WO2023070311A1 - 用于对燃料电池进行吹扫的装置和方法 - Google Patents

用于对燃料电池进行吹扫的装置和方法 Download PDF

Info

Publication number
WO2023070311A1
WO2023070311A1 PCT/CN2021/126391 CN2021126391W WO2023070311A1 WO 2023070311 A1 WO2023070311 A1 WO 2023070311A1 CN 2021126391 W CN2021126391 W CN 2021126391W WO 2023070311 A1 WO2023070311 A1 WO 2023070311A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
valve
pipeline
exhaust gas
purge
Prior art date
Application number
PCT/CN2021/126391
Other languages
English (en)
French (fr)
Inventor
王凯
傅立运
张旭
常亚飞
陈泽
Original Assignee
罗伯特•博世有限公司
王凯
傅立运
张旭
常亚飞
陈泽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特•博世有限公司, 王凯, 傅立运, 张旭, 常亚飞, 陈泽 filed Critical 罗伯特•博世有限公司
Priority to CN202190001070.2U priority Critical patent/CN221747272U/zh
Priority to PCT/CN2021/126391 priority patent/WO2023070311A1/zh
Publication of WO2023070311A1 publication Critical patent/WO2023070311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of fuel cells, in particular, to a device and method for purging a fuel cell.
  • a fuel cell such as a proton exchange membrane fuel cell (PEMFC)
  • PEMFC proton exchange membrane fuel cell
  • it is necessary to use hydrogen to purge the fuel cell that is, to use hydrogen to purge the anode of the fuel cell stack of the fuel cell to discharge the fuel cell stack.
  • the moisture and other gases in the anode make the anode have a higher concentration of hydrogen, so that the performance of the fuel cell will not be deteriorated due to the moisture and other gases in the anode.
  • the object of the present invention is to provide a device and method for purging a fuel cell.
  • a device for purging a fuel cell comprising: an exhaust gas collection unit configured to collect the Nitrogen-containing exhaust gas discharged from the cathode of the fuel cell stack of the battery; a purge unit configured to be collected by the exhaust gas collection unit when the gas pressure in the exhaust gas collection unit is greater than a predetermined pressure threshold and the fuel cell is shut down Nitrogen-containing exhaust gas purging the anode of the fuel cell stack, wherein, the shutdown state refers to the state where the fuel cell stack is stopped from inputting air and hydrogen.
  • a method for purging a fuel cell the method using the device for purging a fuel cell according to the present invention, the method comprising: determining whether to receive Receive a purge instruction for purging the fuel cell; if it is determined that the purge instruction is received, determine whether the gas pressure in the exhaust gas collection unit is greater than the predetermined pressure threshold; determine whether the gas pressure in the exhaust gas collection unit When the gas pressure is greater than the predetermined pressure threshold and the fuel cell is in shutdown state, the anode of the fuel cell stack is purged by the purge unit using the nitrogen-containing waste gas collected by the waste gas collection unit.
  • a computer program product comprises a computer program which, when executed by a processor, causes the processor to implement the method according to the present invention for Method for purging the battery.
  • a computer-readable recording medium storing a computer program, wherein the computer program is configured to implement the method for blowing a fuel cell according to the present invention when executed by a processor. method of sweeping.
  • the nitrogen-containing exhaust gas discharged from the fuel cell stack of the fuel cell can be collected, and the collected nitrogen-containing exhaust gas can be used to purify the fuel cell stack when the fuel cell is shut down.
  • the anode is purged without setting an additional nitrogen source, thereby preventing performance degradation of the fuel cell in a shutdown state, improving the stability of the fuel cell and reducing the cost of purging.
  • FIG. 1 shows a block diagram of an apparatus for purging a fuel cell according to an exemplary embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of an apparatus for purging a fuel cell according to an exemplary embodiment of the present invention.
  • FIG. 3 shows a schematic diagram of an apparatus for purging a fuel cell according to another exemplary embodiment of the present invention.
  • FIG. 4 shows a flowchart of a method for purging a fuel cell using the apparatus shown in one of FIGS. 1 to 3 according to an exemplary embodiment of the present invention.
  • FIG. 1 shows a block diagram of an apparatus 100 for purging a fuel cell 200 according to an exemplary embodiment of the present invention.
  • the fuel cell 200 may be a proton exchange membrane fuel cell (PEMFC).
  • the fuel cell 200 may have a fuel cell stack 210 and other components 200-n connected or not connected to the fuel cell stack.
  • the fuel cell stack 210 has a cathode 211 and an anode 212 .
  • the device 100 for purging the fuel cell 200 includes: an exhaust gas collection unit 110 and a purging unit 120 .
  • the exhaust gas collection unit 110 is configured to collect the nitrogen-containing exhaust gas discharged from the cathode 211 of the fuel cell stack 210 of the fuel cell 200 when the fuel cell 200 is not shut down.
  • the shutdown state refers to a state in which the supply of air and hydrogen to the fuel cell stack 210 is stopped.
  • the shutdown state may refer to a state in which the cathode inlet, cathode outlet, anode inlet and anode outlet of the fuel cell stack are all closed by corresponding valves so that the cathode and anode of the fuel cell stack cannot be input with air and hydrogen.
  • the oxygen in the air input to the cathode of the fuel cell stack reacts with the hydrogen input from the anode to be consumed, so the exhaust gas output from the cathode has a lower oxygen content and a lower nitrogen content. High, so this nitrogen-containing exhaust gas can be regarded as nitrogen gas.
  • the purge unit 120 is configured to use the nitrogen-containing exhaust gas collected by the exhaust gas collection unit 110 to purge the anode 212 of the fuel cell stack 210 when the gas pressure in the exhaust gas collection unit 110 is greater than a predetermined pressure threshold and the fuel cell 200 is in a shutdown state. Perform a purge.
  • the gas pressure in the exhaust gas collection unit 110 greater than a predetermined pressure threshold may indicate that the nitrogen-containing exhaust gas stored in the exhaust gas collection unit 110 is sufficient for the purging operation, so the purging unit 120 may perform the purging operation using the collected exhaust gas.
  • the purge unit 120 may include: a purge input unit and a purge output unit (not shown in FIG. 1 ).
  • the purge input unit may be configured to input the nitrogen-containing exhaust gas to the anode inlet of the fuel cell stack 210 during purging the anode 212 of the fuel cell stack 210.
  • the purge output unit may be configured to discharge purge gas purged from the anode 212 of the fuel cell stack 210 from the anode outlet of the fuel cell stack to the external environment during purging of the anode 212 of the fuel cell stack 210 .
  • the device 100 for purging the fuel cell 200 may also include: a detection unit and an adjustment unit (not shown in FIG. 1 ).
  • the detection unit may be configured to be capable of detecting a hydrogen concentration in the purge gas.
  • the detection unit may be arranged in the purge output unit, for example at a position close to the anode outlet of the fuel cell stack.
  • the adjustment unit may be configured to be able to input air into the purge output unit when the detection unit detects that the hydrogen concentration is greater than the first predetermined concentration threshold, so as to mix air into the purge gas, so that the mixed gas output to the external environment
  • the hydrogen gas concentration in is less than or equal to the first predetermined concentration threshold.
  • the first concentration threshold may be a value close to and lower than the explosive concentration value of hydrogen.
  • FIG. 2 shows a schematic diagram of an apparatus 100 for purging a fuel cell according to an exemplary embodiment of the present invention.
  • the exhaust gas collection unit 110 of the device 100 for purging a fuel cell according to the present invention may include: a first pipe 110-1 and a first valve 110-2.
  • the first pipe 110 - 1 may be connected between the cathode outlet 211 - 2 of the fuel cell stack 210 and the purge input unit 121 .
  • the first valve 110-2 may be disposed in the first pipeline 110-1, and is used to connect or disconnect the gas passage in the first pipeline 110-1.
  • the first valve 110-2 can be opened to connect the gas passage in the first pipeline; when the waste gas collection unit 110 does not need to collect waste gas containing nitrogen, the first valve 110 -2 can be closed to disconnect the gas passage in the first conduit.
  • the waste gas collection unit 110 may further include: a pump 110-3.
  • a pump 110-3 may be provided in the first pipe 110-1 for pumping the nitrogen-containing exhaust gas in a direction away from the cathode outlet.
  • the exhaust gas collection unit 110 may further include: a storage box 110-4.
  • the storage tank 110-4 may be connected to the first pipeline 110-1 for storing the nitrogen-containing waste gas.
  • the purge input unit 121 of the purge unit 120 of the device 100 for purging a fuel cell according to the present invention may include: a second pipe 121-1 and a second valve 121-2.
  • the second pipe 121-1 may be connected between the first pipe 110-1 and the anode inlet 212-1 of the fuel cell stack.
  • the second valve 121-2 may be disposed in the second pipeline 121-1 for connecting or disconnecting the gas passage in the second pipeline 121-1.
  • the second valve 121-2 can be opened to connect the gas passage in the second pipeline; when the purging unit 120 is not performing the purging operation, the second valve 121-2 2 can be closed to disconnect the gas passage in the second conduit.
  • the purge output unit 122 of the purge unit 120 may include: a third pipe 122-1 and a third valve 122-2.
  • a third conduit 122-1 may connect between the anode outlet 212-2 of the fuel cell stack and the external environment.
