WO2021232308A1 - 信息发送方法、信息发送装置及存储介质 - Google Patents

信息发送方法、信息发送装置及存储介质 Download PDF

Info

Publication number
WO2021232308A1
WO2021232308A1 PCT/CN2020/091369 CN2020091369W WO2021232308A1 WO 2021232308 A1 WO2021232308 A1 WO 2021232308A1 CN 2020091369 W CN2020091369 W CN 2020091369W WO 2021232308 A1 WO2021232308 A1 WO 2021232308A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
beams
detection
priority order
information includes
Prior art date
Application number
PCT/CN2020/091369
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/091369 priority Critical patent/WO2021232308A1/zh
Priority to CN202080001079.3A priority patent/CN113966626A/zh
Priority to US17/999,124 priority patent/US20230199843A1/en
Publication of WO2021232308A1 publication Critical patent/WO2021232308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an information sending method, an information sending device, and a storage medium.
  • the transmitter In the discussion and design of the R16 New Radio-Unlicensed (NR-U) standard, the transmitter generally needs to monitor the channel before sending information. Information can be sent only after the interference level is lower than the predetermined interference threshold), that is, the channel occupation mechanism of listen before talk (LBT) is used for information transmission.
  • LBT listen before talk
  • the process of channel monitoring by the sender is called clear channel assessment (CCA), and the sender can send information after the CCA is successful.
  • CCA clear channel assessment
  • the network device configures a beam used by the sender to send information.
  • the sending end needs to determine in advance the sending beam used to send the information before sending the information.
  • the present disclosure provides an information sending method, an information sending device, and a storage medium.
  • an information sending method including:
  • Determining the beam for information transmission among the one or more beams on which the clear channel assessment and detection is successful includes: based on the priority order, determining to perform information transmission among the one or more beams on which the clear channel assessment and detection is successful The beam through which the information is sent.
  • the priority order is determined based on the size of the beam index.
  • the priority order with a small index is higher than the priority order with a large index.
  • the beam for information transmission is the beam corresponding to the highest priority order.
  • the determining multiple beams for performing idle channel assessment and detection includes: determining multiple beams for performing idle channel assessment and detection based on configuration information of the network device.
  • the information includes information about semi-statically configured physical downlink shared channels, and the configuration information includes information about radio resource control signaling configuration; or the information includes information about configuring authorized physical uplink shared channels,
  • the configuration information includes radio resource control signaling configuration information; or the information includes dynamically scheduled physical downlink shared channel information, and the configuration information includes downlink control signaling for scheduling the physical downlink shared channel; or
  • the information includes physical downlink control channel information, and the configuration information includes media access control signaling or radio resource control signaling configuration information; or the information includes physical uplink control channel information, and the configuration information includes media access Control signaling or radio resource control signaling configuration information.
  • an information sending device including:
  • the determining unit is configured to determine a plurality of beams for performing idle channel evaluation and detection, and perform idle channel evaluation and detection in a beam direction corresponding to each beam based on each beam of the plurality of beams, and respond to There are one or more beams that successfully perform idle channel assessment and detection in the multiple beams, and determine the beam for information transmission among the one or more beams that perform idle channel assessment and detection successfully; the sending unit is configured to be based on The determined beam for information transmission performs information transmission.
  • the determining unit is configured to determine the beam for information transmission among the one or more beams that have successfully performed idle channel assessment and detection in the following manner : Based on the priority order, determine a beam for information transmission among the one or more beams that have successfully performed idle channel assessment and detection.
  • the priority order is determined based on the size of the beam index.
  • the priority order with a small index is higher than the priority order with a large index.
  • the beam for information transmission is the beam corresponding to the highest priority order.
  • the determining unit is configured to determine multiple beams for idle channel assessment and detection in the following manner: determine multiple beams for idle channel assessment and detection based on the configuration information of the network device.
  • the information includes information about semi-statically configured physical downlink shared channels, and the configuration information includes information about radio resource control signaling configuration; or the information includes information about configuring authorized physical uplink shared channels,
  • the configuration information includes radio resource control signaling configuration information; or the information includes dynamically scheduled physical downlink shared channel information, and the configuration information includes downlink control signaling for scheduling the physical downlink shared channel; or
  • the information includes physical downlink control channel information, and the configuration information includes media access control signaling or radio resource control signaling configuration information; or the information includes physical uplink control channel information, and the configuration information includes media access Control signaling or radio resource control signaling configuration information.
  • an information sending device including:
  • Processor a memory used to store executable instructions of the processor
  • the processor is configured to execute the information sending method described in the first aspect or any one of the implementation manners of the first aspect.
  • a non-transitory computer-readable storage medium When instructions in the storage medium are executed by a processor of a mobile terminal or network device, the mobile terminal or network device can execute the first The information sending method described in one aspect or any one of the implementation manners of the first aspect.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: multiple beams are determined to perform idle channel assessment and detection, and idle channel assessment and detection are performed in the beam direction corresponding to each beam in each of the multiple beams, which can improve idleness.
  • the success rate of channel assessment detection Sending information on the beam where the idle channel assessment and detection is successful can increase the probability of the information being sent smoothly.
  • Fig. 1 is a diagram showing an architecture of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for sending information according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for determining a beam for information transmission according to an exemplary embodiment.
  • Fig. 4 is a block diagram showing an information sending device according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing a device for sending information according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing a device for sending information according to an exemplary embodiment.
  • the wireless communication system includes terminals and network equipment.
  • the terminal and network equipment use wireless resources to send and receive information.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment. Not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system in the embodiments of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , Frequency Division Multiple Access (FDMA), Orthogonal Frequency-Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (Single Carrier FDMA, SC-FDMA), Carrier Sense Multiple access/conflict avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • Single Carrier Frequency Division Multiple Access Single Carrier Frequency Division Multiple Access
  • SC-FDMA SC-FDMA
  • Carrier Sense Multiple access/conflict avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the wireless communication network is sometimes referred to simply as a network in this disclosure.
  • the network device involved in the present disclosure may also be referred to as a wireless access network device.
