WO2023067888A1 - 信号処理装置 - Google Patents

信号処理装置 Download PDF

Info

Publication number
WO2023067888A1
WO2023067888A1 PCT/JP2022/031910 JP2022031910W WO2023067888A1 WO 2023067888 A1 WO2023067888 A1 WO 2023067888A1 JP 2022031910 W JP2022031910 W JP 2022031910W WO 2023067888 A1 WO2023067888 A1 WO 2023067888A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
signal processing
processing device
unit
Prior art date
Application number
PCT/JP2022/031910
Other languages
English (en)
French (fr)
Inventor
了太 三田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023554957A priority Critical patent/JPWO2023067888A1/ja
Publication of WO2023067888A1 publication Critical patent/WO2023067888A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle signal processing device.
  • automated driving of vehicles equipped with automated driving vehicle control devices has been put into practical use.
  • information about other vehicles traveling in front hereinafter also referred to as preceding vehicles
  • the autonomous driving vehicle maintains a distance between itself and the preceding vehicle.
  • Vehicle control that follows and runs is known.
  • Patent Document 1 when an external sensor of the own vehicle loses the preceding vehicle, it is determined whether or not the preceding vehicle exists on the route of the own vehicle based on the route candidate of the preceding vehicle obtained from the map information.
  • An automatic driving control device is disclosed that limits the acceleration control of the host vehicle when it determines that there is a preceding vehicle on the route of the host vehicle.
  • the difference between the gradient of the road surface on which the preceding vehicle is traveling and the gradient of the road surface on which the vehicle is traveling is large.
  • the position of the preceding vehicle is outside the detection range of the external sensor of the own vehicle, there is a phenomenon that the preceding vehicle information from the external sensor is temporarily lost (hereinafter also referred to as temporary lost).
  • Patent Document 1 first calculates candidates for the route on which the own vehicle will travel and the route on which the preceding vehicle will travel from now on from the external sensor and map information. Next, the timing of when the preceding vehicle is lost is calculated for each route candidate of the preceding vehicle based on the relationship between the route of the own vehicle, the route candidate of the preceding vehicle, and the detection range of the external sensor. Then, by comparing the calculated route candidate and the actual timing of the loss of the external sensor, it is possible to determine which route the preceding vehicle actually chose. well identifiable.
  • the present invention has been made in view of the above-mentioned problems, and the distance between the preceding vehicle and the own vehicle in following running can be determined by determining the cause of the preceding vehicle's loss of the preceding vehicle with higher accuracy than the conventional signal processing device. It is an object of the present invention to provide a signal processing device that can be maintained more reliably.
  • the present invention provides an integration unit that integrates external world information acquired by an external sensor mounted on a vehicle and vehicle running information acquired by the vehicle sensor; a behavior prediction unit that predicts, based on the integrated result, the behavior of the own vehicle and the other vehicle detected by the external sensor at a future time, wherein the behavior prediction unit predicts the behavior of the future time.
  • a road shape acquisition unit that obtains road shape information on the road surface on which the own vehicle and the other vehicle are traveling; a departure determination unit that determines whether or not the other vehicle will leave the detection range, wherein the integration unit uses the behavior prediction result in the integration process according to the determination result of the departure determination unit.
  • a signal processor can be provided.
  • FIG. 1 is a configuration diagram showing a vehicle control device AD1 for an automatic driving vehicle according to the present invention
  • FIG. 2 is a flowchart diagram executed by a behavior prediction unit 9 of FIG. 1
  • FIG. 4 is an explanatory diagram showing a scene at current time t1, an integrated result FU1, and an action prediction result CA1 according to Embodiment 1
  • FIG. 2 is a flow chart diagram executed by an integration unit 12 in FIG. 1
  • FIG. 4 is an explanatory diagram showing a scene at current time t2, an integrated result FU2, and an integrated result FU3 according to the first embodiment
  • FIG. 10 is an explanatory diagram showing a scene at current time t101, an integrated result FU101, and an integrated result FU102 according to the second embodiment
  • FIG. 10 is an explanatory diagram showing a scene at current time t101, an integrated result FU101, and an integrated result FU102 according to the second embodiment
  • FIG. 1 is a configuration diagram of a vehicle control device AD1 mounted on an automatically driven vehicle (own vehicle V).
  • the vehicle control device AD1 includes a signal processing device 7, an automatic driving control section 17, an external sensor 1, a map unit 5, a vehicle sensor 6, and a vehicle driving section 20.
  • the signal processing device 7 , the automatic driving control section 17 , and the map unit 5 acquire the operation amounts of the engine 21 , the brake 22 , and the steering 23 controlled by the vehicle drive section 20 from the vehicle sensor 6 .
  • the external sensor 1 has a camera sensor 2 and a radar sensor 3.
  • the camera sensor 2 acquires object information (external world information) detected from an image around the own vehicle V, and outputs the acquired object information to the signal processing device 7 .
  • the radar sensor 3 acquires object information (external world information) detected from a distance to a predetermined point around the vehicle V, and outputs the acquired object information to the signal processing device 7 .
  • the object information includes the size, position, speed, acceleration, orientation, type, detection state, and the like of the detected object.
  • the map unit 5 has an antenna 4.
  • the antenna 4 receives a satellite reception signal (hereinafter, GNSS signal) of a global navigation satellite system (hereinafter, GNSS).
  • Map unit 5 includes a map database and a locator.
  • the map unit 5 calculates vehicle position information with a locator based on the received GNSS signal, selects peripheral map information from the map database, and outputs the vehicle position information and peripheral map information to the signal processing device 7 .
  • the map information includes detailed information such as roads, signs, and features necessary for automatic driving.
  • the vehicle sensor 6 acquires own vehicle running information such as operating information of the engine 21, operation information of the brake 22, and operation information of the steering wheel 23, and transmits the acquired own vehicle running information to the signal processing device 7, the automatic driving control unit 17, and to the map unit 5.
  • the signal processing device 7 includes a processor 13, a memory 8, an I/O interface 15, an I/O interface 16, and an auxiliary storage device 14.
  • the I/O interface 15 is connected to the external sensor 1 , the map unit 5 and the vehicle sensor 6
  • the I/O interface 16 is connected to the automatic driving control section 17 .
  • the I/O interface 15 and I/O interface 16 are connected to the external sensor 1, the map unit 5, the vehicle sensor 6, and the automatic driving control unit 17 via LAN (Local Area Network) and CAN (Controller Area Network). .
  • LAN Local Area Network
  • CAN Controller Area Network
  • the auxiliary storage device 14 is composed of a non-volatile storage medium and holds programs, tables, and the like.
  • the integration unit 12 and the behavior prediction unit 9 are loaded as programs into the memory 8 and executed by the processor 13 .
  • the behavior prediction section 9 includes a road shape acquisition section 10 and a departure determination section 11 .
  • the integration unit 12 receives the external world information from the external sensor 1, the vehicle position information, the surrounding map information, and the preset travel route information from the map unit 5, and the vehicle sensor 6. Enter your own vehicle driving information.
  • the integration unit 12 integrates the vehicle travel information with the peripheral map information based on the vehicle position information.
  • the integration unit 12 scrutinizes the external world information, removes inaccurate information such as sensor detection errors, generates correct object information, and fuses the object information with the peripheral map information.
  • the integration unit 12 generates an integration result by fusing (integrating) the vehicle traveling information and the object information with the surrounding map information (also called integration processing).
  • the integration unit 12 outputs the integration result to the action prediction unit 9 and outputs the integration result and the planned travel route information to the automatic driving control unit 17 .
  • the behavior prediction unit 9 receives the integration result from the integration unit 12, calculates the positional relationship between the vehicle V and surrounding objects at the future time, and generates the vehicle running information and the object information at the future time obtained by the calculation. and the surrounding map information to generate a behavior prediction result.
  • the behavior prediction unit 9 stores and reads the generated behavior prediction result, and outputs the behavior prediction result to the integration unit 12 as necessary.
  • the road shape acquisition unit 10 extracts the preceding vehicle LV from the behavior prediction result and acquires gradient information of the road surface on which the preceding vehicle LV is traveling at future time. Further, the road shape acquisition unit 10 acquires gradient information of the road surface on which the vehicle V is traveling at a future time from the action prediction result.
  • the gradient information of the traveling road surface is a gradient value obtained from the peripheral map information based on the positional information of the own vehicle V and the preceding vehicle LV in the action prediction result.
  • the gradient information of the road surface can be obtained directly if the gradient value is included in the surrounding map information, or the road coordinate points (latitude, longitude, elevation) that define the road shape included in the surrounding map information You may calculate and acquire a gradient value from the information of .
  • the departure determination unit 11 acquires gradient information of road surfaces on which the own vehicle V and the preceding vehicle LV travel at the future time from the road shape acquisition unit 10, and the preceding vehicle LV leaves the detection range of the external sensor 1 at the future time. Determine whether or not