  • the third valve 122-2 may be disposed in the third pipeline 122-1, and is used to connect or disconnect the gas passage in the third pipeline 122-1.
  • the third valve 122-2 can be opened to connect the gas passage in the third pipeline; when the purging unit 120 is not performing the purging operation, the third valve 122- 2 can be closed to disconnect the gas passage in the third pipe.
  • the detection unit 130 may be disposed in the third pipe 122-1.
  • the detection unit may be a sensor for detecting the concentration of hydrogen gas.
  • the regulating unit 140 may include: a fourth pipe 140-1 and a fourth valve 140-2.
  • the fourth pipe 140-1 may be connected between the gas outlet of the air compressor 220 of the fuel cell 200 and the third pipe 122-1.
  • the fourth valve 140-2 may be disposed in the fourth pipeline 140-1 for connecting or disconnecting the gas passage in the fourth pipeline 140-1.
  • the fourth valve 140-2 can be opened to connect the gas passage in the fourth pipeline; , the fourth valve 140-2 can be closed to cut off the gas passage in the fourth pipeline.
  • the fourth valve is shown as a separate valve in FIG. 2 , it should be understood that the fourth valve may be a switch for the air compressor 220 .
  • FIG. 2 only shows an exemplary form and an exemplary arrangement of various components of the device 100 for purging the fuel cell, and different forms and arrangements of the various components shown in FIG. 2 may be used according to actual needs.
  • the form and arrangement of the device 100 according to the invention are implemented.
  • FIG. 2 shows device 100 in an arrangement separate from fuel cell 200 .
  • the apparatus 100 for purging the fuel cell according to the present invention may be implemented in the fuel cell in combination with existing components of the fuel cell.
  • FIG. 2 shows the first to fourth valves in the form of two-way valves, however the first to fourth valves may have other forms.
  • FIG. 3 shows a schematic diagram of an apparatus 100 for purging a fuel cell according to another exemplary embodiment of the present invention.
  • FIG. 3 shows an example embodiment of implementing an apparatus 100 for purging a fuel cell according to the present invention in conjunction with existing components of a fuel cell 200 (numbers greater than 200 are used to designate these existing components, and these Existing components may be included in other components 200-n of the fuel cell 200 shown in FIG. 1).
  • the first valve 110 - 2 in the exhaust gas collection unit 110 may be a three-way valve.
  • the first end and the second end (left and right ends in FIG. 3 ) of the first valve 110-2 can be connected in the exhaust gas discharge pipe 230 connected to the cathode outlet 211-2 of the fuel cell stack 210, the first valve 110- A third end (the upper end in FIG. 3 ) of 2 may be connected to the first conduit 110-1.
  • the first stop valve 231 is used to connect or disconnect the gas passage in the exhaust gas discharge pipe 230 .
  • a pressure regulating valve 232 may also be provided in the exhaust gas discharge pipe 230 .
  • the first end of the first valve 110-2 can be used as the inlet of the first pipeline 110-1.
  • the exhaust gas collection unit 110 may further include: a four-way valve 110-5.
  • the first end and the second end of the four-way valve 110-5 (the left and right ends in FIG. 3 ) can be connected in the air input pipe 240 connected to the cathode inlet 211-1 of the fuel cell stack 210, and the four-way valve 110-
  • the third end and the fourth end of 5 (upper and lower ends in FIG. 3 ) can be connected in the first pipe 110-1.
  • a second stop valve 241 In the air input pipeline 240, starting from the cathode inlet 211-1, a second stop valve 241, a first end of the four-way valve 110-5, a second end of the four-way valve 110-5, and an air compressor can be arranged in sequence. 220.
  • the second stop valve 241 is used to connect or disconnect the gas passage in the air input pipe 240 .
  • the second valve 121-2 in the purge unit 120 may also be a three-way valve. First and second ends (right and lower ends in FIG. 3 ) of the second valve 121 - 2 may be connected in the hydrogen gas input pipe 250 connected to the anode inlet 212 - 1 of the fuel cell stack 210 . A third end (left end in FIG. 3 ) of the second valve 121-2 may be connected to the first pipe 110-1.
  • the third stop valve 251 and the hydrogen injection valve can be arranged in sequence 252.
  • the third stop valve 251 is used to connect or disconnect the gas passage in the hydrogen input pipeline 250 .
  • the third end of the second valve 121-2 can be used as the outlet of the first pipeline 110-1 and the inlet of the second pipeline 121-1, and the first end of the second valve 121-2 can be used as the second pipeline 121-1. 1 exit. That is, the passage between the left end and the lower end of the second valve 121-2 may serve as the second pipe 121-1.
  • the third valve 122-2 in the purge unit 120 may also be a three-way valve.
  • the first end and the second end (the upper end and the right end in FIG. 3 ) of the third valve 122-2 can be connected in the hydrogen output pipe 260 connected to the anode outlet 212-2 of the fuel cell stack 210, the third valve 122- A third end (lower end in FIG. 3 ) of 2 may be connected to a third pipe 122-1.
  • the first end of the third valve 122-2, the second end of the third valve 122-2, and the fourth cut-off valve 261 can be arranged in sequence.
  • the fourth stop valve 261 is used to connect or disconnect the gas passage in the hydrogen output pipeline 260 .
  • the first end of the third valve 122-2 can be used as the inlet of the third pipe 122-1.
  • An outlet of the third pipe 122 - 1 may be connected with an exhaust gas discharge pipe 230 to be connected to an external environment via the exhaust gas discharge pipe 230 .
  • the fourth pipe 140-1 in the adjustment unit 140 may be connected to the gas outlet of the air compressor 220 of the fuel cell 200 and connected to the exhaust gas discharge pipe 230 or the third pipe 122-1, so that the air in the fourth pipe 140-1 Air is mixed with purge gas.
  • the switch of the air compressor 220 may be used as the fourth valve of the adjustment unit 140 described above with reference to FIG. 2 .
  • a connecting pipeline and a hydrogen circulation pump 270 arranged in the connecting pipeline can also be arranged between the hydrogen gas input pipeline 250 and the hydrogen gas output pipeline 260 , Used to form a hydrogen recycle loop.
  • FIGS. 1 to 3 only show exemplary embodiments of an apparatus for purging a fuel cell according to the present invention, and more or more components than those shown in FIGS. 1 to 3 may be used according to actual needs.
  • the device according to the invention can be implemented with only a small number of components, for example a pump for pumping the gas can also be included in the purge unit, etc.
  • existing components of the fuel cell may include more components than those shown in FIG. 3 , such as filters, controllers, additional valves, and the like.
  • the device for purging a fuel cell of the present invention it is possible to collect the nitrogen-containing waste gas discharged from the fuel cell stack of the fuel cell, and to use the collected nitrogen-containing waste gas to purge the anode of the fuel cell stack under the shutdown state of the fuel cell. Purging is performed without setting an additional nitrogen source, thereby preventing performance degradation of the fuel cell in a shutdown state, improving the stability of the fuel cell and reducing the cost of purging.
  • FIG. 4 shows a flowchart of a method for purging a fuel cell using the device 100 shown in one of FIGS. 1 to 3 according to an exemplary embodiment of the present invention.
  • step S1 it is determined whether a purge command for purging the fuel cell is received.
  • the purge command may be a start command for starting the fuel cell or a shutdown command for shutting down the fuel cell. That is, the device 100 shown in FIGS. 1 to 3 can not only purge the fuel cell when the fuel cell is shut down, but also can purge the fuel cell when the fuel cell is turned on.
  • step S1 may be returned to and continued to be executed.
  • step S2 may be performed to determine whether the gas pressure in the exhaust gas collection unit is greater than the predetermined pressure threshold.
  • the predetermined pressure threshold may be a value indicating whether the storage amount of nitrogen-containing exhaust gas in the exhaust gas collection unit is sufficient.
  • the predetermined pressure threshold in step S2 may be a fixed value.
  • step S2 may be performed in the following manner: when the ratio of the gas pressure in the exhaust gas collection unit 110 to the gas pressure in the hydrogen input pipe 250 connected to the anode of the fuel cell stack is greater than a predetermined ratio, it may be determined that the exhaust gas The gas pressure within the collection unit 110 is greater than a predetermined pressure threshold.
  • step S3 may be executed.
  • the unit 120 uses the nitrogen-containing exhaust gas collected by the exhaust gas collection unit 110 to purge the anode of the fuel cell stack.
  • the shutdown state of the fuel cell 200 may refer to a state in which the first shut-off valve 231 , the second shut-off valve 241 , the third shut-off valve 251 and the fourth shut-off valve 261 in FIG. 3 are all closed.
  • the purge operation may not be performed.
  • step S1 is a shutdown command
  • step S1 is a start-up command
  • the shutdown of the fuel cell 200 may not be controlled immediately.
  • the first cut-off valve 231 , the second cut-off valve 241 , the third cut-off valve 251 and the fourth cut-off valve 261 in FIG. 3 may not be closed immediately.
  • each valve in FIG. 3 can be in the following states: the first to fourth stop valves are opened, the left and right ends of the first valve 110-2 are opened and the upper end is closed, and the left and right ends of the four-way valve 110-5 are opened and closed.
  • the upper and lower ends are closed, the right end and the lower end of the second valve 121-2 are opened and the left end is closed, and the upper end and the right end of the third valve 122-2 are opened and the lower end is closed.