  • the wireless access network equipment can be: base station, evolved base station (evolved node B, base station), home base station, access point (AP) in wireless fidelity (WIFI) system, wireless relay Node, wireless backhaul node, transmission point (transmission point, TP), or transmission and reception point (transmission and reception point, TRP), etc., can also be the gNB in the NR system, or can also be a component or part of the equipment constituting the base station Wait.
  • the network device may also be a vehicle-mounted device. It should be understood that, in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network device are not limited.
  • the terminal involved in the present disclosure may also be referred to as terminal equipment, user equipment (UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc., which are A device that provides voice and/or data connectivity.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals are: smart phones (Mobile Phone), Pocket Computers (Pocket Personal Computer, PPC), handheld computers, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-vehicle
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • the end (network device or terminal) serving as the information sending end uses the LBT channel occupancy mechanism to perform CCA detection, and the sending end sends the information after the CCA detection is successful.
  • the network device configures the beam used by the sender to send information.
  • the sending end needs to determine in advance the sending beam used to send the information before sending the information.
  • the beam used for sending information may be configured by a network device.
  • a network device sends a physical downlink control channel (PDCCH) channel beam that is semi-statically configured by the network device using Medium Access Control (MAC) signaling.
  • the network device sends a dynamically scheduled Physical Downlink Shared Channel (PDSCH), and its beam is specified by the network device using Downlink Control Information (DCI) for scheduling the PDSCH.
  • PDCCH physical downlink control channel
  • MAC Medium Access Control
  • DCI Downlink Control Information
  • the beam of the semi-persistent scheduling (SPS) PDSCH sent by the network equipment is semi-statically configured by the network equipment through radio resource control (Radio Resource Control, RRC) layer signaling.
  • the beam of the Physical Uplink Control Channel (PUCCH) channel to be sent by the terminal is semi-statically configured by the network device using MAC signaling.
  • the beam for the terminal to send the dynamically scheduled Physical Uplink Shared Channel (PUSCH) is specified by the network device using the DCI for scheduling the PUSCH.
  • the semi-statically configured PUSCH (configured grant PUSCH, CG-PUSCH) beam sent by the terminal is semi-statically configured by the network device through RRC layer signaling.
  • the transmitting end usually has multiple transmitting beams.
  • the network device usually configures or specifies a beam in advance for a transmission information.
  • the LBT detection is performed on the beam to determine that the interference level is higher than the predetermined interference threshold, it is determined that the CCA has failed and no information is sent.
  • Ultra Reliability Low Latency In the 5G system, there is a type of service that requires high reliability and low latency, namely Ultra Reliability Low Latency (URLLC).
  • URLLC Ultra Reliability Low Latency
  • the embodiments of the present disclosure provide an information sending method.
  • the information sending method multiple beams are determined for CCA detection, and CCA detection is performed on each beam direction corresponding to each of the multiple beams. Can improve the success rate of CCA detection.
  • the transmission of information on the beam where the CCA detection is successful can increase the probability of smooth transmission of the information.
  • Fig. 2 is a flow chart showing an information sending method according to an exemplary embodiment. As shown in Fig. 2, the information sending method is used in the sending end, and the sending end may be a terminal or a network device, including the following step.
  • step S11 multiple beams for CCA detection are determined.
  • multiple beams for CCA detection can be determined, and the multiple beams are used for CCA detection.
  • multiple beams are configured for each channel to be transmitted to perform CCA detection.
  • step S12 based on each of the multiple beams, CCA detection is performed in the beam direction corresponding to each beam.
  • CCA detection is performed separately for each of the multiple beams determined to perform CCA detection, and each beam is subjected to CCA detection in its corresponding beam direction, thereby increasing the probability of successful CCA detection.
  • step S13 in response to the presence of one or more beams that successfully perform CCA detection among the multiple beams, determine the beam for information transmission among the one or more beams that successfully perform CCA detection.
  • multiple beams are used to perform CCA detection in the beam direction corresponding to each beam. If there is a beam that successfully detects CCA, the beam used for information transmission is determined among the beams that are successfully detected. Wherein, the beam successfully detected by CCA may be one beam or multiple beams.
  • step S14 information transmission is performed based on the determined beam for information transmission.
  • multiple beams are determined to perform CCA detection, and the CCA detection is performed in the beam direction corresponding to each beam of the multiple beams, which can improve the success rate of CCA detection. Identifying the beam for information transmission among the beams for which CCA detection is successful, and performing information transmission based on the determined beam, can increase the probability of successful information transmission.
  • the multiple beams for CCA detection in the embodiment of the present disclosure may be designated or configured by a network device. It can be understood that the sending end can determine multiple beams for CCA detection based on the configuration information of the network device. Further, in the embodiments of the present disclosure, different configuration information may be used to indicate the beams for CCA detection for the information to be sent.
  • the information includes SPS PDSCH information, and the configuration information includes RRC layer signaling configuration information.
  • the information includes CG-PUSCH information, and the configuration information includes RRC signaling configuration information.
  • the information includes the dynamically scheduled PDSCH, and the configuration information includes the DCI for scheduling the PDSCH.
  • the information includes PDCCH information, and the configuration information includes MAC signaling or RRC signaling configuration information.
  • the information includes PUCCH information, and the configuration information includes MAC signaling or RRC signaling configuration information.
  • the multiple beams performing CCA detection in the embodiment of the present disclosure may have a priority order.
  • the priority order of the beams may be pre-configured, for example, may be pre-configured by the network device.
  • the network device can be determined based on the beam index size.
  • the priority order with a small index is higher than the priority order with a large index.
  • the network device can adjust the beam priority order.
  • the beams configured by the network device include beam 1, beam 2, beam 3, and beam 4, and the priority order of each beam is determined according to the index size, that is, the priority order of beam 1, beam 2, beam 3, and beam 4. Decrease from high to low. In the subsequent communication process, it is determined that beam 3 and beam 4 have better information transmission effects. At this time, the index of beam 3 and beam 4 can be renumbered to be smaller than the index of beam 1 and beam 2, thereby achieving beam priority order Adjustment.