  • the automatic driving determination unit 18 of the automatic driving control unit 17 inputs the integrated result and the planned traveling route information of the integrating unit 12 and the own vehicle traveling information of the vehicle sensor 6, and determines the behavior, route or speed required for automatic driving. etc.
  • the vehicle control unit 19 of the automatic driving control unit 17 inputs the calculation result of the automatic driving determination unit 18 and controls the vehicle driving unit 20 (engine 21, brake 22, steering 23) (automatic driving control).
  • FIG. 2 is a diagram showing the configuration of the external sensor 1 in the self-driving vehicle (own vehicle V).
  • One camera sensor 2 and two radar sensors 3 are provided in front of the vehicle V.
  • the detection range SR1 of the camera sensor 2 is set toward the front
  • the detection range SR2 of the left front radar sensor 3 is set toward the left
  • the detection range SR3 of the front right radar sensor 3 is toward the right.
  • a coordinate origin a of the host vehicle V is defined at the center of the rear end of the vehicle, and the traveling direction is indicated by the x direction, the lateral direction by the y direction, and the height direction by the z direction.
  • FIG. 3 is a flowchart of processing performed by the behavior prediction unit 9
  • FIG. 5 is a flowchart of processing performed by the integration unit 12.
  • FIG. A flowchart of the processing performed by the action prediction unit 9 will be described below.
  • step S101 the action prediction unit 9 acquires the integration result FU1 at the current time t1 from the integration unit 12.
  • FIG. 4 is a diagram showing the scene at the current time t1, the integrated result FU1, and the action prediction result CA1.
  • the scene at the current time t1 in FIG. 4 is a scene in which the own vehicle V follows the preceding vehicle LV and travels on the overpass road.
  • the host vehicle V is running at a reduced speed from the predetermined speed set by the host vehicle V in order to maintain the inter-vehicle distance with the preceding vehicle LV.
  • the own vehicle V and the preceding vehicle LV are traveling on an uphill grade of an overpass road, and the preceding vehicle LV is positioned within the detection ranges SR1, SR2, and SR3 of the external world sensor 1 of the own vehicle V, and the external world sensor 1 is detecting the preceding vehicle LV.
  • the integration result FU1 in FIG. 4 is the integration result generated by the integration unit 12 by integrating the vehicle travel information and the object information at the current time t1 with the surrounding map information.
  • the x direction and the y direction are represented in a grid, the lane of the road, the own vehicle information V1 indicating the position and size of the own vehicle V, and the position and size of the preceding vehicle LV. , the preceding vehicle information LV1 indicating .
  • the positions of the own vehicle information V1 and the preceding vehicle information LV1 are obtained by calculating the positions of the coordinate origin a1 of the own vehicle V and the coordinate origin b1 of the preceding vehicle LV from the own vehicle running information and the object information resulting from the integration, and using these origins as a reference. , and the size of the vehicle is defined in the peripheral map information.
  • the behavior prediction unit 9 generates a behavior prediction result CA1 for future time t2.
  • the future time t2 may be a preset time relative to the current time t1, or may be set according to information such as the speed, acceleration, traveling direction, driving lane, and surrounding traffic environment of the own vehicle V and the preceding vehicle LV. Any time is fine.
  • the behavior prediction result CA1 in FIG. 4 is obtained by calculating the positions of the coordinate origin a2 of the own vehicle V and the coordinate origin b2 of the preceding vehicle LV at the future time t2 by the behavior prediction unit 9, and calculating the size of the vehicle based on these origins. is defined as the surrounding map information.
  • information such as the speed, acceleration, traveling direction, and driving lane of the host vehicle V and the preceding vehicle LV is used from the host vehicle travel information, object information, and peripheral map information of the integrated result FU1. to calculate.
  • the vehicle information V2 and the preceding vehicle information LV2 indicate the inter-vehicle relationship in the x- and y-direction coordinate systems, and the vehicle information GV2 and the preceding vehicle information GLV2 are in the x- and z-direction coordinate systems. indicates the gradient relationship.
  • step S103 the road shape acquisition unit 10 of the behavior prediction unit 9 acquires the vehicle information GV2 and the preceding vehicle information GLV2 as the road shape information (slope information) of the road surface on which the vehicle V and the preceding vehicle LV are traveling at the future time t2. Based on the position, get the slope value from the surrounding map information.
  • the actual slope of the overpass varies depending on the road, but here, as an example, the slope value in the own vehicle information GV2 is +5%, and the slope value in the preceding vehicle information GLV2 is -5%.
  • the departure determination unit 11 of the behavior prediction unit 9 determines in step S104 whether or not the preceding vehicle LV will leave the detection range of the external sensor 1 at future time t2.
  • the departure determination unit 11 compares the gradient value of the own vehicle V acquired in step S103 with the gradient value of the preceding vehicle LV, calculates the difference (gradient difference), and if the difference is equal to or greater than a specified value (step S104 : YES), the process proceeds to step S105, and if it is not equal to or greater than the specified value (step S104: NO), the flow ends.
  • step S104 determines whether the slope difference between the own vehicle V and the preceding vehicle LV is greater than the specified value, so the determination in step S104 is YES (leaving).
  • the detachment determination unit 11 utilizes such a phenomenon.
  • a gradient difference that cannot be detected by the external sensor 1 is set in advance as a prescribed value, and when the difference in gradient between the road surface on which the vehicle V and the preceding vehicle LV travel is greater than or equal to the prescribed value, the external sensor Departure is determined by agreeing that the preceding vehicle LV is positioned outside the detection ranges SR1, SR2, and SR3 of 1.
  • the prescribed value of the gradient is set to 7% for the sake of explanation, but it is preferable to set the optimum value in consideration of the actual shape of the vehicle, the mounting position of the external sensor, and the like.
  • the action prediction unit 9 stores the action prediction result CA1 at the future time t2 in the memory 8, and ends the flow.
  • step S201 the integration unit 12 combines external world information from the external world sensor 1 and self Vehicle position information, surrounding map information, and own vehicle running information from the vehicle sensor 6 are acquired.
  • FIG. 6 is a diagram showing the scene at the current time t2, the integration result FU2, and the regenerated integration result FU3.
  • the scene at the current time t2 shows a scene in which the own vehicle V follows the preceding vehicle LV and travels on the overpass road, and the time is ahead of the current time t1 described in FIG.
  • the own vehicle V is running on the uphill slope of the overpass road, but the preceding vehicle LV is running on the downhill slope of the overpass road.
  • the preceding vehicle LV has left the detection ranges SR1, SR2, and SR3 of the external sensor 1 of the host vehicle V, indicating that the external sensor 1 has lost the preceding vehicle LV.
  • the integration unit 12 generates an integration result FU2 at the current time t2 based on the information acquired at step S201.
  • the integrated result FU2 the own vehicle information V3 exists, but the preceding vehicle information does not exist because the external sensor 1 has lost the preceding vehicle LV.
  • the preceding vehicle LV is originally present in front of the own vehicle V
  • the integrated result FU2 in which the preceding vehicle information does not exist is output to the subsequent automatic driving control unit 17, the own vehicle V and the preceding vehicle LV becomes shorter, which is dangerous. That is, based on the integrated result FU2, the automatic driving determination unit 18 determines that the preceding vehicle LV, which is the target vehicle for follow-up running, has disappeared, and the vehicle control unit 19 controls the acceleration of the own vehicle V so as to return to a predetermined speed.
  • the inter-vehicle distance between the own vehicle V and the preceding vehicle LV, which has been maintained until becomes shorter.
  • step S203 the integration unit 12 determines whether or not the preceding vehicle information has been lost at the current time t2.
  • the integration unit 12 monitors how the detection state of the external sensor 1 has changed between the current time t2 and before the current time t2, changes from the state with detection to the state without detection, and the preceding vehicle information is changed. If lost (step S203: YES), proceed to step S204; otherwise (step S203: NO), proceed to step S205.
  • step S204 the integration unit 12 acquires the stored action prediction result CA1 for the future time t2 (corresponding to the current time t2) from the action prediction unit 9.
  • the integration unit 12 compares the integration result FU2 and the action prediction result CA1, and takes consistency between the coordinate origin a3 of the vehicle information V3 and the coordinate origin a2 of the vehicle information V2.
  • the integration unit 12 calculates the positional relationship between the coordinate origin a3 of the own vehicle information V3 and the coordinate origin b2 of the preceding vehicle information LV2, and calculates the position of the coordinate origin b2 of the preceding vehicle information LV2 in the integrated result FU2.
  • the integrating unit 12 defines a coordinate origin b2 in the integrated result FU2, defines the size of the preceding vehicle LV based on the coordinate origin b2, and regenerates the integrated result FU2 as an integrated result FU3.
  • the integration unit 12 uses the behavior prediction result CA1 calculated and stored in advance by the behavior prediction unit 9 to predict the integrated result FU2. By fusing the vehicle information LV2, it is possible to regenerate (integrate) the integrated result FU3 that matches the actual situation.
  • step S205 the integration unit 12 outputs the planned travel route information and the integration result generated in step S202 or the integration result regenerated in step S204 to the automatic driving control unit 17.
  • the signal processing device 7 of the vehicle control device AD1 causes the behavior prediction unit 9 to generate and store the behavior prediction result CA1 of the own vehicle V and the preceding vehicle LV at the future time t2, and the road shape acquisition unit 10