  • step S1 After the shutdown command is received in step S1 , the following steps can also be performed: enabling the exhaust gas collection unit 110 to collect nitrogen-containing exhaust gas, that is, to activate the exhaust gas collection unit 110 .
  • the upper end of the first valve 110-2 in FIG. 3 can be opened and the left end can be closed, the upper and lower ends of the four-way valve 110-5 can be opened, and other valves remain unchanged. Additionally, pump 110-3 may be activated.
  • the exhaust gas collection unit 110 While collecting the nitrogen-containing exhaust gas, the following steps can also be started: during the collection of the nitrogen-containing exhaust gas by the exhaust gas collection unit 110, the air with a predetermined air flow rate is input to the cathode 211 of the fuel cell stack 210, and the hydrogen gas with a predetermined hydrogen flow rate input to the anode 212 of the fuel cell stack 210 such that the nitrogen content in the nitrogen-containing exhaust gas is greater than a predetermined nitrogen threshold.
  • the nitrogen content of the nitrogen-containing waste gas can be increased, so that the nitrogen-containing waste gas can be used as higher-purity nitrogen.
  • the predetermined air flow may be less than the air flow for normal operation of the fuel cell, and the predetermined hydrogen flow may be less than the hydrogen flow for normal operation of the fuel cell. In this way, the gas pressure in the exhaust gas collection unit 110 can be improved.
  • step S2 may be performed to determine whether the gas pressure in the exhaust gas collection unit is greater than a predetermined pressure threshold.
  • the gas pressure can be determined periodically.
  • step S2 If it is determined in step S2 that the gas pressure in the exhaust gas collection unit 110 is not greater than the predetermined pressure threshold, the exhaust gas collection unit 110 may continue to collect nitrogen-containing exhaust gas.
  • step S2 it is determined that the gas pressure in the exhaust gas collection unit is greater than the predetermined pressure threshold, the following step may be performed: controlling the shutdown of the fuel cell so that the fuel cell is in a shutdown state.
  • first shutoff valve 231, the second shutoff valve 241, the third shutoff valve 251, and the fourth shutoff valve 261 in FIG. 3 may be closed, and the air compressor 220 may be turned off.
  • the following step may also be performed: making the exhaust gas collection unit 110 stop collecting exhaust gas.
  • the pump 110-3 in FIG. 3 can be turned off, and the left and right ends of the four-way valve 110-5 can be closed.
  • the upper end of the four-way valve 110-5 can also be closed (in the case of no storage tank, the nitrogen-containing waste gas is stored in the first pipeline 110- 1, so the upper end of the four-way valve can be kept open to make full use of the nitrogen-containing waste gas stored in the first pipeline 110-1).
  • step S3 may be performed, using the nitrogen-containing waste gas collected by the waste gas collection unit 110 to purge the anode of the fuel cell stack through the purge unit 120 .
  • the left end of the second valve 121-2 in FIG. 3 can be opened and the right end can be closed, and the lower end of the third valve 122-2 can be opened and the right end can be closed, so that the first pipeline 110-1 and the storage tank 110-4 (in the setting
  • the nitrogen-containing waste gas in the storage tank 110-4 is input to the anode 212 from the anode inlet 212-1 of the fuel cell stack 210, and the purge gas purged from the anode is passed through the anode outlet 212-2 through the anode 212.
  • Three conduits 122-1 (and via exhaust discharge conduit 230) exhaust to the external environment.
  • the fuel cell when the fuel cell needs to be shut down, the fuel cell can be purged, so that the performance of the fuel cell after shutdown will not be deteriorated by the residual hydrogen in the anode.
  • step S1 if the purge command received in step S1 is a power-on command, it may be determined that the fuel cell is currently in a shutdown state.
  • each valve in FIG. 3 can be in the following state: the first cut-off valve 231, the second cut-off valve 241, the third cut-off valve 251 and the fourth cut-off valve 261 are closed, and the upper end of the first valve 110-2 is closed , the left end of the second valve 121-2 is closed, the lower end of the third valve 122-2 is closed, and the left and right ends of the four-way valve are closed (in the case where the storage box 110-4 is set as shown in Figure 3, the fourth valve The left and right ends can be opened and the upper end can be closed).
  • step S2 may be performed to determine whether the gas pressure in the exhaust gas collection unit is greater than a predetermined pressure threshold. That is, it is determined whether the exhaust gas collection unit 110 has stored enough nitrogen-containing exhaust gas to perform the purge operation.
  • step S3 may be performed, using the nitrogen-containing exhaust gas collected by the exhaust gas collection unit 110 to purge the anode of the fuel cell stack through the purge unit 120 .
  • the left and lower ends of the second valve 121-2 in FIG. 3 may be opened and the right end may be closed, and the upper and lower ends of the third valve 122-2 may be opened and the right end may be closed.
  • a power-on operation of the fuel cell may be performed.
  • first to fourth cut-off valves in FIG. 3 can be opened, the left and right ends of the first valve 110-2 can be opened and the upper end can be closed, the left and right ends of the four-way valve 110-5 can be opened and the upper and lower ends can be closed, and the second valve 110-2 can be opened.
  • the right and lower ends of the valve 121-2 are closed and the left end is closed, and the upper and right ends of the third valve 122-2 are opened and the lower end is closed.
  • the purge unit 120 can be controlled to stop purging in the following manner: when it is detected that the hydrogen concentration in the purge gas is less than the second predetermined concentration value and/or the purge time is greater than the predetermined When the time and/or the gas pressure in the exhaust gas collection unit is lower than a predetermined minimum pressure, the purging of the anode of the fuel cell stack by the purging unit can be stopped.
  • the second predetermined concentration value may be a value close to zero.
  • the following steps can also be performed: During the purging of the anode, the concentration of hydrogen in the purge gas purged from the anode of the fuel cell stack is detected; when the hydrogen concentration is detected to be greater than the first predetermined concentration threshold, air is mixed into the purge gas, so that The hydrogen concentration in the mixed gas output to the external environment of the fuel cell is less than or equal to the first predetermined concentration threshold.
  • the hydrogen concentration in the purging gas may be detected by the detection unit 30 in FIG. 2 or FIG. 3 .
  • the air compressor 220 is activated to mix air into the purge gas through the fourth pipe 140-1, thereby reducing the hydrogen concentration in the gas discharged to the external environment.
  • the nitrogen-containing exhaust gas discharged from the fuel cell stack of the fuel cell can be collected, and the collected nitrogen-containing exhaust gas can be used to purify the anode of the fuel cell stack in the shutdown state of the fuel cell. Purging is performed without setting an additional nitrogen source, thereby preventing performance degradation of the fuel cell in a shutdown state, improving the stability of the fuel cell and reducing the cost of purging.
  • a computer program product wherein the computer program product includes a computer program, and when the computer program is executed by a processor, it causes the processor to implement the method for analyzing fuel according to the present invention.
  • Method for purging the battery may comprise a computer program, program code, instructions, or some combination thereof, for individually or collectively instructing or configuring hardware devices to operate as desired.
  • a computer program and/or program code may comprise a program or computer readable instructions executable by one or more hardware devices, software components, software modules, data files, data structures, etc. Examples of program code may include machine code generated by a compiler and higher level program code executed using an interpreter.
  • Exemplary embodiments according to the present invention also provide a computer-readable recording medium storing a computer program, wherein the computer program is configured to implement the method for purging a fuel cell according to the present invention when executed by a processor.
  • the computer-readable recording medium is any data storage device that can store data read by a computer system. Examples of computer-readable recording media include: read-only memory, random-access memory, optical disc, magnetic tape, floppy disk, optical data storage devices, and carrier waves (such as data transmission over the Internet via wired or wireless transmission paths).
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments that implement the present invention can be easily interpreted by ordinary programmers in the fields related to the present invention within the scope of the present invention.
  • each unit in the above-described apparatuses and apparatuses according to exemplary embodiments of the present invention may be implemented as hardware components or software modules.
  • those skilled in the art can realize each unit by, for example, using a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a processor according to the processes performed by each defined unit.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种用于对燃料电池进行吹扫的装置和方法。所述装置包括:废气收集单元,其被配置为能够在燃料电池未处于停机状态的情况下,收集从燃料电池的燃料电池堆的阴极排出的含氮废气;吹扫单元,其被配置为能够在废气收集单元内的气体压力大于预定压力阈值并且燃料电池处于停机状态的情况下,使用废气收集单元收集的含氮废气对燃料电池堆的阳极进行吹扫。根据本发明的用于对燃料电池进行吹扫的装置和方法,能够收集从燃料电池堆排放的含氮废气,并能够在燃料电池停机状态下使用收集的含氮废气对燃料电池堆的阳极进行吹扫,而无需设置额外的氮气源,从而能够防止燃料电池在停机状态下的性能劣化,提高了燃料电池的稳定性并降低了吹扫的成本。

