WO2023067996A1 - コンクリート補強用複合材料およびコンクリート補強筋 - Google Patents

コンクリート補強用複合材料およびコンクリート補強筋 Download PDF

Info

Publication number
WO2023067996A1
WO2023067996A1 PCT/JP2022/036114 JP2022036114W WO2023067996A1 WO 2023067996 A1 WO2023067996 A1 WO 2023067996A1 JP 2022036114 W JP2022036114 W JP 2022036114W WO 2023067996 A1 WO2023067996 A1 WO 2023067996A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reinforcing
concrete
fiber
core material
Prior art date
Application number
PCT/JP2022/036114
Other languages
English (en)
French (fr)
Inventor
久偉 上田
潔 鵜澤
大輝 松本
博 山下
秀喜 豊
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2023067996A1 publication Critical patent/WO2023067996A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Definitions

  • the present invention relates to concrete reinforcing composite materials and concrete reinforcing bars.
  • Patent Literature 1 describes a concrete reinforcing material using a thermosetting resin.
  • FRP fiber reinforced plastics
  • An object of the present invention is to provide a concrete reinforcing composite material impregnated with a thermoplastic resin having good alkali resistance and handling properties.
  • the present inventors arrived at the present invention as a result of diligent studies aimed at solving the above problems.
  • the composite material for reinforcing concrete according to the first aspect of the present invention includes a core material formed from fiber bundles of reinforcing fibers, and a thermoplastic resin coating layer covering the core material,
  • the thermoplastic resin impregnates the core material, the thickness of the coating layer is 84 ⁇ m or more (preferably 84.8 ⁇ m or more, more preferably 85 ⁇ m or more), and the fiber volume content V f of the core material is 60% or more.
  • FIG. 1 is a cross-sectional view of a cross section of a concrete reinforcing composite material according to an embodiment.
  • FIG. 2 is a cross-sectional view of a longitudinal section of the concrete reinforcing composite material according to the embodiment.
  • FIG. 3 is a schematic diagram showing an apparatus for manufacturing a concrete reinforcing composite material according to an embodiment.
  • 4 is a diagram for explaining the take-up machine in FIG. 3.
  • FIG. 5 is a diagram for explaining the angles of the rollers shown in FIG. 4.
  • FIG. 6 is an X-ray CT photograph of the FRP rods of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 7 is a graph showing the relationship between the twist angle and the distance from the center in Examples 3-7.
  • FIG. 8 is a photograph showing BFPP bent 90 degrees and 180 degrees.
  • thermoplastic resin As mentioned above, concrete reinforcement materials impregnated with thermoplastic resin have been devised. However, there is room for improvement in alkali resistance and handling properties of concrete reinforcing materials impregnated with thermoplastic resins.
  • thermoplastic resin having good alkali resistance and handling properties.
  • FIG. 1 is a cross-sectional view of a cross section of a concrete reinforcing composite material according to an embodiment.
  • Each reference numeral in FIG. 1 represents a concrete reinforcing composite material 10 , a core material 12 , and a covering layer 14 .
  • FIG. 2 is a cross-sectional view of a longitudinal section of the concrete reinforcing composite material according to the embodiment.
  • the core material 12 is impregnated with a thermoplastic resin
  • the thickness of the coating layer 14 is 84 ⁇ m or more (preferably 84.8 ⁇ m or more, more preferably 85 ⁇ m or more)
  • the fiber volume content of the core material 12 is V f is 60% or more.
  • the core material 12 is impregnated with a thermoplastic resin, and the thickness and Vf of the coating layer are within such ranges, so that the material has high alkali resistance, high strength, high flexibility, and can be easily bent. It is possible to provide a concrete reinforcing composite material that can be secondary processed.
  • the thickness of the coating layer 14 is the thickness of the coating layer measured at 20 points.
  • the thickness of the coating layer 14 is 84 ⁇ m or more (preferably 84.8 ⁇ m or more, more preferably 85 ⁇ m or more)" means that all measured values at 20 points are 84 ⁇ m or more (preferably 84.8 ⁇ m or more, more preferably 85 ⁇ m or more).
  • the fiber volume content V f of the core material is the volume ratio of the reinforcing fibers to the core material calculated from the X-ray CT photograph of the cross section of the composite material.
  • the thickness of the coating layer 14 is preferably 250 ⁇ m or more, more preferably 320 ⁇ m or more.
  • the non-circularity of the concrete reinforcing composite material 10 is preferably 1% to 5%, and the non-circularity of the core material 12 is preferably 1% to 6%.
  • the moldability of the composite material can be improved.
  • the cross section of the coating layer has a uniform thickness. As a result, fibers are less likely to protrude from the surface, and fluff is suppressed. Inhibition of fluff inhibits die-to-fiber contact during the post-impregnation pultrusion process. Therefore, fiber breakage can be suppressed, that is, moldability can be improved.
  • Non-circularity (ab)/c x 100 (1)
  • a is the average value of the major diameters of five cross sections
  • b is the average value of minor diameters of five cross sections
  • c is the average value of the average diameter of five cross sections.
  • the average value of all the measured major diameters and minor diameters (9 measured values) is calculated as the average diameter.
  • the major diameters, minor diameters and average diameters of five cross sections are averaged to obtain a, b and c in formula (1).
  • the non-circularity of the concrete reinforcing composite material is calculated from X-ray CT photographs of five cross-sections including both the core material and the covering layer of this composite material.