  • the beam for information transmission may be determined among one or more beams for which CCA detection is successful based on the priority order of the beams.
  • Fig. 3 shows a schematic flow chart of determining a beam used for information transmission in an exemplary embodiment of the present disclosure. Referring to FIG. 3, it includes the following steps S131 and S132.
  • step S131 the priority order of each beam in the one or more beams successfully detected by CCA is determined.
  • the priority order of beams may be determined based on the index size of the beams.
  • step S132 based on the priority order of the beams, a beam for information transmission is determined among one or more beams for which CCA detection is successful.
  • the beam corresponding to the highest priority order can be selected for information transmission (the beam with the highest priority order is used for information transmission). For example, among one or more beams for which CCA detection is successful, the beam with the smallest beam index is selected for information transmission.
  • multiple beams used for CCA detection are configured by network equipment using RRC layer signaling.
  • the multiple beams configured by the network device using RRC layer signaling have a priority order, for example, the priority order is characterized based on the size of the beam index.
  • the network device can select the beam with the highest order to send information, for example, select the beam with the smallest beam index to send information.
  • multiple beams that can be used for CCA detection are configured by network equipment using RRC layer signaling.
  • the multiple beams configured by the network device using RRC layer signaling have a priority order, for example, the priority order is characterized based on the size of the beam index.
  • the network device can select the beam with the highest order to send information, for example, select the beam with the smallest beam index to send information.
  • multiple beams that can be used for CCA detection are specified by the network device using the DCI that schedules the PDSCH.
  • the multiple beams specified by the network device using the DCI have a priority order.
  • the priority order is characterized based on the size of the beam index.
  • multiple beams that can be used for CCA detection are specified by the network device using the DCI that schedules the PUSCH.
  • the multiple beams specified by the network device using the DCI have a priority order.
  • the priority order is characterized based on the size of the beam index.
  • multiple beams that can be used for CCA detection are configured by the network device using MAC layer signaling or RRC layer signaling.
  • the multiple beams configured by the network device using MAC layer signaling or RRC layer signaling have a priority order, for example, the priority order is characterized based on the size of the beam index.
  • multiple beams that can be used for CCA detection are configured by the network device using MAC layer signaling or RRC layer signaling.
  • the multiple beams configured by the network device using MAC layer signaling or RRC layer signaling have a priority order, for example, the priority order is characterized based on the size of the beam index.
  • multiple beams are determined to perform CCA detection, and the CCA detection is performed in the beam direction corresponding to each beam of the multiple beams, which can improve the success rate of CCA detection. Identifying the beam for information transmission among the beams for which CCA detection is successful, and performing information transmission based on the determined beam, can increase the probability of successful information transmission.
  • the information sending method may be applicable to scenarios where the sending end has multiple beams and low-latency service information is sent on an unlicensed frequency band, for example, URLLC service information is sent.
  • the transmitting end (terminal or network device) performs CCA detection based on multiple beams, and performs information transmission on the beam where the CCA detection is successful.
  • the receiving end (network device or terminal) can receive information based on the configured multiple beams.
  • the embodiments of the present disclosure also provide an information sending device.
  • the information sending apparatus includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 4 is a block diagram showing an information sending device according to an exemplary embodiment. 4, the information sending device 100 includes a determining unit 101 and a sending unit 102.
  • the determining unit 101 is configured to determine multiple beams for performing idle channel assessment and detection, and based on each beam of the multiple beams, perform idle channel assessment and detection in the respective beam direction of each beam, and respond to the multiple beams There are one or more beams that successfully perform idle channel assessment and detection, and determine the beam for information transmission among the one or more beams that perform idle channel assessment and detection successfully.
  • the sending unit 102 is configured to perform information transmission based on the determined beam for information transmission.
  • the determining unit 101 is configured to determine the beam for information transmission among the one or more beams for which the idle channel assessment and detection succeeded in the following manner: based on the priority order, determine among the one or more beams for which the idle channel assessment and detection succeeded The beam for information transmission.
  • the priority order is determined based on the beam index size.
  • the priority order with a small index is higher than the priority order with a large index.
  • the beam for information transmission is the beam corresponding to the highest priority order.
  • the determining unit 101 is configured to determine multiple beams for performing idle channel evaluation and detection in the following manner: determine multiple beams for performing idle channel evaluation and detection based on the configuration information of the network device.
  • the information includes information about semi-statically configured physical downlink shared channels, and the configuration information includes information about radio resource control signaling configuration.
  • the information includes information about configuring authorized physical uplink shared channels, and the configuration information includes information about radio resource control signaling configuration.
  • the information includes information about a dynamically scheduled physical downlink shared channel, and the configuration information includes downlink control signaling for scheduling a physical downlink shared channel.
  • the information includes information about the physical downlink control channel, and the configuration information includes information about media access control signaling or radio resource control signaling configuration.
  • the information includes information about a physical uplink control channel, and the configuration information includes information about media access control signaling or radio resource control signaling configuration.
  • Fig. 5 is a block diagram showing a device 200 for sending information according to an exemplary embodiment.
  • the apparatus 200 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 200 may include one or more of the following components: a processing component 202, a memory 204, a power component 206, a multimedia component 208, an audio component 210, an input/output (I/O) interface 212, a sensor component 214, and Communication component 216.
  • the processing component 202 generally controls the overall operations of the device 200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 202 may include one or more processors 220 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 202 may include one or more modules to facilitate the interaction between the processing component 202 and other components.
  • the processing component 202 may include a multimedia module to facilitate the interaction between the multimedia component 208 and the processing component 202.
  • the memory 204 is configured to store various types of data to support the operation of the device 200. Examples of these data include instructions for any application or method operating on the device 200, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 204 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power component 206 provides power to various components of the device 200.
  • the power component 206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 200.
  • the multimedia component 208 includes a screen that provides an output interface between the device 200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 208 includes a front camera and/or a rear camera. When the device 200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 210 is configured to output and/or input audio signals.
  • the audio component 210 includes a microphone (MIC), and when the device 200 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 204 or sent via the communication component 216.