  • the road shape information (slope information) of the road surface on which the own vehicle V and the preceding vehicle LV are traveling at future time t2 is acquired, and the departure determination unit 11 determines the preceding vehicle LV from the detection ranges SR1, SR2, and SR3 of the external sensor 1 at future time t2. can determine whether or not to withdraw.
  • the signal processing device 7 of the vehicle control device AD1 performs integrated
  • the unit 12 acquires the behavior prediction result CA1 corresponding to the current time t2 (instead of the external world information acquired by the external sensor 1), and fuses the integrated result FU2 with the preceding vehicle information LV2 (in other words, the integrated result FU2 is merged with the preceding vehicle information LV2).
  • the integrated result FU3 (interpolated with the vehicle information LV2) can be regenerated.
  • the signal processing device 7 of the vehicle control device AD1 transmits the planned traveling route information and the integrated result FU3 from the integration unit 12 to the automatic driving control unit 17. Therefore, the automatic driving control unit 17 performs vehicle control using the preceding vehicle information LV2 of the integrated result FU3. As a result, the inter-vehicle distance between the own vehicle V and the preceding vehicle LV is properly maintained, and the vehicle can travel safely.
  • the signal processing device 7 has an integration unit 12 and an action prediction unit 9
  • the action prediction unit 9 includes a road shape acquisition unit 10 and a departure determination unit 11 .
  • the integration unit 12 integrates the external world information acquired by the external sensor 1 mounted on the vehicle V and the vehicle running information acquired by the vehicle sensor 6 .
  • the behavior prediction unit 9 predicts the behavior of the own vehicle V and the other vehicle detected by the external sensor 1 at a future time based on the integration result of the integration unit 12 .
  • the road shape acquisition unit 10 obtains road shape information (gradient information) on the road surface on which the own vehicle V and the other vehicle are traveling at a future time.
  • the departure determination unit 11 determines whether or not the other vehicle will leave the detection range of the external sensor 1 at a future time based on the behavior prediction results of the host vehicle V and the other vehicle and the road shape information (slope information).
  • the integration unit 12 uses the behavior prediction result for integration processing according to the determination result of the withdrawal determination unit 11 .
  • the external sensor 1 determines the cause of the loss of the preceding vehicle LV more accurately than the conventional signal processing device, so that the inter-vehicle distance between the preceding vehicle LV and the host vehicle V during follow-up running can be determined more reliably. It is possible to provide a signal processing device 7 capable of maintaining the
  • the second embodiment is an example in which the traveling road of the first embodiment is replaced with a sag road. , and the flow charts of the action prediction unit 9 and the integration unit 12 described with reference to FIGS.
  • FIG. 7 is a diagram showing the scene at the current time t101, the integration result FU101, and the regenerated integration result FU102.
  • the scene at the current time t101 is the scene where the own vehicle V follows the preceding vehicle LV and travels on the sag road.
  • the host vehicle V was running at a reduced speed from the predetermined speed set by the host vehicle V in order to maintain the inter-vehicle distance with the preceding vehicle LV.
  • the own vehicle V is running on the downward slope of the sag road, but the preceding vehicle LV is running on the upward slope of the sag road.
  • the preceding vehicle LV has left the detection ranges SR1, SR2, and SR3 of the external sensor 1 of the host vehicle V, and it can be seen that the external sensor 1 has lost the preceding vehicle LV.
  • step S202 the integration unit 12 generates an integration result FU101 at current time t101 based on the information acquired in step S201.
  • the integrated result FU101 own vehicle information V101 exists, but the preceding vehicle information does not exist because the external sensor 1 has lost the preceding vehicle LV.
  • the preceding vehicle LV exists in front of the own vehicle V
  • the integrated result FU101 in which the preceding vehicle information does not exist is output to the subsequent automatic driving control unit 17, the own vehicle V and the preceding vehicle LV becomes shorter, which is dangerous. That is, based on the integrated result FU101, the automatic driving determination unit 18 determines that the preceding vehicle LV, which is the target vehicle for follow-up running, has disappeared, and the vehicle control unit 19 controls the acceleration of the own vehicle V so that it returns to a predetermined speed. The inter-vehicle distance between the own vehicle V and the preceding vehicle LV, which has been maintained until , becomes shorter.
  • step S203 the integration unit 12 determines whether or not the preceding vehicle information has been lost at the current time t101.
  • the integration unit 12 monitors how the detection state of the external sensor 1 has changed between the current time t101 and before the current time t101, changes from the state with detection to the state without detection, and the preceding vehicle information is changed. If lost (step S203: YES), proceed to step S204; otherwise (step S203: NO), proceed to step S205.
  • step S204 the integration unit 12 acquires the stored action prediction result (not shown) for the future time t101 (corresponding to the current time t101) from the action prediction unit 9.
  • the integration unit 12 compares the integrated result FU101 and the action prediction result, and takes consistency between the coordinate origin a101 of the own vehicle information V101 and the coordinate origin (not shown) of the own vehicle information in the action prediction result.
  • the integration unit 12 calculates the positional relationship between the coordinate origin a101 of the own vehicle information V101 and the coordinate origin b100 of the preceding vehicle information LV100 of the behavior prediction result, and determines the position of the coordinate origin b100 of the preceding vehicle information LV100 in the integrated result FU101.
  • Calculate The integrating unit 12 defines a coordinate origin b100 in the integrated result FU101, defines the size of the preceding vehicle LV based on the coordinate origin b100, and regenerates the integrated result FU101 as an integrated result FU102.
  • the integration unit 12 uses the behavior prediction result calculated and stored in advance by the behavior prediction unit 9 to generate the integrated result FU101. By fusing the information LV 100, it is possible to regenerate (integrate) the integrated result FU 102 that matches the actual situation.
  • step S205 the integration unit 12 outputs the planned travel route information and the integration result generated in step S202 or the integration result regenerated in step S204 to the automatic driving control unit 17.
  • the signal processing device 7 of the vehicle control device AD1 causes the behavior prediction unit 9 to generate and store the behavior prediction result of the own vehicle V and the preceding vehicle LV at the future time t101, and the road shape acquisition unit 10
  • the road shape information (slope information) of the road surface on which the vehicle V and the preceding vehicle LV are traveling at time t101 is acquired, and the departure determination unit 11 detects the preceding vehicle LV from the detection ranges SR1, SR2, and SR3 of the external sensor 1 at future time t101. You can decide whether to leave or not.
  • the signal processing device 7 of the vehicle control device AD1 acquires the behavior prediction result corresponding to the current time t101 (instead of the external world information acquired by the external sensor 1), and fuses the integrated result FU101 with the preceding vehicle information LV100 (in other words, the integrated result FU101 is combined with the preceding vehicle information LV100).
  • the integrated result FU 102 (interpolated with the information LV 100) can be regenerated.
  • the signal processing device 7 of the vehicle control device AD1 transmits the planned travel route information and the integrated result FU102 from the integration unit 12 to the automatic driving control unit 17. Therefore, the automatic driving control unit 17 performs vehicle control using the preceding vehicle information LV100 of the integrated result FU102. As a result, the inter-vehicle distance between the own vehicle V and the preceding vehicle LV is properly maintained, and the vehicle can travel safely.
  • the external sensor 1 determines the loss factor of the preceding vehicle LV more accurately than the conventional signal processing device. It is possible to provide the signal processing device 7 that can more reliably maintain the inter-vehicle distance to V.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • addition, deletion, or replacement of other configurations for a part of the configuration of each embodiment can be applied singly or in combination.
  • the gradient information of the traveling road surface is obtained from the surrounding map information.
  • the gradient value of the preceding vehicle LV may be calculated using the amount of movement in the height direction, or the gradient value of the vehicle V may be calculated from the inclination of the vehicle V obtained from the vehicle sensor 6 .
  • gradient information (gradient value) of the road surface on which the vehicle is traveling is acquired as road geometry information for departure determination. good.
  • the coordinate origin a2 and the coordinate origin b2 are calculated from the own vehicle running information, the object information, and the surrounding map information of the integrated result FU1. It is also possible to calculate with higher accuracy by utilizing the behavior immediately before, the past empirical knowledge database, and the surrounding traffic environment information.
  • step S205 of the integrating unit 12 it was explained that the scheduled travel route information and the integrated result FU3 regenerated in step S204 are output to the automatic driving control unit 17.
  • the feature of the integrated result FU3 For the purpose of clarifying, information indicating that the integrated result FU3 is regenerated based on the action prediction result CA1 may be added and output to the automatic driving control unit 17.
  • each of the above configurations may be partially or wholly configured by hardware, or may be configured to be realized by executing a program on a processor.
  • control lines and information lines indicate those considered necessary for explanation, and do not necessarily indicate all the control lines and information lines on the product. In practice, it may be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