  • the non-circularity of the core material is calculated from five cross sections of the core material excluding the coating layer in the X-ray CT photograph of the cross section of the composite material.
  • the twist angle of the reinforcing fibers contained in the core material 12 is preferably 0.087° to 15°. If the twist angle is within this range, the moldability of the composite material can be improved. Specifically, the twisting of the reinforcing fibers causes the fibers to be centered during the pultrusion process. Therefore, contact between the die and the fibers is suppressed during the pultrusion process. As a result, breakage of fibers can be suppressed, that is, moldability can be improved.
  • the "twist angle” is the average value of fiber twist angles measured at three points from a point near the center of the longitudinal section of the composite material (the center of the core material) to a point near the coating layer.
  • the twist angle is measured at intervals of 0.25 mm from the center of 0.25 mm, and the average value of three points is obtained at each distance.
  • the twist angle is measured at intervals of 0.5 mm from 0.5 mm from the center, and the average value of 3 points is obtained at each distance.
  • all the twist angles are preferably within the above range.
  • twist angle of the reinforcing fibers is proportional to the distance from the center of the core material. According to this, the moldability and handleability of the composite material can be improved.
  • the thermoplastic resin is preferably a polyolefin resin. According to this, it is possible to provide a composite material that is inexpensive, excellent in chemical resistance and water resistance, and easy to undergo secondary processing such as bending.
  • polyolefin resins include polyethylene and polypropylene. Polypropylene is preferred because it is cheaper.
  • the reinforcing fiber forming the core material 12 is preferably at least one selected from the group consisting of glass fiber, basalt fiber, carbon fiber and aramid fiber.
  • the fiber diameter, fineness, and number of reinforcing fibers can be adjusted according to the size of the target composite material.
  • the fiber diameter may be between 7 ⁇ m and 19 ⁇ m.
  • the fineness may be between 2400tex and 24000tex.
  • the number may be 8000 to 120000.
  • FIG. 3 is a schematic diagram showing an apparatus for manufacturing a concrete reinforcing composite material according to an embodiment.
  • the manufacturing apparatus 100 shown in FIG. 3 includes a roving heater 102 , an impregnation head 104 , an extruder 106 , a die 108 , a cooling device 110 and a take-off device 112 .
  • a fiber bundle (roving bundle) 114 of reinforcing fibers (roving) is guided to a roving heater 102 for preheating.
  • An impregnation head 104 and an extruder 106 with a screw 116 are provided downstream of the roving heater 102 .
  • a molten thermoplastic resin (molten resin) 118 is continuously supplied from an extruder 106 to the impregnation head 104 .
  • a die 108 is attached to the outlet of the impregnation head 104 .
  • the die 108 shapes a concrete reinforcing composite 120 formed from twisted hot resin-impregnated fiber bundles pulled from the impregnation head 104 .
  • a cooling device 110 for cooling the high-temperature composite material 120 from the impregnation head 11 in cooling water is provided on the downstream side of the impregnation head 104 .
  • a take-up machine 112 having a pair of rollers 122 and 124 is provided downstream of the cooling device 110 .
  • the take-up machine 112 twists the resin-impregnated fiber bundle with rollers 122 and 124 and takes the composite material 120 from the upstream side.
  • FIG. 4 is a diagram for explaining the take-up machine in FIG.
  • FIG. 5 is a diagram for explaining the angles of the rollers shown in FIG.
  • the take-up machine 15 has a pair of rollers which are arranged so as to hold the respective rotation axes on a parallel plane (horizontal plane) and intersect the rotation axes so as to sandwich the composite material 120 from the upstream side. 122, 124.
  • the rotation axis of the upper roller 122 and the rotation axis of the lower roller 124 in FIG. These rotation axes are set in directions opposite to each other with respect to the take-up direction in a plan view, forming the same angle and deviating from each other by a predetermined angle.
  • the angle between a line perpendicular to the rotation axis a of the roller 122 (124) and the take-up direction (running direction) of the composite material 120 is defined as a roller angle 2 ⁇ .
  • the metal rollers 122 and 124 are formed with fine irregularities by knurling over the entire roller surface (roller outer peripheral surface).
  • the fiber bundle 114 is heated by the roving heater 102 and guided into the impregnation head 104 .
  • the fiber bundles 114 undergo resin impregnation in an impregnation head 104 filled with hot molten resin 118 supplied from an extruder 106 to form resin-impregnated fiber bundles.
  • This resin-impregnated fiber bundle is twisted and grown in the impregnation head 104 by the twisting operation by the rollers 122 and 124 . In this manner, the resin-impregnated fiber bundle is twisted while impregnating the fiber bundle 114 with the molten resin 118 supplied from the extruder 106 .
  • a composite material 120 formed from twisted resin-impregnated fiber bundles is then continuously drawn from the impregnation head 104 .
  • a hot composite material 120 continuously taken from the impregnation head 104 through the die 108 is cooled and hardened by the cooling device 110 and guided to rollers 122 and 124 .
  • Composite material 120 cooled by cooling device 110 is twisted and pulled by rollers 122 and 124 having a predetermined twisting angle ⁇ .
  • the composite material for reinforcing concrete according to the embodiment can be obtained.
  • a concrete reinforcing bar includes the concrete reinforcing composite material described above.