Description

用于对燃料电池进行吹扫的装置和方法 技术领域
本发明涉及燃料电池领域,特别地,涉及一种用于对燃料电池进行吹扫的装置和方法。
背景技术
随着燃料电池的使用越来越普遍,燃料电池的性能稳定性日益受到关注。
通常,在燃料电池、例如质子交换膜燃料电池(PEMFC)工作期间,需要使用氢气对燃料电池进行吹扫、即使用氢气对燃料电池的燃料电池堆的阳极进行吹扫,以排出燃料电池堆的阳极内的水分和其他气体,使阳极内具有较高浓度的氢气,使得燃料电池的性能不会由于阳极内的水分和其他气体而劣化。
在燃料电池停机之后,对燃料电池的吹扫也会结束。然而,残余在燃料电池堆的阳极内的氢气会导致燃料电池堆的性能劣化。
因此,需要能够提高燃料电池的稳定性的对燃料电池进行吹扫的方式。
发明内容
本发明的目的在于提供一种用于对燃料电池进行吹扫的装置和方法。
根据本发明的一方面,提供了一种用于对燃料电池进行吹扫的装置,所述装置包括:废气收集单元,其被配置为能够在燃料电池未处于停机状态的情况下,收集从燃料电池的燃料电池堆的阴极排出的含氮废气;吹扫单元,其被配置为能够在废气收集单元内的气体压力大于预定压力阈值并且燃料电池处于停机状态的情况下,使用废气收集单元收集的含氮废气对燃料电池堆的阳极进行吹扫,其中,停机状态指燃料电池堆被停止输入空气以及氢气的状态。
根据本发明的另一方面,提供了一种用于对燃料电池进行吹扫的方法, 所述方法使用根据本发明的用于对燃料电池进行吹扫的装置,所述方法包括:确定是否接收到用于对燃料电池进行吹扫的吹扫指令;在确定接收到所述吹扫指令的情况下,确定废气收集单元内的气体压力是否大于所述预定压力阈值;在确定废气收集单元内的气体压力大于所述预定压力阈值并且燃料电池处于停机状态的情况下,通过吹扫单元使用废气收集单元收集的含氮废气对燃料电池堆的阳极进行吹扫。
根据本发明的另一方面,提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序在被处理器执行时,使得处理器实施根据本发明的用于对燃料电池进行吹扫的方法。
根据本发明的另一方面,提供了一种存储有计算机程序的计算机可读记录介质,其中,所述计算机程序被配置为当被处理器执行时实施据本发明的用于对燃料电池进行吹扫的方法。
根据本发明的用于对燃料电池进行吹扫的装置和方法,能够收集从燃料电池的燃料电池堆排放的含氮废气,并能够在燃料电池停机状态下使用收集的含氮废气对燃料电池堆的阳极进行吹扫,而无需设置额外的氮气源,从而能够防止燃料电池在停机状态下的性能劣化,提高了燃料电池的稳定性并降低了吹扫的成本。
附图说明
下面,通过参看附图更详细地描述本发明,可以更好地理解本发明的原理、特点和优点。附图中:
图1示出了根据本发明的一个示例性实施例的用于对燃料电池进行吹扫的装置的框图。
图2示出了根据本发明的一个示例性实施例的用于对燃料电池进行吹扫的装置的示意图。
图3示出了根据本发明的另一示例性实施例的用于对燃料电池进行吹扫的装置的示意图。
图4示出了根据本发明的一个示例性实施例的使用图1至图3之一示出的装置对燃料电池进行吹扫的方法的流程图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案以及有益的技术效果更加清楚明白,以下将结合附图以及多个示例性实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,而不是用于限定本发明的保护范围。
图1示出了根据本发明的一个示例性实施例的用于对燃料电池200进行吹扫的装置100的框图。
参照图1,作为示例,燃料电池200可以是质子交换膜燃料电池(PEMFC)。燃料电池200可具有燃料电池堆210以及与燃料电池堆连接或未连接的其他组件200-n。燃料电池堆210具有阴极211和阳极212。
根据本发明的用于对燃料电池200进行吹扫的装置100包括:废气收集单元110吹扫单元120。
废气收集单元110被配置为能够在燃料电池200未处于停机状态的情况下,收集从燃料电池200的燃料电池堆210的阴极211排出的含氮废气。
这里,停机状态指燃料电池堆210被停止输入空气以及氢气的状态。例如,停机状态可指燃料电池堆的阴极入口、阴极出口、阳极入口和阳极出口均通过相应的阀被关闭从而燃料电池堆的阴极和阳极不能被输入空气和氢气的状态。
在燃料电池处于未停机状态的情况下,输入到燃料电池堆的阴极的空气中的氧气与从阳极输入的氢气反应而被消耗,因而从阴极输出的废气中的氧气含量较低而氮气含量较高,因此该含氮废气可被视为氮气。
吹扫单元120被配置为能够在废气收集单元110内的气体压力大于预定压力阈值并且燃料电池200处于停机状态的情况下,使用废气收集单元110收集的含氮废气对燃料电池堆210的阳极212进行吹扫。
这里,废气收集单元110内的气体压力大于预定压力阈值可表示废气收集单元110内存储的含氮废气对于吹扫操作是充足的,因此吹扫单元120可使用收集的废气执行吹扫操作。
在一个实施例中,吹扫单元120可包括:吹扫输入单元和吹扫输出单元(图1未示出)。
吹扫输入单元可被配置为能够在对燃料电池堆210的阳极212进行吹 扫期间,将所述含氮废气输入到燃料电池堆210的阳极入口。
吹扫输出单元可被配置为能够在对燃料电池堆210的阳极212进行吹扫期间,将从燃料电池堆210的阳极212吹扫出的吹扫气体从燃料电池堆的阳极出口排放到外部环境。
通过以上方式,能够实现在电池停机状态下使用氮气对燃料电池的阳极的吹扫,以将阳极中的残余氢气和水分排出到外部环境,提高了燃料电池的稳定性,并且吹扫过程无需额外的氮气源,降低了吹扫成本。
此外,为了避免在吹扫过程中将具有较高氢气浓度的吹扫气体排出到外部环境而引起爆炸风险,在一个实施例中,根据本发明的用于对燃料电池200进行吹扫的装置100还可包括:检测单元和调节单元(图1未示出)。
检测单元可被配置为能够检测所述吹扫气体中的氢气浓度。例如,检测单元可设置在吹扫输出单元中、例如设置在接近燃料电池堆的阳极出口的位置。
调节单元可被配置为能够在检测单元检测到氢气浓度大于第一预定浓度阈值的情况下,向吹扫输出单元输入空气,以向所述吹扫气体混入空气,使得输出到外部环境的混合气体中的氢气浓度小于或等于所述第一预定浓度阈值。这里,第一浓度阈值可以是接近并低于氢气的爆炸浓度值的值。
通过这种方式,可在提高燃料电池的稳定性的同时,保障燃料电池以及周围环境的安全性。
图2示出了根据本发明的一个示例性实施例的用于对燃料电池进行吹扫的装置100的示意图。
参照图2,在一个实施例中,根据本发明的用于对燃料电池进行吹扫的装置100的废气收集单元110可包括:第一管道110-1和第一阀110-2。
第一管道110-1可连接在燃料电池堆210的阴极出口211-2与吹扫输入单元121之间。
第一阀110-2可设置在第一管道110-1中,用于接通或断开第一管道110-1中的气体通路。
例如,在废气收集单元110需要收集含氮废气时,第一阀110-2可打开,以接通第一管道中的气体通路;在废气收集单元110无需收集含氮废气时,第一阀110-2可关闭,以断开第一管道中的气体通路。
此外,为了提高废气收集单元110收集含氮废气的效率,在一个实施例中,废气收集单元110还可包括:泵110-3。泵110-3可设置在第一管道110-1中,用于沿远离所述阴极出口的方向泵送所述含氮废气。
此外,为了提高废气收集单元110收集含氮废气的量,在一个实施例中,废气收集单元110还可包括:存储箱110-4。存储箱110-4可连接在第一管道110-1中,用于存储所述含氮废气。
在一个实施例中,根据本发明的用于对燃料电池进行吹扫的装置100的吹扫单元120的吹扫输入单元121可包括:第二管道121-1和第二阀121-2。
第二管道121-1可连接在第一管道110-1与燃料电池堆的阳极入口212-1之间。
第二阀121-2可设置在第二管道121-1中,用于接通或断开第二管道121-1中的气体通路。例如,在吹扫单元120执行吹扫操作期间,第二阀121-2可打开,以接通第二管道中的气体通路;在吹扫单元120不执行吹扫操作时,第二阀121-2可关闭,以断开第二管道中的气体通路。
此外,吹扫单元120的吹扫输出单元122可包括:第三管道122-1和第三阀122-2。
第三管道122-1可连接在燃料电池堆的阳极出口212-2与外部环境之间。