従来の信号処理装置よりも外界センサの先行車両のロスト要因を精度良く判定することで、追従走行における先行車両と自車両との車間距離をより確実に保つことが可能な信号処理装置を提供する。統合部12は、自車両Vに搭載された外界センサ1が取得した外界情報と、車両センサ6が取得した自車走行情報と、を統合処理する。行動予測部9は、統合部12の統合結果に基づいて、自車両V及び外界センサ1が検知した他車両の将来時刻における行動を予測する。道路形状取得部10は、将来時刻の自車両Vおよび他車両の走行路面における道路形状情報(勾配情報)を求める。離脱判定部11は、自車両Vおよび他車両の行動予測結果および道路形状情報(勾配情報)に基づいて、将来時刻において外界センサ1の検知範囲から他車両が離脱するか否かを判定する。統合部12は、離脱判定部11の判定結果に応じて、行動予測結果を統合処理に用いる。

Description

信号処理装置
 本発明は、車両の信号処理装置に関する。
 近年、自動運転の車両制御装置を搭載した車両(以下、自動運転車両とも呼ぶ)の自動運転が実用化されている。これに関し、例えば自動運転車両の走行において、前方を走行する他車両(以下、先行車両とも呼ぶ)の情報を外界センサから取得して、自動運転車両が、先行車両との車間距離を保つように追従して走行する車両制御が知られている。
 また、特許文献1には、自車両の外界センサが先行車両をロストした場合に、地図情報から求めた先行車両の経路候補に基づき、自車両の経路上に先行車両が存在するか否かを判断し、自車両の経路上に先行車が存在すると判断した場合に、自車両の加速制御を制限する自動運転制御装置が開示されている。
特開2016-103131号公報
 自動運転車両(以下、自車両とも呼ぶ)の走行においては、登りと下りの勾配が連続した陸橋路やサグ路の走行も考えられる。
 例えば、自車両が先行車両との車間距離を保つように追従走行して陸橋路を通る際、先行車両が走行する路面の勾配と、自車両が走行する路面の勾配とで、その差が大きく、先行車両の位置が自車両の外界センサの検知範囲外に位置する場面では、外界センサからの先行車情報が一時的にロスト(以下、一時ロストとも呼ぶ)する現象がある。
 このように、自車両の走行経路の前方に先行車両が存在するにも関わらず、外界センサの先行車情報の一時ロストが要因で、自車両が加速、もしくは先行車両が減速してしまうと、それまで保っていた車間距離は短くなってしまう。また、その直後、外界センサの先行車情報が回復した場合には、自車両側で先行車両が急に現れたように判断され、自車両と先行車両が急接近、もしくは衝突する危険が考えられる。
 特許文献1の従来技術は、まず、外界センサと地図情報から、自車両が走行する経路と、先行車両がこれから走行する経路の候補を計算する。次に、自車両の経路と、先行車両の経路候補と、外界センサの検知範囲との関係から、いつ先行車両をロストするかのタイミングを先行車両の経路候補毎に算出する。そして、算出した経路候補と、実際に外界センサがロストしたタイミングとの一致性を比較して、先行車両が実際にどの経路を選択したかを判定することで、先行車両の一時ロスト要因が精度良く特定可能となっている。
 ここで、特許文献1による陸橋路の走行を考える。まず、一般的な陸橋路は、経路としては直進経路がひとつあるだけである。また、陸橋路は、例えば交差点の右左折の経路のように安全に曲がるために減速する場面は少なく、車両の速度は比較的に高く出やすいことから、特に自車両と先行車両が急接近しやすい道路と考えられる。しかしながら、特許文献1は、経路が直進でひとつだけの走行には対応がされておらず、また、陸橋路における先行車両の一時ロストは走行路面の勾配が要因であるにもかかわらず、その勾配に対する配慮がなされていない。
 特許文献1のように、一時ロストの要因を先行車両の経路候補から判定する方法では、陸橋路やサグ路の走行における一時ロストの要因が精度良く判定できない課題があった。
 本発明は、上記課題に鑑みてなされたもので、従来の信号処理装置よりも外界センサの先行車両のロスト要因を精度良く判定することで、追従走行における先行車両と自車両との車間距離をより確実に保つことが可能な信号処理装置を提供することを目的とする。
 上記目的を達成するために、本発明は、自車両に搭載された外界センサが取得した外界情報と、車両センサが取得した自車走行情報と、を統合処理する統合部と、前記統合部の統合結果に基づいて、前記自車両及び前記外界センサが検知した他車両の将来時刻における行動を予測する行動予測部と、を有する信号処理装置であって、前記行動予測部は、前記将来時刻の前記自車両および前記他車両の走行路面における道路形状情報を求める道路形状取得部と、前記自車両および前記他車両の行動予測結果および前記道路形状情報に基づいて、前記将来時刻において前記外界センサの検知範囲から前記他車両が離脱するか否かを判定する離脱判定部と、を備え、前記統合部は、前記離脱判定部の判定結果に応じて、前記行動予測結果を前記統合処理に用いることを特徴とする信号処理装置である。
 本発明によれば、従来の信号処理装置よりも外界センサの先行車両のロスト要因を精度良く判定することで、追従走行における先行車両と自車両との車間距離をより確実に保つことが可能な信号処理装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る自動運転車両の車両制御装置AD1を示す構成図。 図1の外界センサ1の一例を示す構成図。 図1の行動予測部9で実行されるフローチャート図。 実施形態1の現在時刻t1における場面と、統合結果FU1と、行動予測結果CA1を示した説明図。 図1の統合部12で実行されるフローチャート図。 実施形態1の現在時刻t2における場面と、統合結果FU2と、統合結果FU3を示した説明図。 実施形態2の現在時刻t101における場面と、統合結果FU101と、統合結果FU102を示した説明図。
 以下、幾つかの実施形態に係る信号処理装置について図面を用いて詳細に説明する。本実施形態は、本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。各図において共通の構成については、同一の参照符号が付されている。
[実施形態1]
 図1は、自動運転車両(自車両V)に搭載される車両制御装置AD1の構成図である。車両制御装置AD1は、信号処理装置7と、自動運転制御部17と、外界センサ1と、地図ユニット5と、車両センサ6と、車両駆動部20とを含む。
 信号処理装置7と、自動運転制御部17と、地図ユニット5は、車両駆動部20が制御するエンジン21、ブレーキ22、及びステアリング23の各操作量を車両センサ6から取得する。
 外界センサ1は、カメラセンサ2と、レーダセンサ3とを有している。カメラセンサ2は、自車両Vの周囲の画像から検知した物体情報(外界情報)を取得し、取得した物体情報を信号処理装置7に出力する。レーダセンサ3は、自車両Vの周囲の所定の地点までの距離から検知した物体情報(外界情報)を取得し、取得した物体情報を信号処理装置7に出力する。尚、物体情報とは、検知した物体の大きさ、位置、速度、加速度、向き、種別、検知状態などが含まれている。
 地図ユニット5は、アンテナ4を有している。アンテナ4は、全球測位衛星システム(Global Navigation Satellite System。以下、GNSS)の衛星受信信号(以下、GNSS信号)を受信する。地図ユニット5は、地図データベースと、ロケータを含む。地図ユニット5は、受信したGNSS信号に基づいてロケータで自車位置情報を算出し、地図データベースから周辺地図情報を選択して、自車位置情報及び周辺地図情報を信号処理装置7に出力する。尚、地図情報とは、自動運転に必要な道路や標識、地物等の詳細な情報を含んでいる。