  • a reinforcing bar for concrete can be obtained by using a composite material as a strand and bundling or twisting several strands of the strand to increase the diameter to a size equivalent to that of a reinforcing bar.
  • the concrete reinforcing bar according to the embodiment has high alkali resistance, high strength, can be easily subjected to secondary processing such as bending, and is lighter than a reinforcing bar.
  • the concrete reinforcing bar according to the embodiment can be manufactured at low cost.
  • a composite material for reinforcing concrete comprises a core material formed from fiber bundles of reinforcing fibers, and a thermoplastic resin coating layer covering the core material,
  • the thermoplastic resin impregnates the core material, the thickness of the coating layer is 84 ⁇ m or more (preferably 84.8 ⁇ m or more, more preferably 85 ⁇ m or more), and the fiber volume content V f of the core material is 60% or more.
  • the non-circularity of the concrete reinforcing composite material is 1% to 5%, and the non-circularity of the core material is 1% to 6%.
  • the twist angle of the reinforcing fibers is more preferably 0.087° to 15°.
  • the twist angle of the reinforcing fibers is proportional to the distance from the center of the core material.
  • thermoplastic resin is a polyolefin resin.
  • the reinforcing fiber is preferably at least one selected from the group consisting of glass fiber, basalt fiber, carbon fiber and aramid fiber.
  • the concrete reinforcing bar according to the second aspect of the present invention includes the concrete reinforcing composite material according to the first aspect of the present invention.
  • FRP strand rod Manufacturing of FRP strand rod
  • An FRP rod was manufactured using a pultrusion machine manufactured by Kobe Steel, Ltd. The manufacturing process is as described above with reference to FIGS.
  • basalt fiber (BF) as a reinforcing fiber
  • five FRP strand rods (Examples 1 to 3, Comparative Examples 1 and 2) were experimentally produced.
  • the matrix is polypropylene (PP) with high fluidity and a compatibilizer of several percent.
  • BF with a fiber diameter of 17 ⁇ m/fineness of 4800 tex was used.
  • the inside of the molded FRP rod was observed by X-ray CT (manufactured by ZEOSS), and the non-circularity and Vf were calculated.
  • the alkali resistance of the FRP rod was evaluated in accordance with JIS A 1193:2005.
  • An alkaline solution simulating the pore solution of concrete was adjusted to 60° C. and pH 12.5 to 13.0, and the manufactured FRP rod was immersed in the solution for 28 days in a constant temperature bath. After that, the load was measured by a tensile test. The measurement results were evaluated in three stages: “excellent” (load retention rate of 95% or more), “good” (load retention rate of 90 to 94%), and “poor” (load retention rate of 98% or less). .
  • the handleability was evaluated by the sensory evaluation by rubbing the surface of the FRP rod with bare hands and the presence or absence of protrusion of fibers on the surface by X-ray CT. The evaluation is “excellent” (no sticking or protruding fibers), “good” (no sticking or protruding fibers), and “bad” (no sticking of fine fibers). The fiber sticks to the surface).
  • Example 1 is an FRP rod manufactured with three rovings and a die ⁇ 4.8 mm.
  • Example 2 is an FRP rod manufactured with three rovings and a die of ⁇ 5.0 mm.
  • Comparative Example 1 is an FRP rod manufactured with four rovings and a die of ⁇ 4.8 mm.
  • Comparative Example 2 is an FRP rod manufactured with four rovings and a die of ⁇ 5.0 mm. From FIG. 6, it can be seen that in Examples 1 and 2, a coating layer made of PP resin was reliably formed.
  • Example 3 is an FRP rod manufactured with four rovings and a die of ⁇ 5.0 mm.
  • the FRP rods of Examples 1 and 2 in which the thickness of the coating layer is 84 ⁇ m or more and the V f of the core material is 60% or more, are higher in strength and alkali resistance than those in Comparative Examples 1 and 2. , it can be seen that the handling property is excellent.
  • Example 4 Fiber: Glass fiber (GF) Core material V f (calculated by image analysis by X-ray CT) 80.2%, roller angle 2 ⁇ (when molding) 10 degrees, Example 5 Fiber: GF core material V f (calculated by image analysis using X-ray CT) 63.9%, roller angle 2 ⁇ (during molding) 30 degrees, Example 6 Fiber: GF core material V f (calculated by image analysis by X-ray CT) 82.5%, roller angle 2 ⁇ (during molding) 60 degrees, Example 7 Fiber: Basalt fiber (BF) Core material V f (calculated by image analysis by X-ray CT) 80.5%, roller angle 2 ⁇ (when molding) 30 degrees, Example 8 Fiber: BF core material V f (calculated by image analysis using X-ray CT) 80.2%, roller angle 2 ⁇ (when molding) 30 degrees, Example 8 Fiber: BF core material V f (calculated by image analysis using X-ray CT) 80.2%, roller angle 2 ⁇ (when molding) 30 degrees, Example 8 Fiber
  • Example 4 The twist angles of Examples 4-8 are as follows. ⁇ Example 4: 0.87 to 3.82 degrees (distance from center 0.25, 0.5, 0.75, 1.0 mm) ⁇ Example 5: 1.59 to 5.61 degrees (distance from center 0.25, 0.5, 0.75 mm) ⁇ Example 6: 3.38 to 14.27 degrees (distance from center 0.25, 0.5, 0.75 mm) ⁇ Example 7: 1.9 to 10.46 degrees (distance from center 0.5, 1.0, 1.5 mm) ⁇ Example 8: 3.11 to 14.78 degrees (distance from center 0.5, 1.0, 2.0, 2.5 mm) FIG. 7 shows the relationship between the twist angle and the distance from the center of the core material in Examples 4-8. It can be seen from FIG. 7 that the twist angle is proportional to the distance from the center of the core material.
  • FIG. 8 is a photograph showing BFPP bent 90 degrees and 180 degrees. It was confirmed that bending can be easily performed by hot air using a heat gun.
  • the concrete reinforcing composite material of the present invention can be used as a concrete reinforcing bar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Ropes Or Cables (AREA)

