层信道的配置信息发送给所述终端。
  24. 根据权利要求23所述的装置,其特征在于,所述信道配置子单元生成的所述目标物理层信道的配置信息还包括:承载所述SCC配置信息的所述预设资源的位置信息,和/或,所述SCC配置信息的潜在传输时机。
  25. 根据权利要求24所述的装置,其特征在于,所述SCC配置信息的潜在传输时机包括:
    所述SCC配置信息的预设传输周期;或者,
    表示所述基站可能发送所述SCC配置信息的预置条件信息。
  26. 根据权利要求25所述的装置,其特征在于,若所述SCC配置信息包括:所述SCC去激活指示信息;
    所述预置条件信息包括:所述终端在所述SCC的预设数量的连续传输周期内、未监测到属于自身的所述PDCCH信息。
  27. 根据权利要求22所述的装置,其特征在于,所述第一信息加载单元包括:
    指示值确定子单元,被配置为根据所述SCC配置信息确定对应的目标状态指示值,所述SCC配置信息包括:所述SCC去激活指示信息,或者,SCC激活指示信息;
    映射子单元,被配置为将所述目标状态指示值映射于所述目标物理层信道的预设资源中。
  28. 根据权利要求27所述的装置,其特征在于,所述指示值确定子单元,被配置为:
    根据所述SCC配置信息查询第一预设列表,确定所述SCC配置信息对应的目标序列值,其中,所述第一预设列表包括:不同所述SCC配置信息与预设序列值的对应关系;或者,
    根据所述SCC配置信息查询第二预设列表,确定所述SCC配置信息对应的目标比特指示值,其中,所述第二预设列表包括:不同所述SCC配置信息与预设比特指示值的对应关系。
  29. 根据权利要求21所述的装置,其特征在于,所述第二信号生成子模块包括:
    第一标识单元,被配置为将所述SCC去激活指示信息加载于目标资源的预设资源 位中,其中,所述目标资源用于承载所述终端的下行控制信息DCI;
    第二标识单元,被配置为采用预设无线网络临时标识RNTI序列对所述终端的DCI信息中的循环冗余校验CRC码进行加扰,生成标识所述SCC去激活指示信息的目标PDCCH信息;
    第三标识单元,被配置为利用所述终端的PDCCH信息在控制区域中的传输位置,标识所述SCC去激活指示信息。
  30. 根据权利要求22所述的装置,其特征在于,若所述预设载波为所述主载波,且所述基站为所述终端配置的辅载波数量不少于两个;
    所述第一信息加载单元,包括:
    位图生成子单元,被配置为根据每个所述辅载波的SCC配置信息,生成用于指示每个所述辅载波去激活/激活状态的位图信息;
    位图映射子单元,被配置为将所述位图信息映射于所述主载波的所述目标物理层信道的预设资源中。
  31. 一种监测辅载波配置信息的装置,其特征在于,设置于终端中,所述装置包括:
    信息确定模块,被配置为确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
    监测模块,被配置为根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
    确定模块,被配置为根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
  32. 根据权利要求31所述的装置,其特征在于,所述信息确定模块,包括:
    第一确定子模块,被配置为根据预设协议规定确定所述目标物理层信号的传输配置信息;或者,
    第二确定子模块,被配置为接收基站确定的、所述目标物理层信号的传输配置信息。
  33. 根据权利要求32所述的装置,其特征在于,所述第二确定子模块,被配置为接收基站下发的目标物理层信道的配置信息,所述配置信息至少包括:所述目标物理层信道的频率范围。
  34. 根据权利要求33所述的装置,其特征在于,所述第二确定子模块接收的所述 目标物理层信道的配置信息还包括:承载所述SCC配置信息的预设资源的位置信息、所述SCC配置信息的潜在传输时机。
  35. 根据权利要求34所述的装置,其特征在于,所述SCC配置信息的潜在传输时机包括:
    所述SCC配置信息的预设传输周期;或者,
    表示所述基站可能发送所述SCC配置信息的预置条件信息。
  36. 根据权利要求35所述的装置,所述监测模块,被配置为按照所述SCC配置信息的预设传输周期,从所述目标物理层信号中监测属于自身的SCC配置信息。
  37. 根据权利要求35所述的装置,所述预置条件信息包括:在所述SCC的预设数量的连续传输周期内、没有监测到属于自身的PDCCH信息;
    所述监测模块包括:
    记录触发子模块,被配置为在所述终端在所述SCC上处于激活状态的情况下,若在当前传输周期内未监测到属于自身的PDCCH信息,开始记录监测失败次数;
    确定子模块,被配置为确定在后序连续多个传输周期内是否监测到属于自身的PDCCH信息;
    计数子模块,被配置为若在后序连续多个传输周期内均未监测到属于自身的PDCCH信息,确定所述PDCCH信息监测失败的连续累计次数;
    监测子模块,被配置为在所述连续累计次数达到预设阈值的情况下,开始监测所述SCC的去激活指示信息。
  38. 根据权利要求31所述的装置,其特征在于,所述监测模块包括以下至少一个监测子模块:
    第一监测子模块,被配置为在所述SCC的预设物理层信道资源中监测属于自身的SCC配置信息;
    第二监测子模块,被配置为在主载波的预设物理层信道资源中监测属于自身的SCC配置信息;
    第三监测子模块,被配置为从所述SCC的PDCCH资源中监测属于自身的SCC去激活指示信息。
  39. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1~11任一所述方法的步骤。
  40. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求12~19任一所述方法的步骤。
  41. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定辅载波SCC配置信息,所述SCC配置信息用于指示去激活或激活所述辅载波;
    根据所述SCC配置信息生成目标物理层信号;
    通过所述目标物理层信号将所述SCC配置信息发送给终端,以使所述终端根据所述SCC配置信息确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
  42. 一种终端,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定用于承载辅载波SCC配置信息的目标物理层信号的传输配置信息,所述SCC配置信息包括所述辅载波去激活/激活指示信息,所述传输配置信息用于告知所述终端如何获取所述SCC配置信息;
    根据所述目标物理层信号的传输配置信息和当前用户状态,从所述目标物理层信号中监测属于自身的SCC配置信息;
    根据监测到的所述SCC配置信息,确定是否在所述SCC上监测物理下行控制信道PDCCH信息。
PCT/CN2018/095695 2018-07-13 2018-07-13 传输、监测辅载波配置信息的方法、装置、基站及终端 WO2020010631A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/095695 WO2020010631A1 (zh) 2018-07-13 2018-07-13 传输、监测辅载波配置信息的方法、装置、基站及终端
CN201880001024.5A CN108886750B (zh) 2018-07-13 2018-07-13 传输、监测辅载波配置信息的方法、装置、基站及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095695 WO2020010631A1 (zh) 2018-07-13 2018-07-13 传输、监测辅载波配置信息的方法、装置、基站及终端