  • the audio component 210 further includes a speaker for outputting audio signals.
  • the I/O interface 212 provides an interface between the processing component 202 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 214 includes one or more sensors for providing the device 200 with various aspects of state evaluation.
  • the sensor component 214 can detect the open/close state of the device 200 and the relative positioning of components.
  • the component is the display and the keypad of the device 200.
  • the sensor component 214 can also detect the position change of the device 200 or a component of the device 200. , The presence or absence of contact between the user and the device 200, the orientation or acceleration/deceleration of the device 200, and the temperature change of the device 200.
  • the sensor assembly 214 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 216 is configured to facilitate wired or wireless communication between the apparatus 200 and other devices.
  • the device 200 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 216 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 216 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 200 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 204 including instructions, which may be executed by the processor 220 of the device 200 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 6 is a block diagram showing a device 300 for sending information according to an exemplary embodiment.
  • the apparatus 300 may be provided as a network device, such as a base station. 5
  • the apparatus 300 includes a processing component 322, which further includes one or more processors, and a memory resource represented by the memory 332, for storing instructions that can be executed by the processing component 322, such as application programs.
  • the application program stored in the memory 332 may include one or more modules each corresponding to a set of instructions.
  • the processing component 322 is configured to execute instructions to perform the above-mentioned method.
  • the device 300 may also include a power component 326 configured to perform power management of the device 300, a wired or wireless network interface 350 configured to connect the device 300 to the network, and an input output (I/O) interface 358.
  • the device 300 can operate based on an operating system stored in the memory 332, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • non-transitory computer-readable storage medium including instructions, such as the memory 332 including instructions, which can be executed by the processing component 322 of the device 300 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • “plurality” refers to two or more, and other quantifiers are similar.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be referred to as second information
  • second information may also be referred to as first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种信息发送方法、信息发送装置及存储介质,信息发送方法包括:确定进行空闲信道评估检测的多个波束;基于所述多个波束中的每一个波束,在所述每一波束各自对应的波束方向上进行空闲信道评估检测;响应于所述多个波束中存在进行空闲信道评估检测成功的一个或多个波束,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束,并进行信息发送。通过本公开,提高多个波束进行空闲信道评估检测的成功率,进而提高信息发送成功率。

Description

信息发送方法、信息发送装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及信息发送方法、信息发送装置及存储介质。
背景技术
在R16新无线技术非授权频谱(New Radio–Unlicensed,NR-U)标准讨论和设计中,发送端在发送信息之前一般都要进行信道监听,只有在信道监听成功(也即确定监听信道上的干扰水平低于预定的干扰门限值)后,才能发送信息,即采用先听后说(listen before talk,LBT)的信道占用机制进行信息发送。发送端进行信道监听的过程叫做空闲信道评估(clear channel assessment,CCA),发送端在CCA成功以后就可以发送信息。
为了保证覆盖范围以及抵抗路径损耗,通常使用基于波束(beam)的发送和接收。由于各个波束的空间方向不同,在各个波束上进行发送或者接收时的干扰也不相同。在NR中,网络设备会为发送端配置发送信息所使用的一个波束。发送端在发送信息前需要预先确定发送该信息所使用的发送波束。当在该确定的发送波束上进行LBT检测确定干扰水平高于预定的干扰门限值,则确定CCA失败,不进行信息发送。