Abstract

耐アルカリ性およびハンドリング性が良好な熱可塑性樹脂を含浸させたコンクリート補強用複合材料を提供する。コンクリート補強用複合材料10において、芯材12は、強化繊維の繊維束から形成される。熱可塑性樹脂の被覆層14は、芯材12を被覆する。芯材12には熱可塑性樹脂が含浸しており、被覆層14の厚さは84μm以上であり、芯材12の繊維体積含有率Vが60%以上である。

Description

コンクリート補強用複合材料およびコンクリート補強筋
 本発明は、コンクリート補強用複合材料およびコンクリート補強筋に関する。
 鉄筋コンクリート構造体は、それに使用される鉄筋が水分や塩分などによって腐食を受けやすいので、経年劣化する。そのため、コンクリート構造物の長寿命化のために、鉄筋の代替物として繊維強化プラスチック(FRP)などの複合材料を使用することが提案されている。例えば、特許文献1には、熱硬化性樹脂を用いたコンクリート補強用材料が記載されている。特許文献1に記載のコンクリート補強用材料の製造においては、熱硬化性樹脂を強化繊維へ含浸させた後、熱による硬化反応により樹脂が固まるまで時間を要する。そのため、生産効率が低く、製造コストが高い。また、熱硬化樹脂は一度固まると加熱して柔らかくすることができないため、曲げ加工等の二次加工ができない。そのため、熱硬化性樹脂に代わって熱可塑性樹脂を含浸させたコンクリート補強用材料が考案されている。
特開平11-124957号公報
 本発明の目的は、耐アルカリ性およびハンドリング性が良好な熱可塑性樹脂を含浸させたコンクリート補強用複合材料を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、本発明に到達した。
 すなわち、本発明の第一の局面に係るコンクリート補強用複合材料は、強化繊維の繊維束から形成された芯材と、
 前記芯材を被覆する熱可塑性樹脂の被覆層と、を含み、
 前記熱可塑性樹脂は前記芯材に含浸しており、前記被覆層の厚さは84μm以上(好ましくは84.8μm以上、より好ましくは85μm以上)であり、前記芯材の繊維体積含有率Vが60%以上である。
図1は、実施の形態に係るコンクリート補強用複合材料の横断面の断面図である。 図2は、実施の形態に係るコンクリート補強用複合材料の縦断面の断面図である。 図3は、実施の形態に係るコンクリート補強用複合材料の製造装置を示す概略図である。 図4は、図3における引取機を説明するための図である。 図5は、図4に示すローラの角度を説明するための図である。 図6は、実施例1、2、比較例1、2のFRPロッドのX線CT写真である。 図7は、実施例3~7の撚り角度と中心からの距離との関係を示すグラフである。 図8は、90度曲げおよび180度曲げしたBFPPを示す写真である。
 上述したように、熱可塑性樹脂を含浸させたコンクリート補強用材料が考案されている。しかしながら、熱可塑性樹脂を含浸させたコンクリート補強用材料において、耐アルカリ性およびハンドリング性に改善の余地がある。
 本開示によれば、耐アルカリ性およびハンドリング性が良好な熱可塑性樹脂を含浸させたコンクリート補強用複合材料を提供することができる。
 以下、図面等を参照しながら、本開示を実施するための形態について詳細に説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 (コンクリート補強用複合材料)
 図1は、実施の形態に係るコンクリート補強用複合材料の横断面の断面図である。図1において各符号は、コンクリート補強用複合材料10、芯材12、および被覆層14を表している。図2は、実施の形態に係るコンクリート補強用複合材料の縦断面の断面図である。図1および図2に示すコンクリート補強用複合材料(以下、単に複合材料とも称する)10は、強化繊維の繊維束から形成された芯材12と、芯材12を被覆する熱可塑性樹脂の被覆層14とを含む。
 芯材12には熱可塑性樹脂が含浸しており、被覆層14の厚さは84μm以上(好ましくは84.8μm以上、より好ましくは85μm以上)であり、芯材12の繊維体積含有率Vが60%以上である。芯材12に熱可塑性樹脂が含浸し、被覆層の厚さおよびVがこのような範囲内にあることによって、耐アルカリ性が高く、高強度であり、可撓性が高く、曲げ加工等の二次加工が可能なコンクリート補強用複合材料を提供できる。ここで、被覆層14の厚さは、20箇所で測定した被覆層の厚さである。すなわち、「被覆層14の厚さは84μm以上(好ましくは84.8μm以上、より好ましくは85μm以上)」とは、20箇所の測定値すべてが84μm以上(好ましくは84.8μm以上、より好ましくは85μm以上)の範囲内にあることを意味する。芯材の繊維体積含有率Vは、複合材料の横断面のX線CT写真から算出した芯材に対する強化繊維の体積割合である。