Publications (1)

Publication Number Publication Date
WO2020010631A1 true WO2020010631A1 (zh) 2020-01-16

Family

ID=64324983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095695 WO2020010631A1 (zh) 2018-07-13 2018-07-13 传输、监测辅载波配置信息的方法、装置、基站及终端

Country Status (2)

Country Link
CN (1) CN108886750B (zh)
WO (1) WO2020010631A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905773A4 (en) * 2018-12-28 2022-01-05 Beijing Xiaomi Mobile Software Co., Ltd. CARRIER CONFIGURATION PROCESS AND DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757431B (zh) * 2019-03-28 2023-01-13 华为技术有限公司 一种通信方法及装置
CN111836407B (zh) * 2019-08-09 2023-09-15 维沃移动通信有限公司 处理方法和设备
CN113014364B (zh) * 2019-12-20 2022-06-28 中国电信股份有限公司 上行数据传输方法、系统和相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104982A (zh) * 2010-04-01 2011-06-22 电信科学技术研究院 一种多载波系统的连接重建方法和设备
CN102238621A (zh) * 2010-04-29 2011-11-09 中兴通讯股份有限公司 基于物理下行共享信道传输公共数据的方法和系统
CN104412525A (zh) * 2012-07-06 2015-03-11 Lg电子株式会社 收发控制信号的方法和装置
CN105940631A (zh) * 2014-01-30 2016-09-14 高通股份有限公司 具有动态tdd dl/ul子帧配置的载波聚合