发明内容
为克服相关技术中存在的问题,本公开提供一种信息发送方法、信息发送装置及存储介质。
根据本公开实施例的第一方面,提供一种信息发送方法,包括:
确定进行空闲信道评估检测的多个波束;基于所述多个波束中的每一个波束,在所述每一波束各自对应的波束方向上进行空闲信道评估检测;响应于所述多个波束中存在进行空闲信道评估检测成功的一个或多个波束,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束,并进行信息发送。
一种实施方式中,所述多个波束之间具有优先级顺序。
在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束,包括:基于所述优先级顺序,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束。
另一种实施方式中,所述优先级顺序基于波束索引大小确定。
又一种实施方式中,索引小的优先级顺序高于索引大的优先级顺序。
又一种实施方式中,进行信息发送的波束为最高优先级顺序对应的波束。
又一种实施方式中,所述确定进行空闲信道评估检测的多个波束,包括:基于网络设备的配置信息,确定进行空闲信道评估检测的多个波束。
又一种实施方式中,所述信息包括半静态配置物理下行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者所述信息包括配置授权的物理上行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者所述信息包括动态调度的物理下行共享信道的信息,所述配置信息包括调度所述物理下行共享信道的下行控制信令;或者所述信息包括物理下行控制信道的信息,所述配置信息包括媒体接入控制信令或无线资源控制信令配置的信息;或者所述信息包括物理上行控制信道的信息,所述配置信息包括媒体接入控制信令或无线资源控制信令配置的信息。
根据本公开实施例的第二方面,提供一种信息发送装置,包括:
确定单元,被配置为确定进行空闲信道评估检测的多个波束,基于所述多个波束中的每一个波束,在所述每一波束各自对应的波束方向上进行空闲信道评估检测,并响应于所述多个波束中存在进行空闲信道评估检测成功的一个或多个波束,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束;发送单元,被配置为基于确定的进行信息发送的波束进行信息发送。
一种实施方式中,所述多个波束之间具有优先级顺序;所述确定单元被配置为采用如下方式在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束:基于所述优先级顺序,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束。
另一种实施方式中,所述优先级顺序基于波束索引大小确定。
又一种实施方式中,索引小的优先级顺序高于索引大的优先级顺序。
又一种实施方式中,进行信息发送的波束为最高优先级顺序对应的波束。
又一种实施方式中,所述确定单元被配置为采用如下方式确定进行空闲信道评估检测的多个波束:基于网络设备的配置信息,确定进行空闲信道评估检测的多个波束。
又一种实施方式中,所述信息包括半静态配置物理下行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者所述信息包括配置授权的物理上行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者所述信息包括动态调度的物理下行共享信道的信息,所述配置信息包括调度所述物理下行共享信道的下行控制信令;或者所述信息包括物理下行控制信道的信息,所述配置信息包括媒体接入控制信令或无线资源控制信令配置的信息;或者所述信息包括物理上行控制信道的信息,所述配置信息包 括媒体接入控制信令或无线资源控制信令配置的信息。
根据本公开实施例第三方面,提供一种信息发送装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的信息发送方法。
根据本公开实施例第四方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端或网络设备的处理器执行时,使得移动终端或网络设备能够执行第一方面或者第一方面任意一种实施方式中所述的信息发送方法。
本公开的实施例提供的技术方案可以包括以下有益效果:确定多个波束进行空闲信道评估检测,并在多个波束中的每一个波束各自对应的波束方向上进行空闲信道评估检测,可以提高空闲信道评估检测的成功率。在进行空闲信道评估检测成功的波束上进行信息发送,能够提高信息顺利发送的概率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统架构图。
图2是根据一示例性实施例示出的一种信息发送方法的流程图。
图3是根据一示例性实施例示出的一种确定进行信息发送的波束的方法流程图。
图4是根据一示例性实施例示出的一种信息发送装置的框图。
图5是根据一示例性实施例示出的一种用于信息发送的装置的框图。
图6是根据一示例性实施例示出的一种用于信息发送的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的信息发送方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括终端和网络设备。终端和网络设备之间通过无线资源进行信息 的发送与接收。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
相关技术中,终端与网络设备进行信息发送之前,作为信息发送端的一端(网络设备 或终端)采用LBT的信道占用机制进行CCA检测,发送端在CCA检测成功以后发送信息。
为了保证覆盖范围以及抵抗路径损耗,通常使用基于波束的发送和接收。在NR中,网络设备会为发送端配置发送信息所使用的波束。发送端在发送信息前需要预先确定发送该信息所使用的发送波束。其中,发送信息使用的波束可以是由网络设备配置的。例如,网络设备发送物理下行控制信道(Physical downlink control channel,PDCCH)信道的波束是网络设备使用媒体接入控制(Medium Access Control,MAC)信令半静态的配置的。网络设备发送动态调度的物理下行共享信道(Physical downlink shared channel,PDSCH),其波束是网络设备使用调度该PDSCH的下行控制信息(Downlink Control Information,DCI)来指定的。网络设备发送的半静态配置(semi-persistent scheduling,SPS)的PDSCH的波束是网络设备通过无线资源控制(Radio Resource Control,RRC)层信令半静态配置的。终端要发送的物理上行控制信道(Physical Uplink Control Channel,PUCCH)信道的波束是网络设备使用MAC信令半静态的配置的。终端发送动态调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的波束是网络设备使用调度该PUSCH的DCI来指定的。终端发送的半静态配置的配置授权的PUSCH(configured grant PUSCH,CG-PUSCH)的波束是网络设备通过RRC层信令半静态配置的。发送端通常具有多个发送波束,由于各个波束的空间方向不同,当发送端在同一时刻在不同的发送波束进行LBT时,不同的波束上能够检测到的干扰并不相同。然而上述发送信息波束的配置过程中,网络设备通常是为一个发送信息提前配置或者指定一个波束。当在该波束上进行LBT检测确定干扰水平高于预定的干扰门限值,则确定CCA失败,不进行信息发送。
在5G系统中有一类要求高可靠性和低时延的业务类型,即超可靠低时延业务(Ultra reliability low latency,URLLC)。对于URLLC业务,希望能够及时传输。如果在非授权频段上传输URLLC业务,希望能够降低因为信道监听不成功而导致URLLC不能顺利发送的概率。
有鉴于此,本公开实施例提供一种信息发送方法,在该信息发送方法中,确定多个波束进行CCA检测,并在多个波束中的每一个波束各自对应的波束方向上进行CCA检测,可以提高CCA检测的成功率。在进行CCA检测成功的波束上进行信息发送,能够提高信息顺利发送的概率。
图2是根据一示例性实施例示出的一种信息发送方法的流程图,如图2所示,信息发送方法用于发送端中,该发送端可以是终端,也可以是网络设备,包括以下步骤。