 耐アルカリ性および強度をさらに向上させるという観点から、被覆層14の厚さは、好ましくは250μm以上、より好ましくは320μm以上である。
 コンクリート補強用複合材料10の非円率が1%~5%であり、芯材12の非円率が1%~6%であることが好ましい。コンクリート補強用複合材料10の非円率および芯材12の非円率がそれぞれ上記の範囲内にあることによって、複合材料の成形性を向上させることができる。具体的には、これらの非円率がそれぞれ上記の範囲内にあることで、被覆層の厚さが均一な断面となる。その結果、繊維が表面から突出しにくくなり、ケバが抑えられる。ケバの抑制によって、含浸後の引抜成形工程においてダイスと繊維が接触することが抑制される。このため、繊維の断線を抑制でき、すなわち成形性を向上させることができる。
 非円率が低いほど、複合材料の横断面の形状が真円に近くなる。ここで、「非円率」は、以下の式によって算出される。
非円率(%)=(a-b)/c×100 (1)
式中、aは5箇所の横断面の長径の平均値、bは5箇所の横断面の短径の平均値、cは5箇所の横断面の平均径の平均値を示す。具体的には、a、bおよびcは、横断面のX線CT写真から次のようにして算出される。1つの横断面につき、長径および短径のそれぞれを3回ずつ(N=3)測定し、それぞれの平均値を算出する。さらに、測定した長径および短径すべて(9つの測定値)の平均値を平均径として算出する。5箇所の横断面の長径、短径および平均径のそれぞれを平均し、式(1)のa、bおよびcとする。コンクリート補強用複合材料の非円率は、この複合材料の芯材と被覆層の両方を含む5箇所の横断面のX線CT写真から算出される。芯材の非円率は、複合材料の横断面のX線CT写真において、被覆層を除いた芯材の5箇所の横断面から算出される。
 芯材12に含まれる強化繊維の撚り角度が0.087°~15°であることが好ましい。撚り角度がこの範囲内であれば、複合材料の成形性を向上させることができる。具体的には、強化繊維に撚りがかかることによって、引抜成形工程において繊維が中心に寄る。それ故に、引抜成形工程においてダイスと繊維との接触が抑制される。これにより、繊維の断線を抑制でき、すなわち成形性を向上させることができる。ここで、「撚り角度」とは、複合材料の縦断面の中心(芯材の中心)に近い箇所から被覆層に近い箇所において3点計測した繊維の撚り角度の平均値である。例えば、複合材料の径が細かい場合、中心からの距離0.25mmから0.25mm間隔で撚り角度の計測を行い、各距離にて3点の平均値を求める。複合材料の径が太い場合、中心からの距離0.5mmから0.5mm間隔で撚り角度の計測を行い、各距離にて3点の平均値を求める。このように中心から被覆層に近い箇所まで等間隔で撚り角度を測定した場合、撚り角度すべてが上記範囲内にあることが好ましい。
 強化繊維の撚り角度が芯材の中心からの距離と比例することが好ましい。これによれば、複合材料の成形性およびハンドリング性を向上させることができる。
 熱可塑性樹脂は、ポリオレフィン系樹脂であることが好ましい。これによれば、安価で耐薬品性、耐水性に優れ、曲げ加工等の二次加工が容易な複合材料を提供することができる。ポリオレフィン系樹脂の例としては、ポリエチレン、ポリプロピレンなどが挙げられる。より安価であることから、ポリプロピレンが好ましい。
 芯材12を形成する強化繊維は、ガラス繊維、バサルト繊維、炭素繊維およびアラミド繊維からなる群より選択される少なくとも1種であることが好ましい。
 強化繊維の繊維径、繊度、本数は目的の複合材料のサイズに応じて調整できる。例えば、繊維径は、7μm~19μmであってもよい。例えば、繊度は、2400tex~24000texであってもよい。例えば、本数は8000本~120000本であってもよい。
 (コンクリート補強用複合材料の製造方法)
 以下、実施の形態に係るコンクリート補強用複合材料の製造方法について説明する。実施の形態に係るコンクリート補強用複合材料は、引抜成形によって製造できる。図3は、実施の形態に係るコンクリート補強用複合材料の製造装置を示す概略図である。図3に示す製造装置100は、ロービングヒーター102と、含浸ヘッド104と、押出機106と、ダイ108と、冷却装置110と、引取機112と、を備える。
 図3に示すように、強化繊維(ロービング)の繊維束(ロービング束)114は、予熱のためにロービングヒーター102に導かれる。ロービングヒーター102の下流側には、含浸ヘッド104と、スクリュ116を備える押出機106とが設けられている。含浸ヘッド104には、溶融した熱可塑性樹脂(溶融樹脂)118が押出機106から連続的に供給されている。含浸ヘッド104の出口には、ダイ108が取り付けられている。ダイ108は、含浸ヘッド104から引き取られる、撚りが付与された高温の樹脂含浸繊維束から形成されるコンクリート補強用複合材料120の賦形を行う。