 車両センサ6は、エンジン21の運転情報、ブレーキ22の操作情報及びステアリング23の操作情報等の自車走行情報を取得し、取得した自車走行情報を信号処理装置7、自動運転制御部17、及び地図ユニット5に出力する。
 ここで、信号処理装置7は、プロセッサ13と、メモリ8と、I/Oインターフェース15と、I/Oインターフェース16と、補助記憶装置14を含む。I/Oインターフェース15は、外界センサ1と、地図ユニット5と、車両センサ6に接続され、I/Oインターフェース16は、自動運転制御部17に接続される。I/Oインターフェース15とI/Oインターフェース16は、LAN(Local Area Network)やCAN(Controller Area Network)を介して外界センサ1、地図ユニット5、車両センサ6、自動運転制御部17に接続される。
 補助記憶装置14は、不揮発性の記憶媒体で構成されて、プログラムやテーブルなどを保持する。
 メモリ8には、統合部12と、行動予測部9がプログラムとしてロードされ、プロセッサ13によって実行される。尚、行動予測部9は、道路形状取得部10と、離脱判定部11を含んでいる。
 統合部12は、外界センサ1からは外界情報を入力し、地図ユニット5からは自車位置情報と、周辺地図情報と、予め設定された走行予定経路情報とを入力し、車両センサ6からは自車走行情報を入力する。統合部12は、自車位置情報に基づいて、周辺地図情報に自車走行情報を融合する。統合部12は、外界情報を精査し、センサの検出誤りなど不正確な情報を除去後、正しい物体情報を生成して周辺地図情報に物体情報を融合する。統合部12は、周辺地図情報に自車走行情報と物体情報を融合(統合)させた、統合結果を生成する(統合処理とも呼ぶ)。統合部12は、行動予測部9へ統合結果を出力し、自動運転制御部17へ統合結果と走行予定経路情報とを出力する。
 行動予測部9は、統合部12から統合結果を入力し、将来時刻における自車両Vと周辺物体との位置関係などを計算して、計算によって求められた将来時刻の自車走行情報と物体情報とを周辺地図情報に融合させた行動予測結果を生成する。行動予測部9は、生成した行動予測結果の記憶と読出しを行い、必要に応じて行動予測結果を統合部12へ出力する。
 道路形状取得部10は、行動予測結果から先行車両LVを抽出し、将来時刻における先行車両LVの走行路面の勾配情報を取得する。また、道路形状取得部10は、行動予測結果から将来時刻における自車両Vの走行路面の勾配情報を取得する。尚、走行路面の勾配情報とは、行動予測結果の自車両Vと先行車両LVの位置情報に基づいて、周辺地図情報から取得した勾配値である。
 尚、走行路面の勾配情報は、周辺地図情報に勾配値が含まれていれば直接取得しても良いし、周辺地図情報に含まれる道路形状を定義した道路座標点(緯度・経度・標高)の情報などから勾配値を計算して取得しても良い。
 離脱判定部11は、将来時刻における自車両Vと先行車両LVの走行路面の勾配情報を道路形状取得部10からそれぞれ取得して、将来時刻において外界センサ1の検知範囲から先行車両LVが離脱するか否かを判定する。
 自動運転制御部17の自動運転判断部18は、統合部12の統合結果及び走行予定経路情報と、車両センサ6の自車走行情報とを入力して、自動運転に必要な行動や経路又は速度等を計算する。自動運転制御部17の車両制御部19は、自動運転判断部18の計算結果を入力して、車両駆動部20(エンジン21、ブレーキ22、ステアリング23)を制御(自動運転制御)する。
 次に、図2は、自動運転車両(自車両V)における外界センサ1の構成を示した図である。自車両Vの前方に、カメラセンサ2が1個と、レーダセンサ3が2個備わっている。カメラセンサ2の検知範囲SR1は正面に向けて設定され、前方左側のレーダセンサ3の検知範囲SR2はやや左を向いて設定され、前方右側のレーダセンサ3の検知範囲SR3はやや右を向いて設定され、それぞれの検知範囲を重ねることで、外界センサ1は広い検知範囲を得ている。自車両Vの座標原点aは、車両の後端中央に定義され、進行方向をx方向、横方向をy方向、高さ方向をz方向で示している。
 ここからは、登りから下りへと続く道路(陸橋路)を走行する例で説明する。
 車両制御装置AD1による自動運転が実行されると、統合部12と、行動予測部9と、道路形状取得部10と、離脱判定部11の処理が開始される。
 図3は、行動予測部9で行われる処理のフローチャートであり、図5は、統合部12で行われる処理のフローチャートである。以下、行動予測部9で行われる処理のフローチャートについて説明する。
 まず、行動予測部9は、ステップS101で、統合部12から現在時刻t1の統合結果FU1を取得する。
 ここで、図4は、現在時刻t1における場面と、統合結果FU1と、行動予測結果CA1を示した図である。
 図4の現在時刻t1の場面は、自車両Vが先行車両LVに追従して陸橋路を走行している場面である。自車両Vは、先行車両LVとの車間距離を保つために自車両Vが設定していた所定の速度から減速して走行している。自車両Vと先行車両LVは、陸橋路の登り勾配を走行していて、自車両Vの外界センサ1の検知範囲SR1、SR2、SR3の中に先行車両LVが位置しており、外界センサ1が先行車両LVを検知していることが分かる場面である。
 図4の統合結果FU1は、統合部12が、現在時刻t1における自車走行情報と物体情報とを周辺地図情報に融合して生成した統合結果である。図4では、説明のため、x方向とy方向を升目状に表して、道路の車線と、自車両Vの位置と大きさを示した自車情報V1と、先行車両LVの位置と大きさを示した先行車情報LV1を示している。自車情報V1と先行車情報LV1の位置は、統合結果の自車走行情報と物体情報から、自車両Vの座標原点a1と先行車両LVの座標原点b1の位置を算出し、それら原点を基準にして車両の大きさを周辺地図情報に定義している。
 図3の各ステップの説明に戻る。
 行動予測部9は、ステップS102で、将来時刻t2の行動予測結果CA1を生成する。将来時刻t2とは、現在時刻t1に対する予め設定された時刻でも良いし、自車両V及び先行車両LVについての速度、加速度、進行方向、走行車線、周辺の交通環境などの情報に応じて設定された時刻でも良い。
 図4の行動予測結果CA1は、行動予測部9が、将来時刻t2における自車両Vの座標原点a2と先行車両LVの座標原点b2の位置を算出し、それら原点を基準にして車両の大きさを周辺地図情報に定義して生成した行動予測結果を示している。
 座標原点a2と座標原点b2は、統合結果FU1の自車走行情報、物体情報、及び周辺地図情報から、自車両V及び先行車両LVについての速度、加速度、進行方向、走行車線などの情報を利用して計算する。
 行動予測結果CA1において、自車情報V2と先行車情報LV2は、x方向とy方向の座標系で車間関係を示し、自車情報GV2と先行車情報GLV2は、x方向とz方向の座標系で勾配関係を示している。
 行動予測部9の道路形状取得部10は、ステップS103で、将来時刻t2における自車両Vと先行車両LVの走行路面の道路形状情報(勾配情報)として、自車情報GV2と先行車情報GLV2の位置に基づいて、周辺地図情報から勾配値を取得する。実際の陸橋路の勾配は、道路によって異なるが、ここでは例として、自車情報GV2における勾配値を+5%とし、先行車情報GLV2における勾配値を-5%とする。