第三阀122-2可设置在第三管道122-1中,用于接通或断开第三管道122-1中的气体通路。例如,在吹扫单元120执行吹扫操作期间,第三阀122-2可打开,以接通第三管道中的气体通路;在吹扫单元120不执行吹扫操作时,第三阀122-2可关闭,以断开第三管道中的气体通路。
在根据本发明的用于对燃料电池进行吹扫的装置100包括检测单元130和调节单元140的情况下,检测单元130可设置在第三管道122-1中。例如,检测单元可以是用于检测氢气浓度的传感器。
调节单元140可包括:第四管道140-1和第四阀140-2。
第四管道140-1可连接在燃料电池200的空气压缩机220的气体出口与第三管道122-1之间。
第四阀140-2可设置在第四管道140-1中,用于接通或断开第四管道140-1中的气体通路。例如,在调节单元140需要向吹扫输出单元122输入空气时,第四阀140-2可打开,以接通第四管道中的气体通路;在调节单 元140无需向吹扫输出单元122输入空气时,第四阀140-2可关闭,以断开第四管道中的气体通路。虽然图2中以独立的阀示出第四阀,然而应该理解,第四阀可以是空气压缩机220的开关。
应该理解,图2仅示出用于对燃料电池进行吹扫的装置100的各个部件的示例形式和示例布置方式,可根据实际需要,使用与图2示出的各个部件的形式和布置方式不同的形式和布置方式来实施根据本发明的装置100。
例如,图2以独立于燃料电池200的布置方式示出了装置100。然而,为了节省燃料电池的内部空间,根据本发明的用于对燃料电池进行吹扫的装置100可结合燃料电池的现有部件而被实施在燃料电池中。此外,图2以二通阀的形式示出第一至第四阀,然而第一至第四阀可具有其他形式。
图3示出了根据本发明的另一示例性实施例的用于对燃料电池进行吹扫的装置100的示意图。
图3示出了结合燃料电池200的现有部件,来实施根据本发明的用于对燃料电池进行吹扫的装置100的示例实施方式(使用大于200的数字来标记这些现有部件,并且这些现有部件可包括在图1示出的燃料电池200的其他组件200-n中)。
如图3所示,在图3的实施例中,废气收集单元110中的第一阀110-2可以为三通阀。第一阀110-2的第一端和第二端(图3中的左右两端)可连接在连接到燃料电池堆210的阴极出口211-2的废气排放管道230中,第一阀110-2的第三端(图3中的上端)可连接到第一管道110-1。
在废气排放管道230中,从阴极出口211-2起(即,沿图3箭头所示的气流方向),可依次设置有第一截止阀231、第一阀110-2的第一端和第一阀110-2的第二端。第一截止阀231用于接通或断开废气排放管道230中的气体通路。此外,如图3所示,废气排放管道230中还可设置有压力调节阀232。
此时,第一阀110-2的第一端可作为第一管道110-1的入口。
除设置在第一管道110-1中第一阀110-2之后的泵110-3之外,废气收集单元110还可包括:四通阀110-5。四通阀110-5的第一端和第二端(图3中的左右两端)可连接在连接到燃料电池堆210的阴极入口211-1的空气 输入管道240中,四通阀110-5的第三端和第四端(图3中的上下两端)可连接在第一管道110-1中。
在空气输入管道240中,从阴极入口211-1起,可依次设置有第二截止阀241、四通阀110-5的第一端、四通阀110-5的第二端和空气压缩机220。第二截止阀241用于接通或断开空气输入管道240中的气体通路。
吹扫单元120中的第二阀121-2也可以为三通阀。第二阀121-2的第一端和第二端(图3中的右端和下端)可连接在连接到燃料电池堆210的阳极入口212-1的氢气输入管道250中。第二阀121-2的第三端(图3中的左端)可连接到第一管道110-1。
在氢气输入管道250中,从阳极入口212-1起,可依次设置有第二阀121-2的第一端、第二阀121-2的第二端、第三截止阀251和氢气喷射阀252。第三截止阀251用于接通或断开氢气输入管道250中的气体通路。
此时,第二阀121-2的第三端可作为第一管道110-1的出口以及第二管道121-1的入口,第二阀121-2的第一端可作为第二管道121-1的出口。即,第二阀121-2的左端和下端之间的通路可作为第二管道121-1。
吹扫单元120中的第三阀122-2也可以是三通阀。第三阀122-2的第一端和第二端(图3中的上端和右端)可连接在连接到燃料电池堆210的阳极出口212-2的氢气输出管道260中,第三阀122-2的第三端(图3中的下端)可连接到第三管道122-1。
在氢气输出管道260中,从阳极出口212-2起,可依次设置有第三阀122-2的第一端、第三阀122-2的第二端、第四截止阀261。第四截止阀261用于接通或断开所述氢气输出管道260中的气体通路。
此时,第三阀122-2的第一端可作为第三管道122-1的入口。
第三管道122-1的出口可与废气排放管道230连接,以经由废气排放管道230连接到外部环境。
调节单元140中的第四管道140-1可连接到燃料电池200的空气压缩机220的气体出口并连接到废气排放管道230或第三管道122-1,以使第四管道140-1中的空气与吹扫气体混合。
在图3的示例中,空气压缩机220的开关可用作以上参照图2描述的调节单元140的第四阀。
此外,在燃料电池中,如图3所示,在图3右侧示出氢气输入管道250与氢气输出管道260之间还可设置有连接管道以及设置在该连接管道中的氢气循环泵270,用于形成氢气循环回路。
应该理解,图1至图3仅示出根据本发明的用于对燃料电池进行吹扫的装置的示例实施方式,根据实际需要,可使用比图1至图3示出的部件更多或更少的部件来实施根据本发明的装置,例如吹扫单元中也可包括用于泵送气体的泵等。此外,燃料电池的现有部件可包括比图3示出的部件更多的部件、例如过滤器、控制器、另外的阀等。
根据本发明的用于对燃料电池进行吹扫的装置,能够收集从燃料电池的燃料电池堆排放的含氮废气,并能够在燃料电池停机状态下使用收集的含氮废气对燃料电池堆的阳极进行吹扫,而无需设置额外的氮气源,从而能够防止燃料电池在停机状态下的性能劣化,提高了燃料电池的稳定性并降低了吹扫的成本。
图4示出了根据本发明的一个示例性实施例的使用图1至图3之一示出的装置100对燃料电池进行吹扫的方法的流程图。
参照图4,在步骤S1,确定是否接收到用于对燃料电池进行吹扫的吹扫指令。
在一个实施例中,吹扫指令可以为用于使燃料电池开机的开机指令或用于使燃料电池停机的停机指令。即,图1至图3示出的装置100不仅可在燃料电池停机阶段对燃料电池进行吹扫,还可在燃料电池的开机阶段对燃料电池进行吹扫。
在步骤S1确定未接收到所述吹扫指令的情况下(图4中的“N”),可返回继续执行步骤S1。
在步骤S1确定接收到所述吹扫指令的情况下(图4中的“Y”),可执行步骤S2,确定废气收集单元内的气体压力是否大于所述预定压力阈值。
这里,该预定压力阈值可以是用于指示废气收集单元内的含氮废气的存储量是否充足的值。
在一个示例中,步骤S2中的该预定压力阈值可以是固定值。
在另一示例中,可通过如下方式执行步骤S2:在废气收集单元110内的气体压力与连接到燃料电池堆的阳极的氢气输入管道250内的气体压力 之比大于预定比值时,可确定废气收集单元110内的气体压力大于预定压力阈值。
在步骤S2确定废气收集单元内的气体压力大于所述预定压力阈值的情况下(图4中的“Y”),可执行步骤S3,在确定燃料电池200处于停机状态的情况下,通过吹扫单元120使用废气收集单元110收集的含氮废气对燃料电池堆的阳极进行吹扫。
例如,燃料电池200的停机状态可指图3中的第一截止阀231、第二截止阀241、第三截止阀251和第四截止阀261均关闭的状态。
此外,在步骤S2确定废气收集单元内的气体压力不大于所述预定压力阈值的情况下(图4中的“N”),可不执行吹扫操作。
以下参照图3的示例针对步骤S1中接收到的吹扫指令为停机指令的第一实施例、以及在步骤S1中接收到的吹扫指令为开机指令的第二实施例,来对根据本发明的用于对燃料电池进行吹扫的方法进行进一步描述。
在第一实施例中,在步骤S1接收到的吹扫指令为停机指令的情况下,可不立即控制燃料电池200停机。例如,可不立即关闭图3中的第一截止阀231、第二截止阀241、第三截止阀251和第四截止阀261。