在步骤S11中,确定进行CCA检测的多个波束。
本公开实施例中,在进行信息发送前,可以确定进行CCA检测的多个波束,使用多个波束进行CCA检测。
一种实施方式中,本公开实施例中针对每一个待发送的信道配置多个波束进行CCA检测。
在步骤S12中,基于多个波束中的每一个波束,在每一波束各自对应的波束方向上进行CCA检测。
本公开实施例中,针对确定进行CCA检测的多个波束中的每一波束分别进行CCA检测,并且每一波束在各自对应的波束方向上进行CCA检测,提高CCA检测成功的概率。
在步骤S13中,响应于多个波束中存在进行CCA检测成功的一个或多个波束,在进行CCA检测成功的一个或多个波束中确定进行信息发送的波束。
本公开实施例中,使用多个波束在每一波束各自对应的波束方向上进行CCA检测,若存在CCA检测成功的波束,则在检测成功的波束中确定用于信息发送的波束。其中,CCA检测成功的波束可以是一个波束也可以是多个波束。
在步骤S14中,基于确定的进行信息发送的波束,进行信息发送。
本公开实施例提供的信息发送方法中,确定多个波束进行CCA检测,并在多个波束中的每一个波束各自对应的波束方向上进行CCA检测,可以提高CCA检测的成功率。在进行CCA检测成功的波束中确定进行信息发送的波束,并基于确定的波束进行信息发送,能够提高信息顺利发送的概率。
本公开实施例以下结合实际应用对上述实施例涉及的信息发送方法的实施过程进行说明。
一种实施方式中,本公开实施例中进行CCA检测的多个波束可以是有网络设备指定的或配置的。可以理解为,发送端可以基于网络设备的配置信息,确定进行CCA检测的多个波束。进一步的,本公开实施例针对发送的信息,可以采用不同的配置信息指示进行CCA检测的波束。例如,信息包括SPS PDSCH的信息,配置信息包括RRC层信令配置的信息。或者信息包括CG-PUSCH的信息,配置信息包括RRC信令配置的信息。或者信息包括动态调度的PDSCH,配置信息包括调度PDSCH的DCI。或者信息包括PDCCH的信息,配置信息包括MAC信令或RRC信令配置的信息。或者信息包括PUCCH的信息,配置信息包括MAC信令或RRC信令配置的信息。
一种实施方式中,本公开实施例中进行CCA检测的多个波束之间可以具有优先级顺 序。其中,波束的优先级顺序可以是预先配置的,例如可以是网络设备预先配置的。例如,网络设备可以基于波束索引大小确定。一实施方式中,索引小的优先级顺序高于索引大的优先级顺序。
进一步的,网络设备可以进行波束优先级顺序的调整。一示例中,网络设备配置的波束包括波束1、波束2、波束3和波束4,并按照索引大小确定各波束的优先级顺序,即波束1、波束2、波束3和波束4的优先级顺序从高至低依次降低。在后续通信过程中,确定波束3和波束4进行信息发送的效果更好,此时,可以将波束3和波束4的索引重新编号为小于波束1和波束2的索引,进而实现波束优先级顺序的调整。
在确定用于进行信息发送的波束时,可以基于波束的优先级顺序,在进行CCA检测成功的一个或多个波束中确定进行信息发送的波束。
图3示出了本公开一示例性实施例中确定用于信息发送的波束的流程示意图。参阅图3所示,包括以下步骤S131和步骤S132。
在步骤S131中,确定CCA检测成功的一个或多个波束中各波束的优先级顺序。
本公开实施例中,可以基于波束的索引大小确定波束的优先级顺序。
在步骤S132中,基于波束的优先级顺序,在进行CCA检测成功的一个或多个波束中确定进行信息发送的波束。
本公开实施例中,可以选取最高优先级顺序对应的波束进行信息发送(优先级顺序最优先的波束进行信息发送)。例如,在进行CCA检测成功的一个或多个波束中选择波束索引最小的波束进行信息发送。
一示例中,对于SPS PDSCH,用于进行CCA检测的多个波束是由网络设备使用RRC层信令配置的。网络设备使用RRC层信令配置的多个波束之间具有优先级顺序,例如,优先级顺序基于波束索引大小表征。当网络设备在多个波束上各波束分别进行CCA检测,且存在CCA检测成功的一个或多个波束时,网络设备可以选取其中顺序最优先的波束发送信息,例如,选取波束索引最小的波束发送信息。
另一示例中,对于CG-PUSCH,可用于进行CCA检测的多个波束是由网络设备使用RRC层信令配置的。网络设备使用RRC层信令配置的多个波束之间具有优先级顺序,例如,优先级顺序基于波束索引大小表征。当网络设备在多个波束上各波束分别进行CCA检测,且存在CCA检测成功的一个或多个波束时,网络设备可以选取其中顺序最优先的波束发送信息,例如,选取波束索引最小的波束发送信息。
又一示例中,对于动态调度的PDSCH,可用于进行CCA检测的多个波束是网络设备 使用调度该PDSCH的DCI来指定的。网络设备使用DCI所指定的多个波束之间具有优先级顺序,例如,优先级顺序基于波束索引大小表征。当网络设备在多个波束上各波束分别进行CCA检测,且存在CCA检测成功的一个或多个波束时,网络设备可以选取其中顺序最优先的波束发送信息,例如,选取波束索引最小的波束发送信息。
又一示例中,对于动态调度的PUSCH,可用于进行CCA检测的多个波束是网络设备使用调度该PUSCH的DCI来指定的。网络设备使用DCI所指定的多个波束之间具有优先级顺序,例如,优先级顺序基于波束索引大小表征。当终端在多个波束上各波束分别进行CCA检测,且存在CCA检测成功的一个或多个波束时,终端可以选取其中顺序最优先的波束发送信息,例如,选取波束索引最小的波束发送信息。
又一示例中,对于PDCCH信道,可用于进行CCA检测的多个波束是网络设备使用MAC层信令或者RRC层信令配置的。网络设备使用MAC层信令或者RRC层信令配置的多个波束之间具有优先级顺序,例如,优先级顺序基于波束索引大小表征。当网络设备在多个波束上各波束分别进行CCA检测,且存在CCA检测成功的一个或多个波束时,网络设备可以选取其中顺序最优先的波束发送信息,例如,选取波束索引最小的波束发送信息。
又一示例中,对于PUCCH信道,可用于进行CCA检测的多个波束是网络设备使用MAC层信令或者RRC层信令配置的。网络设备使用MAC层信令或者RRC层信令配置的多个波束之间具有优先级顺序,例如,优先级顺序基于波束索引大小表征。当终端在多个波束上各波束分别进行CCA检测,且存在CCA检测成功的一个或多个波束时,终端可以选取其中顺序最优先的波束发送信息,例如,选取波束索引最小的波束发送信息。
本公开实施例提供的信息发送方法中,确定多个波束进行CCA检测,并在多个波束中的每一个波束各自对应的波束方向上进行CCA检测,可以提高CCA检测的成功率。在进行CCA检测成功的波束中确定进行信息发送的波束,并基于确定的波束进行信息发送,能够提高信息顺利发送的概率。此种,信息发送方法可以适用于发送端具有多波束并在非授权频段上进行低时延业务信息的发送场景中,例如进行URLLC业务信息的发送。
本公开实施例中,发送端(终端或网络设备)基于多个波束进行CCA检测,并在CCA检测成功的波束上进行信息发送。接收端(网络设备或终端)可以基于配置的多个波束进行信息的接收。
基于相同的构思,本公开实施例还提供一种信息发送装置。
可以理解的是,本公开实施例提供的信息发送装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算 法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图4是根据一示例性实施例示出的一种信息发送装置框图。参照图4,信息发送装置100包括确定单元101和发送单元102。
确定单元101,被配置为确定进行空闲信道评估检测的多个波束,基于多个波束中的每一个波束,在每一波束各自对应的波束方向上进行空闲信道评估检测,并响应于多个波束中存在进行空闲信道评估检测成功的一个或多个波束,在进行空闲信道评估检测成功的一个或多个波束中确定进行信息发送的波束。发送单元102,被配置为基于确定的进行信息发送的波束进行信息发送。
一种实施方式中,多个波束之间具有优先级顺序。确定单元101被配置为采用如下方式在进行空闲信道评估检测成功的一个或多个波束中确定进行信息发送的波束:基于优先级顺序,在进行空闲信道评估检测成功的一个或多个波束中确定进行信息发送的波束。
另一种实施方式中,优先级顺序基于波束索引大小确定。
又一种实施方式中,索引小的优先级顺序高于索引大的优先级顺序。
又一种实施方式中,进行信息发送的波束为最高优先级顺序对应的波束。
又一种实施方式中,确定单元101被配置为采用如下方式确定进行空闲信道评估检测的多个波束:基于网络设备的配置信息,确定进行空闲信道评估检测的多个波束。