 行動予測部9の離脱判定部11は、ステップS104で、将来時刻t2において、先行車両LVが外界センサ1の検知範囲から離脱するか否かを判定する。離脱判定部11は、ステップS103で取得した自車両Vの勾配値と、先行車両LVの勾配値とを比較してその差(勾配差)を算出して、規定値以上である場合(ステップS104:YES)はステップS105に進み、規定値以上でない場合(ステップS104:NO)はフローを終了する。
 以下は例で、自車両Vと先行車両LVの勾配差が規定値より大きいため、ステップS104でYES判定(離脱する)となっている。
 自車両Vの勾配値: +5%  …(a)
 先行車両LVの勾配値: -5%  …(b)
 勾配の差(a-b): 10%  …(c)
 規定値: 7%  …(d)
 S104の判定(c≧d?): YES(離脱する)
 陸橋路の走行では、自車両Vと先行車両LVの勾配差が大きいほど、先行車両LVが外界センサ1の検知範囲の外に位置するか、あるいは登り勾配の死角に入ってしまうかの理由で、外界センサ1で先行車両LVを検知することが出来なくなってしまう。離脱判定部11は、そのような現象を利用している。つまり、外界センサ1で検知できない勾配差を予め規定値として設定し、離脱判定部11が、自車両Vと先行車両LVの走行路面の勾配差が大きく規定値以上となる場合には、外界センサ1の検知範囲SR1、SR2、SR3の外に先行車両LVが位置することと同意として離脱を判定する。尚、本例では、説明のために勾配の規定値を7%としたが、実際の車両形状や外界センサの取付位置などを考慮した最適な値とすると良い。
 行動予測部9は、ステップS105で、将来時刻t2における行動予測結果CA1をメモリ8に記憶してフローを終了する。
 次に、統合部12で行われる処理のフローチャートについて説明する。
 統合部12は、ステップS201で、現在時刻t2(行動予測部9のステップS102、S103、S104、S105の将来時刻t2に相当)における、外界センサ1からの外界情報と、地図ユニット5からの自車位置情報及び周辺地図情報と、車両センサ6からの自車走行情報を取得する。
 ここで、図6は、現在時刻t2における場面と、統合結果FU2と、再生成された統合結果FU3を示した図である。
 図6において、現在時刻t2の場面は、自車両Vが先行車両LVに追従して陸橋路を走行している場面を図示し、図4で説明した現在時刻t1より時間が進んでいる。自車両Vは陸橋路の登り勾配を走行しているが、先行車両LVは陸橋路の下り勾配を走行している。現在時刻t2では、自車両Vの外界センサ1の検知範囲SR1、SR2、SR3から先行車両LVが離脱しており、外界センサ1が先行車両LVをロストしていることが分かる場面である。
 統合部12は、ステップS202で、ステップS201で取得した情報に基づいて、現在時刻t2における統合結果FU2を生成する。統合結果FU2は、自車情報V3が存在するが、外界センサ1が先行車両LVをロストしているため、先行車情報は存在していない。
 このように、本来は自車両Vの前方に先行車両LVが存在するにも関わらず、先行車情報が存在しない統合結果FU2を後段の自動運転制御部17へ出力してしまうと、自車両Vと先行車両LVとの車間距離は短くなり危険である。つまり、統合結果FU2によって、自動運転判断部18は追従走行の対象車両である先行車両LVがいなくなったと判断し、車両制御部19が所定の速度に戻るように自車両Vを加速制御すると、それまで保っていた自車両Vと先行車両LVの車間距離が短くなってしまう。
 統合部12は、ステップS203で、現在時刻t2において、先行車情報がロストしたか否かを判定する。統合部12は、現在時刻t2と現在時刻t2以前とで外界センサ1の検知状態がどのように変化したかを監視し、検知有りの状態から検知無しの状態に変化して、先行車情報がロストした場合(ステップS203:YES)はステップS204へ進み、それ以外の場合(ステップS203:NO)はステップS205へ進む。
 統合部12は、ステップS204で、行動予測部9から記憶していた将来時刻t2(現在時刻t2に相当)の行動予測結果CA1を取得する。統合部12は、統合結果FU2と行動予測結果CA1とを比較し、自車情報V3の座標原点a3と、自車情報V2の座標原点a2との整合性を取る。統合部12は、自車情報V3の座標原点a3と、先行車情報LV2の座標原点b2との位置関係を計算して、統合結果FU2における先行車情報LV2の座標原点b2の位置を算出する。統合部12は、統合結果FU2に、座標原点b2を定義し、座標原点b2を基準に先行車両LVの大きさを定義して、統合結果FU2を統合結果FU3として再生成する。
 つまり、統合部12は、現在時刻t2において実際に外界センサ1が先行車両LVをロストしても、行動予測部9で予め算出して記憶した行動予測結果CA1を用いて、統合結果FU2に先行車情報LV2を融合させることで、実際の状況にあった統合結果FU3に再生成(統合処理)することができる。
 統合部12は、ステップS205で、走行予定経路情報と、ステップS202で生成した統合結果もしくはステップS204で再生成した統合結果を自動運転制御部17に出力する。
 以上の処理によって、車両制御装置AD1の信号処理装置7は、行動予測部9で将来時刻t2における自車両Vと先行車両LVの行動予測結果CA1を生成して記憶し、道路形状取得部10で将来時刻t2における自車両Vと先行車両LVの走行路面の道路形状情報(勾配情報)を取得し、離脱判定部11で将来時刻t2において外界センサ1の検知範囲SR1、SR2、SR3から先行車両LVが離脱するか否かが判定できる。
 また、車両制御装置AD1の信号処理装置7は、もし現在時刻t2(将来時刻t2に相当)において実際に先行車両LVが外界センサ1の検知範囲SR1、SR2、SR3から離脱した場合には、統合部12で(外界センサ1が取得した外界情報に代わり)現在時刻t2に相当する行動予測結果CA1を取得して、統合結果FU2に先行車情報LV2を融合した(換言すると、統合結果FU2を先行車情報LV2で補間した)統合結果FU3を再生成することができる。
 そして、車両制御装置AD1の信号処理装置7は、現在時刻t2において外界センサ1の先行車情報が一時ロストした場合に、統合部12から走行予定経路情報と統合結果FU3を自動運転制御部17に出力するので、自動運転制御部17で統合結果FU3の先行車情報LV2を用いた車両制御が行われ、これが、追従走行対象の先行車両LVを見失って自車両Vが加速する現象の抑制となり、結果、自車両Vと先行車両LVの車間距離は適正に保たれて安全に走行できる。
 すなわち、信号処理装置7は、統合部12と、行動予測部9と、を有し、行動予測部9は、道路形状取得部10と、離脱判定部11と、を備える。統合部12は、自車両Vに搭載された外界センサ1が取得した外界情報と、車両センサ6が取得した自車走行情報と、を統合処理する。行動予測部9は、統合部12の統合結果に基づいて、自車両V及び外界センサ1が検知した他車両の将来時刻における行動を予測する。道路形状取得部10は、将来時刻の自車両Vおよび他車両の走行路面における道路形状情報(勾配情報)を求める。離脱判定部11は、自車両Vおよび他車両の行動予測結果および道路形状情報(勾配情報)に基づいて、将来時刻において外界センサ1の検知範囲から他車両が離脱するか否かを判定する。統合部12は、離脱判定部11の判定結果に応じて、行動予測結果を統合処理に用いる。
 本実施形態によれば、従来の信号処理装置よりも外界センサ1の先行車両LVのロスト要因を精度良く判定することで、追従走行における先行車両LVと自車両Vとの車間距離をより確実に保つことが可能な信号処理装置7を提供することができる。