此时,图3中的各个阀可处于以下状态:第一至第四截止阀打开、第一阀110-2的左右两端打开且上端关闭、四通阀110-5的左右两端打开且上下两端关闭、第二阀121-2的右端和下端打开且左端关闭,第三阀122-2的上端和右端打开且下端关闭。
此外,在步骤S1接收到关机指令之后,还可执行以下步骤:使废气收集单元110收集含氮废气、即可启用废气收集单元110。
例如,可打开图3中的第一阀110-2的上端并关闭左端、打开四通阀110-5的上下两端,其他阀保持不变。此外,可启用泵110-3。
在废气收集单元110收集含氮废气的过程中,为了提高含氮废气的含氮量、即为了充分耗尽输入到燃料电池堆210的阴极211的空气中的氧气,在开始使废气收集单元110收集含氮废气的同时,还可开始执行以下步骤:在废气收集单元110收集所述含氮废气期间,使预定空气流量的空气输入到燃料电池堆210的阴极211,并使预定氢气流量的氢气输入到燃料电池堆210的阳极212,以使得所述含氮废气中的氮气含量大于预定氮气阈值。
通过这种方式,可提高含氮废气中的氮气含量,从而能够将该含氮废气用作纯度较高的氮气。
该预定空气流量可小于用于使燃料电池正常工作的空气流量,并且该预定氢气流量可小于用于使燃料电池正常工作的氢气流量。这样,可利于提升废气收集单元110内的气体压力。
此外,在废气收集单元110收集含氮废气的过程中,可执行步骤S2,确定废气收集单元内的气体压力是否大于预定压力阈值。例如,可周期性确定该气体压力。
在步骤S2确定废气收集单元110内的气体压力不大于所述预定压力阈值的情况下,可继续使废气收集单元110收集含氮废气。
而在步骤S2确定废气收集单元内的气体压力大于所述预定压力阈值的情况下,可执行以下步骤:控制燃料电池停机以使燃料电池处于停机状态。
例如,可关闭图3中的第一截止阀231、第二截止阀241、第三截止阀251和第四截止阀261,并可关闭空气压缩机220。
此时,还可执行以下步骤:使废气收集单元110停止收集废气。
例如,可关闭图3中的泵110-3,关闭四通阀110-5的左右两端。此外,在如图3所示设置了存储箱110-4的情况下,还可关闭四通阀110-5的上端(在未设置存储箱的情况下,含氮废气存储在第一管道110-1中,因此可保持四通阀上端打开,以充分利用第一管道110-1内存储的含氮废气)。
之后,可执行步骤S3,通过吹扫单元120使用废气收集单元110收集的含氮废气对燃料电池堆的阳极进行吹扫。
例如,可打开图3中的第二阀121-2的左端并关闭右端,打开第三阀122-2的下端并关闭右端,以使第一管道110-1以及存储箱110-4(在设置了存储箱110-4的情况下)中的含氮废气从燃料电池堆210的阳极入口212-1输入到阳极212,并使从阳极吹扫出的吹扫气体从阳极出口212-2通过第三管道122-1(并通过废气排放管道230)排出到外部环境。
通过以上方式,可实现在燃料电池需要停机的情况下,对燃料电池的吹扫,使得停机后的燃料电池的性能不会因阳极中残余的氢气而劣化。
在第二实施例中,在步骤S1接收到的吹扫指令为开机指令的情况下, 可确定燃料电池当前处于停机状态。
此时,图3中的各个阀可处于以下状态:第一截止阀231、第二截止阀241、第三截止阀251和第四截止阀261关闭,并且,第一阀110-2的上端关闭、第二阀121-2的左端关闭、第三阀122-2的下端关闭、四通阀的左右两端关闭(在如图3所示设置了存储箱110-4的情况下,第四阀的左右两端可打开且上端可关闭)。
此时,可执行步骤S2,确定废气收集单元内的气体压力是否大于预定压力阈值。即,确定废气收集单元110是否已经存储了足够执行吹扫操作的含氮废气。
在步骤S2确定废气收集单元内的气体压力大于预定压力阈值的情况下,可执行步骤S3,通过吹扫单元120使用废气收集单元110收集的含氮废气对燃料电池堆的阳极进行吹扫。
例如,可打开图3中第二阀121-2的左端和下端并关闭右端、打开第三阀122-2的上端和下端并关闭右端。
在吹扫单元120停止吹扫之后,可执行燃料电池的开机操作。
例如,可打开图3的第一至第四截止阀、打开第一阀110-2的左右两端且关闭上端、打开四通阀110-5的左右两端且关闭上下两端、打开第二阀121-2的右端和下端且关闭左端,打开第三阀122-2的上端和右端且关闭下端。
在以上第一和第二实施例中,可通过如下方式控制吹扫单元120停止吹扫:在检测到所述吹扫气体中的氢气浓度小于第二预定浓度值和/或吹扫时间大于预定时间和/或所述废气收集单元内的气体压力低于预定压力最小值的情况下,可停止通过吹扫单元对燃料电池堆的阳极的吹扫。例如,第二预定浓度值可以是接近0的值。
此外,在以上两种实施例的情况下,为了避免在吹扫过程中将具有较高氢气浓度的吹扫气体排出到外部环境而引起爆炸风险,还可执行以下步骤:在对燃料电池堆的阳极进行吹扫期间,检测从燃料电池堆的阳极吹扫出的吹扫气体中的氢气浓度;在检测到氢气浓度大于第一预定浓度阈值的情况下,向所述吹扫气体混入空气,使得输出到燃料电池的外部环境的混合气体中的氢气浓度小于或等于所述第一预定浓度阈值。
例如,在吹扫期间,可通过图2或图3中的检测单元30检测吹扫气体中的氢气浓度。在检测到氢气浓度大于浓度第一浓度阈值时,启用空气压缩机220,以通过第四管道140-1将空气混入吹扫气体,从而降低排放到外部环境的气体中的氢气浓度。
应该理解,可通过燃料电池中包括或燃料电池之外的任意控制单元来实施根据本发明的方法的以上步骤。
根据本发明的用于对燃料电池进行吹扫的方法,能够收集从燃料电池的燃料电池堆排放的含氮废气,并能够在燃料电池停机状态下使用收集的含氮废气对燃料电池堆的阳极进行吹扫,而无需设置额外的氮气源,从而能够防止燃料电池在停机状态下的性能劣化,提高了燃料电池的稳定性并降低了吹扫的成本。
根据本发明的示例性实施例还提供一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序在被处理器执行时,使得处理器实施根据本发明的用于对燃料电池进行吹扫的方法。计算机程序产品可包括用于独立地或共同地命令或配置硬件装置以按照需要进行操作的计算机程序、程序代码、指令或它们的一些组合。计算机程序和/或程序代码可包括可由一个或多个硬件装置实施的程序或计算机可读指令、软件组件、软件模块、数据文件、数据结构等。程序代码的示例可包括由编译器产生的机器代码和使用解释器执行的更高级程序代码。
根据本发明的示例性实施例还提供一种存储有计算机程序的计算机可读记录介质,其中,所述计算机程序配置为当被处理器执行时实施根据本发明的用于对燃料电池进行吹扫的方法。该计算机可读记录介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读记录介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。计算机可读记录介质也可分布于连接网络的计算机系统,从而计算机可读代码以分布式存储和执行。此外,完成本发明的功能程序、代码和代码段可容易地被与本发明相关的领域的普通程序员在本发明的范围之内解释。
此外,根据本发明的示例性实施例的上述装置和设备中的各个单元可被实现为硬件组件或软件模块。此外,本领域技术人员可根据限定的各个 单元所执行的处理,通过例如使用现场可编程门阵列(FPGA)、专用集成电路(ASIC)或处理器来实现各个单元。
尽管这里参考特定实施例说明和描述了本发明,但是本发明并不限于所示的细节。而是,可以在本发明的范围内对这些细节进行各种修改。
附图标记列表
100 用于对燃料电池进行吹扫的装置
110 废气收集单元
120 吹扫单元
200 燃料电池
210 燃料电池堆
200-n 燃料电池的其他组件
211 阴极
212 阳极
121 吹扫输入单元
122 吹扫输出单元
130 检测单元
140 调节单元
110-1 第一管道
110-2 第一阀
110-3 泵
110-4  存储箱
110-5 四通阀
121-1 第二管道
121-2 第二阀
122-1 第三管道
122-2 第三阀
140-1 第四管道
140-2 第四阀
211-1 阴极入口
211-2 阴极出口
212-1 阳极入口
212-2 阳极出口
220 空气压缩机
230 废气排放管道
231 第一截止阀
232 压力调节阀
240 空气输入管道
241 第二截止阀
250 氢气输入管道
251 第三截止阀
252 氢气喷射阀
260 氢气输出管道
261 第四截止阀
270 氢气循环泵