又一种实施方式中,信息包括半静态配置物理下行共享信道的信息,配置信息包括无线资源控制信令配置的信息。或者信息包括配置授权的物理上行共享信道的信息,配置信息包括无线资源控制信令配置的信息。或者信息包括动态调度的物理下行共享信道的信息,配置信息包括调度物理下行共享信道的下行控制信令。或者信息包括物理下行控制信道的信息,配置信息包括媒体接入控制信令或无线资源控制信令配置的信息。或者信息包括物理上行控制信道的信息,配置信息包括媒体接入控制信令或无线资源控制信令配置的信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图5是根据一示例性实施例示出的一种用于信息发送的装置200的框图。例如,装置200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备, 医疗设备,健身设备,个人数字助理等。
参照图5,装置200可以包括以下一个或多个组件:处理组件202,存储器204,电力组件206,多媒体组件208,音频组件210,输入/输出(I/O)接口212,传感器组件214,以及通信组件216。
处理组件202通常控制装置200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件202可以包括一个或多个处理器220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件202可以包括一个或多个模块,便于处理组件202和其他组件之间的交互。例如,处理组件202可以包括多媒体模块,以方便多媒体组件208和处理组件202之间的交互。
存储器204被配置为存储各种类型的数据以支持在装置200的操作。这些数据的示例包括用于在装置200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件206为装置200的各种组件提供电力。电力组件206可以包括电源管理系统,一个或多个电源,及其他与为装置200生成、管理和分配电力相关联的组件。
多媒体组件208包括在所述装置200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件208包括一个前置摄像头和/或后置摄像头。当装置200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件210被配置为输出和/或输入音频信号。例如,音频组件210包括一个麦克风(MIC),当装置200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器204或经由通信组件216发送。在一些实施例中,音频组件210还包括一个扬声器,用于输出音频信号。
I/O接口212为处理组件202和外围接口模块之间提供接口,上述外围接口模块可以 是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件214包括一个或多个传感器,用于为装置200提供各个方面的状态评估。例如,传感器组件214可以检测到装置200的打开/关闭状态,组件的相对定位,例如所述组件为装置200的显示器和小键盘,传感器组件214还可以检测装置200或装置200一个组件的位置改变,用户与装置200接触的存在或不存在,装置200方位或加速/减速和装置200的温度变化。传感器组件214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件216被配置为便于装置200和其他设备之间有线或无线方式的通信。装置200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器204,上述指令可由装置200的处理器220执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图6是根据一示例性实施例示出的一种用于信息发送的装置300的框图。例如,装置300可以被提供为一网络设备,例如基站。参照图5,装置300包括处理组件322,其进一步包括一个或多个处理器,以及由存储器332所代表的存储器资源,用于存储可由处理组件322的执行的指令,例如应用程序。存储器332中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件322被配置为执行指令,以执行上述方法。
装置300还可以包括一个电源组件326被配置为执行装置300的电源管理,一个有线 或无线网络接口350被配置为将装置300连接到网络,和一个输入输出(I/O)接口358。装置300可以操作基于存储在存储器332的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器332,上述指令可由装置300的处理组件322执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种信息发送方法,其特征在于,包括:
    确定进行空闲信道评估检测的多个波束;
    基于所述多个波束中的每一个波束,在所述每一波束各自对应的波束方向上进行空闲信道评估检测;
    响应于所述多个波束中存在进行空闲信道评估检测成功的一个或多个波束,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束,并进行信息发送。
  2. 根据权利要求1所述的信息发送方法,其特征在于,所述多个波束之间具有优先级顺序;
    在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束,包括:
    基于所述优先级顺序,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束。
  3. 根据权利要求2所述的信息发送方法,其特征在于,所述优先级顺序基于波束索引大小确定。
  4. 根据权利要求3所述的信息发送方法,其特征在于,索引小的优先级顺序高于索引大的优先级顺序。
  5. 根据权利要求2至4中任意一项所述的信息发送方法,其特征在于,进行信息发送的波束为最高优先级顺序对应的波束。
  6. 根据权利要求1所述的信息发送方法,其特征在于,所述确定进行空闲信道评估检测的多个波束,包括:
    基于网络设备的配置信息,确定进行空闲信道评估检测的多个波束。
  7. 根据权利要求6所述的信息发送方法,其特征在于,所述信息包括半静态配置物理下行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者
    所述信息包括配置授权的物理上行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者
    所述信息包括动态调度的物理下行共享信道的信息,所述配置信息包括调度所述物理下行共享信道的下行控制信令;或者
    所述信息包括物理下行控制信道的信息,所述配置信息包括媒体接入控制信令或无线 资源控制信令配置的信息;或者
    所述信息包括物理上行控制信道的信息,所述配置信息包括媒体接入控制信令或无线资源控制信令配置的信息。
  8. 一种信息发送装置,其特征在于,包括:
    确定单元,被配置为确定进行空闲信道评估检测的多个波束,基于所述多个波束中的每一个波束,在所述每一波束各自对应的波束方向上进行空闲信道评估检测,并响应于所述多个波束中存在进行空闲信道评估检测成功的一个或多个波束,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束;
    发送单元,被配置为基于确定的进行信息发送的波束进行信息发送。
  9. 根据权利要求8所述的信息发送装置,其特征在于,所述多个波束之间具有优先级顺序;
    所述确定单元被配置为采用如下方式在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束:
    基于所述优先级顺序,在进行空闲信道评估检测成功的所述一个或多个波束中确定进行信息发送的波束。
  10. 根据权利要求9所述的信息发送装置,其特征在于,所述优先级顺序基于波束索引大小确定。
  11. 根据权利要求10所述的信息发送装置,其特征在于,索引小的优先级顺序高于索引大的优先级顺序。
  12. 根据权利要求9至11中任意一项所述的信息发送装置,其特征在于,进行信息发送的波束为最高优先级顺序对应的波束。
  13. 根据权利要求8所述的信息发送装置,其特征在于,所述确定单元被配置为采用如下方式确定进行空闲信道评估检测的多个波束:
    基于网络设备的配置信息,确定进行空闲信道评估检测的多个波束。