 含浸ヘッド104の下流側には、含浸ヘッド11からの高温の複合材料120を冷却水中で冷却する冷却装置110が設けられている。冷却装置110の下流側には、1対のローラ122,124を備える引取機112が設けられている。引取機112は、ローラ122,124によって樹脂含浸繊維束に撚りを付与し、かつ上流側からの複合材料120を引き取る。
 図4は図3における引取機を説明するための図である。図5は図4に示すローラの角度を説明するための図である。引取機15は、それぞれの回転軸線を平行な平面(水平面)上に保持し、かつ、該回転軸線を交差させた状態で上流側からの複合材料120を挟むように対向配置された一対のローラ122,124を備える。図4における上側のローラ122の回転軸線と下側のローラ124の回転軸線は、複合材料120の引き取り方向(走行方向)と直交する向きに設定されていない。これらの回転軸線は、平面視において引き取り方向に対して互いに相反する方向に、かつ同角度をなして所定角度ずれた向きに設定されている。
 図5に示すように、平面視において、ローラ122(124)の回転軸線aと直交する線と、複合材料120の引き取り方向(走行方向)とのなす角度をローラ角度2θとして定めている。なお、金属製のローラ122,124は、ローラ表面(ローラ外周面)全体にわたってローレット加工による微小凹凸が形成されている。
 このように構成される製造装置100において、まず、繊維束114は、ロービングヒーター102によって加熱され、含浸ヘッド104内に導かれる。繊維束114は、押出機106から供給された高温の溶融樹脂118が充満されている含浸ヘッド104内で樹脂含浸を受けて、樹脂含浸繊維束が形成される。この樹脂含浸繊維束は、ローラ122,124による撚り動作によって、含浸ヘッド104内で撚りが生成し、成長する。このように、繊維束114に押出機106から供給された溶融樹脂118を含浸させつつ、樹脂含浸繊維束に撚りを付与する。そして、撚りが付与された樹脂含浸繊維束から形成される複合材料120が、含浸ヘッド104から連続的に引き取られる。
 含浸ヘッド104からダイ108を経て連続的に引き取られる高温の複合材料120は、冷却装置110によって冷却硬化されて、ローラ122,124へと導かれる。冷却装置110によって冷却された複合材料120に対して、所定の撚り角度θが設定されたローラ122,124により、撚り動作と引き取りとが行われる。このようにして実施の形態に係るコンクリート補強用複合材料を得ることができる。
 (コンクリート補強筋)
 実施の形態に係るコンクリート補強筋は、上記のコンクリート補強用複合材料を含む。例えば、複合材料を素線とし、これを数本束ねるか、または撚線加工することによって直径を鉄筋相当まで太くすることによって、コンクリート補強筋を得ることができる。実施の形態に係るコンクリート補強筋は、耐アルカリ性が高く、高強度であり、曲げ加工等の二次加工が容易であり、鉄筋よりも軽量である。また、実施の形態に係るコンクリート補強筋は、低コストで製造することができる。
 以上、本発明の概要について説明したが、本発明の実施形態におけるコンクリート補強用複合材料およびコンクリート補強筋をまとめると下記の通りである。
 本発明の第一の局面に係るコンクリート補強用複合材料は、強化繊維の繊維束から形成された芯材と、
 前記芯材を被覆する熱可塑性樹脂の被覆層と、を含み、
 前記熱可塑性樹脂は前記芯材に含浸しており、前記被覆層の厚さは84μm以上(好ましくは84.8μm以上、より好ましくは85μm以上)であり、前記芯材の繊維体積含有率Vが60%以上である。
 前述のコンクリート補強用複合材料において、前記コンクリート補強用複合材料の非円率が1%~5%であり、前記芯材の非円率が1%~6%であることが好ましい。
 前述のコンクリート補強用複合材料において、前記強化繊維の撚り角度が0.087°~15°であることがより好ましい。
 前述のコンクリート補強用複合材料において、前記強化繊維の撚り角度が前記芯材の中心からの距離と比例することがさらに好ましい。
 前述のコンクリート補強用複合材料において、前記熱可塑性樹脂は、ポリオレフィン系樹脂であることが特に好ましい。
 前述のコンクリート補強用複合材料において、前記強化繊維は、ガラス繊維、バサルト繊維、炭素繊維およびアラミド繊維からなる群より選択される少なくとも1種であることが好ましい。
 本発明の第二の局面に係るコンクリート補強筋は、本発明の第一の局面に係るコンクリート補強用複合材料を含む。
 以下、本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を何ら限定するものではない。
 (FRPストランドロッドの製造)