[実施形態2]
 次に、下りから登りへと続く道路(サグ路)を走行する例を実施形態2で説明する。
 尚、実施形態2は、実施形態1の走行路をサグ路に置き換えた例であり、図1で説明した車両制御装置AD1(信号処理装置7を含む)と、図2で説明した外界センサ1の構成と、図3及び図5で説明した行動予測部9及び統合部12のフローチャートは実施形態1と同じであるため、説明を省略する。
 図7は、現在時刻t101における場面と、統合結果FU101と、再生成された統合結果FU102を示した図である。
 図7において、現在時刻t101の場面は、自車両Vが先行車両LVに追従してサグ路を走行している場面である。自車両Vは、先行車両LVとの車間距離を保つために自車両Vが設定していた所定の速度から減速して走行していた。自車両Vはサグ路の下り勾配を走行しているが、先行車両LVはサグ路の登り勾配を走行している。現在時刻t101では、自車両Vの外界センサ1の検知範囲SR1、SR2、SR3から先行車両LVが離脱しており、外界センサ1が先行車両LVをロストしていることが分かる場面である。
 以下、統合部12で行われる処理のフローチャートで説明する。
 統合部12は、ステップS202で、ステップS201で取得した情報に基づいて、現在時刻t101における統合結果FU101を生成する。統合結果FU101は、自車情報V101が存在するが、外界センサ1が先行車両LVをロストしているため、先行車情報は存在していない。
 このように、本来は自車両Vの前方に先行車両LVが存在するにも関わらず、先行車情報が存在しない統合結果FU101を後段の自動運転制御部17へ出力してしまうと、自車両Vと先行車両LVとの車間距離は短くなり危険である。つまり、統合結果FU101によって、自動運転判断部18は追従走行の対象車両である先行車両LVがいなくなったと判断し、車両制御部19が所定の速度に戻るように自車両Vを加速制御すると、それまで保っていた自車両Vと先行車両LVの車間距離が短くなってしまう。
 統合部12は、ステップS203で、現在時刻t101において、先行車情報がロストしたか否かを判定する。統合部12は、現在時刻t101と現在時刻t101以前とで外界センサ1の検知状態がどのように変化したかを監視し、検知有りの状態から検知無しの状態に変化して、先行車情報がロストした場合(ステップS203:YES)はステップS204へ進み、それ以外の場合(ステップS203:NO)はステップS205へ進む。
 統合部12は、ステップS204で、行動予測部9から記憶していた将来時刻t101(現在時刻t101に相当)の行動予測結果(図示せず)を取得する。統合部12は、統合結果FU101と行動予測結果とを比較し、自車情報V101の座標原点a101と、行動予測結果における自車情報の座標原点(図示せず)との整合性を取る。統合部12は、自車情報V101の座標原点a101と、行動予測結果の先行車情報LV100の座標原点b100との位置関係を計算して、統合結果FU101における先行車情報LV100の座標原点b100の位置を算出する。統合部12は、統合結果FU101に、座標原点b100を定義し、座標原点b100を基準に先行車両LVの大きさを定義して、統合結果FU101を統合結果FU102として再生成する。
 つまり、統合部12は、現在時刻t101において実際に外界センサ1が先行車両LVをロストしても、行動予測部9で予め算出して記憶した行動予測結果を用いて、統合結果FU101に先行車情報LV100を融合させることで、実際の状況にあった統合結果FU102に再生成(統合処理)することができる。
 統合部12は、ステップS205で、走行予定経路情報と、ステップS202で生成した統合結果もしくはステップS204で再生成した統合結果を自動運転制御部17に出力する。
 以上の処理によって、車両制御装置AD1の信号処理装置7は、行動予測部9で将来時刻t101における自車両Vと先行車両LVの行動予測結果を生成して記憶し、道路形状取得部10で将来時刻t101における自車両Vと先行車両LVの走行路面の道路形状情報(勾配情報)を取得し、離脱判定部11で将来時刻t101において外界センサ1の検知範囲SR1、SR2、SR3から先行車両LVが離脱するか否かが判定できる。
 また、車両制御装置AD1の信号処理装置7は、もし現在時刻t101(将来時刻t101に相当)において実際に先行車両LVが外界センサ1の検知範囲SR1、SR2、SR3から離脱した場合には、統合部12で(外界センサ1が取得した外界情報に代わり)現在時刻t101に相当する行動予測結果を取得して、統合結果FU101に先行車情報LV100を融合した(換言すると、統合結果FU101を先行車情報LV100で補間した)統合結果FU102を再生成することができる。
 そして、車両制御装置AD1の信号処理装置7は、現在時刻t101において外界センサ1の先行車情報が一時ロストした場合に、統合部12から走行予定経路情報と統合結果FU102を自動運転制御部17に出力するので、自動運転制御部17で統合結果FU102の先行車情報LV100を用いた車両制御が行われ、これが、追従走行対象の先行車両LVを見失って自車両Vが加速する現象の抑制となり、結果、自車両Vと先行車両LVの車間距離は適正に保たれて安全に走行できる。
 本実施形態2によれば、上記実施形態1と同様に、従来の信号処理装置よりも外界センサ1の先行車両LVのロスト要因を精度良く判定することで、追従走行における先行車両LVと自車両Vとの車間距離をより確実に保つことが可能な信号処理装置7を提供することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、又は置換のいずれもが、単独で、又は組み合わせても適用可能である。
 まず、上記した実施形態では、走行路面の勾配情報を周辺地図情報から取得すると説明したが、周辺地図情報を使用せずに、外界センサ1の外界情報から取得できる道路形状や、先行車両LVの高さ方向の移動量を利用して先行車両LVの勾配値を算出しても良く、車両センサ6から取得できる自車両Vの傾きから自車両Vの勾配値を算出しても良い。
 また、上記した実施形態では、離脱判定のために道路形状情報として走行路面の勾配情報(勾配値)を取得すると説明したが、勾配情報に代えてもしくは勾配情報とともに標高情報などを取得しても良い。
 次に、上記した実施形態では、座標原点a2と座標原点b2を統合結果FU1の自車走行情報、物体情報、及び周辺地図情報から計算すると説明したが、これに関し、自車両V及び先行車両LVの直前の振舞いや、過去の経験知的なデータベース、周辺の交通環境情報を活用して更に精度良く計算しても良い。
 次に、上記した実施形態では、統合部12のステップS205で、走行予定経路情報とステップS204で再生成した統合結果FU3とを自動運転制御部17に出力すると説明したが、統合結果FU3の素性を明らかにする目的で、行動予測結果CA1に基づいて再生成された統合結果FU3であることを示す情報を追加して自動運転制御部17に出力するようにしても良い。
 また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1 外界センサ
6 車両センサ
7 信号処理装置
9 行動予測部
10 道路形状取得部
11 離脱判定部
12 統合部
17 自動運転制御部
20 車両駆動部
AD1 車両制御装置
CA1 行動予測結果
FU1 統合結果
FU2 統合結果
FU3 統合結果
LV 先行車両
V 自車両