  14. 根据权利要求13所述的信息发送装置,其特征在于,所述信息包括半静态配置物理下行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者
    所述信息包括配置授权的物理上行共享信道的信息,所述配置信息包括无线资源控制信令配置的信息;或者
    所述信息包括动态调度的物理下行共享信道的信息,所述配置信息包括调度所述物理下行共享信道的下行控制信令;或者
    所述信息包括物理下行控制信道的信息,所述配置信息包括媒体接入控制信令或无线资源控制信令配置的信息;或者
    所述信息包括物理上行控制信道的信息,所述配置信息包括媒体接入控制信令或无线资源控制信令配置的信息。
  15. 一种信息发送装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至7中任意一项所述的信息发送方法。
  16. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端或网络设备的处理器执行时,使得移动终端或网络设备能够执行权利要求1至7中任意一项所述的信息发送方法。
PCT/CN2020/091369 2020-05-20 2020-05-20 信息发送方法、信息发送装置及存储介质 WO2021232308A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/091369 WO2021232308A1 (zh) 2020-05-20 2020-05-20 信息发送方法、信息发送装置及存储介质
CN202080001079.3A CN113966626A (zh) 2020-05-20 2020-05-20 信息发送方法、信息发送装置及存储介质
US17/999,124 US20230199843A1 (en) 2020-05-20 2020-05-20 Information sending method, information sending apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091369 WO2021232308A1 (zh) 2020-05-20 2020-05-20 信息发送方法、信息发送装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021232308A1 true WO2021232308A1 (zh) 2021-11-25

Family

ID=78709089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091369 WO2021232308A1 (zh) 2020-05-20 2020-05-20 信息发送方法、信息发送装置及存储介质

Country Status (3)

Country Link
US (1) US20230199843A1 (zh)
CN (1) CN113966626A (zh)
WO (1) WO2021232308A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190069303A1 (en) * 2017-08-25 2019-02-28 Qualcomm Incorporated Channel access mechanisms for multi-band operation
CN111096059A (zh) * 2017-08-16 2020-05-01 Lg电子株式会社 在未授权频带中管理无线电链路的方法和设备
CN111133823A (zh) * 2017-09-28 2020-05-08 夏普株式会社 通信装置以及通信方法
CN111149416A (zh) * 2017-09-29 2020-05-12 高通股份有限公司 用于配置共享频谱中的带宽部分的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096059A (zh) * 2017-08-16 2020-05-01 Lg电子株式会社 在未授权频带中管理无线电链路的方法和设备
US20190069303A1 (en) * 2017-08-25 2019-02-28 Qualcomm Incorporated Channel access mechanisms for multi-band operation
CN111133823A (zh) * 2017-09-28 2020-05-08 夏普株式会社 通信装置以及通信方法
CN111149416A (zh) * 2017-09-29 2020-05-12 高通股份有限公司 用于配置共享频谱中的带宽部分的方法、装置和系统

Also Published As

Publication number Publication date
US20230199843A1 (en) 2023-06-22
CN113966626A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2021087825A1 (zh) 波束失败检测资源分配方法、装置及存储介质
WO2021226746A1 (zh) 数据传输方法、数据传输装置及存储介质
EP4002943B1 (en) Data transmission method, apparatus, and storage medium
CN113196854B (zh) 波束确定方法、波束确定装置及存储介质
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
US20210314992A1 (en) Method and apparatus for sending uplink scheduling request, device and storage medium
WO2021087786A1 (zh) 波束失败请求资源分配方法、装置及存储介质
WO2021007787A1 (zh) 资源分配方法、装置及存储介质
WO2021243711A1 (zh) 信道接入方法、信道接入装置及存储介质
WO2022257136A1 (zh) 波束失败恢复方法、装置及存储介质
CN113196836B (zh) 一种搜索空间监测方法、搜索空间监测装置及存储介质
US20240048330A1 (en) Resource determination method, resource determination apparatus and storage medium
WO2023279262A1 (zh) 一种消息配置方法、消息配置装置及存储介质
WO2021179126A1 (zh) 控制信令检测方法、控制信令检测装置及存储介质
WO2021232308A1 (zh) 信息发送方法、信息发送装置及存储介质
US20230413272A1 (en) Uplink control information transmission method and apparatus, and storage medium
WO2024065819A1 (zh) 一种中继通信方法、装置及存储介质
CN113366781B (zh) 通信方法、通信装置及存储介质
US20240172225A1 (en) Method and device for open loop power control of uplink cg pusch, and storage medium
WO2021203247A1 (zh) 非授权频段反馈方法、非授权频段反馈装置及存储介质
US20240137851A1 (en) Network access method, network access apparatus, and storage medium
US20240236825A9 (en) Network access method, network access apparatus, and storage medium
KR20230125831A (ko) 랜덤 액세스 파라미터 설정 방법, 장치 및 저장 매체
CN115735389A (zh) 上行免调度pusch的通信方法、装置及存储介质
CN114600529A (zh) Harq-ack反馈处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936388

Country of ref document: EP

Kind code of ref document: A1