 株式会社神戸製鋼所製引抜成形装置を用いてFRPロッドを製造した。製造工程は図3~5を参照して上記で説明した通りである。バサルト繊維(BF)を強化繊維に用いてFRPストランドロッドを5本(実施例1~3、比較例1、2)試作した。マトリクスには流動性の高いポリプロピレン(PP)に数%程度の相溶化剤を加えた。BFは、繊維径17μm/繊度4800texのものを用いた。成形したFRPロッドは、X線CT(ZEOSS製)にて内部観察し、非円率、Vを算出した。また、万能試験機(島津製作所株式会社製)を用いて引張試験を行い、荷重保持率を、式:(アルカリ浸漬後の引張破断荷重/アルカリ浸漬前の引張破断荷重)×100、によって算出した。
 JIS A 1193:2005に準拠したFRPロッドの耐アルカリ性評価を行った。コンクリートの細孔溶液を模したアルカリ溶液を60℃、pH12.5~13.0に調整し、製造したFRPロッドを恒温槽内で28日間溶液中に浸漬した。その後、引張試験により荷重を測定した。測定結果を、「優秀」(荷重保持率が95%以上)、「良好」(荷重保持率が90~94%)、および「不良」(荷重保持率が98%以下)の3段階で評価した。また、FRPロッド表面を素手で擦る感応評価とX線CTによる表面の繊維の突出の有無によって、ハンドリング性を評価した。評価は、「優秀」(繊維が手に刺さらず、突出もない)、「良好」(繊維が手に刺さらないが、糸切れした細かな繊維の突出が認められる)、および「不良」(手に繊維が刺さる)の3段階で行った。
 実施例1、2、比較例1、2のX線CT写真を図6に示す。実施例1は、3本のロービング、ダイΦ4.8mmで製造したFRPロッドである。実施例2は、3本のロービング、ダイΦ5.0mmで製造したFRPロッドである。比較例1は、4本のロービング、ダイΦ4.8mmで製造したFRPロッドである。比較例2は、4本のロービング、ダイΦ5.0mmで製造したFRPロッドである。図6から、実施例1、2ではPP樹脂による被覆層が確実に形成されているのが分かる。
 実施例1~3、比較例1、2のFRPロッドの特性を表1に示す。ここで、実施例3は4本のロービング、ダイΦ5.0mmで製造したFRPロッドである。
Figure JPOXMLDOC01-appb-T000001
 表1から、被覆層の厚さが84μm以上であり、かつ芯材のVが60%以上である実施例1、2のFRPロッドは、比較例1、2と比較して強度、耐アルカリ性、ハンドリング性に優れていることが分かる。また、被覆層の厚さが84μm以上であり、かつ芯材のVが60%以上である実施例3のFRPロッドも、比較例1、2と比較して強度、耐アルカリ性、ハンドリング性に優れていることが分かる。
 次に、以下のサンプルを試作した。試作したFRPロッドのX線CT(ZEOSS製)から、撚り角度(各距離において3点計測し、3点の計測値を平均した値)を算出した。
・実施例4
繊維:ガラス繊維(GF) 芯材V(X線CTによる画像解析により算出)80.2%、ローラ角度2θ(成形時)10度
・実施例5
繊維:GF 芯材V(X線CTによる画像解析により算出)63.9%、ローラ角度2θ(成形時)30度
・実施例6
繊維:GF 芯材V(X線CTによる画像解析により算出)82.5%、ローラ角度2θ(成形時)60度
・実施例7
繊維:バサルト繊維(BF) 芯材V(X線CTによる画像解析により算出)80.5%、ローラ角度2θ(成形時)30度
・実施例8
繊維:BF 芯材V(X線CTによる画像解析により算出)61.5%、ローラ角度2θ(成形時)30度
 実施例4~8の撚り角度は以下の通りである。
・実施例4:0.87~3.82度(中心からの距離0.25、0.5、0.75、1.0mm)
・実施例5:1.59~5.61度(中心からの距離0.25、0.5、0.75mm)
・実施例6:3.38~14.27度(中心からの距離0.25、0.5、0.75mm)
・実施例7:1.9~10.46度(中心からの距離0.5、1.0、1.5mm)
・実施例8:3.11~14.78度(中心からの距離0.5、1.0、2.0、2.5mm)
実施例4~8の撚り角度と芯材中心からの距離との関係を図7に示す。図7から、撚り角度は、芯材中心からの距離と比例することが分かる。
 束と撚線加工により太径化したFRPロッド(バサルト繊維およびポリプロピレンによって形成されたもの、以下、BFPPとも称す)を作成した。BFPPのロープは、小松マテーレ株式会社の協力のもと、撚線加工を行った。図8は90度曲げおよび180度曲げしたBFPPを示す写真である。ヒートガンを用いた熱風により容易に曲げ加工ができることを確認した。
 本出願は、2021年10月22日に出願された日本国特許出願特願2021-172774号を基礎とするものであり、その内容は、本願に含まれるものである。
 今回開示された実施形態および実施例は、全ての点で例示であって制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 本発明のコンクリート補強用複合材料はコンクリート補強筋として利用できる。
 