Claims (9)

  1.  自車両に搭載された外界センサが取得した外界情報と、車両センサが取得した自車走行情報と、を統合処理する統合部と、
     前記統合部の統合結果に基づいて、前記自車両及び前記外界センサが検知した他車両の将来時刻における行動を予測する行動予測部と、を有する信号処理装置であって、
     前記行動予測部は、
     前記将来時刻の前記自車両および前記他車両の走行路面における道路形状情報を求める道路形状取得部と、
     前記自車両および前記他車両の行動予測結果および前記道路形状情報に基づいて、前記将来時刻において前記外界センサの検知範囲から前記他車両が離脱するか否かを判定する離脱判定部と、を備え、
     前記統合部は、前記離脱判定部の判定結果に応じて、前記行動予測結果を前記統合処理に用いることを特徴とする信号処理装置。
  2.  請求項1に記載の信号処理装置において、
     前記道路形状情報を勾配情報とすることを特徴とする信号処理装置。
  3.  請求項1に記載の信号処理装置において、
     前記行動予測部は、前記自車両および前記他車両の行動予測結果および前記道路形状情報に基づいて、前記将来時刻において前記外界センサの検知範囲から前記他車両が離脱すると判定された場合に、前記行動予測結果を記憶することを特徴とする信号処理装置。
  4.  請求項1に記載の信号処理装置において、
     前記離脱判定部は、前記将来時刻の前記自車両および前記他車両の走行路面における勾配値を比較して、前記将来時刻において前記外界センサの検知範囲から前記他車両が離脱するか否かを判定することを特徴とする信号処理装置。
  5.  請求項1に記載の信号処理装置において、
     前記統合部は、現在時刻において実際に前記外界センサの検知範囲から前記他車両が離脱した場合に、現在時刻に相当する前記行動予測結果を取得して前記統合部の統合結果を再生成することを特徴とする信号処理装置。
  6.  請求項1に記載の信号処理装置において、
     前記道路形状取得部は、前記将来時刻の前記自車両および前記他車両の走行路面における地図情報に基づいて、前記道路形状情報を求めることを特徴とする信号処理装置。
  7.  請求項1に記載の信号処理装置において、
     前記道路形状取得部は、前記外界センサの前記外界情報から取得できる道路形状に基づいて、前記道路形状情報を求めることを特徴とする信号処理装置。
  8.  請求項1に記載の信号処理装置において、
     前記道路形状取得部は、前記他車両の高さ方向の移動量に基づいて、前記道路形状情報を求めることを特徴とする信号処理装置。
  9.  請求項1に記載の信号処理装置において、
     前記道路形状取得部は、前記車両センサから取得できる前記自車両の傾きに基づいて、前記道路形状情報を求めることを特徴とする信号処理装置。
PCT/JP2022/031910 2021-10-22 2022-08-24 信号処理装置 WO2023067888A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023554957A JPWO2023067888A1 (ja) 2021-10-22 2022-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173398 2021-10-22
JP2021173398 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023067888A1 true WO2023067888A1 (ja) 2023-04-27

Family

ID=86058965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031910 WO2023067888A1 (ja) 2021-10-22 2022-08-24 信号処理装置

Country Status (2)

Country Link
JP (1) JPWO2023067888A1 (ja)
WO (1) WO2023067888A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227495A (ja) * 1998-02-17 1999-08-24 Mitsubishi Motors Corp 車速制御装置
JP2006001323A (ja) * 2004-06-15 2006-01-05 Toyota Motor Corp 車両の減速制御装置
JP2007008298A (ja) * 2005-06-30 2007-01-18 Hitachi Ltd 走行制御装置,走行制御システム及びその走行制御に用いる情報を格納したナビゲーション用情報記録媒体
JP2016103131A (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 自動運転制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227495A (ja) * 1998-02-17 1999-08-24 Mitsubishi Motors Corp 車速制御装置
JP2006001323A (ja) * 2004-06-15 2006-01-05 Toyota Motor Corp 車両の減速制御装置
JP2007008298A (ja) * 2005-06-30 2007-01-18 Hitachi Ltd 走行制御装置,走行制御システム及びその走行制御に用いる情報を格納したナビゲーション用情報記録媒体
JP2016103131A (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 自動運転制御装置

Also Published As

Publication number Publication date
JPWO2023067888A1 (ja) 2023-04-27

Similar Documents

Publication Publication Date Title
US11084489B2 (en) Automated driving assist system
EP3939844B1 (en) Longitudinal control method and system for automatic driving vehicle
US11714421B2 (en) Driving support apparatus
US20110098922A1 (en) Path Predictive System And Method For Vehicles
US11204608B2 (en) Vehicle traveling control apparatus
JP4910510B2 (ja) 制御用情報記憶装置及びプログラム
KR20200025730A (ko) 충돌 회피 제어 장치 및 그 방법
CN113997950A (zh) 车辆控制装置和车辆控制方法
JP6291884B2 (ja) 運転支援装置
JP7189691B2 (ja) 車両の走行制御システム
JP2001093096A (ja) カーブ進入制御装置
JP7139992B2 (ja) 制御用地図情報評価装置、制御用地図情報評価方法、及び制御プログラム
CN112477860A (zh) 车辆控制装置
JP2018032215A (ja) 車両制御装置
JP7193572B2 (ja) 移動体制御装置、移動体制御方法、および、移動体制御装置用プログラム
EP4134288B1 (en) Vehicle behavior estimation method, vehicle control method, and vehicle behavior estimation device
KR20210077833A (ko) 자율주행 차량의 센서 오프셋 보정 장치 및 그 방법
US11975717B2 (en) Vehicle control system
CN111717212B (zh) 自动驾驶车辆的跟随控制方法及装置
JP2018073010A (ja) 移動体制御装置、移動体制御方法、および、移動体制御装置用プログラム
WO2023067888A1 (ja) 信号処理装置
JP7484794B2 (ja) 車両制御装置、車両制御用コンピュータプログラム及び車両制御方法
CN114735021A (zh) 自动驾驶系统以及异常判定方法
US20210107525A1 (en) Automatic operating apparatus
JP7274314B2 (ja) 隊列自動運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023554957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22883200

Country of ref document: EP

Kind code of ref document: A1