Claims (18)

  1. 一种用于对燃料电池(200)进行吹扫的装置(100),所述装置包括:
    废气收集单元(110),其被配置为能够在燃料电池(200)未处于停机状态的情况下,收集从燃料电池(200)的燃料电池堆(210)的阴极(211)排出的含氮废气;
    吹扫单元(120),其被配置为能够在废气收集单元(110)内的气体压力大于预定压力阈值并且燃料电池(200)处于停机状态的情况下,使用废气收集单元(110)收集的含氮废气对燃料电池堆(210)的阳极(212)进行吹扫,
    其中,停机状态指燃料电池堆被停止输入空气以及氢气的状态。
  2. 根据权利要求1所述的装置(100),其中,吹扫单元(120)包括:
    吹扫输入单元(121),其被配置为能够在对燃料电池堆(210)的阳极(212)进行吹扫期间,将所述含氮废气输入到燃料电池堆(210)的阳极入口(212-1);
    吹扫输出单元(122),其被配置为能够在对燃料电池堆(210)的阳极(212)进行吹扫期间,将从燃料电池堆(210)的阳极(212)吹扫出的吹扫气体从燃料电池堆的阳极出口(212-2)排放到外部环境。
  3. 根据权利要求2所述的装置(100),其中,所述装置(100)还包括:
    检测单元(130),其被配置为能够检测所述吹扫气体中的氢气浓度;
    调节单元(140),其被配置为能够在检测单元(130)检测到氢气浓度大于第一预定浓度阈值的情况下,向吹扫输出单元(122)输入空气,以向所述吹扫气体混入空气,使得输出到外部环境的混合气体中的氢气浓度小于或等于所述第一预定浓度阈值。
  4. 根据权利要求3所述的装置(100),其中,废气收集单元(110)包括:
    第一管道(110-1),其连接在燃料电池堆(210)的阴极出口(211-2) 与吹扫输入单元(121)之间;
    第一阀(110-2),其设置在第一管道(110-1)中,用于接通或断开第一管道(110-1)中的气体通路。
  5. 根据权利要求4所述的装置(100),其中,废气收集单元(110)还包括:
    泵(110-3),其设置在第一管道(110-1)中,用于沿远离所述阴极出口的方向泵送所述含氮废气;和/或
    存储箱(110-4),其连接在第一管道(110-1)中,用于存储所述含氮废气。
  6. 根据权利要求4或5所述的装置(100),其中,吹扫输入单元(121)包括:
    第二管道(121-1),其连接在第一管道(110-1)与燃料电池堆的阳极入口(212-1)之间;
    第二阀(121-2),其设置在第二管道(121-1)中,用于接通或断开第二管道(121-1)中的气体通路,
    其中,吹扫输出单元(122)包括:
    第三管道(122-1),其连接在燃料电池堆的阳极出口(212-2)与外部环境之间;
    第三阀(122-2),其设置在第三管道(122-1)中,用于接通或断开第三管道(122-1)中的气体通路。
  7. 根据权利要求6所述的装置(100),其中,检测单元(130)设置在第三管道(122-1)中,
    其中,调节单元(140)包括:
    第四管道(140-1),其连接在燃料电池(200)的空气压缩机(220)的气体出口与第三管道(122-1)之间;
    第四阀(140-2),其设置在第四管道(140-1)中,用于接通或断开第四管道(140-1)中的气体通路。
  8. 根据权利要求7所述的装置(100),其中,第一阀(110-2)为三通阀,第一阀(110-2)的第一端和第二端连接在连接到燃料电池堆(210)的阴极出口(211-2)的废气排放管道(230)中,第一阀(110-2)的第三端连接到第一管道(110-1),
    其中,在所述废气排放管道(230)中,从所述阴极出口(211-2)起,依次设置有第一截止阀(231)、第一阀的第一端和第一阀的第二端,其中,第一截止阀(231)用于接通或断开所述废气排放管道(230)中的气体通路,
    其中,第一阀(110-2)的第一端作为第一管道(110-1)的入口。
  9. 根据权利要求8所述的装置,其中,废气收集单元(110)还包括:四通阀(110-5),四通阀(110-5)的第一端和第二端连接在连接到燃料电池堆(210)的阴极入口(211-1)的空气输入管道(240)中,四通阀(110-5)的第三端和第四端连接在第一管道(110-1)中,
    其中,在所述空气输入管道(240)中,从所述阴极入口(211-1)起,依次设置有第二截止阀(241)、四通阀(110-5)的第一端、四通阀(110-5)的第二端和空气压缩机(220),其中,第二截止阀(241)用于接通或断开所述空气输入管道(240)中的气体通路。
  10. 根据权利要求9所述的装置,其中,第二阀(121-2)为三通阀,第二阀(121-2)的第一端和第二端连接在连接到燃料电池堆(210)的阳极入口(212-1)的氢气输入管道(250)中,第二阀(121-2)的第三端连接到第一管道(110-1),
    其中,在所述氢气输入管道(250)中,从所述阳极入口(212-1)起,依次设置有第二阀(121-2)的第一端、第二阀(121-2)的第二端、第三截止阀(251)和氢气喷射阀(252),其中,第三截止阀(251)用于接通或断开所述氢气输入管道(250)中的气体通路,
    其中,第二阀(121-2)的第三端作为第一管道(110-1)的出口以及第二管道(121-1)的入口,第二阀(121-2)的第一端作为第二管道(121-1) 的出口。
  11. 根据权利要求10所述的装置,其中,第三阀(122-2)是三通阀,第三阀(122-2)的第一端和第二端连接在连接到燃料电池堆(210)的阳极出口(212-2)的氢气输出管道(260)中,第三阀(122-2)的第三端连接到第三管道(122-1),
    其中,在所述氢气输出管道(260)中,从所述阳极出口(212-2)起,依次设置有第三阀(122-2)的第一端、第三阀(122-2)的第二端和第四截止阀(261),其中,第四截止阀(261)用于接通或断开所述氢气输出管道(260)中的气体通路,
    其中,第三阀(122-2)的第一端作为第三管道(122-1)的入口,
    其中,第三管道(122-1)的出口与所述废气排放管道(230)连接,以经由所述废气排放管道(230)连接到外部环境。
  12. 根据权利要求11所述的装置,其中,第四管道(140-1)连接到燃料电池(200)的空气压缩机(220)的气体出口并连接到所述废气排放管道(230)或第三管道(122-1),以使第四管道(140-1)中的空气与吹扫气体混合。
  13. 一种用于对燃料电池进行吹扫的方法,所述方法使用根据权利要求1至12中任一项所述的用于对燃料电池进行吹扫的装置,所述方法包括:
    确定是否接收到用于对燃料电池进行吹扫的吹扫指令(S1);
    在确定接收到所述吹扫指令的情况下,确定废气收集单元内的气体压力是否大于所述预定压力阈值(S2);
    在确定废气收集单元内的气体压力大于所述预定压力阈值并且燃料电池处于停机状态的情况下,通过吹扫单元使用废气收集单元收集的含氮废气对燃料电池堆的阳极进行吹扫(S3)。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    在对燃料电池堆的阳极进行吹扫期间,检测从燃料电池堆的阳极吹扫 出的吹扫气体中的氢气浓度;
    在检测到氢气浓度大于第一预定浓度阈值的情况下,向所述吹扫气体混入空气,使得输出到燃料电池的外部环境的混合气体中的氢气浓度小于或等于所述第一预定浓度阈值。
  15. 根据权利要求14所述的方法,其中,所述吹扫指令为用于使燃料电池开机的开机指令或用于使燃料电池停机的停机指令,
    其中,在所述吹扫指令为所述停机指令的情况下,所述方法还包括:
    在确定接收到所述停机指令时,使废气收集单元收集所述含氮废气;
    在确定废气收集单元内的气体压力大于所述预定压力阈值(S2)的情况下,控制燃料电池停机以使燃料电池处于停机状态,
    其中,在燃料电池处于停机状态之后,通过吹扫单元使用废气收集单元收集的含氮废气对燃料电池堆的阳极进行吹扫(S3)。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    在废气收集单元收集所述含氮废气期间,使预定空气流量的空气输入到燃料电池堆的阴极,并使预定氢气流量的氢气输入到燃料电池堆的阳极,以使得所述含氮废气中的氮气含量大于预定氮气阈值,
    其中,所述预定空气流量小于用于使燃料电池正常工作的空气流量,所述预定氢气流量小于用于使燃料电池正常工作的氢气流量。
  17. 根据权利要求14至16中任一项所述的方法,其中,所述方法还包括;
    在检测到所述吹扫气体中的氢气浓度小于第二预定浓度值和/或吹扫时间大于预定时间和/或废气收集单元内的气体压力低于预定压力最小值的情况下,停止通过吹扫单元对燃料电池堆的阳极的吹扫。
  18. 一种存储有计算机程序的计算机可读记录介质,其中,所述计算机程序在被处理器执行时实施权利要求13至17中的任意一项所述的方法。
PCT/CN2021/126391 2021-10-26 2021-10-26 用于对燃料电池进行吹扫的装置和方法 WO2023070311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202190001070.2U CN221747272U (zh) 2021-10-26 2021-10-26 用于对燃料电池进行吹扫的装置
PCT/CN2021/126391 WO2023070311A1 (zh) 2021-10-26 2021-10-26 用于对燃料电池进行吹扫的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126391 WO2023070311A1 (zh) 2021-10-26 2021-10-26 用于对燃料电池进行吹扫的装置和方法