Claims (7)

  1.  強化繊維の繊維束から形成された芯材と、
     前記芯材を被覆する熱可塑性樹脂の被覆層と、を含み、
     前記熱可塑性樹脂は前記芯材に含浸しており、前記被覆層の厚さは84μm以上であり、前記芯材の繊維体積含有率Vが60%以上である、コンクリート補強用複合材料。
  2.  前記コンクリート補強用複合材料の非円率が1%~5%であり、前記芯材の非円率が1%~6%である、請求項1に記載のコンクリート補強用複合材料。
  3.  前記強化繊維の撚り角度が0.087°~15°である、請求項1に記載のコンクリート補強用複合材料。
  4.  前記強化繊維の撚り角度が前記芯材の中心からの距離と比例する、請求項1に記載のコンクリート補強用複合材料。
  5.  前記熱可塑性樹脂は、ポリオレフィン系樹脂である、請求項1に記載のコンクリート補強用複合材料。
  6.  前記強化繊維は、ガラス繊維、バサルト繊維、炭素繊維およびアラミド繊維からなる群より選択される少なくとも1種である、請求項1に記載のコンクリート補強用複合材料。
  7.  請求項1~6のいずれか1項に記載のコンクリート補強用複合材料を含む、コンクリート補強筋。
PCT/JP2022/036114 2021-10-22 2022-09-28 コンクリート補強用複合材料およびコンクリート補強筋 WO2023067996A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021172774A JP2023062721A (ja) 2021-10-22 2021-10-22 コンクリート補強用複合材料およびコンクリート補強筋
JP2021-172774 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023067996A1 true WO2023067996A1 (ja) 2023-04-27

Family

ID=86059122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036114 WO2023067996A1 (ja) 2021-10-22 2022-09-28 コンクリート補強用複合材料およびコンクリート補強筋

Country Status (2)

Country Link
JP (1) JP2023062721A (ja)
WO (1) WO2023067996A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693579A (ja) * 1992-07-24 1994-04-05 Nippon Steel Corp 複合材料およびその製造方法
JP2010513751A (ja) * 2006-12-14 2010-04-30 ディーティー・サーチ・アンド・デザインズ・エルエルシー 曲げることのできる繊維強化複合材の鉄筋
JP2014108898A (ja) * 2012-11-30 2014-06-12 Ube Exsymo Co Ltd セメント強化用複合frp製短線材及びその製造方法
JP2017036519A (ja) * 2015-08-07 2017-02-16 日本毛織株式会社 強化用組紐構造体及びこれを用いた複合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693579A (ja) * 1992-07-24 1994-04-05 Nippon Steel Corp 複合材料およびその製造方法
JP2010513751A (ja) * 2006-12-14 2010-04-30 ディーティー・サーチ・アンド・デザインズ・エルエルシー 曲げることのできる繊維強化複合材の鉄筋
JP2014108898A (ja) * 2012-11-30 2014-06-12 Ube Exsymo Co Ltd セメント強化用複合frp製短線材及びその製造方法
JP2017036519A (ja) * 2015-08-07 2017-02-16 日本毛織株式会社 強化用組紐構造体及びこれを用いた複合材料

Also Published As

Publication number Publication date
JP2023062721A (ja) 2023-05-09

Similar Documents

Publication Publication Date Title
US9659680B2 (en) Composite core for electrical transmission cables
US8921692B2 (en) Umbilical for use in subsea applications
KR100867251B1 (ko) 장섬유 강화 열가소성 수지 펠릿 및 그 제조 방법
US10676845B2 (en) Continuous fiber reinforced thermoplastic rod and pultrusion method for its manufacture
JP6035129B2 (ja) セメント強化用複合frp製短線材及びその製造方法
US20190232579A1 (en) Composite Fibers and Method of Producing Fibers
KR102334459B1 (ko) 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법
JP6895682B2 (ja) 一方向プリプレグ、繊維強化熱可塑性樹脂シート、一方向プリプレグおよび繊維強化熱可塑性樹脂シートの製造方法、ならびに、成形体
JPH0325340B2 (ja)
WO2023067996A1 (ja) コンクリート補強用複合材料およびコンクリート補強筋
JPH0533278A (ja) 炭素繊維強化複合材料からなるロープおよびその製造方法
JP5100867B2 (ja) フィラメントワインディング用炭素繊維束の製造方法
JP6445822B2 (ja) 強化繊維束、強化繊維束の開繊装置及び強化繊維束の開繊方法
JP2018016733A (ja) 長繊維強化熱可塑性樹脂線状物、及びその製造方法
JP2013203942A (ja) 熱可塑性プリプレグとその製造方法
JPH03129040A (ja) コンクリート補強筋とその製造方法
CN112796131A (zh) 一种用于增强聚乙烯管道的玻璃纤维绳及其制备方法
KR20160083549A (ko) 인발성형 공정에 의한 복합소재 제조방법
JP2021123821A (ja) 高強度繊維複合線材および高強度繊維複合ケーブルならびに高強度繊維複合ケーブルの製造方法
JP2002294568A (ja) フィラメントワインディング用炭素繊維束
JPH04278812A (ja) タイヤ用ビードワイヤ
JPH07132561A (ja) 可撓性構造用材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883305

Country of ref document: EP

Kind code of ref document: A1