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208678B (zh) * 2008-03-25 2017-05-24 华为技术有限公司 终端与网络间建立连接的方法和设备
CN103634910B (zh) * 2012-08-29 2019-03-01 中兴通讯股份有限公司 删除分量载波的方法及装置
KR102554638B1 (ko) * 2015-08-14 2023-07-12 한국전자통신연구원 면허 및 비면허 대역들을 지원하는 네트워크에서 통신 노드의 동작 방법
US10172124B2 (en) * 2015-09-22 2019-01-01 Comcast Cable Communications, Llc Carrier selection in a multi-carrier wireless network
US10375634B2 (en) * 2016-09-10 2019-08-06 Ofinno, Llc Deactivation timer management in a wireless device and wireless network
CN108781345B (zh) * 2016-09-30 2020-10-09 华为技术有限公司 多播数据调度方法、终端设备及接入网设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104982A (zh) * 2010-04-01 2011-06-22 电信科学技术研究院 一种多载波系统的连接重建方法和设备
CN102238621A (zh) * 2010-04-29 2011-11-09 中兴通讯股份有限公司 基于物理下行共享信道传输公共数据的方法和系统
CN104412525A (zh) * 2012-07-06 2015-03-11 Lg电子株式会社 收发控制信号的方法和装置
CN105940631A (zh) * 2014-01-30 2016-09-14 高通股份有限公司 具有动态tdd dl/ul子帧配置的载波聚合

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905773A4 (en) * 2018-12-28 2022-01-05 Beijing Xiaomi Mobile Software Co., Ltd. CARRIER CONFIGURATION PROCESS AND DEVICE
US12041590B2 (en) 2018-12-28 2024-07-16 Beijing Xiaomi Mobile Software Co., Ltd. Carrier configuration method and device

Also Published As

Publication number Publication date
CN108886750A (zh) 2018-11-23
CN108886750B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN109314972B (zh) 带宽部分的切换触发方法及装置、信息配置方法及装置
CN108370544B (zh) 非连续接收的实现方法、装置、用户设备和基站
US11445511B2 (en) Method for information transmission adjustment, base station, and user equipment
EP4033828A1 (en) Communication method and apparatus, and storage medium
WO2020014844A1 (zh) 信道监测方法、装置、系统及存储介质
WO2020010631A1 (zh) 传输、监测辅载波配置信息的方法、装置、基站及终端
US11490405B2 (en) Method for transmitting information, base station and user equipment
US12010065B2 (en) Method for transmitting HARQ feedback information, terminal, and base station
CN113825241A (zh) 时隙格式指示方法、装置、设备、系统及存储介质
CN110337830B (zh) 监听方法、信令下发方法及装置、通信设备及存储
US11700578B2 (en) Downlink control signaling detection method and apparatus, and storage medium
WO2020029147A1 (zh) 传输harq反馈信息的方法、装置、基站及终端
WO2019237255A1 (zh) 传输mtc下行控制信息的方法、装置、基站及用户设备
CN109792747B (zh) 传输上行信息的方法、装置、基站及终端
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
WO2019227430A1 (zh) 信道监测方法、装置、系统及存储介质
WO2020029262A1 (zh) 监听方法、装置、设备及存储介质
US11937180B2 (en) Carrier activation method, device, apparatus, system, and storage medium
JP2024502680A (ja) 情報設定方法及び装置、通信機器並びに記憶媒体
US12041590B2 (en) Carrier configuration method and device
CN111147210A (zh) 状态转换方法及装置
US12028724B2 (en) Method and device for configuring network parameter and computer-readable storage medium
EP3735059B1 (en) Method and device for determining transmission direction information
WO2023122984A1 (zh) 一种srs触发方法、装置及存储介质
CN108200612B (zh) 数据传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926334

Country of ref document: EP

Kind code of ref document: A1