Publications (1)

Publication Number Publication Date
WO2023070311A1 true WO2023070311A1 (zh) 2023-05-04

Family

ID=86158953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126391 WO2023070311A1 (zh) 2021-10-26 2021-10-26 用于对燃料电池进行吹扫的装置和方法

Country Status (2)

Country Link
CN (1) CN221747272U (zh)
WO (1) WO2023070311A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273276A (ja) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd 燃料電池発電システム及びその運転方法
CN110911712A (zh) * 2018-09-18 2020-03-24 上海恒劲动力科技有限公司 一种燃料电池系统及其停机启动时吹扫和排水的方法
CN112242545A (zh) * 2020-09-18 2021-01-19 北京新能源汽车技术创新中心有限公司 一种车用燃料电池尾气制氮系统及其吹扫方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273276A (ja) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd 燃料電池発電システム及びその運転方法
CN110911712A (zh) * 2018-09-18 2020-03-24 上海恒劲动力科技有限公司 一种燃料电池系统及其停机启动时吹扫和排水的方法
CN112242545A (zh) * 2020-09-18 2021-01-19 北京新能源汽车技术创新中心有限公司 一种车用燃料电池尾气制氮系统及其吹扫方法

Also Published As

Publication number Publication date
CN221747272U (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
EP1848055A1 (en) An online configurable control system for fuel cells
JP2007053070A (ja) 燃料電池システム
CN115799568B (zh) 一种燃料电池阴极系统及其控制方法
CN111082098A (zh) 一种燃料电池系统停机方法
JP2009505356A (ja) 停止と再起動の間に燃料電池システムを制御する制御アセンブリ
WO2006048983A1 (ja) 燃料電池システム
WO2023070311A1 (zh) 用于对燃料电池进行吹扫的装置和方法
JP2003331888A (ja) 燃料電池システム
JP7038301B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP6412187B2 (ja) 燃料電池システム
JP2003331889A (ja) 燃料電池システム
JP4363475B2 (ja) 燃料電池システム
JP4715138B2 (ja) 異常検出処理をする燃料電池システム
JP6448845B2 (ja) 燃料電池システム
JP5082790B2 (ja) 燃料電池システム
JP2007280800A (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の異常検出方法
US20240021855A1 (en) Method for protecting components of a fuel cell system
CN113839069B (zh) 燃料电池的吹扫方法、装置、电子设备及存储介质
JP2006079892A (ja) 燃料電池システム
JP6470784B2 (ja) 燃料電池システム用保守装置、燃料電池システム、及びプログラム
JP4211000B2 (ja) ガス漏れ判定装置
CN112825365A (zh) 燃料电池系统的排气氢浓度控制装置和方法
JP2009094000A (ja) 燃料電池システム
WO2023283800A1 (zh) 用于燃料电池的冷启动的装置和方法
JP2010257859A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE